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Abstract 

We consider the global and local convergence properties of a class of Lagrangian 
barrier methods for solving nonlinear programming problems. In such methods, sim­
ple bound constraints may be treated separately from more general constraints. The 
objective and general constraint functions are combined in a Lagrangian barrier func­
tion. A sequence of Lagrangian barrier functions are approximately minimized within 
the domain defined by the simple bounds. Global convergence of the sequence of gen­
erated iterates to a first-order stationary point for the original problem is established. 
Furthermore, possible numerical difficulties associated with barrier function methods 
are avoided as it is shown that a potentially troublesome penalty parameter is bounded 
away from zero. This paper is a companion to our previous work (see, Conn et al., 
1991) on augmented Lagrangian methods. 

Introduction 

In this paper, we consider the problem of finding a local minimizer of the function 

I{x) (1.1) 

where x is required to satisfy the general inequality constraints 

(1.2) 

and specific simple bounds 
1 ~ x ~ u. (1.3) 

Here I and Ci map Rn into R and the inequalities (1.3) are considered component-wise. 
We shall assume that the region 8 = {x 11 ~ x ~ u} is non-empty and may be infinite. 
We do not rule out the possibility that further simple bounds on the variables are included 
amongst the general constraints (1.2) if that is deemed appropriate. We further assume 
that 

AS1: the functions I{x) and Ci{X) are twice continuously differentiable for all x E 8. 

We shall attempt to solve our problem by means of a sequential minimization of the 
Lagmngian barrier function 

m 

')(X,A,S) = I{x) - LAisilog{ci{x) + Si), (1.4) 
i=l 
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where the components Ai of the vector A are positive and known as Lagrange multiplier 
estimates and where the elements Si of the vector S are positive and known as shifts. 
Notice that we do not include the simple bounds (1.3) in the Lagrangian barrier function. 
The intention is that the sequential minimization will autOlnatically ensure that the simple 
bound constraints are always satisfied. 

1.1 Motivation 

The logarithlllic-barrier function lllethod for finding a local minhllizer of (1.1) subject to a 
set of inequality constraints (1.2) was first introduced by Frisch (1955). The Inethod was 
put in a sound theoretical framework by Fiacco and McCormick (1968), who also provide 
an interesting history of such techniques up until then. The basic idea is quite simple. 

A composite function, the barrier function, is constructed by combining the objective 
and constraint functions in such a way as to introduce a "barrier" an infinite singular­
ity - along the constraint boundary. A typical barrier function is the logarithmic barrier 
function 

tn 

lex) - JL Elog(ci(x)), (1.5) 
i=l 

where JL is a p-ositive penalty parameter. Fiacco and McCormick (1968) show that, under 
extreinely modest conditions, the sequence of minhnizers of (1.5) converge to the solution 
of the original problem whenever the sequence of penalty parameters converge to zero. 
In particular, under a strict complementary slackness assumption, the error in solving 
(1.5), that is, the difference between the minimizer of (1.5) and the solution to the original 

problelll, is of order JL as JL tends to zero. (Mifflin, 1975, shows an order JL~ error in the 
absence of the cOlnplelllentary slackness assulnption and a weakening of the assumption 
that (1.5) be solved exactly.) For further discussion, see the recent survey by Wright 
(1992). 

It was originally envisaged that each of the sequence of barrier function be Inini­
lllized llsing standard Inethods for unconstrained llunilluzation. However Lootsma (1969) 
and Murray (1971) painted a less optilllistic picture by showing that, under most cir­
cumstances, the spectral condition number of the Hessian matrix of the barrier function 
increases without bound as JL shrinks. This has important repercussions as it indicates 
that a simple-minded sequential minimization is likely to encounter numerical difficul­
ties. Consequently, the initial enthusiasm for barrier function methods declined. Methods 
which alleviate these difficulties have been proposed (see, e.g., Wright, 1976, Murray and 
Wright, 1978, Gould, 1986, and McCorlllick, 1991) but it is not immediately clear how 
such techniques may be applied to general, large-scale, nonlinear problems. 

Interest in the use of barrier functions was rekindled by the seillinal paper of Karillarkar 
(1984) on polynoillial-thlle interior point algorithins for linear prograllulling and by the 
inthnate connection between these methods and barrier function Illethods observed by 
Gill et al. (1986). The ill-conditioning probieins described above do not usually occur 
for (non-degenerate) linear programs as the solutions to such problems normally occur 
at vertices of the constraint boundary. Furthermore, even in the presence of degeneracy, 
stable numerical methods may be used to solve the problems (Murray, 1992). Moreover, 
and most significantly, these Inethods have turned out to be most effective in practice (see 
the excellent bibliography of Kranich, 1991). 

However, it is quite surprising how the lessons of the early 1970s seem to have been 
forgotten in the rush to extend interior point Inethods for solving general ('.onstrained 
opthllization probieills. The Inost significant advance seeins to us to be the observation 
that, although the ill-conditioning difficulties are present in most nonlinear progralns, the 
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effects may be benign provided sufficient care is taken. In particular Poncele6n (1990) 
has shown that if the only constraints that are handled by logarithmic terms are simple 
bounds, the ill-conditioning manifests itself solely on the diagonal of the Hessian matrix 
of the barrier function. She then shows by a sensitivity analysis that such terms are 
ultimately irrelevant in assessing the sensitivity of the Newton equations for the problem 
to numerical perturbations in the data. Methods of this sort have been successfully applied 
to the minimization of nonlinear functions subject merely to simple bounds (1.3) on the 
variables (see, for instance, Nash and Sofer, 1991). 

It is interesting to recall the parallel development of a second class of methods for 
constrained minimization, the simple penalty function methods. These methods were 
designed for the case where one wishes to minimize (1.1) subject to a set of equality 
constraints 

(1.6) 

Again, a composite function, the penalty function, is constructed by a suitable combination 
of the objective and constraint functions. A typical example is the quadratic penalty 
function 

(1.7) 

where as before {L is a positive penalty parameter. One then minimizes a sequence of 
penalty functions for a given set of penalty parameter values. Fiacco and McCormick 
(1968) again showed that, under extremely modest conditions, the sequence of minimizers 
of (1. 7) converge to the solution of the original problem whenever the sequence of penalty 
parameters converge to zero. However, the analysis of Lootsma (1969) and Murray (1971) 
again had serious ramifications for a simple-minded sequential minimization of (1.7). This 
time, though, there was almost immediately a way around the ill-conditioning difficulty, 
the development of augmented Lagrangian methods. 

These methods were introduced by Arrow and Solow (1958), Hestenes (1969), Powell 
(1969) and Rockafellar (1976). The augmented Lagrangian function (corresponding to the 
quadratic penalty function (1.7)) for the above problem is 

1 m 
f{x) +"2 L{Ci{X) +Si))2, (1.8) 

{L ;'=1 

where the shifts Si = {LA;. and the Ai are known as Lagrange multiplier estimates. As 
before, one could fix A and solve the required problem by a sequential minimization of 
(1.8) as {L converges to zero. However, by adjusting A so that the Lagrange multiplier 
estimates converge to the Lagrange multipliers at the solution, it is possible to avoid the 
need for {L to tend to zero and thus circumvent the conditioning problems inherent in the 
simple penalty function approach. See Bertsekas (1982) and Conn et al. (1991) for further 
details. 

It seems rather strange that such devices were not immediately applied to circumvent 
the conditioning difficulties associated with traditional barrier function methods, but this 
appears to be the case. To our knowledge, the first move in this direction was the work by 
Jittorntrum and Osborne (1980) in which the authors consider a sequential minimization 
of the modified barrier function 

m 

f{x) - {L LAt!og{Ci{X)) (1.9) 
i=1 

for appropriate Lagrange multiplier estimates .Ai. They show that it is possible to get better 
than linear error estimates of the solution as {L converges to zero merely by choosing the 
Lagrange multiplier estimates carefully. 
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The nlethods which are closest in spirit to the algorithm considered in this paper are 
the shifted-barrier lnethod analysed for linear programs by Gill et al. (1988) and the class 
of nlodified barrier nlethods proposed by Polyak (1982) and analysed in Polyak (1992). 
Gill et al. consider the shifted barrier function 

lex) - LWilog(ci(x) + sd, (1.10) 
1=1 

where the 'Wi are temled weights and the Si called shifts. A sequence of shifted barrier 
functions are nunimized subject to the restrict that the ratios wi!Si converge to the La­
grange multipliers associated with the solution of the original problem. The authors prove 
convergence of such a schelne under mild conditions for linear programming problelns. 
Polyak (1982) considers the modified barrier function 

lex) - p, L
m 

Ai log(l +Ci(X)/P,). (1.11) 
i=1 

He motivates such a function by noting the equivalence of the constraints (1.2) and 

p,log(l + Ci(X)/p,) ~ 0 for i =1"", m. (1.12) 

The function (1.11) is then merely the classical Lagrangian function for the problem of 
minimizing (1.1) subject to the constraints (1.12). It is shown in Polyak (1992) that, 
provided p, is sufficiently small and other reasonable assumptions are satisfied, a sequential 
nlininlization of (1.11) in which p, remains fixed but the Lagrange multipliers adjusted will 
converge to a solution of the original problem. This has the desirable effect of limiting the 
size of the condition number of the Hessian matrix of (1.11). 

Our current interest is in solving large-scale problems. We have recently developed 
an algorithm for large-scale nonlinear prograInming based on a sequential minhnization 
of the augnlented Lagrangian function (1.8) within a region defined by the shnple bounds 
(1.3) (see Conn et al., 1992). The main disadvantage to such an approach when inequality 
constraints of the form (1.2) are present is the need to introduce slack variables (see, e.g., 
Fletcher, 1987, page 146) to convert the inequalities to the form (1.6). Although any slack 
variables might be treated specially, there is still likely to be an overhead incurred from 
the increase in the number of unknowns. It would be preferable to avoid slack variables if 
at all possible. Barrier function methods have this potential. 

We consider the Lagrangian barrier function (1.4). This function is of the form (1.10) 
when the weights satisfy Wi = AiSi. As above, we can motivate the function by observing 
that the constraints (1.2) are equivalent to 

Si log(l + Ci(X)/Si) ~ 0 for i = 1"", m (1.13) 

provided that Si > O. The classical Lagrangian function for the problenl of minimizing 
(1.1) subject to (1.13) is then 

lex) - L
m 

Ai s i log(l +Ci(X)/Si), (1.14) 
i=1 

which differs from (1.4) by the constant E?!l AiSi log(si). Notice, also, the shnilarity 
between (1.4) and (1.8), particularly the shifting of the constraint values.1 We ainl to show 
that using (1.4) is an appropriate analogue of (1.8) for inequality constrained optimization 
by obtaining conlplementary results to those contained in our previous paper on augnlented 
Lagrangian function methods (see, Conn et al., 1991). 

