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On the number of inner iterations per outer iteration of a 
globally convergent algorithm for optimization with general 

nonlinear inequality constraints and simple bounds 

A. R. Conn, Nick Gould and Ph. L. Toint 

September 11, 1992 

Abstract 

This paper considers the number of inner iterations required per outer iteration for 
the algorithm proposed by Conn et al. (1992a). We show that asymptotically, under 
suitable reasonable assumptions, a single inner iteration suffices. 

Introduction 

In this paper, we consider the nonlinear programming problem 

minimize f( x ) (1.1) 
zE~n 

subject to the general constraints 

Ci( x) ~ 0, i = 1, ... , m, (1.2) 

and the specific simple bounds 
I ::; x ::; tt. (1.3) 

We assume that the region B = {x E Rn I I ::; x ::; u} is non-empty and may be 
infinite. We do not rule out the possibility that further simple bounds on the variables are 
included amongst the general constraints (1.2) if that is deemed appropriate. Indeed, it is 
conceivable that all simple bounds should be handled this way. Furthermore, we assullle 
that 

ASl. f(x) and the Ci(X) are twice continuously differentiable for all x in B. 

Our exposition will be conveniently simplified by taking the lower bounds as identically 
equal to zero and the upper bound as infinity for a subset of N ~ {1,2, .... , n} in (1.3) 
and by assuming that the remaining variables are either not subjected to simple bounds 
or their simple bounds are treated as general constraints. Thus, in Inost of what follows, 
B = {x E R'II I Xj ~ 0 for all j E Nb}, where Nb ~ N is the index set of bounded variables. 
The modification required to handle more general bounds is indicated at the end of the 
paper. 

The approach we intend to take is that of Conn et al. (1992a) and is based upon incor
porating the equality constraints via a Lagrangian barrier function whilst handling upper 
and lower bounds directly. The sequential, approximate minimization of the Lagrangian 

I 

---~--
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to 

barrier function is performed in a trust region framework such as that proposed by Conn 
et al. (1988a). 

Our aim in this paper is to consider how these two different algorithms mesh together. 
In particular, we aim to show that ultimately very little work is performed in the itera
tive sequential minimization algorithm for every iteration of the outer Lagrangian barrier 
algorithm. This is contrary to most analyses of sequential penalty and barrier function 
methods in which the effort required to solve the inner iteration subproblems is effectively 
disregarded, the analysis concentrating on the convergence of the outer iteration (see for 
instance the books by Fiacco and McCormick, 1968 and Bertsekas, 1982. Exceptions to 
this are the sequential penalty function method analyzed by Gould, 1989, and the sequen
tial augmented Lagrangian algorithm considered by Conn et al., 1992c). 

This work was primarily motivated by observations that the authors made when testing 
a prototype of their large-scale nonlinear programming package LANeELOT, release B (see 
Conn et al., 1992b for a description of release A), which is includes an implementation of 
the algorithms discussed in this paper. It was often apparent that only a single iteration of 
the inner iteration subroutine SBMIN was ultimately required for every outer iteration of 
our sequential Lagrangian barrier program. While the conditions required in this paper to 
turn this observation to a proven result are relatively strong (and we feel probably about 
as weak as is possible), the package frequently exhibits the same behaviour on problems 
which violate our assumptions. 

We define the concepts and notation that we shall need in section 2. Our algorithm is 
fully described in section 3 and analyzed in sections 4 and 5. 

Notation 

Let g(x) denotes the gradient Vzf(x) of f(x). Similarly, let A(x) denote the Jacobian of 
c(x), where 

(2.1) 

Thus 
A(X)T = [VC1(X),··· Vcm(x)]. (2.2) 

We define the Lagrangian and Lagrangian barrier functions as 

m 

l(X,A) f(x)  LAiCi(X), 
i=l 

(2.3) 

and 

q,(X,A,S) = f(x) 
m 

- LAi
i=l 

silog(Ci(x) +Si), (2.4) 

respectively, where the components Ai of the vector A are positive and known as Lagrange 
multiplier estimates and where the elements Si of the vector S are positive and known as 
shifts. We note that l(x, A) is the Lagrangian with respect to the general constraints only. 

Let gt(X,A) and Ht(X,A) respectively denote the gradient, Vxl(X,A), and Hessian, 
Vxxl( x, A), of the Lagrangian. We define the vector Xby 

- ( AiSi
Ai x, A, s) = () , (2.5) 

Ci X +si 

for all 1 $ i $ m. We note that Vzl(x, X) = Vx q, (x, A, s). 
We denote the non-negativity restrictions by 

x E 8 = {x E R" I xj ~ 0 for all j E .N'b} (2.6) 
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where Nb ~ N. We will make much use of the projection operator defined componentwise 
by 

l· if X· < l·J J - J 
(P[x, l, u])j = Uj if Xj ~ Uj (2.7)

{ 
Xi otherwise. 

This operator projects the point x onto the region defined by the simple bounds (1.3). Let 

P{x,v,l,u) = x - P[x - v,l,u]. (2.8) 

Furthermore, define P[x] = P[x, 1,00] and P{x,v) =P{x,v,l,oo), where lj = 0 for j E Nb 
and - 00 otherwise. 

Let x(k) E Band ;\(k) be given values of x and;\. If h{x,;\, ... ) is any function of x, 
;\, ... , we shall write h(k) as a shorthand for h{ x(k), ;\(k), . ..). 

For any x(k) we have two possibilities for each component x;k) ,j = 1, ... ,n, namely 

(i) j E Nb and 0 ~ x;k) ~ {VxW(k))j or 

(ii) j E Nt or (Vx W(k))j < X;k) , 

where Nt ~ N \ Nb is the index set of free variables. We shall call all x;k) that satisfy 

(i) dominated variables while the remaining x;k) are floating variables. It is important to 
notice that, as x(k) E B, 

(p{X(k) V W(k))). = x<.k) whenever x<.k) is dominated (2.9)
'x J J J ' 

while
(2.10) 

If x* is the limit point of the {sub-)sequence {x(k)}keK, we partition N into four index 
sets related to the two possibilities (i) and (ii) above and the corresponding x*. We define 

VI ~ {j E Nb Ix;k) is dominated for all k E K sufficiently large}, 

Fl ~ Nt U {j E Nb Ix;k) is floating for all k E K sufficiently large and xj > O}, 

F2 ~ {j E Nb Ix;k) is floating for all k E K sufficiently large but xj = O} and 

F3 ~N\V1 UF1 UF2 • 

(2.11) 
We also define 

I{x) ~f {i ICi{X) > O}, 
(2.12)

A{x) ~f {i ICi (x) ~ O}, 

the sets of inactive (strictly satisfied) and active (violated or just satisfied) constraints at 
the point x. We develop our algorithm so that the set A* == A(x*) at any limit point of 
our generated sequence is precisely the set of constraints for which Ci{X*) = o. We also 
write I* == I{x*). 

We will use the notation that if 31 and 32 are any subsets of Nand H is an n by n 
lnatrix, H[:Tl.:T21 is the matrix formed by taking the rows and columns of H indexed by 
31 and 32 respectively. Likewise, if A is an m by n matrix, A[:Td is the matrix fornled by 
taking the columns of A indexed by 31. 

We denote the (appropriately dimensioned) identity matrix by I; its j-th colulnn is ej. 

