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One of the main issues in spin glasses which still remains unsolved concerns 

the correct description of the low temperature phase 11, 2]. There is meanReplica symmetry breaking effects in spin---- field theory which gives a very complex description of the spin-glass phase 

glasses with a huge number of equilibrium states separated by different energy bar

riers of all possible heights [3,4]. Even though there are still open problems ' .. 
Felix Ritort in mean-field theory, it is relevant to kn~w if its main results also apply in 

Case of more realistic systems like short-range models. In statistical mechan
April 20, 1994 ics, the usual strategy to obtain properties in models which are not exactly 

solvable is to take mean-field theory as a zeroth order approximation and do 

some perturbative analysis around it. This is a correct procedure if the soluDipartimento eli Fisica, Universita eli Roma II, "Tor Vergata" , 
i i tion around which we are perturbing is physically close to the true solution.Viale della Ricerca Scientifica, Roma 00133, Italy ,I, ;<"-

This strategy has revealed very difficult and progress in this direction is slow 

The most well known version of mean-field theory is the SK model !6).Short title: Replica symmetry breaking in spin glasses 
In this model all spins interact among them and there are no characteris

tic length scales. During the past different approaches to spin glasses have 
PACS. 75.24 M- Numerical simulation studies. been proposed in which the length scales have a more specific role. These 
PACS. 75.5 0 L- Spin glasses. approaches are of a phenomenological type and they are known as droplet 

Abstract models These models are phenomenologic because they do not start from 

Two competing pictures have been proposed which describe the a full microscopic analysis but these take for granted some abinitio hypothesis 
low temperature properties of spin-glasses. We discuss some recent from which they Can derive general results. The main ingredient underlying 
results which try to cliscem what is the correct description of the these approaches is the zero-temperature scaling hypothesis !S, 9J, According
spin-glass phase. We review results for the spin glass order parameter 

to this hypothesis, the low temperature phase in spin-glasses is determinedclistribution in case of zero and finite magnetic field and for the static 

chaos problem. We conclude that it is possible to solve this contro by the zero-temperature fixed point in the renormalization group flow equa

versy, the crucial point being the existence of phase transition with tions. Droplet approaches can go further in making predictions because they 

magnetic field. 
 take for granted some hypothesis. But in this way also they loose the mean

Preprint ROM2F/94/07 field approximation since it becomes unsense in their framework. It would 
cond-m~t/yymmm~n be better if one could retain some kind of phenomenological theoTY without c: 

loosing the zeroth order or mean-field approach. t'.
,~ 
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In this talk we want to emphasize the different. predictions in both pictures 

and we present the most recent numerical results which try to discern what 

is the correct description of the spin-glass phase. We think that a correct 

answer to this question is relevant also from the experimental point of "iew 

flO]. In the experiments it is not possible to reach equilibrium in a time 

window of the same order of the experimental realization time. We expect 

that a correct description of the statics will reveal important (at least in case 

of Ising spin-glass models with full replica symmetry breaking fIL 121) for a 

full understanding also of the off-equilibrium dynamics. 

This talk is divided in four parts. In the next section we will explain what 

are the different predictions in both pictures. The third section contains 

some of the main results at zero magnetic field in case of short-range models. 

In the fourth section we discuss the chaos problem and we propose a scaling 

theory of the spin-glass phase in case of magnetic field perturbations. Section 

5 is devoted to the crucial problem about the existence of the de Almeida

Thouless critical line in magnetic field. The last part contains the conclusions. 

Mean-field approach versus droplet mod
els 

According to mean-field theory, the low temperature phase in spin glasses 

consists of an infinity of equilibrium or pure states separated by energy bar

riers of all heights. These pure states differ in their statistical weights even 

thougll they are thermodynamically equivalent. These states should be con

sidered like equilibrium states except by the fact. that they are in some sense 

critical. By this we mean that spatial (time) correlation functions decay very 

with the distance (time'). In mean-field theory this criticality appears 

in the stud~' of the spectrum of fluctuations The existence of zero modes 

reveals that this systems can be quite sensitive to external perturbations. 