1 It is also rather amusing to note the strong similarity between (1.8) and the first two terms ofa Taylor's 
expansion of (1.14) for small ('i(r)/si alt.hough it is not. c)(.ar that this is of any use··· 
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1.2 Outline 

Our exposition will be considerably simplified if we consider the special case where Ii = 0 

and 'Uri = 00 for a subset of N ~ {1, 2, .... , n} in (1.3) and where the remaining variables 
are either not subjected to simple bounds or their simple bounds are treated as gen­
eral constraints. Indeed, it might sometimes pay to handle all simple bounds as general 
constraints. Although straightforward, the modification required to handle more general 
bound constraints will be indicated at the end of the paper. Thus we consider the problem: 

minimize f( x ) (1.15) 
xE!Rn 

subject to the constraints 
Ci(X) ~ 0, 1:5 i:5 m, (1.16) 

and the non-negativity restrictions 

x E B = {x E Rn IXi ~ 0 for all i E Nb}, (1.17) 

where Nb ~ N is the index set of bounded variables. 
The paper is organised as follows. In Section 2 we introduce concepts and defini­

tions and then state a generic algorithm for solving (1.15)-(1.17) in Section 3. Global 
convergence is established in Section 4, while issues of asymptotic convergence follow in 
Section 5. We consider the implications of our assumptions in Section 6, while in Section 7 
the consequences of satisfying second order conditions are given. The calculation of good 
starting points for the inner iteration is considered in Section 8. We conclude in Section 9 
by indicating how this theory applies to the original problem (1.1)-(1.3). 

2 Notation 

In this section we introduce the notation that will be used throughout the paper. 

2.1 Derivatives 

Let g(x) denote the gradient, V'xf(x), of f(x) and let H(x) denote its Hessian matrix, 
V'xxf(x). Let A(x) denote the m by n Jacobian of c(x), where 

(2.1) 

and let Hi( x) denote the Hessian matrix, V xxCi( x), of Ci( x). Finally, let gl(x, A) and 
Hl(X, A) denote the gradient and Hessian matrix (taken with respect to its first argument) 
of the Lagrangian function 

m 

l(x, A) ~ f(x) - L AiCi(X). (2.2) 
i=l 

We note that l(x, A) is the Lagrangian function with respect to the general inequality 
constraints only. 

http:1.15)-(1.17
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2.2 Lagrange multiplier estimates 

If we define first-order Lagmnge multiplier estimates X(x, ..\,s) for which 

(2.3) 

we shall make much use of the identities 

V:r;'I(x,..\,s) = V:r;/(x) - Ei~l Ci(;~St Si V:r;Ci(X) 
(2.4)= V:r;/(x) - A(x)TX(x,..\,s) 

= gt(x, X(x, ..\, s» 

and 

(2.5) 

2.3 Shorthand 

Now suppose that {x(k) E 8} {..\(k) > O} and {s(k) > O} are infinite sequences of n-vectors, 
11"1,-vectors and m-vectors respectively. For any function F, we shall use the notation that 
F(k) denotes F evaluated with arguments x(k), ..\(k) or s(k) as appropriate. So, for instance, 
using the identity (2.4), we have 

(2.6) 

where we have written 
(2.7) 

Similarly, if x* is a limit point of {x(k) E 8}, we shall write F* as a shorthand for the 
quantity F evaluated with argument x*. 

2.4 Norms 

If T is any 7n-vector whose i-th component is Ti, we use the shorthand T == [Ti]~l' Further­
more, if T is as above and .1' is a subset of {l, 2" .. ,7n}, [Ti]iE.1" is just the vector whose 
cOlnponents are the Ti, i E .1'. We denote any vector norm (or its subordinate matrix 
nornl) by 11.11. Consequently, II[Ti]l::lll == IITII. 

2.5 A projection operator 

We will use the projection operator, defined component-wise by 

(P[XDi ~ if Xi ::;.0 and{o (2.8)
Xi otherWIse. 

This operator projects the point x onto the region 8. Furthennore, we will make use of 
the 'projection' 

P(x,v) ~ x - P[x - v]. (2.9) 
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2.6 Dominated and floating variables 

For any X(k) E B, there are two possibilities for each component x~k), namely 

(i) i E Nb and 0 ~ x~k) ~ (Vxq,(k) )i, or 
(2.10)

(ii) iENt or (Vxq,(k)i<X~k), 

where Nt ~ N\Nb is the index set of free variables. In case (i) we then have 

(2.11 ) 

whereas in case (ii) we have 

(2.12) 

We shall refer to an x~k) which satisfies (i) as a dominated variable; a variable which 
satisfies (ii) is known as a floating variable. The algorithm which we are about to develop 
constructs iterates which force P(x(k), Vxq,(k) to zero as k increases. The dominated 
variables are thus pushed to zero, while the floating variables are allowed to find their own 
levels. 

li, in addition, there is a convergent subsequence {x(k)}, k E JC, with limit point x*, we 
shall partition the set N into the following four subsets, relating to the two possibilities 
(i) and (ii) above and to the corresponding x*: 

.VI ~ {i E Nb Ix~k) is dominated for all k E JC sufficiently large}, 

Fl ~ {i E Nb Ix ~k) is floating for all k E JC sufficiently large and x t > o} UNt, 

F2 ~ {i E Nb Ix~k) is floating for all k E JC sufficiently large but xt =o} and 

F3 ~ N\V1 UF1 UF2. 
(2.13) 

From time to time we will slightly abuse notation by saying that a variable Xi belongs to 
(for instance) F1, when strictly we should say that the index of the variable belongs to 
Fl. We will also mention the components of a (given) vector in the set Fl when strictly 
we mean the components of the vector whose indices lie in Fl. 

lithe iterates are chosen so that p(x(k),Vxq,(k) approaches zero as k increases, we 
have the following analog of Conn et ale (1991, Lemma 2.1 ). 

Lemma 2.1 Suppose that {x(k)},k E JC, is a convergent subsequence with limit point x*, 
that A(k), s(k), V}, FI, F2 .and F3 are as above and that p(x(k), Vxq,(k) approaches zero 
as k E JC increases. Then 

(i) the variables in the sets 1)1, F2 and F3 all converge to their bounds; 

(ii) the components of (''Vx'I!(k»i in the sets:Fl and:F2 converge to zero; and 

(iii) 	if a component of (Vxq,(k)i in the set F3 converges to a finite limit, the limit is 
zero. 

Proof. (i) The result is true for variables in 1)1 from (2.11) for those in F2 by definition 
and for those in F3 as, again from (2.11), there must be a subsequence of the k E JC for 
which x~k) converges to zero. 
(ii) The result follows for i in Fl and :F2 • from (2.12). 
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(iii) This is true for i in 7='3 as there must be a subsequence of the k E JC for which, from 
(2.12), (Vxq;(k»)i converges to zero. _ 

It will sometimes be convenient to group the variables in sets 7='2 and 7='3 together and 
call the resulting set 

(2.14) 


As we see from Lemma 2.1, 7='4 gives variables which lie on their bounds at the solution 
and which may correspond to zero components of the gradient of the Lagrangian barrier 
function. These variables are potentially (dual) degenerate at the solution of the nonlinear 
programming problem. 

2.7 Inactive and active constraints 

As well as being concerned with which variables are fixed to, and which free from, their 
bounds at a limit point of a generated sequence {x(k)}, we are also interested in knowing 
which of the nonlinear constraints (1.16) are inactive (strictly satisfied), and which are 
active (violated or just satisfied), at such a point. We define 

I(x) ~ {i ICi(X) > O}, 
(2.15)

..4.(x) ~ {i ICi(X) :::; O}. 

We intend to develop our algorithm so that the set ..4.* == ..4.(x*) at any limit point of our 
generated sequence is precisely the set of constraints for which Ci( x*) = 0. 

2.8 Submatrices 

We will use the notation that if :fl and :f2 are any subsets of N and H is an n by n 
matrix, H[.:Ji •.72] is the matrix formed by taking the rows and columns of H indexed by :fl 
and :f2 respectively. Likewise, if A is an m by n matrix, A[.71] is the matrix formed by 
taking the rows of A indexed by :fl. 

2.9 Kuhn-Tucker points 

A point x* is said to be a Kuhn-Tucker (first-order stationary) point for the problem (1.1)­
(1.3) if there are an associated vector of Lagrange multipliers ..\* for which the K uhn- Tucker 
conditions, 

X[Nb] ~ 0, (gl(X*, ..\*))[Nb] ~ 0, c(x*) ~ 0, ..\* ~ 0, 
(2.16)

(9l(X*,..\*))[N,] = 0, gl(X*,..\*)Tx* =°and c(x*)T..\* = 0, 

hold. Under a suitable constraint qualification, these conditions are necessary if X* is to 
solve (1.1)-(1.3) (see, for example, Fletcher, 1987, Theorem 9.1.1). 

At any point x and for any scalar w, we define the set 

relative to the point x* and set 7=' ~ N. Our intention is to construct a sequence {x(k)} so 
that for a specific 7=' (the index set for floating variables Xi), .c(x(k) ,w(k») is non-empty for 
some w(k) converging to Zero. Under a suitable boundedness assumption, this will then 
ensure that the Kuhn-Tucker conditions are satisfied at all limit points of {x(k)}. 

We are now in a position to describe the algorithm we propose to use in more detail. 
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3 The algorithm 

3.1 Statement of the algorithm 


In order to solve problem (1.15)-(1.17), we consider the following algorithmic framework. 


Algorithm 3.1 [Outer Iteration Algorithm] 

step 0 : [Initialization] The strictly positive constants 

'Tlo, Wo, llw, /3w, ll.", /3.", llA :5 1, T < 1, p < 1, 11 < 1, W. <:: 1 and",. <:: 1 (3.1) 

for which 
1 

ll." + 1 + llA > 1 (3.2) 

are specified. A positive forcing pammeter, p,(O), is given. Set 

An initial estimate of the solution, x est E B, and vector of positive Lagmnge multi­
plier estimates, A(O), for which Ci(X est) +JL(O)(A~O»a~ > 0 are specified. Set k = O. 

step 1 : [Inner iteration] Compute shifts 

(3.4) 

for i = 1, .... , m. Find x(k) E B such that 

IIP( x(k), V x q;(k»11 :5 w(k) (3.5) 

and 
Ci( x(k» +s~k) > 0, for i = 1, .... , m. (3.6) 

step 2 : [Test for convergence] If 

stop. If 

(3.8) 


execute step 9. Otherwise, execute step 4. 

step 3 : [Update Lagrange multiplier estimates] Set 

A(k+l) = X(x(k), A(k), s(k», 

p,(k+I) = p,(k) , 

JL(k+I) =min(p,(k+l), ,1), (3.9) 

w(k+I) = w(k)(JL(k+I»f3"" 

",(k+I) = ",(k) (JL(k+I) )f3'1. 


Increase k by one and go to step 1. 

http:1.15)-(1.17
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step 4 : [Reduce the forcing parameter] Set 

.,\(1.+1) = .,\(1.), 

p(k+l) = Tp(k) , 
1-'(1.+1) = min{p(k+l), 'n), (3.10) 
W(k+l) = WO{I-'(k+l»Olot/, 

11(1.+1) =11o{I-'(k+l»0'1. 

Increase k by one and go to step 1. 

end of Algorithm 3.1 

The scalar 1-'(1.) is knoWn as the penalty parameter. It is easy to see that the forcing 
and penalty parameters coincide whenever the former is smaller than 1'1. Indeed, it will 
often be the case that the two parameters are the same for all iterations because of the 
choice of the value of the initial forcing parameter. 