A vector of ones is denoted bye. 
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We will use a variety of vector and subordinate matrix norms. We shall only consider 
norms II . liz which are consistent with the two-norm, that is, norms which satisfy the 
inequalities 

1 1 

IIVllz ::; a~ IIvl12 and Ilvll2::; a~ IIvllz (2.13) 

for all vectors v and some constant ao ~ 1, independent of z. It then follows that, for any 
pair of two-norm-consistent norms II '11y and II· liz, 

(2.14) 

If r is any m-vector whose i-th component is ri, we use the shorthand r - [ri]~l' 
Furthermore, if r is as above and :I is a subset of {1, 2" . " m}, [ri]iE3 is just the vector 
whose components are the ri, i E :I. Consequently, II[ri]~lll == IIrll. 

Following Conn et alp (1992a), we now describe an algorithm for solving (1.1), (1.2) 
and (2.6). 

Statement of the algorithm 

In order to solve the problem (1.1), (1.2) and (2.6), we consider the algorithmic model 
given in Figure 1. We shall call the vector p(x(k), V'x\It(k») the projected gradient of the 
Lagrangian barrier function or the projected gradient for short. The norms II ·lIg and II '11e 
are nornlally chosen to be either two or infinity norms. 

Our decreasing sequence of Jl(k)s is given by Jl(k) = Jlo( T t;, but any monotonic de
creasing sequence of Jl(k),s converging to zero if Step 4 is executed an infinite number of 
thlles will suffice. It is also irrelevant, in theory, as to how we find a suitable point x(k) 

satisfying (3.5). However, from a practical perspective, a suitable point is found by an 
iterative procedure. In our algorithm, it is normal to try to start this inner iteration from, 
or close to, the solution to the last one. Indeed, from the point of view of the results we 
are about to establish, this is crucial. Such a starting point is desirable as function and 
derivative information from the conclusion of one inner iteration may be passed as input 
to the next. However, we need to bear in mind the requirement (3.6) may preclude us from 
picking such a starting point as it is possible that Ci(x(k-l») +s~k) ::; 0 for some i. This issue 

is considered in depth in Conn et al. (1992a), where it is shown that Ci(x(k») +s~k+l) > 0 
for all 1 ::; i ~ 1n when Step 3 of Algorithm 3.1 is executed, while techniques for finding a 
suitable alternative starting point when Step 4 occurs are given. 

The Inain purpose of this paper is to show that asynlptotically we take one inner iter
ation per outer iteration. More specifically, under certain assumptions, we first show that 
(3.8) is eventually satisfied at each outer iteration. We then show that, under additional 
assumptions, it is possible to satisfy the convergence test (3.5) after a single iteration of 
the algorithm given in Conn et al. (1988a). 

The specific inner iteration algorithm we shall consider is given in Figure 2. 

There are a number of possible ways of choosing "Yak,;) and "Y~kti) in Step 4. The 

simplest is merely to pick "Yak,;) = "Yo and "Y~k,j) = "Y3; other alternatives are discussed by 
Conn et al. (1992b). 

It reluains to give a description of the starting point, initial trust region radius and 
approxinlation to the Hessian of the Lagrangian, and of the calculation that is perforIued 
in Step 2 of Algorithm 3.2. 

Let 0 < (J < 1. We let 

if 0 < x(k-l) < (J(V' q,(k-l»), and J' E Mb 
- J - x JXJ(k-l) = { 0 (3.17)x(k-l) 

J 
otherwise, 
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Algorithm 3.1 [Outer-iteration Algorithm] 

Step 0 : [Initialization] The strictly positive constants 

1]0, WO, aw, Pw, a", p", 0'.\ :5 1, T < 1, p < 1, 12 < 1, W. -< 1 and 1]. -< 1 (3.1) 

for which 

1  (1 +0'.\)-1 < a" < min(1, aw) and P" < min(1, Pw). (3.2) 

are specified. A positive forcing parameter, riO), is given. Set 

An initial estimate of the solution, xest E 8, and vector of positive Lagrange multiplier 
estimates, ,;\(0), for which Ci(X est) + J.l(O)(,;\~O»)a>. > 0 are specified. Set k =O. 

Step 1 : [Inner iteration] Compute shifts 

S~k) =J.l(k)(,;\~k»)a>., (3.4) 

for i =1, .... , m. Find x(k) E 8 such that 

(3.5) 

and 
Ci(X(k») + s~k) > 0, for i =1, .... , m. (3.6) 

Step 2 : [Test for convergence] If 

stop. If 

" [Ci(x(k»)Xi(x(k), ,;\(k), s(k»)/(,;\~k»)a>.] :11L:5 1](k), (3.8) 

execute Step 9. Otherwise, execute Step .4. 

Step 3 : [Update Lagrange multiplier estimates] Set 

,;\(k+l) =X(x(k), ,;\(k), s(k»), 

p(k+l) =p(k), 

J.l(k+l) =min(p(k+l), 12), (3.9) 

w(k+l) =w(k)(J.l(k+l»)iJw, 

1](k+l) =1](k)(J.l(k+l»)iJ". 


Increase k by one and go to Step 1. 

Step 4 : [Reduce the forcing parameter] Set 

,;\(k+l) = ,;\(k), 

jl(k+l) = Tjl(k) , 

J.l(k+l) =min(p(A:+l), 12), (3.10) 

w(k+l) =wO(J.l(k+l»)a"" 

1](k+l) =1]O(J.l(k+l»)a". 


Increase k by one and go to Step 1. 

End of Algorithm 3.1 

Figure 1: Outer-iteration algorithm 
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Algorithm 3.2 [Inner-iteration Algorithm] 

Step 0 : [Initialization] The positive constants p < 7J < 1 and 1'0 :::; 1'2 < 1 :::; 1'3 are 
given. The starting point, z(k,O), a nonnegative convergence tolerance, w(k), an initial 
trust region radius, ~(k,O), a symmetric approzimation, B(k,O), to the Hessian of 
the Lagrangian, Hl(z(J:,O), A(k», and a two-norm-consistent norm 1I·llg are specified. 
Compute \}i(z(k,O), A(k), s(k» and its gradient. Set the inner iteration counter j = O. 

Step 1 : [Test for convergence] If 

(3.11) 

set z(k) =z(kJ) and stop. 

Step 2 : [Significantly reduce a model of the Lagrangian barrier function] 
Construct a quadratic model, 

m(k,j)(z(k,j) + p) ~f \}i(z(kJ), A(k), p(k» + pTV1L"\}i(z(kJ), A(k), p(k» 
(3.12)

+;pT(B(k,j) + A(z(k,j»TD(k)(z(k,j»A(z(k,j»)p, 

of \}i(z + p, A(k), p(k», where D(k)(z) is the m by m diagonal matriz whose i-th 
diagonal is 

A(k) (k) 
D(k)(Z)i i = i si k • (3.13) 

, (Ci(Z) + s~ »2 

Compute a st~p p(k,j) which significantly reduces the value of the model, 
m(k,j)(z(k,j) +p). 

Step 3 : [Compute a measure of the effectiveness of the step] Compute 
\}i(z(k,j) +p(k,;), A(k), s(k» and the ratio 

(k,;) _ \}i(z(k,j), A(k), s(k» _ \}i(z(k,j) + p(k,j), A(k), s(k» 
(3.14)p - m(k,j)(z(k,j» _ m(k,j)(z(k,j) + pek,j» • 

Step 4: [Accept or reject the step] Set 

z(k,;) + p(k,j) i" p(kJ) > 1/z(k,;+1 ) = '.I,... (3.15){ z(k,j) otherwise, 

and 
1'~k,j) ~(k,j) if p(k,j) :::; p 

~(k,j+l) = ~(k) if p < p(k,j) < 7J (3.16) 
{ 1'~k,j) ~(k,j) otherwise, 

where 1'~kJ) E ho, 1) and 1'~k,i) E [1,1'3]' 

Step 5 : [Updating] If necessary, compute the gradient of \}i(z(kJ +l), A(k), lI(k» and a 
further approzimation to the Hessian of the Lagrangian B(k,i+1). Increment the inner 
iteration counter j by one and go to Step 1. 