Droplet models assume that there IS a unique ground state and that 

the spectrum of fluctuations is given by a mechanism of droplet excitations. 

This mechanism consist in the reversal of compact domains of spins of size L 

characterized by a rough surface of fractal dimension d. with d - 1 ~ d. ~ d. 

The typical energies of these excitations scale like L' with ebeing the thermal 

exponent. This exponent is given by the zero-temperature fixed point in the 

renormalization-group :Bow equations. In this picture a mean-field theory is 

unclear because the volume of the droplet coincides with its surface. 

One more difference among both approaches concerns the behavior of the 

system against a external perturbation. ,For example, if we apply a small 

magnetic field h, the mean-field theory predicts that the spin-glass phase 

is not destroyed. A more detailed study of this effect reveals that a great 

number of states are destroyed but an infinity of them still remain (14]. When 

the intensity of the applied field increases we reach the AT (de Almeida

Thouless) critical line [151 and the system goes into the paramagnetic phase. 

In droplet models the effect of the magnetic field is the suppression of all the 

excitations of size L larger than a characteristic length e. According to D. 
S. Fisher and D. A. Ruse 

{ ..... (9EA h2 )uS 	 (1) 

wit.h 9EA the Edwards-Anderson order parameter. After applying the mag

netic field h the system acquires a finite correlation length ( and it enters in 

the paramagnetic phase. Then the AT line is given by h O. 

. The existence of a unique equilibrium state and the effect of the magnetic 

field on the spin-glass phase are the two most important differences between 

both approaches which we will investigat.e in the following sections. 

3 	 The order parameter P(q) at zero mag
netic field 

The Ising spin model is given a hamiltonian of the 

H = .. L JijCTiCTJ - h CT, 	 (2) 
(i,i) 
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where the couplings J ij are quenched variables distributed according to a 

probability function P( J) of zero mean and finite variance. The interaction 

is restricted to nearest neighbours and h is the magnetic field. The Ising spins 

CT, take the two possible values ±1 and live in ad-dimensional hypercubic 

lattice. In the limit d -+ 00 one expects to converge to mean-field theory, 

i.e. the SK model. In the SK model all spins interact one to each other and 

the couplings J ij are normalized by a factor 1/.JN where N is the number 

of spins. 

Let us suppose now we take two copies {CT , T} with the same realization 

of the disorder and we define the overlap 

q"..,. = LCTiTi (3) 

From this overlap we can construct its probability distribution defined by 

1 
P(q) = (o(q - L CTiTi)} (4)

Ni 

where ( ... ) and n mean the usual statistical Gibbs average over configura

tions and the average over the quenched disorder respectively. 

This function P( q) (which gives the probability of taking two configu

rations a and f3 to have overlap qQfjJ = q) can be analytically computed in 

mean-field theory. It is symmetric around q = 0 and consists of a delta 

function centered at a maximum value qmo,c plus a continuous part. This 

function extends down to q = 0 and the value of P(O} is nearly independent 

of the size of the system. Numerical simulations for the SK model 116] are 

in agreement with this prediction and we want to know if this mean-field 

result also is true in finite dimensions. Droplet models predict that the P(q) 
should be single peaked at q qmo., and the tail of the P( q), which extends 

down to q = 0, should be suppressed as the size increases. More precisely 

we expect the P(O) should scale like L-, 121] where L is the lattice size. Nu

merical studies in the chaos problem predict a value of eclose to 0.5 in four 

dimensions. Monte Carlo numerical results are shown in figure 1 in case of 

4 

the 4d ±J Ising spin glass at T = 1.4 (Tc = 2.05). The value of P(O) seems 

to be constant with the size in agreeement with mean-field predictions. For 

this regime of sizes, mean-field theory seems to describe qualitatively well 

the behavior of the system. 