Although it might appear quite complicated, the idea behind Algorithm 3.1 is quite 
simple. We wish the algorithm to converge to a point for which the Kuhn-Tucker conditions 
(2.16) are satisfied. The whole algorithm is driven by the value of the penalty parameter. 
The inner-iteration convergence test (3.5) is intended to ensure that these conditions hold 
at any limit point. The algorithm is designed to be locally convergent if the penalty 
parameter is fixed at a sufficiently small value and the Lagrange multipliers estimates are 
updated using the first-order formula (2.3). As a last resort, we can guarantee that the 
penalty parameter is sufficiently small by driving it to zero while at the same time ensuring 
that the Lagrange multiplier estimates are well behaved. The test (3.8) is merely to detect 
when the penalty parameter is small enough for us to move from a globally convergent to 
a locally convergent regime. The remaining details of the algorithm are concerned with 
picking two sequences of tolerances, {w(k)} to limit the accuracy required of the inner­
iteration algorithm and {11(k)} to measure whether we have entered the asymptotic phase 
of the calculation. The exact relationships between the two sequences is designed· to allow 
a complete analysis of the algorithm. 

3.2 Starting points 

Before we analyse Algorithm 3.1, we need to comment on the crucial Step 1 in the al­
gorithm. One might reasonably expect to try to satisfy the convergence test (3.5) by 
(approximately) minimizing (1.4) within (1.17). However, this relies on ensuring that 
c(x) + s(k) > 0 for all iterates generated during the inner iteration. In particular, it is 
important from a practical point of view that this condition is satisfied at the starting 
point for the inner iteration. In one important case, this is trivially so. For we have, 

Lemma 3.1 The iterates generated by Algorithm 3.1 satisfy the condition 

.{ (I.» (1.+1) . _c, x +si > 0, for t - 1, .... , m (3.11) 

for k = -1 and all iterations k 2:': 0 for which (3.8) is satisfied. 

Proof. The result is true for k = -1 by choice of the initial Lagrange multiplier estimates 
and shifts in Steps 0 and 1 of the algorithm. 

The k-th inner iteration (Step 1) of the algorithm ensures that (3.6) is satisfied. If 
(3.8) is satisfied, the updates (3.4) and (3.9) apply. For each constraint, there are two 
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possibilities. H Ci(x(.k») > 0, (3.11) follows immediately, as the algorithm ensures that the 
shifts are always positive. H, on the other hand, Ci( x(k») :::; 0, 

(k) 
si k > 1. (3.12)

Ci( x(k») +s! ) ­

In this case, the definition (2.3) of the multiplier update ensures that 

A~k+l) = 'x'(x(k) A(k) s(k») > A~k) (3.13). .,' -,' 
Hence s!k+l) ? s!k) follows from (3.4) and (3.9), and thus (3.6) gives (3.11). • 

Thus, so long as we are able to update the multiplier estimates rather than reducing 
the penalty parameter, the terminating iterate from one inner iteration gives a suitable 
starting point for the next. We shall consider what to do in other cases in due course. 

3.3 The inner iteration 

In order to satisfy the inner-iteration termination test (3.5), one may in theory apply any 
algorithm for solving the simple-bound constmined minimization problems - problems in 
which the minimizer an objective function within a region defined by simple bounds on 
the variables is sought - to the problem of minimizing (1.4) within (1.17). Indeed, as the 
condition 

(3.14) 

is required at optimality for such a problem, (3.5) can be viewed as an inexact stopping rule 
for iterative algorithms for solving it. We merely mention here that the projected gradient 
methods of Calamai and More (1987), Burke and More (1988), Conn et al. (1988a), Conn 
et al. (1988b) and Burke et al. (1990) and the interior point method of Nash and Sofer 
(1991) are all appropriate, but that methods which take special account of the nature of 
(1.4) may yet be prefered. 

3.4 Further discussion 

We should also comment on the rather peculiar test (3.8) in Algorithm 3.1. In our previous 
work on solving problems with general equality constraints Ci( x) = 0, i = 1, .... , m (see, 
Conn et al., 1991), we measure the success or failure of an outer iterate x(k) by the size of 
the norm of the constraint violation 

(3.15) 

Specifically, we ask whether 
(3.16) 

for SOlne convergence tolerance 1](k) {see Conn et al., 1991, Test (3.6)). In the current 
algorithm, we employ a similar test. As one would not in general expect all of the general 
inequality constraint functions to converge to zero for the problem under consideration in 
this paper, the test (3.16) is inappropriate. However, one would expect the complementary 
slacknesses Ci(X )Ai' i = 1, .... , m, to converge to zero for suitable Lagrange multiplier 
estimates Ai. The test (3.8) is designed with this in mind. 

In fact, there is a stronger similarity between Conn et al. (1991, Test (3.6)) and (3.8) 
than is directly apparent. For the former test may be rewritten as 

(3.17) 



12 

using the first-order multiplier update proposed in Conn et al., 1991. The test (3.8) may 
likewise be written as 

IIX(k) - A(k) II ~ ",(k) / ,.,,(k), (3.18) 

because of the definition of the multiplier estimates (2.3) and shifts (3.4). Whenever p,(k) 
is smaller than 11, (3.17) and (3.18) coincide. 

Our primary aim is now to analyse the convergence behaviour of Algorithm 3.1. 

4 Global convergence analysis 

In this section, we shall consider the convergence of Algorithm 3.1 from arbitrary starting 
points. We aim to show that all finite limit points of the iterates generated by the algorithm 
are Kuhn-Tucker points. We shall analyse the convergence of Algorithm 3.1 in the case 
where the convergence tolerances w* and ",* are both zero. 

We shall make use of the the following assumption. 

AS2: The set £{x*,O;x*,:Ft} = {A[A*]IA[A*] 20 and (g{x*) - {A{x*)[A*])TA[A*]h~'i] = O} 
is bounded for any limit point x* of the sequence {x(k)} and set:F1 defined by (2.13). 

Note that AS2 excludes the possibility that :F1 is empty unless there are no general con­
straints active at x*. In view of Lemma 2.1, this seems reasonable as otherwise we are 
allowing the possibility that there are more than n active constraints at x*. 

As a consequence of AS2 .we have: 

Lemma 4.1 Suppose that AS2 holds. Then £(x, W; x* , :F1) is bounded for all (x, w) suffi­
ciently close to (x*, 0). 

Proof. The result follows directly from the analysis given by Fiacco (1983, Theorem 
2.2.9). • 

We require the following lemma in the proof of global convergence of our algorithm. 
The lemma is the analog of Conn et al. (1991, Lemma 4.1 ). In essence, the result shows 
that the Lagrange multiplier estimates generated by the algorithm cannot behave too 
badly. 

Lemma 4.2 Suppose that ,.,,(k) converges to zero as k increases when Algorithm 1 is exe­
cuted. Then the product ,.,,(k){A~k»l+£r.\ converges to zero for each 1 ~ i ~ m. 

Proof. If ,.,,(k) converges to zero, Step 4 of the algorithm must be executed infinitely 
often. Let K = {ko, k1, k2' .... } be the set of the indices of the iterations in which Step 4 
of the algorithm is executed and for which 

(4.1) 


and thus in particular ,.,,(k) = p,(k). 
We consider how the i-th Lagrange multiplier estimate changes between two successive 

iterations indexed in the set /C. Firstly note that A~kp+l) = A1kp). At iteration kp +j, for 
kp +1 < kp +j ~ kp+1, we have 

A~kp+i) = A~kp+i-l) _ (Ci{x(kp+i-l»A~kP+i») 1 
(4.2)

t t (A1kp+i-1»£r.\ ,.,,(kp+i-1) , 
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from (2.5), (3.4) and (3.9) and 

p,(kp+d = p,(kp+i) = p,(kp+l) = rp,(kp) , (4.3) 

Hence summing (4.2) and using the fact that ,x~kp+l) = ,x~kp), 

,x(kp+i) = ,x(kp) _ i-I (Ci(x(kP+I»),x!kP+I+l») 1 
(4.4) 

a a L (,x(kp+I»)CJ A p,(kp+l)
1=1 a 

where the summation in (4.4) is null if j = 1. 
Now suppose that j > 1. Then for the set of iterations kp + 1,1 :::; 1 < j, Step 2 of 

the algorithm must have been executed and hence, from (3.6), (4.3) and the recursive 
definition of 'T1(k), we must also have 

(4.5) 

Combining equations (4.1) to (4.5), we obtain the bound 

Thus, multiplying (4.6) by (p,(kp+i»)fh, where {3~ = 1/(1 +Q~), and using (4.3), we obtain 
that 

Equation (4.7) is also satisfied when j = 1 as equations (3.9) and (4.3) give 

(p,(kp+i»)/h 11,x(kp+i) II = rJ3A (p,(k i »)J3AII,x(kp) II. (4.8) 

Hence from (4.7), 

(p,(kp+d )J3AII,x (kp+t) II :::; rJ3A (p,(kp »)J3AII,x(kp) II + 21]orQ'l+J3A -1 (p,(kp)y~'l+J3A -1. (4.9) 

We now show that (4.9) implies that (p,(kp »)J3AII,x(kp )11 converges to zero as k increases. For, 
if we define 

Q p ~ (p,(kp »)J3AII,x(kp )1I and {3p ~ 2'T10(p,(kp»)Q'l+J3A-t, (4.10) 

equations (4.3), (4.9) and (4.10) give that 

(4.11) 

and hence that 
p-l 

o :::; Q p :::; (rJ3A )Pao + (rQ'l+J3>.-1)P L(r1-Q'l)'/10, (4.12) 
1=0 

Recall that the requirement (3.2) ensures that a,., + /1~ - 1 > O. If a,., < 1, the sum in 
(4.12) can be bounded to give 

( 4.13) 
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(4.14) 


whereas if 0'1 > 1, we obtain the alternative 

and if 0'1 = 1, 
(4.15) 


But, both 00 and f30 are fini.te. Thus, as p increases, op converges to zero; the second 
part of equation (4.11) implies that f3p converges to zero. Therefore, as the right-hand 
side of (4.7) converges to zero, so does (p,(k) ),6,\ 1I..\(k) II for all k. The truth of the lemma is 

finally established by raising (JL(k»),6,\ 1I..\!k)II to the power 1/f3~ = 1 + o~.· • 
We note that Lemma 4.2 may be proved under much weaker conditions on the sequence 

{17(k)} than those imposed in Algorithm 3.1. All that is needed is that, in the proof just 
given, 

in (4.6) should be bounded by some multiple of a positive power of JL(kp+t). 
We now give our most general global convergence result, in the spirit of Conn et ale 

(1991, Theorem 4.4). 

Theorem 4.3 Suppose that AS1 holds. Let {x(k)} E B, k E }(" be any sequence generated 
by Algorithm 1 which converges to the point x* for which AS2 holds. Then 

(i) x* is a Kuhn-Tucker (first-order stationary) point for the problem (1.15)-(1.17). 

(ii) The sequence X(x(k), ..\(k) , s(k»)} remains bounded for k E )(, and any limit point of 
this sequence is a set of Lagrange multipliers ..\* corresponding to the Kuhn-Tucker 
point at x*. 

(iii) the gradients Vxq,(k) converge to 9l(X*,..\*) for k E}(,. 

Proof. We consider each constraint in turn and distinguish two cases: 

1. 	constraints for which Ci(X*) 1= 0; and 

2. 	constraints for which Ci(X*) = o. 


For the first of these cases, we need to consider the possibility that 


a. 	the penalty parameter JL(k) is bounded away from zero; and 

h. 	the penalty parameter JL(k) converges to zero. 