End of Algorithm 3.2 

Figure 2: Inner-iteration algorithm 
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and choose 

(3.18) 

Thus variables which are significantly dominated at the end of the {k - l)-st iteration are 
set to their bounds while the remainder are left unaltered. This choice is made since, under 
a suitable non-degeneracy assumption (AS7 in section 4), the set of dominated variables 
is asymptotically the same as the set of variables which lie on their bounds (see, Conn et 
al., 1992a, Theorem 5.4). Furthermore, under a second non-degeneracy assumption (ASS 
in section 4), the assignment x(k,O) = a;(k-l) is guaranteed for k sufficiently large. Our 
choice of x(k,O) then encourages subsequent iterates to encounter their asymptotic state as 
soon as possible. 

We also pick ~ (k,O) so that 

(3.19) 


for some positive constants K, and ( < 1 (typical values might be K, = 1 and ( =0.9). This 
value is chosen so that the trust region does not interfere with the asymptotic convergence 
of the algorithm, while providing a reasonable starting value in the earlier stages of the 
method. 

Finally B(k,O) is taken to be any sufficiently good symmetric approximation to the 
Hessian of the Lagrangian function at x(k). We qualify what we mean by "sufficiently 
good" in the next section but suffice it to say that exact second derivatives satisfy this 
property and are often to be recommended. 

The calculation in Step 2 is performed in two stages. 

1. 	Firstly, the so-called generalized Cauchy point, xC(k,;) == x(k,;) +pC(k,;), is deter
mined. This is merely an approximation to the first local minimizer of the quadratic 
model, m(k,;) (x(k,j) +p), along the Cauchy arc. The Cauchy arc is the path x(k,;) +p, 

where 

(3.20) 

as the parameter t increases from 0, which finishes when the path first intersects the 
boundary of the trust region, 

IIplit 5 ~(k,;), (3.21) 

for some two-norm-consistent norm 1/ • lit. Thus the Cauchy arc is simply the path 
which starts in the steepest descent direction for the model but which is subsequently 
"bent" to follow the boundary of the "box" region defined by the feasible region (2.6) 
{or, in general, (1.3)) and which stops on the boundary of the trust region (3.21). 
The two or infinity norm is normally chosen, the latter having some advantages as 
the trust region is then aligned with the feasible region (2.6). (Indeed, it is possible 
to extend the Cauchy arc along the boundary of the trust region when the infinity 
norm is used. Further reduction of the quadratic model along this extended Cauchy 
arc may prove beneficial.) 

The method proposed by Conn et al. (1988a) calculates the exact generalized Cauchy 
point by marching along the Cauchy arc until either the trust region boundary is 
encountered or the model starts to increase. An alternative method by More (1988) 
finds an approximation pC(k,;) = p(k,;){tC(k,;») which is required to lie within the 
trust-region and to satisfy the Goldstein-type conditions 

m(k,j)(x(k,;) +p(k,j) (tC(k,;») 5 m(k,j){x(k,;» +JLIP(k,j) (tC(k,j»TVxlP{x(k,;), .\(k) , s(k» 

(3.22) 
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and 

tC(k,j) >_ VI or tC(k,j) > V tL(k,j)
_ 2 , (3.23) 

where tL(k,j) > 0 is any value for which 

1n(k,j) ( x(k,j) +p(k,j) ( tL(k,j»)) ~ m(k,j) ( x(k,j») +Jt2P(k,j) ( tL(k,j»)TV:J: ~(x(k,j), A(k), s(k») 

(3.24) 
or 

(3.25) 

and the positive constants Jt}, 1'2, Vb V2 and V3 satisfy the restrictions 1'1 < 1'2 < 1, 
112 < 1 and V3 < 1. Condition (3.22) ensures that a sufficient reduction in the model 
takes place at each iteration while condition (3.23) is needed to guarantee that every 
step taken is non-negligible. More shows that it is always possible to pick such a 
value of tC(k,j) using a backtracking linesearch, starting on or near to the trust region 
boundary. Similar methods have been proposed by Calamai and More (1987), Burke 
and More (1988), Toint (1988) and Burke et ale (1990). 

2. Secondly, we pick p(k,j) so that x(k,j) +p(k,j) lies within (2.6), IIp(k,j) lit ~ f32t:.(k,j) 

and 
m(k,j)(X(k,j») _ m(k,j)(x(k,j) +p(k,j») 

(3.26)~ f33[m(k,j)(x(k,j») m(k,j)(x(k,j) +pC(k,j»)] ~ 0 

for some positive f32 ~ 1 and f33 ~ 1. In fact, we typically choose f32 = f33 = 1, 
in which case we are merely requiring that the computed step gives a value of the 
model which is no larger than the value at the generalized Cauchy point. 

In order to accelerate the con vergence of the method, it is normal to try to bias the 
computed step towards the Newton direction. 

The convergence analysis given by Conn et ale (1988a) for Algorithm 3.1 indicates that 
it is desirable to construct improvements beyond the Cauchy point only in the subspace of 
variables which are free from their bounds at the Cauchy point. In particular, with such a 
restriction and with a suitable non-degeneracy assumption, it is then shown that the set 
of variables which are free from their bounds at the solution is determined after a finite 
number of iterations. This has the advantage of allowing one to analyze the asymptotic 
convergence rate of the method purely as if it were an unconstrained calculation, merely 
by focusing on the set of free variables. 

Let :F be a subset of.IV and let 1) =.IV \ :F. Furthermore, let 

(3.27) 

denote the composite approximation to the Hessian of the Lagrangian barrier function. 
The specific algorithm we shall consider is summarized in Figure 3. In Step 2 of 

this method, the value of 1>[.1'] would normally be computed as the aggregate step after 
a nUlllber of Conjugate Gradient (CG) iterations, where CG is applied to minimize the 
Inodel in the subspace defined by the free variables. The CG process will end when either 
a new boundis encountered or the convergence test (3.30) is satisfied. Algorithm 3.3 is 
itself finite as the number of free variables at each pass of Step 2 is strictly monotonically 
decreasing. See the paper by Conn et ale (1988b) for further details. 
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Algorithm 3.3 [Algorithm to significantly reduce the model] 

Step 0 : [Initialization] Select positive constants v < 1, ~ < 1, {32 > 1 and 
(33 ~ 1. 

Step 1 : [Calculate the generalized Cauchy point] Calculate an approxima
tion to the the generalized Cauchy point xC(k,j) = x(k,j) + pC(k,j) using one 
of the previously mentioned techniques. Compute the set of variables, FC(k,j) , 
which are free from their bounds at xC(k,j). Set x = xC(k,j) , s = pC(k,j) and 
F =FC(k,j) . 

Step 2 : [Further improve the model] Let C({32) =s nT({32), where 

S = {P[.1'] I x(k,j) +p E Band P[p] =P~),j)} (3.28) 

and 
(3.29) 

If P[.1'] lies on the boundary of T({32), set p(k,j) = p and stop. (If II . lit is 
the infinity norm, it is possible to transfer components of F which lie on the 
trust-region boundary to V and to continue.) Otherwise, recompute p[.1'] so 
that (3.26) is satisfied and either P[.1'] lies strictly interior to C({32) with 

IIH[<;:~p[r] + (V"~f;::) + H[<;:~JP[lIJ)lIg (3.30) 
~ min(v,IIP(x( :,J1, Vxw(k,j»)II:) . IIP(x(k,j) , Vxw(k,j»)lIg 

or P[.1'] lies on the boundary of C({32)' Reset X[.1'] to X[.1'] +P[.1']· 

Step 3 : [Test for convergence] If p[.1'] lies strictly interior to C({32) and (3.30) 
is satisfied or ifit is decided that sufficient p(J,Sses have been made, set p(k,j) =P 
and stop. Otherwise remove all of the indices in F for which P[.1']i lies on the 
boundary of S and perform another P(J,SS by returning to Step 2. 

End of Algorithm 3.3 

Figure 3: Algorithm to significa.ntly reduce the model 
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4 Convergence analysis 

We wish to analyze the asymptotic behaviour of Algorithm 3.1, that is in the case where 
w* = fI* =O. We require the following additional assumptions. 

AS2. The matrix A(x*){A*,Ft] is of full rank at any limit point x* of the sequence {x(k)} 
generated by Algorithm 3.1 with the set Ft defined by (2.11). 

Under these assumptions we have the following result. 

Theorem 4.1 [Conn et al., 1992a, Theorem 4.4 ] Assume that ASl and AS2 hold, that 
x* is a limit point of the sequence {x(k)} generated by Algorithm 3.1 and that 

-(k) del' A~k) s~k)
A - •• (4.1) 

i - c.(x(k» +s!k)' 

for i =1"",1n. Then x* is a Kuhn-Tucker (first order stationary) point for (1.1), (1.2) 
and (2.6) and the corresponding subsequences of {X(k)} and {Vzip(k)} converge to a set of 
Lagmnge multipliers, A*, and the gradient of the Lagrangian, gl(X*, A*), for the problem, 
respectively. 

Now consider the following further assumptions . 

. AS3. The second derivatives of the functions f(x) and the c.(x) are Lipschitz continuous 
at all points within an open set containing 8. 

AS4. Suppose that (x*, A*) is a Kuhn-Tucker point for the problem (1.1), (1.2) and (2.6), 
and 

Ai ~ {ilci(X*) =0 and Ai > O} 
(4.2)

Ai ~ {iJCi(X*) =0 and At =O} 

and 

:II ~NJ U {j E AlbI(gl(X*,A*»j =0 and xi > O} 


(4.3)
:12 ~ {j E Nb\(gl(X*, A*»j =0 and xj =O}. 

Then we assume that the matrix 

(4.4) 

is non-singular for all sets A and :I, where A is any set made up from the union of 
Ai and any subset of Ai and :I is any set made up from the union of :II and any 
subset of :h. 

AS5. (Strict complementary slackness condition 1) Suppose that (x*,A*) is a Kuhn
Tucker point for problem (1.1), (1.2) and (2.6). Then 

(4.5) 

AS6. Algorithm 3.1 has a single limit point, x*. 

Under these additional assulnptions, we are able to derive the following result. 



11 

Theorem 4.2 [Conn et al., 1992a, Theorems 5.3 and 5.5] Assume that AS1-AS6 hold. 
Then there is a constant JLmin > 0 such that the penalty parameter I-'(k) generated by 

Algorithm 3.1 satisfies I-'(k) =I-'min for all k sufficiently large. Furthermore, x(k) and x~1-] 
satisfy the bounds 

IIx(k) - x*lIg ~ ax(JLminy~,,+ka.\.8r, and II(X(k) - ,x*)[.4.-]llg ~ a..\(l-'min)a"+ka.\,8,,, (4.6) 

for the two-norm-consistent norm 1I.lIg and some positive constants ax and a..\, while each 

IX!k)l, i E I*, converges to zero at a Q-superlinear rate. 

We shall now investigate the behaviour of Algorithm 3.1 once the penalty parameter 
has converged to its asymptotic value, JLmin. There is no loss of generality in assuming that 
we restart the algorithm from the point which is reached when the penalty parameter is 
reduced for the last time. We shall call this iteration k = 0 and will start with 1-'(0) = I-'lllin. 
By construction, (3.7) is satisfied for all k and the updates (3.9) are always performed. 
Moreover, 

W(k) = wO(l-'min)a",+k,8", and 1](k) = 1]0(I-'min)a"+k,8,, . (4.7) 

We require the following extra assumptions. 

AS7. (Strict complementary slackness condition 2) Suppose that (x*, ,x*) is a Kuhn
Tucker point for problem (1.1), (1.2) and (2.6). Then 

:12 ={j E Nbl(gt(x*, ,x*»j =0 and xj =O} =0. (4.8) 

AS8. If :11 is defined by (4.3), the approximations B(k,O) satisfy 

II(B(k,O) - Vxxl(x*, ,x*»[.1i'.1i]P~~])lIg ~ vllp~~])I1!+'"' (4.9) 

for some positive constants v and <; and all k sufficiently large. 

AS9. Suppose that (x*, ,x*) is a Kuhn-Tucker point for the problem (1.1), (1.2) and (2.6), 
and that :11 is defined by (4.3). Then we assume that the second derivative ap
proximations B(k,O) have a single limit, B* and that the perturbed Kuhn-Tucker 
matrix 

(4.10) 


is non-singular and has precisely m negative eigenvalues, where n* is the limiting 
diagonal matrix with entries 

(4.11) 

Assumptions AS5 and AS7 are often known as strict complementary slackness conditions. 
We observe that AS8 is closely related to the necessary and sufficient conditions for super
linear convergence of the inner iterates given by Dennis and More (1974). We also observe 
that AS9 is entirely equivalent to requiring that the matrix 

(4.12) 


is positive definite (see, for instance, Gould, 1986). The uniqueness of the limit point 
in AS9 can also be relaxed by requiring that (4.12) has its smallest eigenvalue uniformly 

http:ax(JLminy~,,+ka.\.8r
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bounded from below by some positive quantity for all limit points B* of the sequence 
B(k,O). Moreover it is easy to show that that AS4, AS5 and AS7 guarantee AS9 provided 
that Jtlllill is sufficiently small and sufficient second-order optimality conditions (see Fiacco 
and McCormick, 1968, Theorem 4) hold at x* (see Wright, 1992, Theorem 8, for the 
essence of a proof of this in our case). Although we shall luerely assume that AS9 holds 
in this paper, it is of course possible to try to encourage this eventuality. We might, for 
instance, insist that Step 4 of Algorithm 3.1 is executed rather than Step 3 so long as 
the matrix H(k,O) is not positive definite. This is particularly relevant if exact second 
derivatives are used. 

We now show that if we perform the step calculation for Algorithm 3.2 using Al
gorithm 3.3, a single iteration of Algorithm 3.2 suffices to complete an iteration of Al
gorithm 3.1 when k is sufficiently large. Moreover, the solution of one inner-iteration 
subproblem, x(k-1) and the shifted starting point for the next inner iteration (3.18) are 
asymptotically identical. We do this by showing that, after a finite number of iterations, 

(i) 	moving to the new starting point does not significantly alter the norms of the pro
jected gradient or constraints. Furthermore, the status of each variable (floating or 
dominated) is unchanged by the move; 

(ii) 	the generalized Cauchy point xC(k,O) occurs before the first "breakpoint" along the 
Cauchy arc - the breakpoints are the values of t > 0 at which the Cauchy arc 
changes direction as problem or trust region bounds are encountered. Thus the set 
of variables which are free at the start of the Cauchy arc x(k,O) and those which are 
free at the generalized Cauchy point are identical; 

(iii) 	any step which satisfies (3.30) also satisfies P[Fd lies strictly interior to C(f32)' Thus 
a single pass of Step 2 of Algorithm 3.3 is required; 

(iv) 	the step p(k,O) is accepted in Step 4 of Algorithm 3.2; 

(v) the new point x(k,1) satisfies the convergence test (3.11); and 

(vi) 	x(k+1,O) = x(k). 

We have the following theorem. 

Theorem 4.3 Assume that assumptions AS1-AS9 hold and that the convergence toler
ances f3w and f3", satisfy the extra condition 

(4.13) 

Then for all k sufficiently large, a single inner iteration of Algorithm 3.2, with the step 
computed from Algorithm 9.9, suffices to complete an iteration ofAlgorithm 9.1. l.loreover, 
the solution to one inner iteration subproblem provides the starting point for the next 
without further adjustment, for all k sufficiently large. 

Proof. In order to make the proof as readable as possible, we will make frequent use 
of the following shorthand: the iterates will be abbreviated as 

_ (k) (3.15) A(k) (3.17) ffi _ (k+10) (3.18) + _ (k+11)A _ 

X = X -+ X = X -+ X = X '. -+ x = x " (4.14) 

the shifts as 
(4.15) 



13 

and the Lagrange multiplier estimates as 

( 4.16) 

Other quantities which occur at inner iterations (I: + 1,0) and (I: + 1,1) will be given 
suffices EB and + respectively. Thus HfJ) == H(k+l,O) and H+ == H(k+l,I). 

Recall, we have used Theorem 4.2 to relabel the sequence of iterates so that 

(4.17) 


and 
( 4.18) 

for all I: ~ o. Let fi be any closed, bounded set containing the iterates x(k) and x(k+l,O). 
We shall follow the outline given above. 
(i) Status of the starting point. The strict complementary slackness assumption AS7 
ensures that for all I: sufficiently large, each variable belongs exclusively to one of the sets 
~i and 1)1 (see Conn et al., 1992a, Theorem 5.4); moreover, 

gl(x*,A*)j==O forall jE~i and xj>O forall jEF1 nN'i, ( 4.19) 

and 
xj=O and gl(x*,A*)j>O forall iE1)I. (4.20) 

As one of x}k) and Vx'P}k) (== Vxl(x, Xh) converges to zero while its partner converges 
to a strictly positive limit for each j E Nb (assumption AS7), we may define nontrivial 
regions which separate the two sequences for all I: sufficiently large. Let 

def 8 . ['" ('" \"')] 0fx == --8 ~n max xj, gl X ,/\ j > , (4.21)
1 + JeNb 

where 8 is as in (3.17). Then there is an iteration 1:0 such that for variables in Fl, 

(4.22) 


while for those in 1)1, 

IX}k) I ~ fx and IVx'P}k) - gl(x"',A"')jl,~ fx (4.23) 

for all I: ~ 1:0 • Hence, for those variables in 1)1, (4.21) and (4.23) give that 

x}k) ~ fx == 8[.Fe~max[xj,91(X"',A"')j] - fxJ ~ 8[gl(X"',A"')j - f x] ~ 8(Vx'P(k»j. (4.24) 

Thus, by definition (3.17), x}k) == 0 for each j E 1)1 when I: ~ 1:0 • Similarly, when 

j E F1 n Afb and I: ~ 1:0 , X;k) > 8(Vx'P(k»j and hence, using (3.17), X;k) == Xj for all 
j E Fl. Thus x(k) converges to x*. 

The other strict complementary slackness assumption, ASS, ensures that each con
straint belongs exclusively to one of the sets I* and A,*, for all I: sufficiently large. More
over, 

Ci(X*) == 0 and At > 0 for all i E A,* ( 4.25) 

and 
Ci(X*) > 0 and At == 0 for all i E I*. ( 4.26) 
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1and thus one of Ci(x(k») and A1k+ ) converges to zero while its partner converges to a 
strictly positive limit for each i. 

Using the shorthand introduced in (4.14)-(4.15), we have that Ci(X) +st > Ci(X) > 0 
for each i E I* and all k sufficiently large. Thus, as x converges to x* and st converges 
to zero, 2Ci(X*) > Ci(X) +st > ~Ci(X*) > 0 for all i E I* and k sufficiently large. On the 
other hand, if i E A*, Ci(X) +st > 0 for all k (see Conn et al., 1992a, Lemma 3.1). In this 
case, as st converges to st == JLmin(At)a~ > 0 and Ci( x) converges to zero, the convergence 
of x to x* and At to A * implies that 2st > Ci( x) +st > !si > 0 for all k sufficiently large. 
Hence, from (3.18), xe = x and thus there is an integer kl 2:: ko for which 

xE!' = {Xj for all j E rt (4.27)
3. 0 for all j E VI, 

for all k 2:: k1 • 

We next let r be any real number and consider points on the line 

def ex(r) = x + r(x - x). (4.28) 

We firstly show that the diagonal matrix D(x( r)) is bounded for all 0 ~ r ~ 1, where D 
is given by (3.13). As x and xe both converge to x*, the definition (3.13) implies that 
D(x(r)) converges to the matrix Di,i' satisfying (4.11), as k increases. Thus, we have the 
bound 

(4.29) 

where at ~ 21\[(At)1-a~]~i 112, for all k sufficiently large. It also follows from the con
vergence of x and xe to x* and that of Si to si that there is an integer k2 ~ kt for 
which 

o< !Ci(x*) < Ci(x(r)) + s~') < 2Ci(x*) for all i E T (4.30) 

and 
o< !JLmin(A:)a~ < ci(x(r)) + s1') < 2J.tmin(Ana~ for all i E A*, (4.31) 

for. all k sufficiently large and I ~ k2 • 

We now consider the starting point xe for the next inner iteration in detail. Firstly, 
combining (2.9), (2.13) and (4.27), we have that 

IIx$ - xll z ~ aoIlP(x, Vx'li(x, A, s))lIg ~ aowo(JlInin)aw +k,8w (4.32) 

for any two-norm-consistent norm 1I.lIz. 
We may bound the change in c(x), due to the shifted starting point, using the integral 

nlean value theorem (see, eg, Dennis and Schnabel, 1983, page 74), the boundedness of 
A(x) (assumption AS1 and the definition of barn) and inequalities (2.14) and (4.32) to 
obtain 

ICi(X$) - ci(x)1 ~ II J~ A(x(r))drllgllxe - xllg (4.33)
~ aoa2wO(ttmin)aw+k,8w 

where x( r) is given by (4.28) and a2 is an upper bound on IIA(x)lIg within fie 
We next bound the differences in gradients of the Lagrangian barrier function at x 

and xe. Using the integral mean value theorem, the convergence of X == A+ to A* (The
oreln 4.1), the boundedness of the Hessian of the Lagrangian (with bounded multiplier 

http:4.14)-(4.15
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estimates) and the constraint Jacobian within fi (assumption AS1) and the inequalities 
(2.14), (4.29) and (4.32), we obtain 

IVztf(x@,A,s); - Vztf(x,A,s);I:5 IIx@ - Xll2' 

lie; fc:[HI(~(r), A) +A(x(r»TD(x(r»A(x(r»]drIl2 
:5 a5(a3 +ala~/J.l.min)WO(J.l.min)'ww+klJw 
:5 a5(a3 +ala~)wo(J.l.min)Qw-l+ki3w, 

(4,34) 
where a3 is an upper bound on the two-norm of the Hessian of the Lagrangian function 
(with bounded multiplier estimates) within fie We now use the identity 

(4.35) 

(4.36) 

But, considering i E A*, picking k sufficiently large so that IAtl :5 21Ail and using the 
integral mean value theorem, the relationship c(x*>l,.4.] = 0, the bounds (4.31), (4.32), 
(4.33) and the inequalities (3.2) and (4.6), we obtain the bounds 

IAt(Ci(X) - Ci(X@»1 < 4a a W (X~·)l-Q.x(J.l. • )Qw-1+klJw (4.37)
Ci( x@) + Si - 0 2 O. nun 

and 

and hence 

where aA =41naoa~(2aoWo+az)maJCiEA.(Ai)1-Q.x, for any two-norm-consistent nonn 11.lIz. 
Furthermore, the superlinear convergence of Ai to zero, i E I*, (4.30) and the boundedness 
of the remaining terms implies a bound 
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for some constant ax (In fact, this term can be made arbitrarily smaller than (4.39) by 
picking k sufficiently large). Thus, combining (4.36), (4.39) and (4.40), we obtain the 
componentwise bound 

(4.41) 

for all j EN where we have abbreviated V zW(x~, A+, s+) as V zW~' 
Now consider the variables whose indices j lie in :F't for k ~ k2 • Firstly, (4.19), (4.21), 

(4.22) and (4.27) show that 
x~ 

x~ = x . > _3_ > 0 (4.42)3 3-1+9 
ifj E Nb• Secondly, combining (4.34) and (4.41), and using (2.10), (2.14), (3.2) and (4.17), 
we derive the inequality 

IVzw11 
::; IVzw1- Vzw(x~,A,s)jl + IVzW(X~,A,S)j - Vzw(x,A,s)jl + IVzW(X,A,S)jl 
::; (aA + ax)(l'minytf1-t+ka'\~f1 + a~(aa + at a~)wO(JLmin)aw-t+k~w + aowo(JLmin)aw+k~w 
::; a4(J.Ltnin)af1-t+ka'\~f1, 

(4.43) 

where a4 1;£ aA + ax + aowo(1 + ao(aa + at a~)). As k increases, the right-hand-side of the 
inequality (4.43) converges to zero. Thus, from (4.22) and for k sufficiently large, x1 is 
floating for each j E :F't, and (2.10) and (4.43) imply that 

(4.44) 

Conversely, consider the variables which lie in 'Dt for k ~ k2 • Then, combining (4.34) 
and (4.41), and using (2.14) and (3.2) we obtain the inequality 

IVzw1- Vzw(x,A,s)jl 

::; IVzw1- Vzw(x~,A,s)jl + IVzW(X~,A,S)j - Vzw(x,A,s)jl 


(4.45)
::; (aA + ax)(JLmin)af1-t+ka'\~f1 + a~(aa + at a~)wO(JLmin)aw-t+k~w 
::; as(JLmin)af1-)+ka'\~f1, 

where as 1;£ aA +ax +a~wo(aa +a) a~). Thus, for sufficiently large k the right-hand-side of 
(4.45) can be made arbitrarily small. Combining this result with (4.23) and the identity 
x1 = 0, we see that x1 is dominated for each j E 'Dt, and (2.9) and (4.45) imply"that 

P(x~, Vzw1) = x1 =o. ( 4.46) 

Therefore, using (2.10), (2.14), (4.44) and (4.46), we have 

IIP(x ffi , VzW~)llg = IIVZW~dllg ~ a6(JLmin)af1-1+ka'\~f1, (4.47) 

for all k sufficiently large, where as ~ aoa4I1e[.r'tl 112. 
We also need to be able to bound the Lagrange multiplier estimates X+ == X(xffi, A+, s+). 

We have, from (2.5), that 

(4.48) 

But then, recalling (4.38), when i E .A*, and the superlinear convergence of At to zero, 
when i E Z*, together with (3.2), we obtain a bound 

(4.49) 
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for some constant al+. Thus, combining (4.6) and (4.49), we see that X+ converges to A*, 
i E ..4.*, and, because At converges superlinearly to zero when i E I*, 

(4.50) 


for some constant ale. 
(ii) The generalized Cauchy point. We consider the Cauchy arc emanating from xED. 
We have shown that the variables in 1>1 are on their bounds; the relationships (4.20), 
(4.22), (4.23) and (4.45) imply that Vzw1 > 0 for all sufficiently large k and hence that 
pEJ:)(t)j = 0 for all t > 0 and j E 1>1' Thus the variables in 1>1 remain fixed on the bounds 
throughou t the first inner iteration and 

(4.51) 


for all k sufficiently large. 
The remaining variables, those indexed by :Ft, are free from their bounds. Because 

of Assumption 7 the set :It in assumption AS9 is identical to :F1 and thus the matrix 
(4.12) is positive definite with extreme eigenvalues 0 < 1rmin:$ 1rmax, say. Using (4.27) and 
inequalities (2.9), (2.10) and (3.5), we deduce that xEJ:) converges to x*. Thus the matrix 

( 4.52) 

is also positive definite with extreme eigenvalues satisfying 

(4.53) 


say, for all sufficiently large k. Hence the model (3.12) is a strictly convex function in the 
subspace of free variables during the first inner iteration. 

We now show that the set 

(4.54) 

lies strictly interior to the set C(l) (defined in Algorithm 3.3) for all k sufficiently large. 
The diameter d of £., the maximum distance between two members of the set (measured 
in the two norm), can be no larger than twice the distance from the center of the ellipsoid 
defined by £. to the point on l (the boundary of £.) furthest from the center. The center 
of £. is the Newton point, 

(4.55) 


Let P[Fd Eland P[7'd = 0 and define v ~ P - p*. Then, combining (3.12), (4.52), (4.54) 
and (4.55), we have that 

(4.56) 

Hence, using the extremal properties of the Rayleigh quotient and (4.56), we have 

d
2 ~ 4I1v[Fdl~ s 4vrJ.]H[}1,Fdv[Fd/1r!n S 8vrJ.]H[}1,Fd v[FtJ/1rmill (4.57)

= 8Vz(f~d(H[}l,Fl])-lVz(f~d/1rlllln S 1611 Vz(f~dll~/1r~ll 
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where IIv['F ]112 = maxp* +v ez.llv[F ]112, Thus, using (2.14), (4.47) and (4.57), any step 
1 _ ['~U [31='11 1 

within C satisfies the bound, 

IIp[.1"t11l2 ~ d ~ 4I1V$~~11112/1rmin ~ 4aOa.>(Jlmin)0t,,-1+kOt).,6q / 1rmin, (4.58) 

for sufficiently large k. 
The inequality (4.42) shows that xT, j E Fl n Nb, is separated from its bound for all 

k sufficiently large while (4.58) shows that all steps within C become arbitrarily small. 
Thus the problem bounds are excluded from C. Moreover (2.13), (3.19), (4.47), (4.51) and 
(4.58) combine to give 

(4.59) 

for all steps within, or on the boundary of, C. Inequality (4.47) then combines with (4.59) 
to show that any such step is shorter than the distance to the trust region boundary for 
all k sufficiently large. 

Thus C lies strictly interior to C(l) ~ C(f32) for all k sufficiently large. But, as all 
iterates generated by Algorithm 3.3 satisfy (3.26) and thus lie in C, it follows that both 
the generalized Cauchy point and any subsequent improvements are not restricted by the 
boundaries of C or C(f32)' 

It remains to consider the Cauchy step in more detail. The Cauchy arc starts in the 
steepest descent direction for the variables in Fl' The minimizer of the model in this 
direction occurs when 

(4.60) 

and thus, from the above discussion, gives the generalized Cauchy point proposed by Conn 
et ale (1988a). We use the definition of t*, (2.13), (4.53) and the extremal property of the 
Rayleigh quotient to obtain 

1n@(x@)-m@(x@+pO@) = tt*"V$~@['Ji]lI~ ~ ":.,t~IJII! (4.61) 
a01rmax 

for this variant of the generalized Cauchy point. Alternatively, if More's (1988) variant is 
used, the requirement (3.22) and the definition of the Cauchy arc imply that 

m@(x@) - m@(x@ +pO@) 2: JLltO@IIV$~~dll~. (4.62) 

If the first alternative of (3.23) holds, (4.62) implies that 

m@(x@) - m@(x@ +pC@) 2: JLIVIIIV$~~I]II~. (4.63) 

Otherwise, we may use the same arguments as above to show that it is impossible for t L
@ 

to satisfy (3.25) when k is sufficiently large. Therefore, t L 
@ must satisfy (3.24). Combining 

(3.12), (3.24), (4.52) and the definition of the Cauchy arc, we have that 

t(tL@?V$~W.]H[}l,Fl]V$~~tl 2: (1 - JL2)tL@IIV$~~dll~. (4.64) 

Hence, combining (4.53) and (4.64) with the extremal properties of the Rayleigh quotient, 
we have that t L@ 2: (1- JL2)/1rmax ' Thus, when the second alternative of (3.23) holds, this 
result and (4.62) give that 

m@(x@) - m@(x@ +pC@) 2: [JLIV2(1 - JL2)/1rmax]IIV$~~I1I1~. (4.65) 



19 

Therefore, (2.14), (4.63) and (4.65) give the inequality 

m$(z$) - m$(z$ +pC$) 2:: (J.Ll/ao)min(vt,v2(1- J.L2)/1rmax)IIVxq;~tlll;. (4.66) 

We shall make use of these results in (iv) below. 
(iii) Improvements beyond the generalized Cauchy point. We have that x~] = 0, 

and, as a consequence of (4.47), IIP(x$, Vxq;$)I1~ ~ v for all k sufficiently large. Hence, 
because we have shown that any p in 1:, lies strictly interior to C, a single pass of Step 2 
of Algorithm 3.3 is required. We must pick p to satisfy (3.30) and (3.26) by determining 
P~l] so that 

(4.67) 

and 
m$(xffi) - mffi(xffi +pffi) 2:: 113[mffi(xffi) - mffi(xffi +pCffi)] (4.68) 

for some 113 ~ 1. The set of values which satisfy (4.67) and (4.68) is non-empty as the 
Newton step (4.55) satisfies both inequalities. 

It remains to consider such a step in slightly more detail. Suppose that P~d satisfies 
(4.67). Let 

r~t1 = H[}ll.1=i]P~d +Vxq;~d ( 4.69) 

Then combining (2.13), (4.53), (4.67) and (4.69), we have 

IIp~d"g ~ aoIlH{}~,~dlb(lIr(}dllg + "Vxq;~dllg) (4.70) 
~ 2aoIlVxq;(}tlllg(1 + IIVxq;~l]II~)/1rmil1' 

Thus, combining (4.47) and (4.70), and picking k sufficiently large so that IIVxq;(}d ll ~ 
1, we obtain the bound 

\lp(}t]l!g ~ 4aoa6(J.Lmin)a71-1+ka,\J371 / 1rmin. ( 4.71) 

(iv) Acceptance of the new point. We have seen that 

(4.72) 

and P(}d satisfies (4.67). As pffi can be nlade arbitrarily small, it follows (as in (4.30) and 

(4.31» from the convergence of xffi to x* and that of st to st that there is an integer k3 
for which 

o< tCi(X*) < Ci(Xffi +pm) +st < 2Ci(X*) for all i E I* (4.73) 

and 

for all k sufficiently large and I ~ k3 • Thus 

(4.75) 

for all 1 ~ i ~ m and k sufficiently large. 
We now wish to show that the quantity 

rpffi _ 1 = Iq;(x ffi +pffi,.x+, s+) - mffi(xffi +pffi)1 
(4.76)I Im$(x$) - m$(x$ +pffi)1 
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converges to zero, ensuring that the new point will prove acceptable in Step 4 of Algo
rithm 3.2. 

Consider first the denominator on the right-hand-side of (4.76). Combining (4.61), 
(4.66) and (4.68), we have 

(4.77) 

where aT = /33 min(l/(4a07i"m3x),JLt min(v], v2(1- JL2)/7i"max)/ao). Turning to the numera
tor on the right-hand-side of (4.76), we use the integral mean value theorem to obtain 

'li(xffi + pffi, A+ , s+ ) 

= 'li(xffi, A+, s+) +P~V x'li(}d +i f~ PW,l V xx'li(Xffi(t) , A+, S+)[F1,FtlP(}l]dt 
= 'li(xffi, A+, s+) + p(}t1Vx'li(}t] 

+i f~ PW,l[Vxx'li(xffi(t), A+, s+) - V xx'liffil[Fl,Fdp(}t1 dt 


+ipW,][Vxx'li ffi - Hffil[Fl,Fl]P(}t1 + ipW,]H~:i,FdP(}l] 

= mffi(xffi + pffi) + ipW,l[V xx'liffi - HffihF1,FtlP(}d 


+i f~ PW,l[Vxx 'li(xffi(t), A+, s+) - V xx'liffil[F1,Fl]P(}l]dt, 

(4.78) 

where xED(t) = xffi + tpED and we have abbreviated V xx'li(xffi, A+ ,s+) as V xx 'liED . 
Considering the last two terms in (4.78) in turn, we have the bounds 

I ipW,l [V xx 'liED - HEDhFl ,F1]P(}1] I 
(4.79)

::s; iao(vllp(}1111~ + II [Vxx(xffi, A+) - Vxxl(x*, A*)][Fl,Fdllg)lIp(}tlll~, 

using (2.13), (3.27), the definition of the Hessian of the Lagrangian barrier function and 
AS8, and 

Ii l PW,l[V='I(x$ (t), A + , 8+) - V.,., '1$1[".. .F,]p~,]dtl ~ taoa811p[~'11l~, (4.80) 

using (2.13), the convergence (and hence boundedness) of the Lagrange multiplier esti
ulates and the Lipschitz continuity of the second derivatives of the problem functions 
(assumption AS3) with some composite Lipschitz constant as. Thus, combining (4.70), 
(4.76), (4.77), (4.78), (4.79) and (4.80), we obtain 

( 4.81) 

As the right-hand-side of (4.81) converges to zero as k increases, x+ = xffi + pffi for all k 
sufficiently large. 
(v) Convergence of the inner iteration at the new point. The relationship (4.75) 
ensures that x+ satisfies the feasibility test (3.6). We now show that x+ satisfies the 
inner-iteration convergence test (3.11). 

Firstly, in the same vein as (4.34) , for j E 'Vt we have that 

IVx'li(X+,A+,S+)j - Vx'liTI 
::s; IIpEDlb 'lIeJ f~[Hl(xffi(t), A) + A(xffi(t))TD+(xED(t))A(x ED(t))]jdtIl2 (4.82) 
::s; ao(a3 + ala~/JLmin)lIpEDlb, 

where xffi(t) = xED + tpffi and where we use the bound 

(4.83) 
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for all 0 :5 t :5 1. This latter follows from the definition (3.13) and the convergence of x$ 
and, because of (4.72) and (4.71), the convergence of x$ +p$ to x*. Thus, as the right
hand-side of (4.82) can be made arbitrarily small, by taking k sufficiently large, (4.23) and 
the identity xj = x1 = 0 for each j E 1)1, imply that xj is dominated for each j E 1)1 

while (2.9) and (4.46) imply that 

(4.84) 

We now consider the components of P(x+, Y'xw(x+,"\+,s+)j for j E :Fl' Using the 
integral mean value theorem, we have 

Y'xw(x+,,,\+,S+)[Ft] 	= Y'xw~d + f~ Y'xxw(x$(t),"\+,S+)[Fl,FdP~ddt 
= [H[}l,FdP~d + Y'xw~d] + [Y'xx w$ - H$hFl,FtlP~d (4.85) 

+ f~[Y'xxw(x$(t),"\+, s+) - Y'xxW$hFI ,FdP~ddt 

where x$(t) = x$ + tp$. We observe that each of the three terms on the right-hand-side 
of (4.85) reflects a different aspect of the approximations made. The first corresponds to 
the approximation to the Newton direction used, the second to the approximation of a 
nonlinear function by a quadratic and the third to the particular approximation to the 
second derivatives used. We now bound each of these terms in turn. 

The first term satisfies the bound (4.67). Hence, cOlnbining (4.47) and (4.67), we 
obtain 

(4.86) 

The same arguments as those used to establish (4.79) imply that the second term on the 
right-hand-side of (4.85) satisfies the bound 

II[Y'xx w$ - H$1[FI ,FtlP~tlllg 
:5 (vllpWt1II~ +II(Y'xxl(x$, X+) - Y'xxl(x*, "\*))[Fl,Fdllg)llp~dllg ( 4.87) 

:5 (vllp[Fdll~ + a911x$ - x*lIg + alOlIX+ - "\*llg)llp~l]llg, 

for sonle composite Lipschitz constants a9 and alO. We may then combine (2.14), (4.6), 
(4.17), (4.32), (4.50), (4.71) and (4.87) to obtain the bound 

,,[Y'xx w$ - H$1[FI ,FdP~d Ilg 
:5 [v[( 4aoa6/1rlllin)(JLminy~'1-1+kQ~.8'1]~ + a9[ax(JLmin)Q'1+kQ~.8'1 +aowO(JLmill)Qw+k,8w] 

+alOa,\$ (JLmill)Q'1-1+kQ~.8'1](4aOa6/ 1rmin)(JLmill)Q'1-1+kQ~.8'1 
(4.88) 

for all sufficiently large k. Lastly, the third term on the right-hand-side of (4.85) satisfies 
the bound 

(4.89) 

by the same arguments we used to establish inequality (4.80). We Inay then cOlnbine 
(4.71) and (4.89) so that 

II 10\'i1"" if! (x (jJ ( t), >.+ , s+) - 'i1"" if! (jJ1[J'i ,F,]P~tldt II ::; Sag a~as(Jtnun?""-2+k2",J3" / 11"~.. 
(4.90) 

for all k sufficiently large. 
We now conlbine equation (4.85) with the inequalities (4.86), (4.90) and (4.88), the 

condition ~ < 1 and the definitions of 0,,( < 1) and {3,,(> 0) to obtain the bound 

(4.91) 



22 

where 
a = (of} - 1)(1 + ma.x(1,~», 13 = o~,8fl(1 + min(~,~» (4.92) 

and 
all = a!+E + 8aga~a8/1r!un + (4aoaa/1rmin)(v«4aoaa/1rmin)\") (4.93)

+a9( ax +aoWo) +alOa~). 

Firstly, observe that the right-hand-side of (4.91) may be made arbitrarily small. There
fore, (2.10), (4.84) and (4.91) imply that 

IIP(x+, V'x(l(x+, A+, s+»)lIg = IIV'x(l(x+, A+, s+)[Ftlllg ~ all(JLminr:i+k~. (4.94) 

Secondly, define 6 = log~min<all/wo). Now let kl be any integer for which 

Ow + ,8w - a - 6
k (4.95)

1 ~ {J -,8w . 

Then (4.13), (4.94) and (4.95) imply that 

IIP( x+ , V'x(I(x+, A+ ,s+))lIg ::; all (J.tmin)':i+k~ ::; wo(J.tminy~",+(k+l)~", =w+ ( 4.96) 

for all sufficiently large k ~ k1 • Thus, the iterate x+ satisfies the inner iteration conver
gence test (3.5) for all k sufficiently large and we have x(k+l) = x(k+l,l) == x+. 
(vi) Redundancy of the shifted starting point. Finally, we observe that all the 
variables xt), j E V, lie on their bounds for sufficiently large k. Therefore, x(k+l,O) = x(k) 
and the perturbed starting point is redundant. _ 

5 The general case 

We now turn brie:By to the more general problem (1.1)-(1.3). The presence of the more 
general bounds (1.3) does not significantly alter the conclusions that we are able to draw. 
The algorithms of section 3 are basically unchanged. We now use the region 8 ={x E ~n I 
1 ~ x ~ u} and. henceNi, = AI - and replace P(x,v) by P(x,v,l, u) where appropriate. 
The concept of:Boating and dominated variables stays essentially the same. For each iterate 
in 8 we have three mutually exclusive possibilities, namely, (i) 0 ~ x;k) -li ~ (V'x (I(k»i, 

(ii) (V'x (I (k»; ::; x;k) -ui ~ 0 or (iii) X}k) - ui < (V'x q;(k»i < X}k) -Ii' for each component 

X}k). In case (i) we then have that p(x(k), V'xq;(k),I,u)i = X)k) - 'i while in case (ii) 

p(X(k) , V'x(l(k),l,u)i x;k) - ui and in case (iii) p(x(k), V'x(l(k),l,u)i = (V'x(l(k»i. The 
variables that satisfy (i) and (ii) are said to be the dominated variables, the ones satisfying 
(i) are dominated above while those satisfying (ii) are dominated below. Consequently, the 
sets corresponding to (2.11) are straightforward to define. 'Vt is now made up as the union 
of two sets 1'11, whose variables are dominated above for all k sufficiently large, and 1'ltH 

whose variables are dominated below for all k sufficiently large. :Fl contains variables 
which :Boat for all k sufficiently large and which converge to values interior to 8. Similarly 
:F2 is the union of two sets, :F21 and :F2u , whose variables are :Boating for all k sufficiently 
large but which converge to their lower and upper bounds respectively. We also replace 
(3.17) by 

if 0 < x(k-I) -I. < fJ(V' q;(k-I»). 

(
- a 3- x a,,(k-l) _ '.

3 
Xi - if fJ(V' q;(k-I»).

l_ 
< x(k-I) - u· < 0 (5.1)Uj x l 3

{k-l)
x·l otherwise. 
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With such definitions, we may reprove the results of section 4, extending AS4, AS7
AS9 in the obvious way. The only important new ingredient is that Conn et al. (1992a) 
indicate that the non-degeneracy assumption AS7 ensures that the iterates are asymptot
ically isolated in the three sets Ft, I'll and 1'lu. 

6 Conclusions 

We have shown that, under suitable assumptions, a single inner iteration is needed for each 
outer iteration of the Lagrangian barrier algorithm. We anticipate that such an algorithm 
may prove to be an important ingredient of release B of the lANCElOT package. 
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