Another interesting result in mean-field theory regards the freezing of 

some critical properties in the spin-glass phase. In the critical point the 

order parameter vanishes and the probability function P( q) scales with the 
size according to the expressionI17]: 

P(q) '" Nt e:cp( -a N q3) (5) 

where a is a coefficient and N is the size of the system. In the spin-glass 

phase one can analitically compute the finite-size corrections to the tail of 

the P(q) around q = qmo., 118]. The same cubic exponent is found and the 
result is 

P(q > qmu) '- N! e:cp( -a N (q - qmo.,?) (6) 

Figure 2 shows this result in case of the SK model at T = 1f. This freezing 

of the exponent of the tail seems also to be a general characteristic in short

range models. The corresponding exponent which gives the cost of the free 

energy for configurations with q different from zero, is given by ~ where 

dq and d is the dimension. In four dimensions 1'/ ~ -0.25 119, 20] 

and the correct scaling is given by !22, 23] 

P(q> qmo..,) "- P(q = 9mu) e:cp( -a N (q - qmo..,t6 
) (7) 

Figure 3 shows the same result for T = 1.4 in the 4d ± J Ising spin glass. 

Within errors the exponent coincides with the exponent one finds in the 

critical point. Now the position qmoz of the peak of the P(q) has increased 

from 0 at Tr. to 0.50 at T = 1.4. It can be objected that all these simula

tion results are close to the critical point (T ""'" O. 7T".) This is unvoidable 

because one cannot perform standard simulations down to very low tem

peratures even though new numerical simulation techniques like simulated 

tempering 129, 30J should be able to avoid any critical effect. In any case, 
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these results are very suggestive and we will see that the freezing of some 

exponents can be taken as a good starting hypothesis to understand other 

interesting results like chaoticity in spin glasses. We remind the reader that 

this result suggests that the low temperature phase in spin-glasses should 

be described by properties derived from the finite-temperature fixed point 

exponent!; in the renormalization group flow equations. This is precisely the 

opposite assertion of droplet models. 
~ 

;~ 
4 Static chaos in spin glasses 

~ By static chaos we understand the fact that a small perturbation of the 

Hamiltonian is enough to reshuffle the Boltzmann weights of the different 
.~ 

equilibrium configurations. This result is a natural feature of mean-field 

/~ approach and droplet models. In the :/irst Case the fact that there is a very a 
:~ large number of equilibrium states. This implies that a small addition of 
~~ 

energy to the system can be enough in order to reshuffle all the free energy 

differences among the states changing their statistical weights. In droplet 

'/ models,the ground state is marginally stable and it can be quite sensitive to 

1, 
" 

perturbations. There are several type of perturbations and the most studied 

up to now are a change of the magnetic field or a change of the temperature 

We want now to {ocuse in the case in which a small magnetic field is 

applied to the system which is initially at zero magnetic field. 

Let us suppose an Ising spin glass system with Hamiltonian HJ!er]. Let 

us apply a perturbation P to the system and the new Hamiltonian for a 

different copy of spins {'I,} is 

+ (8) 

We consider now a full Hamiltonian whichis the initial system HJ jer] plus the 

nPTi.11Th,.cl one H"I!rl. i.e. Htu, 'i] = Hllrl + H,kL We define the adimen

" 

~~ 
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sional quantity (chaos parameter) 

a= (9) 

Now (erfer~) mea.ns the order parameter evaluated taking two copies a, b of 

the initial system HI' The numera.tor is obtained averaging over the full 
Hamiltonian Hler I rJ. 

The spin-glass phase is chaotic if 

lim lim a.( P) < 1 (10)P-o 1;'-<10 

Chaoticity in spin glasses reflects the fact any small but finite perturbation 

P causes the parameter a to fall abruptly to a value smaller than a. = 1. This 

can onJy happen in the thermodynamic limit because for a finite size N the 

chaos parameter a will be always a smooth function of N. This means that 

one has to take the thermodynamic limit before applying the perturbation 
P. 