Case 1a. As JL(k) is bounded away from zero, test (3.8) must be satisfied for all k 
sufficiently large and hence !c!k) X~k) / (..\(k) )'w,\! converges to zero. Thus as {c~k)} 
converges to Ci(X*) ;f; 0, for k E }(" X~k) /(..\(k)Y:tl,\ converges to zero. Hence, using 
(2.3) and (3.4), 

X~k) 11..\ ~k) 	 (..\(k»)Q,\ 
• r • =(..\(k»)l-Q,\ JL i 0 (4.16)(..\~k»)Q,\ = c~k) + JL( ..\~k) )Q,\ • c~k) + JL( ..\~k) )Q,\ -+ . 

We aim to show that X~k) converges to zero and that Ci(X*) > o. 

http:1.15)-(1.17
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Suppose first that ..\!k) does not converge to zero. It follows directly from (2.5) and 
(3.4) that 

(4.17) 

Then, as the left-hand side of (4.17) converges to zero and J.t(k) and ..\~k) are bounded 
away from zero, we deduce that 

X~k) = ..\~k)(l + e~k», ( 4.18) 

for some {e~k)}, k E lC, converging to zero. But then, by definition (2.3), 

J.t(..\(k»lr.\ (k) 
() , ) =l+e·. (4.19) 

c/ + J.t( ..\~k )lr.\ ' 

However, as ..\~k) is bounded away from zero and (tA ::; 1, (4.19) contradicts (4.16). 

Thus ..\~k) converges to zero, for k E lC. 

It now follows that, as X~k) /(..\(k»lr.\ converges to zero, so does X~k). It also follows 

from (3.6) that c!k) +J.t(k)(..\!k»lrA > o. As J.t(k) is bounded and ..\!k) converges to 

zero, we have that Ci(X*) ~ O. But as Ci(X*) f:. 0, we conclude that Ci(X*) > 0, X!k) 
converges to ..\i =0, for k E lC, and ci(x*)..\i =O. 

Case lb. As J.t(k) converges to zero, Lemma 4.2 shows that J.t(k)(..\~k»l+lrA and hence 

J.t(k)..\~k) and J.t(k)(..\~k»lrA converges to zero. It follows immediately that the nu­
merator of (2.3) converges to zero while the denominator converges to Ci( x*) and 
hence that X~k) converges to zero for k E JC. Furthermore, it follows from (3.6) that 
c~k) + J.t(k) ( ..\!k) )lrA > 0: as J.t(k) ( ..\!k) )lrA converges to zero, we have that c;(x*) ~ O. 
But as c;(x*) is, by assumption, nonzero, c;(x*) > O. Hence we may conclude that 

that Ci( x*) > 0, X!k) converges to ..\t =0, for k E lC, and c;(x*)..\t =o. 

We note from (2.15) and (2.16) that the set I* == I(x*) is precisely the set of constraints 
covered in Case 1. Having thus identified the constraints in A* == A(x*) as those in Case 
2 above, we consider Case 2 in detail. 

Case 2. By construction, at every iteration of the algorithm, X(k) > O. Moreover, from 
(3.5) and Case 1 above, 

lI(g(x(k» - (A(x(k»[A*])TX~~*])[Fl] II 
< II(A(x(k»)~'lX1~!1)[Fdll + IIP(x(k), V,,"i(i(k»)[Fdll (4.20) 

< II(A(x(k»fz*]X[;~])[Fdll +w(k) ::; w(k) 

for some w(k) converging to zero. Thus using AS2 and Lemma 4.1, the Lagrange 
multiplier estimates X~*] are bounded and, as .c(x(k),w(k); X*,.rl) is non-empty, 
these Inultipliers have at least one limit point. If ..\[A*] is such a limit, AS1, (4.20) 
and the identity C(X*)[A*] = 0 ensure that (g(x*) - (A(x*)[A*])T ..\[A*])[Fd = 0, 

c(x*)(:.*]..\[A*] = 0 and ..\[A*] ~ O. 

Thus, from AS2, there is a subsequence JC' ~ JC for which {x(k)} converges to x* and 
{X(k)} converges to ..\* as k E JC' tends to infinity and hence, from (2.4), yox-q,(k) converges 
to g.t(x*, ..\*). We also have that 

(4.21) 
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with both Ci( x*) and At (i = 1, ... , m) non-negative and at least one of the pair equal to 
zero. We may now invoke Lemma 2.1 and the convergence of Vxq,(k) to gl(X*,A*) to see 
that 

(4.22) 


The variables in the set :Fi n Nb are, by definition, positive at x*. The components of 
gl( x*, A*) indexed by 1)1 are non-negative from (2.10) as their corresponding variables are 
dominated. This then gives the conditions 

- xi > 0 and 	 (gl( x* , A*»i =0 for i E :F1 n Nb, 
(gl(X*, A*»i =0 for i E :F1 n N" (4.23)

xi =0 and (gl( x* , A*»i 2:: 0 for i E 1)1 and 
xi =0 and (gl(X*,A*»i = 0 for i E :F4. 

Thus we have shown that x* is a K uhn- Tucker point and hence we have established 
results (i), (ii) and (iii). • 

Note that Theorem 4.3 would remain true regardless of the actual choice of {w(k)} 
provided the sequence converges to zero. 

Now suppose we replace AS2 by the following stronger assumption: 

ASS: The matrix A(x*)[A*,Fd is of full rank at any limit point x* of the sequence {x(k)} 
and set :Fl defined by (2.13). 

Furthermore, we define t~e least-squares Lagrange multiplier estimates (corresponding 
to the sets :Fl and A * ) 

(4.24) 


at all points where the right generalized inverse 

( 4.25) 

of A(x )[A*,Fd is well defined. We note that these estimates are differentiable functions of 
x whenever A(x )[A* ,Ft] is of full rank (see, for example, Conn et al., 1991, Lemma 2.2). 

Then we obtain the following improvement on Theorem 4.3 which has the same fiavour 
as Conn et al. (1991, Lemma 4.3). 

Theorem 4.4 Suppose that the assumptions of Theorem 4.3 hold excepting that AS! is 
replaced by AS3. Then the conclusions of Theorem 4.3 remain true and, in addition, we 
have that 

(iv) the vector of Lagrange multipliers A* corresponding to the Kuhn-Tucker point at x* 
are unique, 

(v) the Lagrange multiplier estimates X(x(k), A(k), s(k»i satisfy 

(4.26) 


where u!k) converges to zero for all i E I* as k E JC tends to infinity, and 

(vi) there are positive constants at, a2, aa and an integer ko such that 
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(4.28) 

II [C;(2O(k»X~k) / ••Y)J:l"::; 	 It(k) [alW(k) + a2I1 2O(k) - 20*11+ (4.29) 

(1 + u(k)(1 + a3))11..\~;!]1I + 1I(..\(k) - ..\*)[..4..]11] 

and 

1Ic(2O(k»[A]II::; It(k) II [...~k) /X!klEAII [alw(k) + a2I12O(k) - 20*11+ 
(4.30) 

a3u(k)II..\~;!]1I + 1I(..\(k) - ..\*)[..4.]11] 

for all k ~ ko, (k E K:), and any subset A ~ A* and where 

u(k) ~ max u(k) (4.31)
ieZ. t 

converges to zero as k 	E IC tends to infinity. 

Proof. Assumption AS3 implies that there is at most one point in C(x* ,0; x* , 1="1) and 
thus AS2 holds. The conclusions of Theorem 4.3 then follow. The conclusion (iv) of the 
current theorem is a direct consequence of AS3. 

We have already identified the set of constraints for which Ci( x*) = 0 with A*. Let 

(k) ~ s~k) 
(4.32)

ui - Ci( x(k») + s~k) . 

Then (2.3) shows that X~k) = u!k) ..\~k). We now prove that u!k) converges to zero for all 
i E I* as k E IC tends to infinity. 

If j.t(k) is bounded away from zero, we have established in Case 1a of the proof of 
Theorem 4.3 that ..\!k) converges to zero. Hence, as j.t(k) is finite, s~k) also converges to 
zero. On the other hand, if j.t(k) converges to zero, we have established in Case 1b of the 
proof of Theorem 4.3 that j.t(k) (..\!k)yrA and hence, once again, s!k) converge to zero. But 
as i E I*, Ci(x(k») is bounded away from zero for all k E JC sufficiently large, and therefore 
u~k) converges to zero for all i E I* which establishes (v). 

To prove (vi), we let fi be any closed, bounded set containing the iterates x(k), k E IC. 
We note that, as a consequence of AS1 and AS3, for k E K: sufficiently large, A(x(k»)tt.,Fd 

exists, is bounded and converges to A(X*)tt.,Ft]. Thus we may write 

(4.33) 

for SOllIe constant a] > O. As the variables in the set 1="] are floating, equations (2.6), 
(2.7), (2.12) and the inner iteration termination criterion (3.5) give that 

Ilg(x(k»)[Ftl +A(x(k»)&••FtlX~1.) + A(x(k»)[z.,Fl)X[;~)1I ~ w(k). (4.34) 

By assumption, ..\(x) [,A.) is bounded for all x in a neighbourhood of x*. Thus we luay 
deduce from (4.24), (4.33) and (4.34) that 

II(X(k) - ..\(x(k»))[,A*]1I 	 = II(A(x(k»)~*.Ftl)Tg(x(k»)[Fl] +Xf1*]II 


=II(A(x(k»)~*IFl])T(g(x(k»)[Fd +A(x(k»)&*,FdX~1.])1I

(kJ (4.35) 

~ II(A(x(k»)~.'Fll)TII(w(k) +IIA(x(k»)[z.,Ft]IIIIX[z.])1I 
~ a]w(k) + a3I1Xfz~])II, 
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where a3 ~ at maxxeO IIA{x)fz.,.Fil li • Moreover, from the integral mean-value theorem 
and the (local) differentiability of the least-squares Lagrange multiplier estimates (see, for 
example, Conn et al., 1991, Lemma 2.2) we have that 

where V xA{x )[A.] is given by Conn et ale (1991), equation (2.17), and where x{t) = 
x(k) +t{x* - x(k»). Now the terms within the integral sign are bounded for all x sufficiently 
close to x* and hence (4.36) gives 

(4.37) 

for all k E K; sufficiently large, for some constant a2 > 0, which is just the inequality 
(4.28). We then have that A(x(k)}[A.] converges to A[A.]' Combining (4.26), (4.35) and 
(4.37), we obtain 

II{X(k) - A*)[A·] II ::; II{X(k) - A{X(k»))[A.] II + II{A{X(k») - A*)[A.llI 
::; atw(k) +a2I1x(k) - x*1I +a31I X{x(k),A(kJ,s k»)[z·]11 (4.38) 

::; atw(k) + a2I1x(k) - x*1I + a3(T(k)IIA~;!]II, 

the required inequality (4.27). It remains to establish (4.29) and (4.30). 
The relationships (2.5) ~d (3.4) imply that 

Ci{x(k») =JL(k){1r~k) /X!k»){Alk) _ X!k»), 	 (4.39) 

and 
(4.40) 

for 1 ::; i ::; m. Bounding (4.39) and using the triangle inequality and the inclusion 
..4. ~ ..4.*, we obtain 

IIc{x(k) ) [A] II::; JL(k) II{X(k) - A(k»)[A] II 

::; 	 JL(k) [1I{X(k) - A*hA] II +II{A(k) - A*)[A]II] ( 4.41) 

::; 	 JL(k) [11{X(k) - A*)[A·] II + II(A(k) - A*hA]II] . 

But then, combining (4.38) and (4.41), we see that (4.30) holds for all k E K; sufficiently 
large. Furthermore, the triangle inequality, the relationships (4.26), (4.27) and 

(4.42) 

yield the bound 

IIX(k) - A(k)ll::; IIX(k) - A*II + IIA(k) - A*II 

< II{X(k) - A*)[A·] II + II{A(k) - A*)[A.]II + IIX~;!]II + IIAf;~]1I 
(4.43)< 	 alw(k) +a2I1x(k) - x*lI+ 

{I + (I + a3)(T(k»)IIAf;~111 + II{A(k) - A*)[A·] II 

Hence taking norms of (4.40) and using (4.43), we see that (4.29) holds for all k E K; 
sufficiently large. _ 
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5 Asymptotic convergence analysis 

We now give our first rate-of-convergence result. It is inconvenient that the estimates 
(4.27)-(4.29) depend upon IIx(k)-x*1I as this term, unlike the other terms in the estimates, 
depends on a posteriori information. The next lemma removes this dependence and gives 
a result similar to the previous theory in which the errors in x are bounded by the errors 
in the multiplier estimates 1I(,\(k) - '\*)[A.]II and /I,\f1.]11 (see Polyak, 1992, Theorem 1). 
However, as an inexact minimization of the Lagrangian barrier function is made, a term 
reflecting this is also present in the bound. Once again, the result allows for our handling 
of simple bound constraints. Before giving our result, which is in the spirit of Conn et ale 
(1991, Lemma 5.1), we need to make two additional assumptions. 

AS4: The second derivatives of the functions f( x) and the Ci(x) are Lipschitz continuous 
at all points within an open set containing B. 

AS5: Suppose that (x*, ,\*) is a Kuhn-Tucker point for problem (1.15)-(1.17) and that 

.Ai ~{ilci(X*)=O and '\t>O} 
(5.1)

.Ai ~ {ilci(X*) =0 and '\t =O} 

and 

:II ~ {i E NbI(gL(X*,'\*»i = 0 and xt > O} UN! 


(5.2)
:12 ~ {i E NbI(gL(X*, '\*»i = 0 and xt = O}. 


Then we assume that the matrix 


HL(X*, '\*)[.1,.1] (A(X*)O[A,.1])T) (5.3)( A(X*)[A•.1] 

is non-singular for all sets .A and :I, where .A is any set made up from the union of 
.Ai and any subset of .Ai and:l is any set made up from the union of :II and any 
subset of :12' 

We note that assumption AS5 implies AS3. 

Lemma 5.1 Suppose that ASl holds. Let {x(k)} E B,k E /C, be any sequence generated 
by Algorithm 1 which converges to the point x* for which AS5 holds. Let'\* be the cor­
responding vector of Lagrange multipliers. Furthermore, suppose that AS4 holds and that 
the condition 

(5.4) 

is satisfied for some strictly positive constant..'f a4 and ( and all k E /C. Let X be any 
constant satisfying 

O<x::;(· (5.5) 

Then there are positive constants Jlmax, a5,"', a13, and an integer value ko so that, if 
Jl (leo) ::; Jlmax, 

IIX(k) - x*lI::; a5w(k) + as(Jl(k»XII(,\(k) - ,\*)[A.]/I+ 
(5.6)

a7(J.I(k»)1-X 1j[(Alk»)a'LeA; II + a8<1(k)IIAf:~111 

II(X(x(k),,\(k),s(k» - ,\*}[A·] II ::; agw(k) + alO(Jl(k»xl!(,\(k) - ,\*)[A.]/I+ 
(5.7)

all(J.I(k)j1-x II [(A!k»)a'LeA;11 + a12<1(k)H:~111 

http:1.15)-(1.17
http:4.27)-(4.29
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and 

II [Ci (X(k))X!k)/1r!k)J::lll ~ p,(k) [agW(k) +aI311(A(k) - A*)[o4*] 11+ 

an(JL(k)P-X II!(Alk»)Q'LeA; II + (1 +(1 +a12)(1(k»)IIA!~!llll 
(5.8) 

for all k ~ ko, (k E K:) and where the scalar (1(k), as defined by (4.31), converges to zero 
as k E K: tends to infinity. 

Proof. We first need to make some observations concerning the status of the variables 
as the limit point is approached. We pick k sufficiently large that the sets 1="1 and V}, 
defined in (2.13), have been determined. Then, for k E K:, the remaining variables either 
float (variables in 1="2) or oscillate between floating and being dominated (variables in 1="3). 
Now recall the definition (2.14) of 1="4 and pick an infinite subsequence, t, of K: such that: 

(i) 1="4 = 1="5 U V 2 with 1="5 n V 2 = 0; 
(ii) variables in 1="5 are floating for all k E t; and 
(iii) variables in V 2 are dominated for all k E K.. 

Notice that the set 1="2 of (2.13) is contained within 1="5. Note, also, that there are only 
a finite number (~ 21.1"41) of such subsequences K. and that for k sufficiently large, each 
k E K: is in one such subsequence. It is thus sufficient to prove the lemma for k E t. 

Now,for k E K., define 

(5.9) 

So, the variables in 1=" are floating while those in V are dominated. 
We also need to consider the status of the constraints in Ai. We choose a X satisfying 

(5.5) and pick an infinite subsequence, K" of K. such that 
(a) Ai =A: u Ab with A: nAb =0 where A: and Ab are defined below; 
(b) the Lagrange multiplier estimates satisfy 

(5.10) 

for all constraints i E A: and all k E K,; and 
(c) the Lagrange multiplier estimates satisfy 

(5.11) 

for all constraints i E Ab and all k E K,. 
We note that there are only a finite number (~ 210A21) of such subsequences K, and that for 
k sufficiently large, each k E K: is in one such subsequence. It is thus sufficient to prove 
the lemma for k E K,. 

We define 
A=AiuAb (5.12) 

and note that this set is consistent with the set Adescribed by ASS. It then follows from 
(5.1) and (5.12) that 

A* =A u A: 

We note that, if i E Ab, (5.11) gives 

with A n A: =0. (5.13) 

(5.14) 
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for all k E K... Moreover, inequalities (5.4) and (5.5) imply 

II [".!k) /xlk)] iEA;' II ::; a4(JL(k))H ::; a4(JL(k))X-l. 	 (5.15) 

It then follows directly from (5.14) and (5.15) that 

II Hk)/xlk
)] iEAl1 ::; a14(JL(k))X-l 	 (5.16) 

for some positive constants X, satisfying (5.5), and a14 and for all k E /C. Furthermore 

,xrA:l =0, (5.17) 

as A: ~ A;. Finally, the same inclusion and (5.10) imply that 

II XI1:l l1 ::; (JL(k))l-X "[(,\lk))." LeA:" ::; (JL(k))I-x" [(,\lk))"'LEA;''' (5.18) 

for all k E K... 
We may now invoke Theorem 4.4, part (vi), the bound (5.16) and inclusion A ~ A*. 

to obtain the inequalities 

II(A(x(k),,xV:),s(k») - ,x*)[A]11 :5 a1w(k) + a2I1x(k) - x*1I + a3(T(k) lI,xf;!]II, (5.19) 

and 
Ilc(X(k»)[A]II:5 a14(p,(k»)X [a1w(k) + a2I1x(k) - x*ll+ 

(5.20)
a3(T(k)lI,xf;~11l + 1I(,x(k) - ,x*)[A*]II] 

for all sufficiently large k E K. Moreover, A(k) converges to ,x* and hence (2.4) implies 
that V'x \I1(k) converges to g;. Therefore, from Lemma 2.1, 

xi =0 for all i E V and (9;)i =0 for all i E :F. (5.21) 

Using Taylor's theorem and the identities (4.42), (5.13) and (5.17), we have 

V' \I1(k) = g(k) +A(k)TA(k)x 

g(x*) +H(x*)(x(k) - x*) +A* TA(k)+ 

2:1'=1 A)k) Hj(x*)(x(k) - x*) +T1(X(k),x*,A(k») (5.22) 

= gi + Hi • (x(k) - x*) + Ar~ . (A(k) - ,x*hA] + Ar1:]A}1:]+ 

A* T A(k) + T (x(k) x* A(k») + T2(X(k) x* A(k) ,x*)
[I*] [I*] 1 " 	 '" , 

where 

rl(x(k), x·, X(k)) = [(Hl(x(k) + t(x' - x(k)), X(k)) - Hl(X', X(k)))(x(k) - x*)dt (5.23) 

and 
m 

T2(X(k), x*, A(k), ,x*) = 'E(A)k) - ,xj)Hj(x*)(x(k) - x*). (5.24) 
j=1 

The boundedness and Lipschitz continuity of the Hessian matrices of f and the Ci in a 
neighbourhood of x* along with the convergence of A(k) to ,x* for which the relationships 
(4.31) and (4.42) hold then give that 

IIT1(X(k),x*,A(k»)11 :5 a15I1x(k) - x*1I2 
and 

IIT2(X(k),X*,A(k),,x*)1I 	 :5 a16I1x(k) - x*IIIIA(k) - ,x*1I 
s a16I1x(k) - x*II(II(A(k) - ,x*)[A*] II + (T(k)II,x~!]11) 

(5.25) 
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for some positive constants aI5 and a16, using (4.26). In addition, again using Taylor's 
theorem and that c(X*)[A] = 0, 

(5.26) 

where 

for i E A (see Gruver and Sachs, 1980, p.11)). The boundedness of the Hessian matrices 
of the Ci in a neighbourhood of x* then gives that 

(5.28) 


for some constant aI7 > O. Combining (5.22) and (5.26), we obtain 

(5.29) 

(5.30) 

Then, rearranging (5.30) and removing the middle horizontal block we obtain 

= 
( 

HZ[F,F] 
A[A,.1'] 

ArlF]) ( 
0 

(:(k) - x*)[F] ) 
(A(k) - A*)[A] 

vx~ [..1"] -~ .TI(k») I[F.~X[1'] ­H* (k) [A:,.1']~!t:l ­A* T "dk) [7*,..1"]"[7*]A* T \(k») _ ( rl + r2 [..1"])) • 
( c(x( )hA] - ArA,1'] X [1'1 (r3hAl 

(5.31) 
Roughly, the rest of the proof proceeds by showing that the right-hand side of (5.31) is 
O(w(k»)+ O(O'(k)IIA~;~]II)+ O(J.t(k)Il(A(k) - A*)[A*] II)· This will then ensure that the vector 
on the left-hand side is of the same size, which is the result we require. Firstly observe 
that 

Il x(k) II < w(k)[1'] - , (5.32) 

from (2.11) and (3.5) and 
U(V:r: tiCk) )[Fj II ~ w(k), (5.33) 

from (2.12). Consequently, using (5.21) and (5.32), 

(5.34) 
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Let ~x(k) = lI(x(k) - x*){FJII. Combining (4.31), (4.42), (5.19) and (5.34), we obtain 

(5.35) 

where al8 ~ al + a2. Furthermore, from (5.25), (5.28), (5.34) and (5.35), 

(rl + r2)[FJ ) II < aI9(~x(k»2 + a2ok~x(k)w(k) + a21(w(k»2+ (5.36) 
(rah.A.1 - a220'(k)IIAfz!]II(w(k) + ~x(k»II ( 

del del 	 del
where al9 = aus + au + a16a2, a20 = 2(au + a17) + a16(al8 + a2), a21 = al5 + au + al6al8 
and a22 ~ a16(1 + aa). Moreover, from (5.18), (5.20), (5.32), (5.33) and (5.34), 

" 'T.(k» H* (k) A* T \(k) A* T \(k) )( v:c% [.11 - t[F,V]x[V] - [.A.:,FJ"'5":] - [z*,Fj"'[z*] < 
( c(x(k»[.A.] - A[.A.,v]xf;] 

(5.37)
a23w(k) +a24u(k)II~~:!11I +a2s(/L(k»)I-X II [(~lk»)a>LeA; 1+ 

­

aI4(Jt(k)r~ [aI8w(k) + a2~x(k) + aaO'(k) II Af;l] II + II(A(k) - A*)[.A.*] II] , 

where 

By assumption ASS, the coefficient matrix on the left-hand side of (5.31) is non­
singular. Let its inverse have norm M. Multiplying both sides of the equation by this 
inverse and taking norms, we obtain 

II ( ~~::: =~:~~~ )II ~ M[aI9(l1x(k»)2 +a2ol1x(k)w(k) +a21(w(k»)2+ 

a220'(k)IIA~;!111(w(k) +~x(k» + a2aw(k) + a240'(k)IIA~;!]II+ 

a2S(/L(k») I-X" [(~lk»)a,LeA;II +a14(/L(k»XCaI8w(k) + Il2l1x(k) + 

II(A(k) - A*)[.A.*] II + aaO'(k) IIA[z!] ID] 
= 	 (MaI9~x(k) +Ma2ow(k) +Ma2aI4(Jt(k»X)~x(k)+ 

(Ma2Iw(k) +M aI4aI8(Jt(k»X +M a2a)w(k)+ 

M aI4(Jt(k»X II (A(k) - A*)[.A.*]II+ 

M a2S(/L(k»)1->: " [(~lk) )a,LeA; "+ 
(Ma24 + Ma22(W(k) + ~x(k» + MaaaI4(Jt(k»X)0'(k)II Af;!]II. 

(5.39) 
The mechanisms of Algorithm 1 ensures that w(k) converges to zero. Moreover, Theo­
rem 4.3 guarantees that ~x(k) also converges to zero for k E K.. Thus, there is a ko for 
which 

(5.40) 

and 
~X(k) :::; min(l, 1/(4MaI9» (5.41) 

for all k ;::: ko (k E K.). Furthermore, let 

Jtmax == min(l, 1/(4Ma2a14)I/X). 	 (5.42) 
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Then, if I'(k) ~ I'max, (5.39), (5.40), (5.42) and (5.41) give 

~x(k) ~ !~x(k) + M( a21 + al4al8 + a23)w(k)+ 

M aI4(/t(k»)XII(,x(k) - ,x')[A'jll +M a2s(/t(k»)I-X II [(,xlk»)""LeA; II + (5.43) 

M(a24 +2a22 +a3aI4)u(k)IIAf;!]II. . 

Cancelling the ~x(k) terms in (5.43), multipling the resulting inequality by four and sub­

stituting into (5.34), we obtain the desired inequality (5.6), where as ~ 1 + 4M(a21 + 

aI4a18+a23), a6 ~ 4Ma14, a7 ~ 4Ma2S and a8 d~ 4M(a24+2a22+a3aI4)' The remaining 
inequalities (5.7) and (5.8) follow directly by substituting (5.6) into (4.27) and (4.29), the 

_ • deC deC deC deC
requIred constants beIng ag = at +a2aS, alO = a2a6, au = a2a7, a12 = a3 +a2a8 and 

deC 
at3 = 1 +a2a6- • 

In order for Lemma 5.1 to be useful, we need to ensure that (5.4) holds. There is at 
least one case where this is automatic. We consider the following additional assumption. 

AS6: The iterates {x(k)} generated by Algorithm 1 have a single limit point x*. 

We then have: 

Lemma 5.2 Suppose that ASl holds and that the iterates {x(k)} generated by Algorithm 1 
satisfy AS6 and converges to the point x· for which ASa holds. Let A* be the correspond­
ing vector of Lagrange multipliers. Suppose furthermore that 0" < 1. Then (i) {A(k)} 
converges to A*, (ii) 

(5.44) 

where tJ(k) converges to zero, as k increases, and (iii) inequality (5.4) is satisfied for all k. 
Moreover, if AS4 and AS5 replace ASa, (iv) the conclusions oiLemma 5.1 hold for all k, 
and any 0 < X ~ 1. 

Proof. We have, from Theorem 4.4 and AS6, that the complete sequence of Lagrange 
multiplier estimates {~(k)} generated by Algorithul 1 converges to A*. We now consider 
the sequence {A(k)}, 

There are three possibilities. Firstly, I'(k) may be bounded away from zero. In this 
case, Step 3 of the Algorithm 1 must be executed for all k sufficiently large which ensures 
that {A(k)} and {~(k-t)} are identical for all large k. As the latter sequence converges to 
A*, so does the former. 

Secondly, I'(k) may converge to zero but nonetheless there may be an infinite number 
of iterates for which (3.8) is satisfied. In this case, the only time adjacent members of the 
sequence {A(k)} differ, A(k) = ~(k-t) and we have already observed that the latter sequence 
{~(k-l)} converges to A*. 

Finally, if the test (3.8) were to fail for all k > kJ, IIA~!]II and II(A(k) - A*)[A*]II will 
remain fixed for all k ~ kl' as Step 4 would then be executed for all subsequent iterations. 
But then (4.29) implies that 

(5.45) 


for some constant a26 for all k ~ k2 ~ kt • As I'(k) converges to zero as k increases and 
0'1 < 1, 

(5.46) 
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for all k sufficiently large. But then inequality (3.8) must be satisfied for some k ~ kl 
contradicting the supposition. Hence, this latter possibility proves to be impossible. Thus 
{ X (k)} con verges to A* . 

Inequality (5.44) then follows immediately by considering the definitions (3.4), (4.31) 

and (4.32) for i E Z* and using the convergence of A~!] to A[I.] = 0; a suitable represen­

tation of 8(k) would be 

(5.47) 

Hence X~k) converges to At > 0 and is thus bounded away from zero for all k, for each 
i E Ai. But this and the convergence of {X(k)} to A* implies that 7r~k) /J..!k) = (A~k»aA /J..~k) 
is bounded and hence inequality (5.4), with ( = 1, holds for all k. The remaining results 
follow directly from Lemlna 5.1 on substituting ( = 1 into (5.5). • 

We now show that the penalty parameter will normally be bounded away from zero in 
Algorithm 1. This is important as many methods for solving the inner iteration subprobleln 
will encounter difficulties if the parameter converges to zero since this causes the Hessian 
of the Lagrangian barrier function to become increasingly ill conditioned. The result is 
analogous to Theorem 5.3 of Conn et al. (1991). 

We need to consider the following extra assumption . 

. AST: (Strict complementary slackness condition 1) Suppose that (x*, A*) is a Kuhn­
Tucker point for problem (1.15)-(1.17). Then 

(5.48) 

Theorem 5.3 Suppose that the iterates {x(k)} generated by Algorithm 1 of Section 3 
satisfy AS6 and that AS1, AS4 and AS5 hold. Furthermore, suppose that either 

(i) Ol =1 hold and we define 

(5.49) 

or 
(ii) AS7 holds and we define 

o ~ min(l,ow) and f3 ~ min(l,f3w). (5.50) 

Then, whenever 0'1 and f3'1 satisfy the conditions 

(5.51) 

(5.52) 

and 
0'1 + f3'1 < 0 +1, (5.53) 

there i..<: a constant Jtmin > 0 such that Jt(k) ~ Jtmin for all k. 

Proof. Suppose, otherwise, that Jt(k) tends to zero. Then, Step 4 of the algorithln nlust 
be executed infinitely often. We aim to obtain a contradiction to this statement by showing 
that Step 3 is always executed for k sufficiently large. We note that our assumptions are 
sufficient for the conclusions of Theorem 4.4 to hold. 

http:1.15)-(1.17
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Lemma 5.2, part (i), ensures that {A(k)} converges to A*. We note that, by definition, 

(5.54) 

Consider the convergence tolerance w(k) as generated by the algorithm. By construction 
and inequality (5.54), 

(5.55) 

for all k. (This follows by definition if Step 4 of the algorithm occurs and because the 
penalty parameter is unchanged while w(k) is reduced when Step 3 occurs.) As Lemma 5.2, 
part (iii), ensures that (5.4) is satisfied for all k, we may apply Lemma 5.1 to the iterates 
generated by the algorithm. We identify the set K with the complete set of integers. As we 
are currently assuming that p,(k) converges to zero, we can ensure that p,(k) is sufficiently 
small so that Lemma 5.1 applies to Algorithm 1 and thus that there is an integer kl and 
constants a9,'" ,a13 so that (5.7) and (5.8) hold for all k;::: kl . In particular, if we choose 

~ if assumptions (i) of the current theorem hold deC {x= xo = (5.56)
1 if assumptions (ii) of the current theorem hold, 

we obtain the bounds 

and 

"[Ci(X(k»)X!k)/7r~k)]:111 ~ p,(k) [a9w(k) +(an +aI3)II(A(k) - A*)[A*]II+ 
(5.58)

(1 + (1 + aI2)a(k»)IIA~;~]II] 

for all k ;::: k}, from (5.54) and the inclusion Ai ~ A*. Moreover, as Lemma 5.2, part (ii), 
ensures that 6(k) converges to zero, there is an integer k2 for which 

(5.59) 

for all k ;::: k2 • Thus, combining (5.54), (5.57), (5.58) and (5.59), we have that 

II(X(x(k), A(k), s(k») - A*)[A*]II ~ a9w(k) + a27(p,(k»)Xo II (A(k) - A*)[A*]II+ 
(5.60)

+aI2P,(k) IIA~;!] II 

and 
"[Ci(X(k»)X!k) /7r!k)]:l" ~ p,(k) [a9w(k) + a2811(A(k) - A*)[A*] 11+ 

(5.61)
a29I1A~!]II] 

for all k ;::: ma.x(k}, k2), where a27 ~f alO + an, a28 41 an + al3 and a29 412 + a12. 
Now, let k3 be the smallest integer such that 

(5.62) 

(5.63) 

(5.64) 



27 

and 
(5.65) 

def 	 def
for all k ~ k3, where a30 = ag + a28 + a29 and a31 = ag + a12 + a27. Furthermore, let k4 
be such that 

(5.66) 

for all k ~ k4 • 

Finally define k5 = max(k}, k2' k3, k4), let r be the set {kl Step 4 is executed at 
iteration k - 1 and k ;:::: k5} and let ko be the snlallest element of r. By assumption, r has 
an infinite number of elements. 

For iteration ko, w(ko) = wO(J.L(ko»)ctw and 1J(ko) = 1Jo(J.L(ko) )ct fl • Then (5.61) gives 

II [Ci( x(ko »)X~ko) / ~!ko)] :111 
~ J.L(ko) [agw(ko) + a2811(.t\(ko) - .t\*)[A*] II + a2gll.t\~~111] (5.67) 

~ wo(ag + a28 + a2g)J.L(ko) Woa3oJ.L(ko) [from (5.66)] 

~ 11O(J.L(ko»)ctfl = 1J(ko) [from (5.62)]. 


Thus, from (5.67), Step 3 of Algorithlll 1 will be executed with .t\(ko+l) = X(x(ko), .t\(ko) , s(ko»). 
Notice that the definition (5.56) of xo and the definitions (5.49) and (5.50) and restriction 
(5.52) inlply that 

(5.68) 

and 
f3t] < f3 nlin(xo, f3w) ~ 1. (5.69) 

Inequality (5.60), in conjunction with (5.55), (5.66) and (5.68), guarantees that 

11(.t\(ko+l) - .t\*)[A*] II 	~ agw(ko) +a27(J.L(ko») XO II(.t\(ko) - .t\*)[A*] II + a12J.L(ko)II.t\~~?1I 
< agwo(J.L(ko»)ctw +a27wo(J.L(ko»)Xo +aI2WOJ.L(ko) 

~ wOa31 (J.L(ko»)ct. 

(5.70) 
Furthennore, inequ3.1ity (4.26), in conjunction with (4.31), (5.59), (5.66) and (5.68) ensures 
that 

(5.71) 

We shall now suppose that Step 3 is executed for iterations ko + i, (0 ~ i ~ j), and 
that 

(5.72) 

and 
(5.73) 

Inequalities (5.70) and (5.71) show that this is true for j = O. We ainl to show that the 
same is true for i = j + 1. Under our supposition, we have, for iteration ko + j + 1, that 
J.L(ko+i+1) = J.L(ko), w(ko+i+l) = wO(J.L(ko»)<rw+~w(j+l) and 1J(ko+i+1) = 11o(J.L(ko»)ctfl+~fl(j+l). 
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Then (5.61) gives 

II [Ci( X(1co+i+1))X!1cO+i +1) /1r!1co+i+1)] :111 

:5 p,(1cO) [a9WO(p,(1cO»~U+1)+a", + a2slI(..\(1co+i+1) - ..\*)[.,4.*]11+ 

a29"..\~~ji+1)1I] [from (5.54)] 

:5 p(1co) [a9wo(p,(1co) )J3",U+1)+a", +a2sa31wO(p,(1co))a+J3"i+ 
(5.74) 

a2sWo(p,(1co»a+J3"i] [from (5.72)-(5.73)] 

:5 a9wo(p,(1co»a,,+J3,,(i+1)+1 + (a29 +a2Sa31 )wo(p,(1co»a+J3"i+1 

[from (5.51)-(5.52)] 
= wo(a9P,(1co) +(a29 +a2Sa31 )(p,(1co) )a+1-a"-J3,, )(p,(1co»a,,+J3,,(i+1) 
< l1o(p,(1co»)a,,+J3,,(i+1) = 11(1co+i+1) [from (5.64)-(5.65)]. 

Thus, from (5.74), Step 3 of Algorithm 1 will be executed with ..\(1co+i+2) = X(x(1co+i+1) , 
..\(ko+i+1), s(ko+i+1». Inequality (5.60) then guarantees that 

11(..\(1co+i+2) - ..\*)[.,4.*]11 
:5 asW(1co+i+1) + a27(p,(1co+i+1»XO II (..\(1co+i +1) - ..\*)[.,4.*] 11+ 

aup,(1co+i+1)1I..\~;~+i+1) II 
< asWo(p,(1co))a",+J3",li+1) +a27wO( a31 (p,(1co»xo-J3" )(p,(1co))a+J3,,(i+1)+ 

a12wo(JL(1co) )1-13" )(JL(1co))a+J3,,(i+1) [from (5.72)-(5.73)] (5.75) 
< asWo(JL(1co»a",+J3",U+1) +a27wo(JL(1co»a+J3,,(i+1)+ 

auwo(JL(1co»a+J3"U+1) [from (5.63)] 
:5 asWo(JL(1co»a+J3~U+1) +a27wo(JL(ko»a+J3,,(i+1) +a12wo(JL(1co»a+J3"U+1) 

[from (5.68)-(5.69)] 
= wo(as +au +a27 )(JL(1co»a+J3"U+1) =wOa31 (JL(1co»a+J3,,(i+1) 

which establishes (5.72) for i = j +1. 
Furthermore, inequalities (4.26) and (5.59) ensure that 

11..\~~ji+2)1\:5 0'(ko+i+1)11..\<;ji+1)II :5 JL(1co+i+1)11..\~;~ji+1) II [from (4.31)] 

< wO(JL(1co»a+b!i+1 [from (5.73)] (5.76) 

< wO(JL(1co»a+/3"U+1) [from (5.69)] 

which establishes (5.73) for i = j + 1. Hence, Step 3 of the algorithm is executed for all 
iterations k 2: ko. But this implies that r is finite which contradicts the assumption that 
Step 4 is executed infinitely often. Hence the theorem is proved. _ 

It is at present unclear how Algorithm 3.1 behaves when OA < 1, in the absence of 
AS7. The inequalities from Lemma 5.1 appear not to be strong enough to guarantee at 
least a linear improvement in the error of the Lagrange multiplier estimates ..\(k) because 
of the presence of the term an(JL(k»l-XII[(..\!1c»a,x]iE.A;1I in the bound (5.7). 

We should also point out that it is indeed possible to find values Ow, 0", f3w and f3" 
which satisfy the requirements (3.2), (5.51), (5.52) and (5.53) for any 0 < OA :5 1. For 
instance, the values Ow = 1, 0" =0.75, f3w =1 and f3" = 0.25 suffice. 

We caution the reader that, although the result of Theorem 5.3 is an important ingre­
dient in overcoming the numerical difficulties normally associated with barrier function 
methods, ensuring that JL(k) is bounded away from zero is not sufficient. The numerical 
difficulties arise because of the singularity of the barrier function when Ci( x) +s!1c) = 0 for 

any 1 :5 i :5 m. The algorithm is designed so that Ci( x) + s!k) > 0 for all 1 :5 i :5 m. If, in 

http:5.68)-(5.69
http:5.72)-(5.73
http:5.64)-(5.65
http:5.51)-(5.52
http:5.72)-(5.73
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addition, AS7 holds, the Theorem 5.3 ensures that limit 

lim Ci{X) + s!k) = Ci{X*) +Jlmin{A;ylr~ > 0 (5.77) 
ooZ-Z·tk ­

for all 1 ~ i ~ 1n, and thus numerical difficulties will not arise as the limit is approached. 
In the absence of AS7, Ci{X*) +Jlmin{A;)O~ = 0 for all i E Ai and thus numerical problems 
are possible in a small neighbourhood of the limit. 

IT we make the following additional assumption, our definition of floating variables has 
a further desirable consequence. 

AS8: (Strict complementary slackness condition 2) Suppose that (x*, A*) is a Kuhn­
Tucker point for problem (1.15)-{1.17). Then 

(5.78) 

We then have the following direct analog of Conn et ale (1991, Theorem 5.4). 

Theorem 5.4 Suppose that the iterates x(k), k E J(" converge to the the limit point X* 
with corresponding Lagrange multipliers A*, that AS1, AS2 and AS8 hold. Then for k 
sufficiently large, the set of floating variables are precisely those which lie away from their 
bouncL~, if present, at x*. 

Proof. From Theorem 4.3, V zq;(k) converges to gt{x*, A*) and from Lemma 2.1, the vari­
ables in the set :F4 then con verge to zero and the corresponding components of gt( x* , A*) 
are zero. Hence, under AS8, :F4 is null. Therefore, each variable ultimately remains tied 
to one of the sets :F1 or 1)1 for all k sufficiently large; a variable in :F1 is, by definition, 
floating and, whenever the variable is bounded, converges to a value away from its bound. 
Conversely, a variable in 1)1 is dominated and converges to its bound. _ 

We conclude the section by giving a rate-of-convergence result for our algorithlll in the 
spirit of Conn et ale (1991, Theorem 5.5). For a comprehensive discussion of convergence, 
the reader is referred to Ortega and Rheinboldt (1970). 

Theorem 5.5 Suppose that the iterates {x(k)} generated by Algorithm 1 of Section 3 
satisfy AS6, that ASl and AS3 hold and that A* are the corresponding vector of Lagrange 
multipliers. Then, if (3.8) holds for all k ~ ka, 

(i) 	the Lagrange multiplier estimates for the inactive constraints, Af;~l' generated by Al­
gorithm 1 converge Q-superlinearly to zero; 

(ii) the Lagrange multiplier estimates for the active constraints, Af1.l' converge at least 

R-linearly to A*. The R-factor is at most Jl~Jn' where Jlmin is the smallest value of 
the penalty parameter generated by the algorithm; and 

(iii) 	if AS4 and AS5 replace AS3, x(k) converges to x* at least R-linearly, with R-factor 
min(1tfj", to ~fj." )t 	 t .amos Jlmin 

Proof. Firstly, as (3.8) holds for all k ~ ka, the penalty parameter Jl(k) remains fixed at 
some value Jllllh., say, the convergence tolerances satisfy 

W(k+1) =w(k)Jl~n and 11(k+1) = l1(k)Jl!:1n 	 (5.79) 

and A(k+1) =X(k) all hold for all k > ko. 

http:1.15)-{1.17
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The Q-superlinear con vergence of the Lagrange multiplier estimates for inactive con­
straints follows directly from Theorem 4.4, part (v). Lemma 5.2, part (ii), the convergence 
of (J(k) to zero and the relationships (4.26) and (4.31) then give that 

(5.80) 

and all k sufficiently large. 
The identities (2.5), (3.4) and the assumption that (3.8) holds for all k ~ ko gives 

II(A(k+ll -	 A(kl)[A.]1l = /L;;J., [ct(x(kl).'Wl/1rlkleA.11 
(5.81) 

S JL;Jn 	 [Ci(x(k»)X~k) /7r~k)]:lll S JL;Jn1}(k) 

for all such k. But then the triangle inequality and (5.81) implies that 

II(A(k+j ) -	 A*)[A*]II S II(A(k+ j +1) - A*)[A*]II + II(A(k+j+1) - A(k+i»)[A*] II 
(5.82)

S !1(A(k+ j +1) - A*)[A*]II + JL;Jn1}(k+j) 

for all k ~ ko. Thus summing (5.82) from j = 0 to jrnax - 1 and using the relationship 
(5.79) yields 

II(A(k) - A*)[A*]II S II(A(k+jmax ) - A*)[A*]II + JL;Jn 'E1~ox-11}(k+j) (5.83) 
S II(A(k+i max ) - A*)[A*] II +JL;Jn1}(k)(1- JL~~max)/(1_ JLmin) 

Hence, letting jlllax tend to jnfinity and recalling that A(k) converges to A*, (5.83) gives 

(5.84) 

for all k ~ ko. As 1}(k) converges to zero R-linearly, with R-factor JL~n' (5.84) gives the 
required result (ii). 

The remainder of the proof parallels that of Lemma 5.1. As (3.8) holds for all suffi­
ciently large k, the definition (5.12) of A and the bound (5.16), ensure that 

IIC(X(kl)[A]II::; II Hkl/XlkleAIIII [c;(x(kl)Xlkl /1rjklLeJ 
(5.85) 

S a14(JLmin)X-1 II [Ci( x(k) )X~k) / 7r~k)] :111 S a14(JLlllin)X-l1}(k). 

Thus combining (5.32) and (5.33), (5.80) and replacing (5.20) by (5.85), the bound on 
the right-hand side of (5.37) may be replaced by a23w(k) + a24(T(k)IIA~;!]II+ a2s(JLmin)1-X 

II [(Alkl )'" 	LeA; II + a14 (/Loon )X-11J(kl and consequently (5.39) replaced by 

~X(k) S 	 M[a19(~x(k)? +a20~x(k)w(k) +a21(w(k»)2+ 


a22(T(k)IIA~;!]II(w(k) + ~x(k») + a23w(k) +a24(T(k) IIAf;!] 11+ 

a2s(ILmin)1-X II [(Alkl)"'LeA;jl+ a14(ILmin)X-I 1J(kl] 

= (Ma19~x(k) +Ma2ow(k»)~x ) +(Ma21w (k) +M a 23)W(k)+ (5.86) 

(Ma24 +Ma22(W(k) + ~x(k»))(T(k)IIA~!]1I 

M a2s(/Lmin)1-X II [(Alkl)",LeA; II + M a14(ILmin)X-I 1J(kl. 

http:ct(x(kl).'Wl/1rlkleA.11
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Hence, if k is sufficiently large that 

Ax(k) ~ 1/(4Ma19), w(k) ~ min(l, 1/(4Ma20)) and (1(k) ~ 1, (5.87) 

(5.86) 'and (5.87) can be rearranged to give 

Ax(k) ~ 2M[(a21 + a23)w(k) + (a24 + 2a22)IIA~;~]II+ 
(5.88)

a2s(Pm;n)I-XII [(Alk) )a,LeA; II + al4(JLmin )X-l q(k)]. 

But then (5.34) and (5.88) give 

IIx(k) - x*1I ~ a32w (k) + a33I1A~;~]1I 
(5.89)

+a34(JLmin)X-lq(k) + a3s(JLmin)I-XII [( Alk) )a,LeA; II ' 
de! de! de! de!

where a32 = 1 + 2M(a21 + a23), a33 = 2M(a24 + 2a22), a34 = 2Ma14 and a35 = 2Ma25. 
Each term on the right-hand-side of (5.89) converges at least R-linearly to zero; the R-
factors (in order) being no larger than JL~n' JLmm, JL~n and JL~~'1 respectively, following 
(5.79), (5.80) and (5.84). Hence (5.89) and the restriction a,\ ~ 1 shows that x(k) converges 
at least R-linearly with R-factor at most JL:::(l,~(U,a.\~'1). • 

As an immediate corollary we have 

Corollary 5.6 Under the assumptions of Theorem 5.3, the results of Theorem 5.5 follow, 
with the R-factor gotJeming the contJergence of {x(k)} being at most JL:t'1. 

Proof. This follows directly from Theorem 5.3 as this ensures that (3.8) is satisfied 
for all k sufficiently large. The bound on the R-factor for the convergence of x(k) is a 
consequence of (5.51) and (5.52). • 

An example 

We are interested in the behaviour of Algorithm 1 in the case when the generated sequence 
of iterates has more than one limit point. We know that, under the assumptions of 
Theorem 4.3, each limit point will be a Kuhn-Tucker point. We aim to show in this 
section that, in the absence of AS6, the conclusion of Theorem 5.3 is false. 

We proceed by considering an example which has more than one Kuhn Tucker point 
and for which the optimal Lagrange multipliers are distinct. We consider a sequence of 
iterates which is converging satisfactorily to a single Kuhn-Tucker point (xi, Ai) (and thus 
the penalty parameter has settled down to a single value). We now introduce an "extra" 
iterate x(k) near to a different Kuhn-Tucker point (x;, A;). We make use of the identity 

(6.1) 

derived from (2.5) and (3.4), to show that if the Lagrange multiplier estimate X~k) calcu­
lated at x(k) is a sufficiently "accurate" approximation of A; (while A~k) is an "accurate" 
representation of Ai), the acceptance test (3.8) will fail and the penalty parameter will be 
reduced. Moreover, we show that this behaviour can be indefinitely repeated. 

To be specific, we consider the following problem: 

minimize €(x - 1)2 such that c(x) = x 2 - 4 2: 0, (6.2) 
zER 
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where f is a (yet to be specified) positive constant. It is straightforward to show that the 
problem has two local solutions which occur at the Kuhn-Tucker points 

(xi, Ai) = ( -2, ~£) and (x;, A;) = (2,~) . 	 (6.3) 

and that the constraint is active at both local solutions. Moreover, there are no specific 
bounds on the variable in the problem and hence P(x, VziR(X,A,S)) =VziR(X,A,S) for all 
x. 

We intend to construct a cycle of iterates x(k+i), i = 0, ... ,j, for some integer j, which 
are allowed by Algorithm 1. The penalty parameter remains fixed throughout the cycle 
until it is reduced at the end of the final iteration. We start with A(O) = Ai. We also let 
Po =P (0) and pick f so that 

f 	
(6.4)~ min (~, (6+~) I-ow' 2I~O")'

1-1'1 	 Po 3Po 

We define j to be the smallest integer for which 

cr'1+i~-1 < 1 /Po 'if 1J0· 	 (6.5) 

We let P denote the value of the penalty parameter at the start of the cycle. 

i = 0 We have w(k) =wo(p)crw and 1J(k) = 1Jo(p)cr,.,. We are given A(k) = Ai. We pick x(k) 
near xi so that X(k) = (1 - P)Ai. We show that such a choice guarantees that the 
convergence and acceptance tests (3.6) and (3.8) are satisfied and thus Step 3 of the 
algorithm is executed. 

i = 1, .... ,j - 2 We have w(k+i) = wo(p )crw+i,8w and 11(k+i) = 1Jo(p)cr'1+i ,8'1. We have 
A(k+i) = (1 - pi)Ai. We pick x(k+i) near xi so that ,X(k+i) = (1 - pi+l )Ai. We again 
show that such a choice guarantees that the convergence and acceptance tests (3.6) 
and (3.8) are satisfied and thus Step 3 of the algorithm is executed. 

i = j 	- 1 We have w(k+i) = wo(p)crw+i,8w and 1J(k+i) = 1Jo(p)cr.,,+i,8'1. We have A(k+i) = 
(1 - pi)Ai. We pick x(k+i) near xi so that X(k+i) = Ai. Once again, we show that 
such a choice guarantees that the convergence and acceptance tests (3.6) and (3.8) 
are satisfied and thus Step 3 of the algorithm is executed. 

i = j We have w(k+i) =wo(p)crw+i ,8w and 1J(k+i) =1Jo(p)cr'1+i,8.". We have A(k+i) = Ai. We 
pick x(k+i) as the local minimizer of the Lagrangian barrier function which is larger 
than x2 which trivially ensures that the convergence test (3.6) is satisfied We also 
show that the acceptance test (3.8) is violated at this point so that Step 4 of the 
algorithm will be executed and the penalty parameter reduced. 

It is clear that if an infinite sequence of such cycles occur, the penalty parameter p(k) will 
converge to zero. We now show that this is possible. 

H a is a real number, we will make entensive use of the trivial inequalities 

1 ::; v'f+li ::; 1 +a whenever a ~ 0 	 (6.6) 

and 
1 - a ~ vr=a ~ 1 - ta whenever 0 ~ a ~ 1. (6.7) 

We also remind the reader that 
p ~ II < 1. (6.8) 
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1. Let 
(6.9) 

where the shift s(k) =Jt(!eyt.\. Then it is easy to verify that X(k) = (1- Jt)Ai. Moreover 

Vxqi(x(k),A(k),s(k» = 2e(x(k) -1) - 3e(1- Jt)x(k) = -f(2 +(1- 3Jt)x(k» 
(6.10)

= -2f (1 - (1 - 3J.1h/1+ J.l8(k) /(4(1- J.I))) . 

Taking norms of (6.10) and using (6.6) yields 

if Jt:5 1 
IIP(x(k), V xqi(x(k),A(k),s(k»II:5 ! ( ;:: -1)8(k)) (6.11) 

otherwise.2fJt 3 + 4(1 - Jt) 

Now (6.4) implies that s(k) :5 Jt < 1 and thus we obtain the overall bound 

IIP(z(k), V "lI(z(k), .x(k) , 8(k)11 :$ f (6.12)(6 + 1 ~1'1) J.I 

from (6.8) and (6.11). But then (6.12) and (6.4) give 

IIP(X(k) , Vxqi(x(k),A(k),s(k»11 :5 woJtOlw = w(k), (6.13) 

as Jtl - Olw :5 JtA-Olw :5 wo/(6 +1/(1 -ll»f. Furthermore, from (6.1) and (6.4), 

\lc(x(k»X(k)/(A(k»Ol.\1\ =JtI\A!k) - X!k)1I = !Jt2f :5lloJtOl" = ll(k). (6.14) 

as Jt2-a" :5 Jt~-Ol'1 :5 Jt~-Ol" :5 21l0/3f. Thus x(k) satisfies (3.6) and (3.8) and hence 
Step 3 of the algorithm will be executed. Therefore, in particular, w(k+l) = woJtOlw+{jw, 
ll(k+l) = lloJtOl'1+f3'1 and A(k+l) = (1 - Jt)Ai. 
2. For i = 1,' .. j - 2, let 

(6.15) 

where the shift s(k+i) = Jt(!(l - Jti)f)Ol>.. Note that (6.15) is well defined as the second 
term within the square root is less than t in magnitude because (6.4) and (6.8) imply that 
s(k) < Jt and Jti(1- Jt)/(1- Jti+l) < 1. It is then easy to verify that X(k+i) = (1- Jti+l )Ai. 
Moreover, 

(6.16) 

(6.17) 
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If, on the other hand, Jli+l 	> t, the same relationships give 

IIP(x(k+i), Vz'li(x(k+i),A(k+i),s(k+i»1I ~ 2e (1- (1- 3Jli+l)(1- l'il(;~2~i~r») 
i+l l'i(l_I'){I_31'i+1 )8("+i») 

= 2e (3Jl + 4{1-1',+t) 
< 6eJli+l. 

(6.18) 
Thus, combining (6.17) and (6.18), we certainly have that 

II P(x(k+.), V'" q;(x (k+') , ,\(k+') , s(k+') II :::; f (6 + 1~ 'YJ 1'.+1 . (6.19) 

But then (6.19) and (6.4) give 

IIP(X(k+i) , V z 'li(x(k+i),A(k+i),s(k+i»1I ~ WOJlaw+i~w = w(k+i), (6.20) 

as Jll-aw+i(l-Pw) ~ Jll-aw ~ Jl~-aw ~ wo/«6 +1/(1 - it}) e). Furthermore, from (6.1) 
and (6.4), 

IIc(x(k+i»:.\(k+i)/(A(k+i»a>.\I = JlIIA~k+i) - :.\~k+i)1I = ~Jli+l(l Jl)e 
(6.21)

~ ~Jli+le ~ 11oJla."+iP.,, = l1(k+i) 

as Jll-a.,,+i(l-P.,,) ~ Jll-a." ~ Jl~-a." ~ f17o/e. Thus x(k+i) satisfies (3.6) and (3.8) and 
hence Step 3 of the algorithm will be executed. Therefore, in particular, w(k+i+l) = 
WOJlaw+(i+l)Pw, l1(k+i+l) = l1oJla."+(i+l)P.,, and A(k+i+l) =(1 - Jli+l )Ai. 
3. 	Let 

x(k+i-l ) = -2)1 - tJli-ls(k+i-l) , (6.22) 

where the shift s(k+i-1) = Jl(~(l - