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convex constraints using a structured trust region 

A. R. Conn, Nick Gould and Ph. L. Toint 

September 14, 1992 

Abstract 

We present in this paper a class of trust region algorithms in which the structure 

of the problem is explicitly used in the very definition of the trust region itself. This 
development is intended to reflect the possibility that some parts of the problem may 

be more "trusted" than others, a commonly occurring situation in large-scale nonlin
ear applications. After describing the structured trust region mechanism, we prove 
global convergence for all algorithms in our class. We also prove that, when convex 

constraints are present, the correct set of such constraints active at the problem's 
solution is identified by these algorithms after a finite number of iterations. 

Introduction 

Trust region algorithms have enjoyed a long and successful history as tools for the solution 

of nonlinear, nonconvex, optimization problems. They have been studied and applied to 

unconstrained problems (see [6], [16], [24], [28], [29], [30], [31], [33], [34], [38]) and to 

problems in~olving various classes of constraints: simple bounds ([5], [10], [11], [27], [32]), 

convex constraints ([1], [2], [9], [41]), and also nonconvex ones ([4], [7], [15], [35], [42]). 

This long lasting interest is probably justified by the attractive combination of a solid 

convergence theory, a noted algorithmic robustness, the existence of numerically efficient 

implementations and an intuitively appealing justification. The main idea behind trust 

region algorithms is that, if a nonlinear function (objective and/or constraints) is expensive 

to compute or difficult to handle explicitly, one can replace it by a suitable model. This 

model may be "trusted" within a certain trust region around the current point, whose size 

(the trust region radius) is then expanded if the model and function sufficiently agree, 

or decreased if they differ too much. The minimization then proceeds by replacing the 

difficult nonlinear function(s) with the corresponding easier model(s). 

It is remarkable that, up to now, all algorithms that we are aware of use a single trust 

region radius to measure the degree of trustworthiness of the models employed, even if 

several different functions are involved. This choice is somewhat surprising if one admits 

that some of the modelled functions could be substantially "better behaved" than others 

in the same problem, which means that the region in which their models can be trusted 

might also be substantially larger. In this context, the single trust region choice might 
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be viewed as a conservative strategy ensuring that all models may be trusted in what 

alnounts to a "safe minimal" region. This might be reasonable for small problems where 

each involved function depends on all the problem's variables, but the strategy becomes 

clearly questionable for large-scale applications, where each of the problem's function 

typically depends only on a small number of variables. For instance, one might consider 

the minimization of an unconstrained objective function consisting of many quadratic 

terms and just a few very nonlinear parts involving a small subset of the variables. If a 

classical single trust region algorithm with quadratic model is used, the qu~dratic terms 

are perfectly modelled, but the steps that one can make are (unnecessarily) limited by the 

very nonlinear behaviour of a small subset of the variables! 

It is the purpose of this paper to present and analyze a class of algorithms that use 

the problenl's structure in the very definition of the trust region, allowing large steps in 

directions in which the model has proved to be adequate while restricting the movement in 

directions where the model seems unreliable. To be more precise, we will consider the prob

lenl of minimizing a partially separable objective function subject to convex constraints; 

we will then use the decomposition of the objective function into element functions as 

the basis for our structured trust region definition. The choice of the partially separable 

structure, a concept introduced in [20], is motivated by the very general geometric nature 

of this structure and by the increasing recognition of its practical use (see [3], [8], [12], [13], 

[17], [18], [19], [21], [26], [39], amongst others). Furthermore, partial separability already 

provides a decomposition of the considered nonlinear function into a linear combination 

of slnaller element functions which can then be modelled separately (see [40]). It is then 

quite natural to assign one trust region radius per element functions and to decide on 

their increase or decrease separately. Because different element functions typically involve 

different sets of variables, each elemental trust region only restricts the components of the 

step corresponding to its elemental variables. 

A first approach to this idea could use the freedom left in the scaling matrices present 

in the available theory ([41], for instance), reflecting the difference in model adequacy 

between elements in the scaling (shape) of the trust region. This would be satisfactory if 

the theory did not require that the scaling matrices be of uniformly bounded condition 

number. In fact, this last condition prevents the trust region radius of well-modelled 

elelnents (linear, for instance) from increasing to infinity while other radii, corresponding 

to more nonlinear element functions, remain bounded. Furthermore, this strategy would 

probably cause numerical difficulties: we will indeed see below that additional algorithnlic 

safeguards may be important for simultaneously handling trust regions of vastly different 

sizes. Hence, we do not pursue this first approach any further. 

Section 2 of the paper presents the problem in more detail and the new class of algo

rithuls using the principle of structured trust regions. Global convergence for all algorithms 

in the class is proved in Section 3. We discuss the identification of active constraints in 

Section 4. We finally give some comments and perspectives in Section 5. 
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2 Structured trust region for partially separable problems 

2.1 	 A structured model of the objective and the corresponding struc
tured trust region 

2.1.1 The problem 

The problem we consider is that of minimizing a smooth objective function subject to 

convex constraints, Le. we wish to solve the problem 

min/(x) 	 (2.1)
xEX 

where X is a closed convex subset of R n. We will denote by (.,.) the Euclidean inner 

product on R n and by II ·112 the associated i 2-norm. Given Y a closed convex subset of 

R n, we also define the operator Py(·) to be the orthogonal projection onto Y. We now 

list our further assumptions on (2.1). 

AS.1 	X has a non-empty interior. 

AS.2 	I is bounded below on X. 

AS.3 	I is partially separable, which means that 

p 

I(x) = L:li(X) 	 (2.2) 
i=l 

and that, for each i E {1, ... ,p}, there exists a subspace .M f:. {O} such that, for all 

w E .M and all x EX, 

(2.3) 

AS.4 For each i E {1, ... ,p}, Ii is continuously differentiable in an open set containing 

X and its gradient is uniformly bounded on X. 

Note that we admit the case where X is unbounded or even identical to R n itself, in 

which case we obtain an unconstrained problem. In relation to the partial separability of 

the objective function, we also consider the range subspace (see [22]) associated with each 

element function Ii, which is defined as 

(2.4) 

We are mostly interested in the case where the dimension of each 'Ri is small compared 

to n. A commonly occurring case is when each element function Ii only depends on a 

small subset of the problem's variables: 'Ri is then the subspace spanned by the vectors 

of the canonical basis corresponding to the variables that occur in Ii (the elemental vari

abies). For each x ERn, the range of the projection operator PRJ (x) is therefore of low 

dimensionality. The reader is referred to [12] for a more detailed introduction to partially 

separable functions. 
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2.1.2 The element models 

The algorithm we have in mind is iterative and we will associate, at iteration k, a lllodel 

mi,k with each element function Ii. This model, defined on 'Ri in a neighbourhood of the 

projection of the k-th iterate Xk on this subspace, is meant to approximate Ii for all x in 

the element trust region 

(2.5) 

where VI is a positive constantl , 8i,k is the i-th trust region radius at iteration k and the 

norm" . lI(i,k) is a norm defined on the range subspace 'Ri and associated with iteration 

k. In what follows, we will slightly abuse notation by writing mi,k(x) for an x ERn, 

instead of the more complete rni,k(P'Ri(X)). We will furthennore assullle that each model 

rni,k (i E {l, ... ,p},k = 0,1,2, ...) is differentiable and has Lipschitz continuous first 

derivatives on an open set containing Bi,k, and that 

(2.6) 

Moreover, we assume that gi,k ~ Vmi,k(Xk) E 'Ri approximates V li(xk) E 'Ri in the sense 

that gi,k - V li(xk) ~ ei,k, where, for all i E {l, ... ,p} and all k, 

(2.7) 


for a non-negative constant Kl > 0 and 8 min,k is defined by 

A def • A 
~min k = IIlln ~i k· (2.8) 

, iE{I,...,p}' 

The norm II . II [i,k] is any norm that satisfies 

(2.9) 


for all x, y ERn. In particular, one can choose the dual norm of 1I·II(i,k) defined by 

def I(x, y)1
II yll [i,k] = sup IIxll . (2.10) 

x#;O (i,k) 

Condition (2.7) is quite weak, as it merely requires that the first order information on 

the considered element function be reasonably accurate whenever a short step must be 

taken. Indeed, one expects this first order behaviour to dominate for small steps. Further 

arguments supporting a choice similar to (2.7) for problems with convex constraints are 

presented in [9]. 

Alllongst the most commonly used element models, linear or quadratic approximations 

are pre-eulinent. One can, for instance, consider the quadratic model given by the first two 

tenllS of the element function Taylor series around the current iterate. Another popular 

choice is a quadratic model where the second derivative matrix is recurred using quasi

Newton formulae. 

1 We could use positive constants IIi > 0 depending on the element, but we will restrict ourselves to the 

case where they are all equal for the sake of simplicity. 
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2.1.3 Consistent norms 

W.\t;i.Literation k, we also associate an overall norm II -1I(k) defined on the whole of R n, 

whoS~lPlrpose is to reflect the relq~ive weighting of the different elemental norms II ·11(i,k) 

in...ca~al measure. 

e~ly, for the above cons.ij~"'p.s to be coherent from one iteration to the next, we 

l\~ '0 assume some relati~) between the v..adpJlj8 :Q.9JtliAS, th.t we introduced. More 

:pteclsely, we will assun.;IA\ thi\~;aJ11ttb~I).UJlUj.fS~~«il1t1i.ll Qe same subspace are uniformly 

equivalent in the foU..~tp.~~~. 

~.\.S.5 There existt ~Qlltmants at, 0'2, 0'3 ;:: 1 such that, fOT ...n ;':r~-1fi.nd k2 ~ 0 and all 

xERn, 

(2.11) 

and 

IIXll[i,kl] ::; 0'2I1 x ll[i,k2] (2.12) 

for all i E {1, ... ,p} and all x E R.i, and also that 

(2.13) 

l'le:: o~, that: the equivalence of all norms in finite dimensional spac.e& iDijllieSi ~. 

~ mf 31, (il'41 ~ 11 such that 

(2.14) 

{b1J' all x ERn. We aleoJ oote' that «a]l}-({2!~\ ntmessa.nilMrlial(ll if tlie norms II . II(i,k), 

II . II [i,k] and II . lI(k) are repliaxtea by 11~ 81"if21 ort !JOG-, norms. We simplify the notation by 

defining 

(2.15) 

which can then play the role of "universal" norm equivalence constant for all the norms 

so far considered. 

2.1.4 The overall model and trust region 

With all the elemental models at hand, we are now in position to define the overalllllodel 

at iteration Ie" denoted mil:, whose purpose is to approximate the overall objective function 

f in a neighoouhood of the current iterate Xk. From (2.1), it is natural to use the overall 

mod:d 

(2.16) 

for all :II i:n the overall trust region whose definition is now discussed. 

First consider the set 

(2.17) 

http:r~-1fi.nd
http:thi\~;aJ11ttb~I).UJlUj.fS~~�il1t1i.ll
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where 9k is the vector 

(2.18) 

Next define 
del 

~g k = ma.x~t k, (2.19) 
t ttED. 

the largest trust region radius associated with this set of elements, the associated "feasible 

ball" in R n 

(2.20) 

where V2 > 0 is a constant. fu addition, define 

o ~-Bk = I I B;,k, (2.21) 
tE{t •... tp} 

the intersection of all elemental trust regions. We then define the overall trust region Bk 

by 

Rk ~f B~ n Bf = ( n Bi.k) n (Bf n n Bi.k) (2.22) 
tEDk i(/.Dk 

We now interpret this definition. First observe that Dk is the set of elements in the ranges 

of which a descent direction for the overall model can be found. The first term on the 

last right hand-side of (2.22) thus guarantees that all desc~nt ilirectians at Xk on mk can 

be used up to the point where the involved models cease to be trusted. The second term 

does not impose any additional restriction on descent directions, but merely prevents too 

large steps that are orthogonal to the gradient. It should be noted that its effect is quite 

different from that of an angle test of the type 

(2.23) 

because it does not prevent the steps being orthogonal to the steepest descent direction, 

but only restricts the size of such steps. This is useful because these steps may occur 

when nloving away from a saddle point of the objective function. A similar restriction is 

obviously present in the case where the objective has only one element, the role of ~g.k 

being played by the (unique) trust region radius in this case. 

2.1.5 Curvature 

We now follow [9] and [41] and define the generalized Rayleigh quotient of f at x along 

s f; 0 by 
deC 2 [

Wn ( f,x,s) = IIslI~ f(x+s)-f(x)-(Vf(x),s)], (2.24) 

where the subscript in Wn indicates the norm used in the definition. Obviously, this 

definition is valid only if s is such that x +s belongs to the domain of definition of f. Note 

that, by convention, 

w .. (f,x,s)=O whenever s=O. (2.25) 
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H we assume that I is twice continuously differentiable, the mean-value theorem (see [23]) 

implies that 
[I [I (s,V2/(x+tvs)s) 

wn(/,x,s) = 2 J J t IIslI~ dvdt. (2.26) 
o o 

Furthermore, if I is quadratic and the i 2-norm is used, then one easily verifies that 

W2 (Ii, x, s) is independent of x and is equal to the Rayleigh quotient of the matrix V2I in 

the direction s. We note that, because of AS.4, W2 (Ii, x, s) is bounded by some constant 

Li. ~ 0 (see [23]). Hence we obtain that 

W(i,k)(li, x, s) ::;;; max {a
2 

. max Li, 1} 1t L (2.27)
ae{I,..·,v} 

for all x, x +SEX, all i E {1, ... ,p} and all k. The quantity that we need in our algorithm 

statement and analysis is an monotonically increasing upper bound on the generalized 

Rayleigh quotient W(i.,k) ( mi,k, Xk, Si,k) defined by 

(2.28) 

where Sk is defined below as the actual trial step computed by the algorithm and Si,k ~ 
PXi(Sk)' This quantity measures the curvature of the model mk in the direction of the 

trial step Sk. H a quadratic model mk is considered, an upper bound on 13k is given by 

the largest positive eigenvalue of its Hessian matrix, plus one. We will assume that our 

choice of models is such that this curvature does not increase too fast, which could lead to 

premature convergence of the algorithm to a non-critical point (see [41]). More precisely, 

we make the following assumption, as in [9], [10], [34] and [41]. 

AS.6 
00 1E- = +00. (2.29)

f3
i=O k 

This condition is weaker that the common assumption that the model's second deriva

tive matrices are uniformly bounded [32], which holds, for instance, for the classical N ew

ton's method, where quadratic models using analytical second derivatives are used on a 

compact domain. It also weaker than the condition 

(2.30) 

for some constant Co > 0, which holds in the case where quadratic element models are 

used and updated using either the BFGS or the safeguarded Symmetric Rank One quasi

Newton formulae. 

2.1.6 Criticality 

Before we can describe our algorithm in detail, we also need a criticality criterion for our 

problem. A critical point of our problem is a feasible point x where the negative gradient 
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of the objective function -VI( x) belongs to the normal cone of X at x EX, which is 

defined by 

N(x) ~ {y E R tt I (y,u  x) SO, Vu EX}. (2.31) 

The associated tangent cone of X at x E X is the polar of N (x), that is 

T(x) ~ N(x)O = closure{A(u - x) IA ~ 0 and U EX}. (2.32) 

Thus every measure of criticality has to depend on the (differentiable) objective I and 

on the geometry of the feasible set at the current point. We will use the symbol a(x, I, X) 

to denote such a criticality measure. 

AS.7 The criticality measure a(x,h,X) is non-negative for all x E X and all h differen

tiable in a neighbourhood of x. Moreover a(x,h,X) = 0 if and only if x is critical 

for the problem 

minh(x). (2.33)
xeX 

But, within the algorithm, only approximate gradient vectors might be available, namely 

the vectors Ok and Oi,k, the gradient of the models. It is therefore natural to use 

(2.34) 

the criticality measure for the problem 

(2.35) 

as an "approximate" criticality measure for (2.1). 

In unconstrained optimization, one typically chooses 

(2.36) 

the obvious criticality measure (see [31] or [33]). When bound constraints are present, the 

choice 

(2.37) 

is made in [10]. For the infinite dimensional case, the definition 

(2.38) 

is used in [41]. For the case where convex constraints are considered, 

IIP(Xk - tfUk) - xkll 
(2.39)ak = c ' tk 

is chosen in [32], where tf > 0 is the line coordinate of the so-called "generalized Cauchy 

Point" to be discussed below. In a shnilar context, 

(2.40) 

is used in [9]. 
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2.2 Ensuring sufficient model decrease 

2.2.1 An overview of the classical sufficient decrease condition 

A key to trust region algorithm is to choose a step Sk at iteration k that is guaranteed to 

provide a sufficient decrease on the overall objective function model mk. In other words, 

a step such that 

(2.41) 

is sufficiently positive, given the value of the criticality measure ak. This concept of "suffi

cient decrease" is usually made more formal by introducing the notion of the (generalized) 

Cauchy point. This remarkable point, denoted xf, is typically computed by the trust 

region algorithms as a point on (or close to) the projected gradient path PX(Xk - tgk) 

(t 2: 0) that is also within the trust region and sufficiently reduces the overall model in 

the sense that 

(2.42) 

where K,2 > 0 is a constant. However, such a point may not exist when the trust region 

radius Ilk is small compared with all13k' In this case, the generalized Cauchy point is 

chosen as (or close to) the intersection of projected gradient path with the boundary of 

the trust region, yielding an inequality of the form 

(2.43) 

One then ensures the "sufficient decrease" by requiring that the chosen step Sk produces 

at least a fixed fraction of the overall model reduction achieved by the generalized Cauchy 

point, which is to say that 

(2.44) 

where "-2 E (0, K,2]. 
Many variants on the above scheme exist in the literature for the single trust region 

case. The best known is for unconstrained problems when the 12-norm is used to define the 

trust region shape. In that case, the projected gradient path is simply given by all negative 

multiples of the gradient gk and the Cauchy point is simply the point that minimizes the 

model mk in the intersection of the steepest descent direction and the trust region. When 

other nOrIllS are used, for exalllple the 100 norm, one can then choose either to minimize 

the nlodel in the intersection of this steepest descent direction and the trust region, as 

before, or to "bend" the projected gradient path onto the boundary of the trust region and 

to choose the generalized Cauchy point as a point which satisfies classical Goldstein-type 

linesearch conditions along that path while staying within the trust region. This latter 

strategy is used in the LANCELOT software [13], for instance. When additional convex 

constraints are present, the projected gradient path is additionally "bent" to follow the 

boundary of the intersection of the feasible domain. Thus the philosophy is the same, in 

that (2.44) is guaranteed in any case. This last condition has indeed been obtained for all 

the choices for ak given in (2.36), (2.37), (2.38), (2.39) and (2.40) in the paper where they 

were respectively introduced. 
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2.2.2 Sufficient decrease for structured model and trust region 

We will use the same approach in our structured model and trust region framework. We 

first observe that 

(2.45) 

where ilg,k is defined in (2.19). Hence ilg,k can be viewed as the distance from Xk to the 

farthest point from Xk that lies on the projected gradient path defined by PBc(Xk - tgk)
Ie 

for t ~ o. Recall that B~ is defined in (2.21) as the intersection of the feasible domain 

and the region where all relevant element models can be trusted. It is therefore natural 

to choose a generalized Cauchy point such that for some constant "'2 E (0,1) 

(2.46) 

(as in (2.43)) when a point satisfying (2.42) cannot be found in (or close to) the intersection 

of the gradient path projected on B~ with the structured trust region. IT we again request 

that the final step Sk produces at least a fraction of the decrease at the generalized Cauchy 

point, we obtain the condition that 

limk ~ "2 Q k min { ;: ' D.g,k } . (2.47) 

This is the condition that will be used in our algorithm. Note that condition (2.47) reduces 

to (2.44) in the case where only one trust region radius is considered. 

2.3 A class of structured trust region algorithms 

We now describe the class of algorithms that we consider for solving (2.1). Besides "'1 used 

in (2.7), "'2 used (2.47), VI used in (2.5) and V2 used in (2.20), it depends on the constants 

(2.48) 

(2.49) 

and 

o< ILl < IL2 < 1. (2.50) 

In addition to the above conditions, we also require a compatibility condition between the 

1,. 's and the IL, 'so Specifically, we request that 

(2.51) 

Typical values for these constants are "'1 = 0.1, "'2 = 0.01, VI = V2 = 1, 1'1 = 0.1, '12 = 0.5, 

'13 = 2, ""1 = 0.01, 'T12 = 0.25, 1]3 = 0.75, ILl = 0.05 and IL2 = 0.1. 

Algorithm 

step 0: initialization. 

The. starting point Xo E X is given, together with the element function values 

{fi(Xo)}f=I and the initial trust region radii {ili,O}f=I. Set k = o. 
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step 1: model choice. 


For i E {I, ... ,p}, choose the model mi,k of the element function Ii in the trust 


region B"k centered at Xk (as defined in (2.5)), satisfying (2.6) and (2.7). 

step 2: determination of the step. 

Choose a step Sk such that (2.47) holds and 

(2.52) 

step 3: measure overall model fit. 

If 

(2.53) 

then 

(2.54) 

else 

(2.55) 

step 4: update the elemental trust region radii. 

Denote the achieved changes in the element functions and their models by 

(2.56) 

and 

d~ }
6mi,k = mi,k(xk) - m"k(xk +Sk), i E {l, ... ,p , (2.57) 

respectively. Then define the set of negligible elements at iteration k as 

d~ {' P,l }Nk = ~ E {l, ... ,p} I 16m"kl::; -
p 

6mk (2.58) 

and the set of meaningful elements as its complement, that is 

(2.59) 

Then, for each i E {l, ... ,p}, perform the following. 

Case 1: i E Mk • 
• If 

1 - 713 
, --6mk (2.60)6.fi'Jl,k >_ 6mi k - p 

and (2.53) both hold, then choose 

(2.61) 

• If (2.60) holds but (2.53) fails then choose 

(2.62) 



12 

• H (2.60) fails, but 

(2.63) 

holds, then choose 

(2.64) 

• H (2.63) fails, then choose 

(2.65) 

Case 2: i E Nk 

.H 
(2.66) 

and (2.53) both hold, then choose 

(2.67) 

• H (2.66) holds but (2.53) fails, then choose 

(2.68) 

• H (2.66) fails, then choose 

(2.69) 

Increment k by one and return to step 1. 

End of Algorithm 

As is traditional in trust region algorithm, we will call an iteration successful if the 

test (2.53) is satisfied, that is when the achieved objective reduction 6fk is large enough 

compared to the reduction 6mk predicted by the overall model. IT (2.53) fails, the iteration 

is said to be unsuccessful. In what follows, we will denote by S the set of all successful 

iterations. 

We now comment on various aspects of the algorithm. 

1. 	The choice of the element models rn',k is left rather open in the above description. It 

clearly needs to be made precise for any practical inlplementation of the algorithiU. 

One cominon choice would be to set 

(2.70) 

where H.,k is a symmetric approximation to V 2 fi(Xk) whose nullspace contains the 

subspace Ali. In particular, Newton's method corresponds to the choice 9i,k = 
V f.(Xk) and H.,k = V2 fi{Xk), which is guaranteed to satisfy this latter condition. 

Another possible choice is mi,k{Xk +s) = fi{ Xk +s), which nlay be attractive for the 

simpler element functions. In this case, the model's fit to the true function is always 

good for the i-th element, and tl.i,k is a non-decreasing sequence. 
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2. We note that (2.7) gives a practical rule for determining the required element gradient 

accuracy be/ore it is actually needed in the computation to form the model Tni,k. A 

decreasing elemental trust region radius might impose a higher accuracy requirement 

on the corresponding model. 

3. 	If the model change for an element is negligible, that is small compared to the overall 

predicted change, we do not need to restrict its element trust region size unless the 

true element change is relatively large compared with the same overall predicted 

change. We can therefore afford to ignore negligible items until they stop being 

relatively negligible, something which is inevitable when convergence occurs. Hence 

our distinction between "negligible" elements (in Nk) and "meaningful" ones (in 

Mk). 

4. 	The apparent intricacy of (2.60) and (2.63) is caused by two complications which 

arise in the context of multiple elements. The first is that 6mi,k cannot be assumed 

to be positive in general, even if 6mk always is (because of (2.47». The second is that 
possible cancellation between elements makes it necessary to consider the "accuracy 

of model fit" for an element to be relative to the overall model fit. Indeed, requiring 

small relative errors for models with very large values may result in large absolute 

errors. If 6mk is small, these large errors will then cause 6mk to be a poor prediction 

of 6/k and the iteration might be unsuccessful. This explains why the perhaps more 

intuitive tests 

6/i,k ~ 6mi,k - (1 -11;)/6mi,kl (j = 2,3) 	 (2.71) 

cannot not be used instead of (2.63) (j =2) and (2.60) (j =3). 


Observe also that conditions (2.60) and (2.63) reduces to the familiar 


(2.72) 

whenp = 1. 

5. 	Note again the consistency between the trust region radii updates in step 4 and the 

case where p = 1. In this latter case, the set Nk is always empty and (2.63) then 

implies (2.53), because of (2.49). Equation (2.62) is thus never invoked. 

6. 	No stopping criterion has been explicitly included in our algorithm description. This 

is adequate for the theoretical analysis that we consider in the present paper, where 
we are interested in the asymptotic behaviour of the method, but is should be com

pleted for any practical use. The choice of a particular stopping criterion will depend 
on the type of models being used. 

7. 	The mechanism that we specified for updating the trust region radii does not exclude 

the additional requirement that the radii be uniformly bounded, if that is judged 

suitable for the type of models used. In practice, keeping the radii bounded is 
essential to prevent numerical overllow. 
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Before starting our global convergence analysis, we first state, for future reference, 

some properties that result from the mechanism of the algorithm. 

Lemma 1 Assume that AS.3 holds. At iteration k of the algorithm, 

1. Mk contains at least one element. Furthermore 

(2.73) 

2. 
(2.74) 

3. 

(2.75) 

for all i E {1, ... , p} . 

Proof. The first result immediately follows from the definition of Nk and the in

equality J.Ll < 1. One then deduces that Nk contains at most p - 1 elements. Hence, 

(2.76) 

from which the first part of (2.73) may be deduced. The second inequality in this result 

is obtained from 

L Dmitk = D1nk - L Drni,k S Dmk + L IDrni,kl, (2.77) 
ieAlk ieNk ieNk 

the relation (2.58) and INkl S p - 1. The bound (2.74) immediately follows from (2.52) 

and (2.22). The bound (2.75) results from (2.61), (2.65), (2.67) and (2.69). 0 

We also investigate the coherency between the measure of fit for individual elements 

and that for the overa.ll model. 

Lemma 2 Assume AS.S holds and that, at iteration k of the algorithm, (2.63) holds for 

all i E Mk and that (2.66) holds for all i E Nk. Then iteration k is .mccessfu,l, i.e. k E S. 

Proof. Because (2.63) holds for i E Mk, one has that 

(2.78) 

for all such i, where we used the inequality IMkl ~ p and Lemma 1 to deduce the second 

inequality. On the other hand, since (2.66) holds for i E Nk, one obtains for these i that 

(2.79) 


http:overa.ll
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3 

where we used Lemma 1 again to bound INk/. Now, 

Ofk = :E Ofi,k + :E Ofi,k ~ :E Ofi,k - :E lofi,kl· (2.80) 
ieMIc ieNIc ieMIc ieNIc 

Combining this last inequality with (2.78) and (2.79) gives that 

6fk ;:: (172 - P ; 1III - P ; 1112) 6mk (2.81) 

which then yields (2.53) because of (2.51). 0 

We therefore see that (2.53) is coherent with the measure of the fit between the element 

models and element functions. 

Global convergence 

We now study the convergence properties of the class of algorithms that we introduced in 

the preceding section. Our analysis follows the pattern of similar proofs with a single trust 

region (see [9] or [41]). The central idea in the proof is that the algorithm will continue 

to make progress as long as a critical point is not reached. We first start by bounding 

the error between the true element functions and their models. We next derive a lower 

bound on the size of the smallest trust region radius at a non-critical point. This lower 

bound ensures that the trust region constraint will not prevent further progress towards 

a critical point. Only with this bound can we then prove that limit points of the sequence 

of iterates produced by the Algorithm are indeed critical for the models used. We close 

the section by deriving some simple consequences of these results on the criticality of the 

limit points for the true objective function. 

We first start by bounding the error made between the model of any element function 

and the element function itself at Zk +Sk. 

Lemma 3 Assume that AS'4 holds and consider a sequence {Zk} of iterates generated by 

the algorithm. Then there exists a positive constant Cl > 1 such that, 

2Ifi(Zk +Sk) - 1ni,k(Zk + sk)1 ~ Clf3k A i,k (3.1) 

for all i E {1, ... ,p} and all k. 

Proof. We first observe that, for each i E {1, ... ,p} and for all k, (2.6), the 

inequality (2.9) and the definition (2.24) imply that 

Ifi(Zk +Sk) - mi,k(zk +Sk)\ ~ I(Vfi(Zk) - gi,k,Si,k)1 

+i II si,kllti,k) IW(i,k)(fi, Zk, Si,k) - W(i,k)( mi,k, Zk, Si,k)1 

~ lIei,klhi,k] II Si,kll(i,k) 

+i Ilsi,kllti,k)(lw(i,k)(fi, Zk, Si,k)1 + \W(i,k) (mi,k, Zk, Si,k)I)· 
(3.2) 

But IIsi,kll(i,k) ~ VAi,k, and hence we obtain from (2.7), (2.8), (2.27) and (2.28) that 

Ifi(Zk +Sk) - mi,k(zk + sk)1 ~ /';lVAmin,kAi,k + i v2 (L + f3k)A;,k' (3.3) 
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This then yields (3.1) with 

(3.4) 


o 
We now examine the relation between the change predicted by the overall model and 

that predicted for an element at a non critical point. 

Lemma 4 Assume that AS.l, AS.9-AS.5 hold. Consider iteration k of the algorithm and 

assume that 

(3.5) 

and 

(3.6) 

Then one has that 

I~mi,kl ::; c2I1si,kll(i,k) (3.7) 

for all i E {l, ... ,p} and for some constant C2 > 0 independent of i and k. 

Proof. Using (2.28) and (2.7), we obtain that 

I~fni,kl ::; 1(9i,k, Si.k}1 + if3kll~i,kllfi,k) ::; I(V fi( Xk), Si,k}1 + I(ej,k, Si,k)1 + if3kll si,kllfi,k) (3.8) 

Remembering now AS.1, (2.7), (3.5) and (3.6), we can deduce that 

l~l1ti,kl 	 ::; O'ma.xxEx (IIV fi(x)1I2) IISj,kll(i,k) +Ktdmin,kllsi,kll(i,k) + if3kll si,kllfi,k) 

::; [0' maxxEx (IIV fi( x )112) +Kt + illl si,kll(i,k)' 
(3.9) 

Inequality (3.9) then gives (3.7) with 

(3.10) 


o 
We next prove the important fact that the trust region radii stay bounded away fronl 

zero as long as a critical point is not reached, therefore allowing further progress to be 

made. 

Theorem 5 Assume that AS.l-AS.5 hold. Consider a sequence {Xk} of iterates generated 

by the algorithm and assume that there exists a constant f > 0 such that 

(3.11) 

for all k. Then there is a constant C3 > 0 such that 

(3.12) 

for all k. 
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Proof. Assume, without loss of generality, that 

f < vf30Ilmin,O. (3.13) 

In order to derive a contradiction, assume that there exists a k such that 

(3.14) 

where C4 ~ K211f. Now define r to be the smallest iteration number such that (3.14) 

holds. (Note that r ~ 1 because of (3.13) and the inequality 11 < 1.) Also fix i such that 

Ilmin,r = Ili,r' The bound (2.75) and the monotonic nature of the sequence {13k} then 

ensure that 
Ili r C3 f ( )13 -Ill- -1 <13 -' < - < - 3.15 

r ',r - r 11 - 11 - v 

where we used the bound I3rlli,r ~ 11f/V from (3.14). We note that, because of (2.47), 

(3.11), (3.15) and the relation Ilmin,r-l E (Ili,n Ili,r-l], 

(3.16) 

which implies, because of (2.75), that 

(3.17) 

But (3.15) and (3.14) imply that 

(3.18) 

Hence, this inequality together with (3.15) and (3.16) now allow us to apply Lemma 4 and 

to deduce that 

C2 V 
lomi,r-ll ~ C2I1 Si,r-ll1(i,r_l) ~ C2vlli,r-l ~ c.;-0mr-1. (3.19) 

Assume first that i E Mr - 1 • Then, using (2.58) and (3.17), 

JLl JLl C4Iomi r-l I > -071~r-l ~ --Ili r-l· (3.20) 
, p p' 

Because of (2.6), (3.1), (3.20), (2.8) and (2.5), we therefore obtain that 

O/i,r-l _ 11 = Ifi(Xr-l + Sr-l) - mi,r-l(Xr-l + sr-l)1 < CIP f.l A. (3.21)~ I~ I - fJr-l L.l."r-l·vmi,r-l vmi,r-l JLl C4I 
But (3.14) and the first inequality of (3.14) together give that 

(3.22) 

which, with (3.21), implies that 

Ofi,r_l _ 11 ~ (1 - 173)C4 . (3.23)
omi,r-l C2 VPI 
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Consider first the case where 61Ui.r-l > O. We may then apply (3.19) and deduce that 

1 - 17361"I1'i r-l - --61Ur_l 
t P 

=6mi r-l 
t 

( 1  (1  173) 6mr-l )16 1 
P 1ni,r- t 

(1 - 173 )C4)~ 6m,i.r-l 1  . 
C21lP 

(3.24) 
Using (3.23), we now deduce that 

6fi,r-l 
6mi,r-l 

> 1 _ 
-

(1 - 113)C4 
C2 VP 

(3.25) 

and therefore, because of (3.24), that 

which hnplies that (2.60) holds for element i at iteration r -1. Now turn to the case where 

611"ti.r_l < O. Because of (3.19), we deduce that 

1 -113 ( (1- 113) 6mr_l ) (1- 173)C4)6mi.r-l - --6mr_l = 6mi.r-l 1 + 16 1 ~ 6mi.r-l 1 + . 
P P mi.r-l C2VP 

(3.27) 
As above, we use (3.23) to obtain that 

liJ;,r-1 2: 1i1»;,r-1 (1 (3.26) 

(3.28) 


and therefore, because of (3.27), that 

1- 113
--6n"tr _l (3.29)

P 

which again implies that (2.60) holds for element i at iteration r - 1. 

Assume now that i E Nr - l • Then, because of (2.58) and (3.1), we have that 

16fi.r-ll < 
< 

16mi.r-ll + Ifi( Xr-l +sr-.) 

~6mr-l + Cl{Jr-1Ll.~,r_l' 
mi.r-l (Xr-l +sr-l)1 

(3.30) 

Now, multiplying (3.17) by Ll.i.r-t, we obtain that 

A 2 Ll.i.r-l £
ui,r_l ~ --vmr_l' 

C4 
(3.31 ) 

Gathering (3.30) and (3.31), we deduce that 

16fi.r-ll ~ (Ill + Cl {Jr-1Ll.i.r-l) 6mr-l. (3.32)
p C4 

Observing now that (3.14) and the first inequality of (3.14) imply that 

we obtain from (3.32) that 

(3.33) 


(3.34) 
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l 

But this inequality implies that (2.66) holds for element i at iteration T - 1. Thus either 

(2.60) or (2.66) holds for element i at iteration T - 1 and the mechanism of the algorithm 

then implies that ~t,r ~ ~t,r-l' But we may deduce from this inequality that 

(3.35) 

which contradicts the assumption that T is the smallest iteration number such that (3.14) 

holds. The inequality (3.14) therefore never holds and we obtain that (3.12) is satisfied 

for all k. 0 

We now tum to one of the main results in this section, which proves a weak form of 

global convergence. The technique is inspired by [34]. 

Theorem 6 Assume that AS.l-AS. 7 hold. Consider a sequence {xk} 0/iterates generated 

by the algorithm. Then 

(3.36) 

Proof. Assume, for the purpose of obtaining a contradiction, that there exists an 

E (0,1) such that (3.11) holds for all k ~ o. Then 

LkES D/k ~ 

~ 

~ 

1ft LkESDmlc: 

'hK2f EkES min tt., tl.g,k} 
111 K,2l EkES min t, ~min,k } 

(3.37) 

~ 1ftK,2 l min { l, C3} LkES f,;, 
where we used successively (2.53), (2.47), (3.11), (2.19) and Theorem 5. We note that 

AS.2 then implies that 

1: rr-1 
< +00. (3.38) 

kES,..,k 

Now let T be an integer such that 

(r-l)/p < 1;3;2 (3.39) 

and define 
del

S(k) = IS n {1, ... ,k}l, (3.40) 

the number of successful iterations up to iteration k (k ~ 1). Then define 

:1'1 ~ {k Ik S rS(k)} and :1'2 ~ {k Ik > rS(k)}. (3.41) 

We now wish to show that both sums 

(3.42) 

are finite. Consider the first. If it has only finitely many terms, its convergence is obvious. 

Otherwise, we may assume that :1'1 has an infinite number of elements, and we then 

construct two subsequences. The first consists of the indices of :1'1 in ascending order and 

the second, F3 say, of the set of indices in S (in ascending order) with each index repeated 
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r times. Hence the j-th element of :F3 is no greater than the j-th element of :Fl. This 

gives that 

(3.43) 

because of the non decreasing nature of the sequence {fJk} and (3.38). Now turn to the 

second sum in (3.42). Lemnla 2 implies that, at each unsuccessful iteration, at least one 

element trust region radius satisfies (2.65) or (2.69) and none of them is allowed to increase. 

Hence 
p p 

II ~. < pS(k) k-8(k) II~. (3.44)I,k _ 1'3 1'2 1,0, 

i=l i=l 

which immediately implies that 

~min,k ::; 1':(k)1'~k-8(k»/p~maz,O, (3.45) 

where ~maz,O ~ ma.xie{l,...,p} ~i,O. We deduce from this inequality that, for k E :F2 , 

Ca < ~ < 8(k) (k-S(k»/p~ < k/r (k-k/r)/p~ <.[ (r-l)/p] k/r ~ 
/lk - min,k - 1'3 1'2 maz,O - 1'3 1'2 maz,O - 1'31'2 maz,O, 

(3.46) 

where we have also used Theorem 5 and the definition of :F2 in (3.41). This gives that 

(3.47) 

and the second sum is convergent. Therefore the sum 

00 1 1 1 
(3.48)EPk =k~1 Pk +k~2 Pk 

is finite, which contradicts AS.6. Hence condition (3.11) is inlpossible and (3.36) follows. 
o 

Notice that the relation between ak, the criticality measure for problem (2.35), and 

a(xk' f, X), the criticality measure for problem (2.1), has been left rather unspecified up 

to this point. It is indeed remarkable that we can prove Theorelll 6 assuming so little on 

a. In order to derive convergence properties for the original problenl fronl Theorenl 6, we 

have to be slightly more specific and request that, if both function and model have the 

same first order information, then the criticality llleasures on the original problem and on 

the lllodel problelll agree. 

AS.8 Let hI and h2 be two continuously differentiable functions in the intersection of a 

neighbourhood of the feasible point x and X, such that hI (x) = h2( x). Then, the 

difference a(x, hI, X) - a( x, h2, X) tends to zero when V'hI ( X ) V'h2 (x) tends to 

zero. 

In other words, we require the criticality measure to be continuous (near zero) in the 

gradient of its second argument. Again, this is true for the choices (2.36)-(2.37) and 

(2.40). 

http:2.36)-(2.37
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With this additional assumption, we are now ready to examine the criticality of the 

limit points of the sequence of iterates generated by the algorithm for the original problem 
(2.1). 

Corollary 7 Assume that AS.I-AS.8 hold. Comider a sequence {Xk} of iterates gener
ated by the algorithm and assume that 

(3.49) 


for all i E {1, ... , p} . Then this sequence has at least one critical limit point x •. 

Proof. From AS.S and (3.49), we obtain that 

lim [o(Xk, f, X) - Ok] = 0, (3.50)
k-oo 

which, with (3.36), guarantees 

(3.51 ) 


The desired conclusion then follows by taking a subsequence of {Xk} if necessary. 0 

Condition (3.49) is important, otherwise the situation might arise that an iterate is 

critical for the current overall model (because its gradient is inexact) while not being 

critical for the original problem. There are various ways in which (3.49) can be achieved 

in a practical algorithm, the simplest being to make the norm of ei.k also depend on Qk 

itself, ensuring that the first goes to zero if the latter does. 

Corollary 8 Assume that AS.I-AS.8 hold. IfS, the set of successful iterations generated 

by the algorithm is finite, then all iterates xk are equal to some x. for k large enough, and 

x... is critical. 

Proof. Assume indeed that S is finite. It then clear from (2.55) that Xk is unchanged 

for k large enough, and therefore that x ... = Xj+l, where j is the largest index in S. Note 

now that Lelnma 2 implies that, if k ¢ S, then (2.63) or (2.66) must be violated for at 

least one element. Hence we obtain that Llmin,k converges to zero. But (2.7) then inlplies 

that ei,k also converges to zero for all i E {1, ... ,p} and gk converges to V f(xk). Thus 

AS.S and Theorem 6 then guarantee the criticality of x.. 0 

As in existing theories for the single trust region case, it is possible to replace the linut 

infe:dor in (3.36) by a true linlit, therefore ensuring (if the gradients are asymptotically 

exact) that alllinlit points are critical. As in these theories, a slight strengthening of our 
assuillptions is however necessary. 

AS.9 We assume that 

(3.52) 


This assumption is identical to that used in [9] and [41], where it is motivated in detail. 

We only luention here that (3.52) holds for Newton's method on bounded domains. 

With this additional assulnption, we are now able to replace the limit inferior by a 
true linlit. 
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Theorem 9 Assume that AS.l-AS.9 hold. Consider the sequence {Xk} of itemtes gen

erated by the algorithm and assume that there are infinitely many successful itemtions. 
Then 

lim Ok = 0, (3.53)
keS 

wher'e S is, as above, the set of successful iterations. 

Proof. We again proceed by contradiction. Assume therefore that there exists 

an fl E (0,1) and a subsequence {qj} of successful iterates such that, for all qj in this 
subsequence 

oqj 2: fl. (3.54) 

Theorem 6 guarantees the existence of another subsequence {Ij} such that 

(3.55) 

where we have chosen f2 E (0, f1). We may now restrict our attention to the subsequence 
of successful iterations whose indices are in the set 

de!
lC = {k IkE S and qj :5 k < Ij } , (3.56) 

where qj and Ij belong, respectively, to the two subsequences defined above. Applying 
now (2.47) for k E lC, we obtain from (2.53) that 

6fk 2: 'It"2e2 min {;: ,~g.k} . (3.57) 

But AS.9, the inequality (2.74) and 13k 2: 1 imply that 

lim f3kllskll(k) :5 v lim f3kAg,k =0. (3.58)AI-oo AI_oo 
keK keK 

and also that 

lim Amin,k ::; lim f3kAg,k =0. (3.59)AI-oo AI_oo 
keK keK 

Therefore, we can deduce from (3.57) and (3.58), that, for j sufficiently large, 

/lxqj - xlj ll2 < (T E~:::. II Xk+1 - xkll(k) 

= (T E~::q: (K)lIskll(k) 
"-1 (K)S (TV E~=qi Ag,k (3.60) 

< C5 Ei:::j (K)[f(xk) - /(Xk+l)] 

< C5[/(Xqj ) - /(Xlj)]' 

where the sums with superscript (lC) are restricted to the indices in lC, and where 

de! (TV 
C5 = (3.61) 

But AS.2 implies that the last right-hand side of (3.60) converges to zero as j tends to 
infinity. Hence the continuity of V / and AS.8 give that 

1
IO(Xqj'/'X) - o(xlj,/,X)I ::; '6(f1 - f2) (3.62) 
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for j sufficiently large. On the other hand, (3.59), the inequality 13k ~ 1, AS.8 and (2.7) 

imply that Uqj is arbitrarily close to V f( Xqj ) when j is large enough, and hence that 

1laqj - a(xqj,f,X)1 ::; 6(ft - f2) (3.63) 

for j sufficiently large. We note also that, because of (2.7), (2.12) and (2.75), 
p 

IIUlj - V f( Xlj )112 ::; E lI ei,lj 112 ::; O'K,tp6.m in,lj ::; 0'K,li3p6.min,kj' (3.64) 
i=t 

where kj is the largest integer in 1:.: that is smaller than Ij. We now deduce from (3.59) 

that the left-hand side of (3.64) tends to zero when j tends to infinity, and therefore that, 

for j sufficiently large, 
1la'j - a(xlj,f,X)1 ::; 6(f1 - f2) (3.65) 

because of AS.8. COlllbining (3.62), (3.63) and (3.65), we obtain that 

(3.66) 


which is impossible because of (3.54). Hence our initial assumption cannot hold and the 

theorelll is proved. 0 

As above, we now consider the case where we impose that the element gradient are 

asymptotically exact. 

Corollary 10 Assume that AS.l-AS.9 hold. Consider the sequence {Xk} of iterates gen

erated by the algorithm and assume furthermore that (3.49) holds for all i E {1, ... ,pl. 

Then all limit points of this sequence are critical. 

Proof. If the set S is finite, the conclusion immediately follows from Corollary 8. If, 

on the other hand, S has an infinite number of elements, (3.49) implies that Uk is arbitrarily 

close to Vf(Xk) and the combination of AS.8 and Theorem 9 ensures the criticality of any 

limit point of the sequence of successful iterates. The desired conclusion then follows from 

(2.55). 0 

Of course, (3.49) might be impossible to achieve in practice, and one might consider 

the case where we can only assert that 

lim sup [. max lIei ,kIl2] = K,3, (3.67) 
k-oo .e{t,... ,p} 

for SOlne small constant K,3 > o. 

Corollary 11 Assume that AS.l-AS.7 and AS.9 hold. Consider the sequence {Xk} of 

iterates generated by the algorithm. Assume furthermore that (3.67) holds and that the 

criticality measure a satisfies 

(3.68) 

for all x E X and all functions ht and 11,2 continuously differentiable in a neighbourhood 

of x such that ht(x) =h2(X). Then, for each limit point x. of the sequence, 

(3.69) 
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4 

Proof. As in Corollary 10, the desired conclusion hnmediately follows from Corol

lary 8 if S is finite. Assume therefore that S has infinitely many elements. We then deduce 

that, for all k E S, 

o(xk,f,X) ::; Ok + IO(Xk,mk,X) - o(xk,f,X)1 

< Ok +Lall9k - V f(Xk)1I2 	 (3.70) 

< Ok +LaPmaxiE{l,... ,p} lI ei,kIl2. 

Taking the limit for k tending to infinity in S and using Theorem 9 and (3.67) then gives 

the desired conclusion. 0 

Finally observe that (3.68), although stronger than AS.8, is not a very strong condition. 

For instance, it is satisfied with La = 1 for the choices (2.36), and also for (2.37) and 

(2.38) because of the non-expansive character of the projection operator Px (see [41], for 

exanlple). The same property also holds for the choice (2.40), as discussed in [9]. 

Finite identification of the correct active set 

When applied to constrained problems, trust region algorithms typically use the notion 

of projected gradient or projected gradient path in order to identify a subset of inequality 

constraints that are satisfied as equalities. Ultimately, the aim thereby is to identify 

the constraints satisfied as equalities at the solution well before the solution is reached. 

The methods then reduce to an unconstrained calculation in the manifold defined by the 

currently "active" constraints. As a consequence, it is possible to guarantee fast asymptotic 

rates of convergence when using accurate models, as is the case when analytical second 

order information of the objective and constraint functions is available. 

The main purpose of the pres en t paper is to show that structured trust regions do 

not upset the theory developed in the unstructured case. Thus we will consider the active 

constraint identification problem from a quite general point of view. Our main observation 

is that a number of the existing theories for constraint identification are based on the 

definition of a special criticality measure that satisfies AS.7 while not satisfying AS.8. Let 

us denote this measure at iteration k by ilk. The steps leading to constraint identification 

are then as follows. 

1. 	The first step is to prove that a sufficient decrease condition of the type (2.44) also 
holds with lik instead of Ok, 

2. One then proceeds to prove that 

lim inf lik = 0 	 (4.1)
k-oo 

much in the same way as for (3.36). 

3. 	The measure ilk is also constructed to ensure that it is asymptotically bounded away 

from zero for all points such that their active set is not identical to that of a (close) 

critical point. (This, in particular, prevents AS.8 fronl holding.) 
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4. Some contradiction is then deduced from these last two properties. 

We now make our assumptions on the problem structure, algorithm and criticality 

measure more precise. 

4.1 Assumptions on the constraints 

We first make our definition of the feasible set more precise. In what follows, we will 

assume that the convex set X is described by a finite collection of convex inequalities. 

AS.IO We have that 

X = {x ERn Ihi( x) 2:: 0 (i E {I, ... , nc} )}, (4.2) 

where each function h; is from R n into R and is continuously differentiable and 

convex. 

We are interested by the active set at a given point x EX, which we define as 

A(x)~ {i E {I, ... ,nc } Ihi(X) = o}. (4.3) 

If the sequence of iterates {Xk} converges to x., the question we wish to analyze can then 

be phrased as "Is A(Xk) = A(x.) for k large enough?". We note that linear equality 

constraints could be added to our description of the set X without altering what follows 

(see [37] for details), 

We recall here that we defined a point x. to be critical for problem (2.1) if and only if 

-"V!(x.) E N'(x.), where N'(x.) is the normal cone to X at the point x. EX. If 

(4.4) 


where the notation ri [N'(x)] denotes the relative interior of the normal cone N'(x.) (see 

[36, Section 6], then the critical point x. is said to be non-degenerate (see [14]). 

AS.II We aSSUlne that all limit points of the sequence {Xk} are finite and non-degenerate. 

If we additionally assume the stronger constraint qualification where 

AS.12 

{"Vhi(X.)};EA(x.) are linearly independent for any limit point x., (4.5) 

AS.II is then equivalent to the existence of a set of strictly positive Lagrange multipliers 

at x.' That is 

"V!(x.) = E Ai"Vhi(x.) (4,6) 
iEA(x.) 

for some uniquely defined Ai > o. 
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Lemma 15 Assume AS.9, AS'4 and AS.l0-AS.12 hold. Consider a sequence {Zk} of 

points in X such that 

lim dist{Zk' C.) = 0 (4.11 ) 
k-co 

for some connected component of critical points C. and a sequence {Yk} of points in X 
such that I . 

lim I1zk - Ykll(k) =0
k-co 

(4.12) 

and 

A{Yk) =A{C.) (4.13) 

for all k. Then 

lim PT(tI,,){V!(Zk»
k-co 

=0, (4.14) 

where PT(tllI){') is the orthogonalpro;ection on the tangent cone at Yk. 

4.3 Yet another criticality measure 

Instead of entering in the details of a definition of Ok suitable for the different kinds 

of constraints we might consider (bounds, polyhedral sets, general convex sets), we will 

instead assume the generic properties of this measure and then proceed along the lines 

described above. We now describe in detail our assumptions. 

AS.14 We assume that Ok 2: 0 for all k and that Ok = 0 if and only if Xk is critical 

for problem (2.1). Furthermore, we will assume that the step Sk in our class of 

algorithms is computed to ensure that 

(4.15) 

where we have re-used the constant "-2 E (0,1). 

Because of (4.15) and (2.47) are identical, one can use the theory presented in the 

preceding Section with ° replacing 0: and therefore deduce the analog of Theorems 5 and 

(6), including (4.1), as required. 

We now assume that our new criticality llleasure is bounded away from zero in the 

neighbourhood of critical points, so long as the correct active set has not been identified. 

AS.15 Given 1/) and 4>1 as in Lemma 14, there exists a 4>2 E (0,4>1] and an a. > 0 such 

that, if XI; belongs to V(C., 4>2) for some connected component of critical points and 

A{xk +Sk) c A(C.), then ak 2: a•. 

Observe that, because of Lemma 14 and 4>2 ~ 4>1, one has that C. = C.(Xk) and that 

A(Xk) ~ A(C.). 

AS.14 and AS.15 are not as strong as they might appear at first sight. Indeed, they are 

satisfied by existing criticality measures in the literature. They typically depends on the 

generalized Cauchy point whose definition varies with the considered algorithm and the 

http:AS.l0-AS.12
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problem solved. For instance, a framework similar to that presented above is considered 

in [9]. The criticality measure used is defined by , 

ak = I min (gk, d}1, 	 (4.16) 
#l1e+dEXf 

IIdll(Il):51 

where 

X k 
c ¥- n X i, (4.17) 

iEA(:r:f) 

with xf being the generalized Cauchy point and Xi = {x ERn I hi(X) ~ OJ. The 

reader is referred to [9, Lemma 31] or to [37, Lemmas 29 and 3S] for more details, and in 

particular for the proof that this measure indeed satisfies both AS.14 and AS.1S. Other 

choices of a satisfying the same properties are possible. For example, 

(4.18) 


is considered in [2] and in [10, Theorem 14] to measure the criticality of the generalized 

Cauchy point xf.. 

4.4 Constraint identification 


Before starting our constraint identification analysis, we also slightly strengthen our as


sumption on model choice by assuming that the model's and objective's gradients coincide. 


AS.13 


(4.19) 


for all i E {I, ... ,p} and all k 	~ o. 

This is not the weakest assumption one can make on the gradient accuracy in order to 

obtain constr~nt identification results, but AS.13 considerably simplifies the exposition . 

. A weaker alternative is discussed in Section S. 

We start our finite constraint identification theory by stating a simple variation on 

Lemma 3 in our new framework. 

Lemma 16 Assume AS.3, AS.-I and AS.13 hold. Consider a sequence {Xk} of iterates 

generated by the algorithm. Then, there ezists a Cs > 1 such that 

(4.20) 


for all k. 

Proof. We first observe that, for each i E {I, ... ,p} and for all k, (2.6), AS.13 and 

the definition (2.24) imply that 

Ifi(xk +Sk) - mi,k(xk +sk)1 	 < il/si,kll(i,k)lw(i,k)(fi,xk,si,k) - W(i,k)(mi,k,xk,Si,k)1 

:5 tllsi,kll(i,k)(lw(i,k)(fi' Xk, Si,k)1 + IW(i,k)(mi,k, Xk, Si,k)!). 
(4.21) 
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We now sum all the element contributions and obtain 

'P 

If(xk+sk)-mk(xk+sk)1 ~ E If.(xk+sk)-m.,k(xk+sk)1 ~ to'v2p(L+1)fJk.!1;,k' (4.22) 
.=1 

where we used (2.27), (2.28), (2.74) and the inequality L + fJk ~ (L + 1)fJk. This yields 

(4.20) with 
(4.23) 


[J 

We also show that, for fJk.!1g ,k small, the iteration must be successful at a noncritical 

point. 

Lemma 11 Assume AS.9, AS. ./, AS.19 and AS.l./ hold, and that ak > 0 and that 

a.!1 < K2 Q ki1 (1 - 111)
PI: g,k_ (4.24) 

C6 

for some k ~ k1 • Then iteration k is successful. 

Proof. Observe first that 


K21'1(1- 111) < 1 
 (4.25)
C6 

where we used (2.48), (2.49), and the inequalities K2 < 1 and Ca > 1. But this inequality 

and (4.15) then imply that 

bmk ~ K2 Q k.!1g ,k' (4.26) 

We can then verify that, because of (4.24), 

(4.27) 

which implies (2.53) and hence proves the lemma. 0 

We are now ready to prove our first identification result, namely that the maximal 

active set is identified by a subsequence of iterates. 

Theorem 18 Assume AS.l-AS.7 and AS.9-AS.15 hold. Consider the sequence {Xk} of 

iterates generated by the algorithm. Then there exists a subsequence {kj} of successful 

iterates such that 

(4.28) 


where A* is the maximal (largest) active set defined by any limit points of the sequence 

{Xk}. 

Proof. We define the subsequence {kj} as the sequence of successful iterations 

whose iterates approach limit points with active set equal to A*, that is 

( 4.29) 

http:AS.9-AS.15
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where C. is the a connected component of critical points with maximal active set. We 

also assume, for the purpose of obtaining a contradiction, that 

(4.30) 


for all i large enough. Because of Lemma 14, our definition of A. and kj E S, we deduce 

that 

A(Xkj +Skj) c A. 

for j sufficiently large. But AS.15 then implies that 

(4.31) 

(4.32) 

for all k E {kj} sufficiently large. Now, using (4.15) and (2.53), we obtain that 

(4.33) 

for j large enough. Because the left hand-side of this inequality must converge to zero as 

a result of AS.9, we have that 

(4.34) 


for i larger than il 2: 1, say. But this last inequality, Lemma 13 and Lemma 14 imply 

that Xk1 +l cannot jump to the neighbourhood of any other connected component of critical 

points with a different active set, and hence that Xkj+l belongs to V(C., </>2) again. The 

same property also holds for the next successful iterate, Xkj+q say, and we have that 

C.(Xkj+q) = C. for all q 2: O. Therefore, the subsequence {kj} is identical to the complete 

sequence of successful iterates with k 2: kjl' Hence we may deduce from (4.33) that 

(4.35) 


As a consequence of (2.74), we deduce that, for k large enough, Xk and Xk+Sk both belong 

to V(C., 4>2). 
The next step in our proof is to show that ultimately all iterates must be successful. 

Suppose therefore that this is not the case. One can therefore find a subsequence K such 

that 

k f/ S and k + 1 E S. (4.36) 

for all k E K. Note that, because of (4.35), (2.75) and the nondecreasing nature of the 

sequence {Pk}, one has that 

f.l A < 1 f.l A < ~2ila.(1- 111)
pk g,k - -pk+l g,k+l - 2 (4.37)

il ~ 

for k sufficiently large. Now, if one has that 

(4.38) 
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then AS .15 implies that O:k ;?: 0:", and we may thus apply Lemma 17 to deduce from (4.37) 

that k E S, which contradicts (4.36). Hence (4.38) cannot hold and we must have that 

(4.39) 


for all k E K sufficiently large. Observe now that, since k ¢ S, one has that Xk+l = Xk 

and 9i,k+l =9i,k for all i E {I, ... ,pl. Hence, for all such i, 

mi,k+l(Xk+l +Sk+l) - 1ni,k{Xk +Sk) = 	 (9i,k,Sk+l - Sk) - illsi,kll~k)w(i,k)(mi,k,xk,si,k) 

+tIlSi,k+ll1~k+l)W(i,k+l)(mi,k+l, xk+l, Si,k+l)' 
(4.40) 

Sununing over all elements and using (2.74), (2.75) and the definition of IJk, we obtain 

that 

We now note that, using the Moreau decomposition, -9k is given by 

(4.42) 


and, since k ¢ S, 

( 4.43) 

which is the polar of N{Xk + Sk). Now from (2.74) and (2.75), we obtain that, for all 
k E K large enough, 

(-9k,Sk - Sk+l) 	 = (PT(zlc+.Ic)(-9k),Sk - Sk+l) + (PN'(z,,+.,,)(-9k),Sk - Sk+l) 

;?: -IIPT(zlc+."){ -9k)lI[k] IISk - Sk+ll1(k) 

-(PN'(ZIc+."){-9k), PT(zlc+.Ic) ( Sk+l - Sk» 

> -IIPT(zlc+.Ic){ -9k)II[k] IISk - Sk+ll1(k) 

> -v1l PT(z,,+.,,) ( -9k)II[k](dg,k + d g,k+l) 

;?: -v(1 + ~1 )IIPT(zlc+."){ -9k)II[k]dg,k+l' 
(4.44) 

Combining this last inequality with (4.41) gives that 

for all k E K sufficiently large. Now observe that, because of (2.74) and (2.75), 

1 
IISkll(k) ~ dg,k ~ -dg,k+l' (4.46)

1'1 

Therefore, from (4.35), Sk tends to zero. Using (4.39), we may now apply Lemma 15 with 

Yk = Xk +Sk to the subsequence K and deduce from (4.45) that 

(4.47) 

http:IIPT(zlc+.Ic
http:PT(zlc+.Ic
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for all k E K sufficiently large, where we also used (4.35). On the other hand, AS.15, 

(4.15), (4.36), the fact that (4.32) holds for all successful iterations and (4.35) imply that 

(4.48) 


for k E K large enough. We therefore obtain, for such k, that 

where we again used (2.75) to deduce the last inequality. This, together with Lemma 16 

and (4.37), yields that 

6fk _ 11 = If(xk +Sk) - 1nk(Xk + sk)1 < 2C6 f3 Ll < 1 _ . (4.50)" " _ _ k D,k _ 'Ill 
v~ v~ ~n~1 

But this iInplies again that iteration k is successful, which is impossible because of (4.36). 

Hence (4.36) cannot hold for sufficiently large k. This in turn implies that all iterations 

are eventually successful and that the sequence {kj} defined at the beginning of the proof 

is the conlplete sequence of all iterates. The limit (4.35) then contradicts Theorem 5 (with 

Ok playing the role of Ok)' As a consequence our initial assumption is impossible and the 

theorem is proved. 0 

We now prove that, for large enough k, once found, the correct active set cannot be 

abandoned. 

Theorem 19 Assume AS.1-AS.7 and AS.9-AS.15 hold. Then there exists a unique ac

tive set A. such that 

(4.51) 


for all limit points x. of the sequence {xk}. Furthermore 

(4.52) 


for all sufficiently large k. 

Proof. Let {ki} be the subsequence of successful iterates such that (4.28) holds, 

as given by Theorem 18. Assume furthennore that this subsequence is restricted to suffi

ciently large k, that is k i 2:: kl for all i. Assume finally that there exists a subsequence of 

{k,J, {kj} say, such that for each j there is an lj with 

(4.53) 


Because kj E S, we deduce that 

(4.54) 


Now Lemma 14 and (4.28) together with the Inaximality of the connected component A. 

hnply that A(C.(Xk)) = A •. Now AS.15 and (4.54) then ensure that 

(4.55) 


http:AS.9-AS.15
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5 

for all j. Combining this inequality with (4.15), one obtains again that 

(4.56) 


Using AS.9, we then deduce that 

(4.57) 


As a consequence, we may deduce from (4.15) that 

(4.58) 


for all j sufficiently large. On the other hand, we have that, for all i E {1, ... ,p} and all 

k, 
(4.59) 

because of (2.24) and the fact that Oi.,k E 'Ri. Summing on all elements, we obtain that 

6m'k 	 < I(Ok, sk}1 +t Ef=l Ils;',kIIf;.,k)W(;.,k) (71tk, Xk, S;',k) 

:5 IIPT(xle) ( -9k)II[k] Ilskll(k) + i u2p/3kllskllfk) (4.60) 

< vIlPT(xle) ( -gk)ll[k]~g,k + tu2v2p/3k~~,k' 
where we used (2.14), (2.15), (2.74) and the fact that Sk E T(Xk). Combining (4.58) and 

(4.59 ) (with k = kj) and dividing by ~g,kj yields that 

(4.61) 


Assuming that the sequence {Xkj} converges to some X* in some C* (or taking a further 

subsequence if necessary) and using Lenlma 15 on the subsequence {kj} (with Yk = Xkj) 

and (4.57), we deduce that (4.61) is impossible because its left-hand-side is a positive 

constant and its right-hand-side tends to zero. Hence, no such subsequence {kj} exists 

and the llla.xhnality of A* then implies that 

(4.62) 


for all i large enough. Therefore 

(4.63) 


for i sufficiently large, where k;. + q is the index of the next successful iteration after 
iteration ki. Hence ki + q E {kilo Using this argument repeatedly, we thus deduce 

that {k;.} is the sequence of all successful iteration with sufficiently large index. As a 

consequence, A(Xk) = A* for all such k, which proves (4.52). Moreover, A* is then the 

only possible active set for all limit points, which gives (4.51). 0 

Extensions 

We examine in this section some extensions and variants of the results presented above. 
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5.1 A hybrid technique 

One of the possible drawbacks of our Algorithm is that steps might be constrained to be 

unnecessarily small in directions corresponding to very nonlinear element functions. In

deed, the negative effect of inaccurate models for these elements might be compensated by 

a successful step in directions corresponding to less nonlinear elements. This compromise 

between the different parts of the objective is, of course, inherent to the classical method 

using a single trust region. 

-We might try to obtain the best of both classical and structured approaches by using 

a hydrid technique. In this technique, a global trust region radius ~k is recurred for the 

objective function considered as a single element (using the Algorithm given above, which 

is then equivalent to the classical one), along with the individual radii ~i,k' We then 

define the individual "hybrid" radii by 

~tk ~ max{~k'~i,k} (5.1) 

for each i E {1, ... ,p} and redefine Bi,k as 

Bi,k ~ {z E X I II P1li(Z - zk)lI(i,k) S 1I1~tk}' (5.2) 

Similarly, ~g,k is then replaced by 

def h
~gk = max~.k· (5.3) 

, ieD1c·' 

We can then apply our Algorithm with these new quantities, to the effect that gentle 

elements have their associated trust regions possibly extended without having to contract 

those corresponding to more nonlinear ones, as long as the global result is satisfactory. 

It is not difficult to verify that the theory presented above still holds for his hybrid 

modification. The key points are to observe that the definition of ~g,k in (5.3) implies 

that 

bmk ;:: "20 k min { ;: ,~k } , (5.4) 

which is the classical sufficient decrease condition (2.44), that the inequalities (2.75) are 

still valid with ~i,k replaced by ~tk' and also that an analogous to Theorem 5 also holds 

for the global trust region radius, as is already well known from the single trust region 

case (see [9], for instance). 

Some extremely preliminary numerical tests indicate that this modification might be 

computationally advantageous compared to both the single trust region case and the 

original formulation of Section 2.3. 

5.2 An alternative definition of success 

An immediate consequence of inequality (2.73) in Lemma 1 is that it would be possible to 

replace the condition for an iteration to be successful (2.53) by 

6fk 2:: fJl L 6mi,k(Zk), (5.5) 
ieM1c 
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without altering the developments presented above. Indeed, (2.73) shows the equivalence 

(2.53) and (5.5). We have chosen to use (2.53) above, because it seems natural to consider 

the same collection of elements on both sides of the inequality. 

5.3 	 Weaker sufficient decrease conditions 

It is remarkable to note that Theorems 5 and 6 can be proved in a weaker context. Indeed, 

we could define the overall trust region as 

(5.6) 

(a possibly larger region than that defined by (2.22», require the weaker sufficient decreasp 

condition 

Dmk ~ K2ctk min { ;: '~mi.. ,k } (5.7) 

instead of (2.47), and still prove Theorems 5 and 6. However, we have not been able to 

prove Theorem 9 nor active constraint identification with these assumptions, because (5.7) 

only controls the length of the step in a possibly small subspace of R n. If we replace 

(5.7) by the stronger condition 

Dmk ~ K2ctk min {;:' max [~min,k>V3I1Skll(k)1} 	 (5.8) 

for some V3 > 0, it is then possible to obtain the conclusion of Theorenl 9 as well , 

namely that all limit points of the sequence of iterates are critical. But the strengthening 

introduced by (5.8) has not been sufficient for the authors to prove active constraint 

identification for general convex constraints. 

5.4 	 Inexact gradients and constraint identification 

As we have mentioned already, AS.13 is not the weakest possible assumption for proving 

finite active constraint identification. Weaker conditions are presented in [37]. As shown 

in this reference, it is sufficient to aSSUlue that all limit points of the sequence of iterates 

converges to a single liInit point x. and that the sequence of approxhuate gradients itself 

has a single lhni t point g. such that 

(5.9) 

The technique of proof for this extension is very similar to that discussed above. 

5.5 	 Constraint identification without linear independence 
of constraints normals 

The linear independence assumption AS.12 can be somewhat restrictive in practice, espe

cially for problems where X is a polyhedron defined by many linear inequality constraints. 

Fortunately, the "weak constraint identification" result of [9] can be applied in our context 

when AS.12 does not hold. This result implies the following useful consequence. 
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Theorem 20 Assume AS.l-AS. 7, AS.9-AS.ll and AS.13-AS.15 hold. Assume also that 

all functions hi of (4.2) are linear and consider a sequence {Zk} of iterates generated by 

the Algorithm. Then the active constraints are identified (i.e. (4.52) holds) for all k 
sufficiently large. 

We refer the reader to [9) or [37] for further details. 

5.6 Convergence to a single limit point 

As the results obtained above for structured trust regions are identical to those obtained 

in the unstructured case in [9] and by Sartenaer in [37], the theory developed in these 

papers for the convergence of the iterates to a minimizer (as opposed to a mere critical 

point) holds with only minor modifications. The main result is the following. 

Theorem 21 Assume AS.l-AS.7 and AS.9-AS.15 hold. Consider a sequence {Zk} of 

iterates generated by the Algorithm. Assume that there are infinitely many successful 

iterations and that there exists an E > 0 such that 

(5.10) 

Assume furthermore that all limit points of the sequence {Sk}kES belong to the subspace 

Ef=t'Ri. Assume finally that, for some limit point z., V2 f(z.) is positive definite on the 

tangent plane to X at Z.. Then 

(5.11) 

Proof. The only modification needed to apply the theory developed in [9) and [37] 
is to deduce from our assumptions that W(k)( mk, Zk, Sk) is asymptotically bounded away 

from zero. To obtain this result, we first note that our condition on the limit points of the 

sequence {Sk} implies that, for k E S sufficiently large, 

p 

IISkll~ :5 2 I: Iisilkll~· (5.12) 
.=1 

We can then deduce, for k E S large enough, that ~ 

W(k)(mk,Zk,Sk) 2 [Ef=l mi,k(zk + Sk) - Ef=l mi,k(xk) - (Ef=l 9i(Xk),Sk)] IlIslI(k) 

= Ef=l [W(ilk)(milk' Zk, Si,k)lIsi,kllt,klllskllfk)] 

~ minils.,II~O W(ilk)(mi,k, Zk, Si,k) [Ef=1 IISi,kll~] I 0'411skll~ 
2: minilsi,Ir¢O W(i,k) (m.,k' zk, Si,k)/2u4 

(5.13) 
where we successively used (2.24), (2.25), (2.14) and (5.12). Combining (5.13) and (5.10) 

yields that 

(5.14) 

which is the desired bound. 0 

http:AS.9-AS.15
http:AS.13-AS.15
http:AS.9-AS.ll


37 

Note that both f(·) and all models mi,k(') are invariant for any component of the step 

in the subspace (Er=l 'Ri).l. Our assumption on the limit points of successful steps is thus 

very weak, because any nonzero component of the steps along this subspace is irrelevant 

for the minimization the objective function. Moreover, sensible implementations of the 
algorithm would typically yield that 

(5.15) 

This last condition would, for instance, be automatically fulfilled if Sk is the classical New

ton's step _[\72 f(Xk)J- 1\7 f(Xk) or, more generally, any step chosen in a Krylov subspace 

derived from \7 f(Xk) and \72 f(Xk), as would be the case with a truncated conjugate gradi

ent technique. Our assumption is however necessary because, if the sequence of successful 

step has a limit point with a nonzero component along that subspace, then the sequence of 

iterates then remains in the subspace, preventing convergence of the algorithm to a single 

limit point. 

As in [37J, we can also deduce the convergence of the iterates to a single critical point 

whenever the feasible set is polyhedral. 

Theorem 22 Assume AS.l-AS.7 and AS.9-AS.15 hold. Consider a sequence {Xk} of 

iterates generated by the Algorithm. Assume that there are infinitely many successful 

iterations, that all limit points of the sequence {Sk}kES belong to Er=l'Ri and that there 

exists an f > 0 such that (5.10) holds. Assume furthermore that, for some limit point x., 

\72 f( X.) is nonsingular on the tangent plane to X at x. and that X i.e; polyhedral. Then 

(5.16) 

Again, we only need to deduce (5.14) from (5.10) and (5.15) to use the proof of [37]. 

This last results shows that convergence can occur to a critical point which is not a 

minimizer if the element models are asymptotically uniformly convex. 

5.7 Noisy functions 

In contrast to the description of [9], we have not extended in the present paper the appli

cation of trust region to noisy functions. However we believe this extension to be possible. 

6 Conclusions 

We have shown in this paper that the trust region concept, one of the most powerful tools 

for building efficient and robust algorithms for optimization, can be extended in a very 

natural way to reflect the structure of the underlying problem. The algorithm proposed 

above is indeed a direct generalization of the more usual case where only a single uniform 

trust region is considered. Similar global convergence properties can be proved for the 

new algorithm, including the case where dynamic scaling is performed on the variables 

and the situation where the gradients are only known approximately. 

http:AS.9-AS.15
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It remains to see if this modification of a trust region algorithm will prove efficient 

in practice and justify the slight additional complexity of the method. We will report on 

this issue later. However, we note that the results of preliminary numerical experiments 

have been extremely encouraging, especially those based on the hybrid method proposed 

in Section 5.1. 

One of the nice features of the partially separable functions considered in the present 

theory is that the objective is a linear combination of its elements. While group partially 

separability, as used in [12] or [13], has computational advantages in terms of economy of 

derivative calculation, this structure involves a nonlinear relationship between the elements 

and the overall function. This makes exploiting the link between local and global models 

much harder. While we would be interested in deriving structured trust-region methods for 

group partially separable functions, the methods would undoubtedly be more complicated 

and less amenable to analysis. Thus, we are content, in the present paper, to consider the 

simpler, but nonetheless very general, partially separable structure. 

Finally, there might be other ways to introduce structure in trust region methods than 

considering (group) partially separable objective functions. In particular, trust region 

methods for nonlinearly constrained problems seems attractive candidates for an alterna

tive approach that would separate the trust region(s) on the objective from those on the 

constraints. 
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