In droplet models there is chaos against magnetic field because of the 

sudden jump of the correlation length which becomes finite as soon as h is 

finite. This mechanism is similar to the effect of a magnetic field when the 
system stays at the critical point. In fact using eq.( 1): 

a == f(Nh4~~') (11) 

The mechanism of chaoticity in mean-field theory is different. After the 

application of the magnetic field the system remains in the spin-glass phase 

and not all states have been suppressed. We argue that some equilibrium 

states are destroyed by the effect of the magnetic field and the free energy 

cost of the suppressed states is given by the finite-temperature fixed points 

exponents /14]. The suppressed states acquire a finite correlation length { 

(the chaos correlation length). This hypothesis gives exact results ill mean

field theory and interesting predictions in case of short-range models. 
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Accordin to this hypothesis, the singular part of the free energy scaJes 

according to 
i 

flliftll- L Q~ 	 (12) 
o<b 

where dq =~ = cI-~+!7 (P, II, 'I are critical exponents) and d is the dimension. 

The difference between the singular part of the free energy at field h and zero 

magnetic field gives the free energy cost of the suppressed states: 

i i..4.+1 
f.iftll = L Q~(h) - L Q~(O) = q~in (13) 

0<11 0<11 

The main ingredient that we have used in this derivation is the fact that the 

order parameter q(%) in short range models is characterized by a continu

ous part plus a plateau where qmin and %min are the value of q(z) and the 

breakpoint of the plateau which depends on the magnetic field. 

The adimensional chaos parameter a scales according to 

a r"-f(Nh~) 	 (14) 

where the exponent A defined by qmin - hf and dq depends on the critical 

exponents. 

In mean-field theory one gets a == f(Nhl) which is in agreement with 

replica calculations [24, 14J. Within mean-field theory the chaos correlation 

length scales like e '" h-L Figure 4 shows numerical results in mean-field 

theory. It can be seen [14J that, at the mean-field level, 3 is the lower critical 

dimension (d,) and 4 corresponds to an upper critical dimension (du 4). 
We point out that this upper critical dimension corresponds to a different 

universality class than the one corresponding to the usual Ising spin-glass 

transition which is 6. Figure 5 shows finite-size scaling for the chaos pa

rameter a in the 4d ±J Ising spin glass at T = 1.5. Data. fit very well the 

mean-field prediction. Within this approach one can also derive the nature 

of the AT line in short range models (we only need to know the critical ex

ponents). In d = 4 we obtain h "- ,1.3±O.l which is close to the mean-field 
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theory result. The result d, = 
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3 is in agreement with recent numerical sim ~. 

~ 
ulations [28]. In three dimensions we also expect a pseudocriticaJ AT line. ~ 
This seems paradoxicaJ if d, = 3. The solution to this paradox is that only 

for sizes (times) smaller than the true correlation length (time) one has some 

kind of pseudocriticaJ AT line. The same mean-field approach reveaJs that 

the criticaJ line is given by h '" r 1.
8 which is close to experimentaJ results in 

bulk CuMn [25J. 
All this results can also be explained in the framework of the droplet 

picture. It is interesting to note that dro~let models aJso predict d, =3 and 

the zero-temperature exponent (J is very well approximated by the formula 

.1;3. Static chaos reveals interesting properties of the spin-glass phase but it 

is very difficult to use it in order to distinguish what is the correct picture of 

the spin-glass phase. The cruciaJ difference between both pictures concerns 

the existence of the AT line. In the droplet picture this should not be a real 

transition but only a dynamical freezing line. The study of the existence of 

the AT line is the purpose of the next section. 

5 	 The order parameter P(q) at finite mag
netic field 

In the previous section we said that some states are suppressed after applying 

the magnetic field. At zero magnetic field the order parameter distribution 

P(q) is symmetric under the exchange q - -q. The magnetic field breaks 

this symmetry and tile P(q) is expected to be non-zero only if q > O. In 

mean-field theory we expect that only those states {o:} which give overlaps 

{qa~ ~ qmin, \1,B} are simply erased by the magnetic field. The suppression 

of the states conserves the ultrametricity property. In a magnetic field the 

P( q) is non zero inside the interval (qmin) qmB"') and has two singularities at 

the extremes of this interval 

P(q) Po(q) + a8(q - qmin) + M(q - qmo",) 

9 



~ o 

Figure 6 shows simulation results [26] in case of mean-field theory at T =0.5 
~,'; ~ and h = 0.3 (the AT line is at h ...., 0.57). This result is a stronger test of 

Parisi solution to mean-field theory. The position of the singularities q",in 
; 

"i~-< 	 and qmm&' can be otained within replica theory. Calculations at first order ',;;'/ 

1~ of replica symmetry breaking give qmin =0.45, qmu: = 0.63 [27]. This is in
~~ ~.

':;j agreement "..jth the numerical results . 

.:;~~ In case of short-range systems the situations is much more subtle. Figure 

7 shows the results in case of the 4d ±J Ising spin-glass at T = 1.2 and ~f 

I 
h = 0.4 126]. These results, in function of the size of the lattice, show a 
similar trend to what appears in the simulations for the SK model. Anyway 

it would be desiderable to locate precisely the singularity corresponding to
." 

q q",in' The main problem in these simulations is that the correlation 
~:: length epredicted in the framework of the droplet model is of the order of 

the size of the system. It is crucial to make simulations in the region L > > e 
where ecan be estimated from numerical studies on chaos (see figure 5). This 

can be acrueved using new numerical techniques like simulated tempering 

[29, 30J. We expect to obtain more conclusive results in this direction ill the 

near future. 

6 Conclusions 

Two competing approaches have been proposed to understand the low tem

perature phase in spin glasses. In the first approach one tries to understand 

,,/ 	 the spin-glass phase using mean-field theory as a starting point. The other 
;, 	

approach is the phenomenological droplet model in which the thermodynam

ics is given by droplet excitations. 

The predictions are different in both pictures and it would be very in
teresting to know what is the relevant description of the low temperature 

phase. Up to date, numerical simulations in the regime of small sizes favour 
the mean-field approa,ch. But it is also true that in that regime of sizes the 

finite-size effects could reproduce yery well the typical features of mean-field 

',~ 
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theory (several states, non self-averaging and similar concepts 

Chaoticity of spin glasses against magnetic field perturbations give rich 

information about the nature of the spin-glass phase. But it is very difficult 

to make a clear distintion between both pictures. It is possible that chaoticity 

in case of temperature perturbations will reveal much more conclusive but 
this is still an open problem. 

The crucial difference between both picture concerns the existence of 

transition with magnetic field. Recent nu~erical simulations for small lattices 

show that it is very difficult to get a conclusive answer on this problem. 

Anyhow we think that it is reliable and possible to go to the region of sizes 

for which the correlation length (according to droplet picture) is smaller 

than the lattice size. Then it is possible to investigate this region in the 
field-temperature plane using numerical tecniques like simulated tempering. 

Even though it is very difficult to decide between the mean-field picture 

and droplet pictures we hope that conclusive results in this direction will be 
obtained in the near future. 
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Figure Caption 

Fig. 1 	P(q) at T = 1.4 in the d = 4 case for several sizes. Error bars are of 

order 10 per cent for all sizes. 

Fig. 2 Tails of P(q)/Pmo'Z with Pmoe = in the SK model versus N(q-0.62)3 

for several sizes N = 32 - 768 at T 0.5. 

Fig. 3 Tails of P(q)/ Pmoe at T = 1.4 in the 4d case for several sizes. 

Fig. 4 Chaos with magnetic field in the SK model at T = 0.6. Field values 

range from h =0.2 up to h =1.0 for the smaller sizes and up to h 0.4 

for the largest ones. The number of samples range from 200 for N = 32 

down to 40 for N = 1632. Typical error bars are of order 5 per cent in 

all cases. 

Fig. 5 Chaos with magnetic field in the 4d ±J Ising spin glass at T = 1.5. 
Magnetic field values range from h = 0.1 up to h = 0.8. The number 

of samples is approximately 100 for all lattice sizes. Typical error bars 

in this case are of the size of the symbols. 

Fig. 6 	P(q) for the SK model at T = 0.5, h = 0.3. The number of samples 

are 500 for N = 736,30 for N =1408 and 20 for N 3200. Error bars 

run from 20% for the largest size down to 5% for the smallest one. 

Fig. 7 	P(q) with magnetic field in the 4d ± Ising spin glass at T = 1.2, 

h = 0.4. The number of samples are 320,128, 100,50 for L = 3,5,6,8 

respectively. Error bars are smaller than 15% in all cases. 
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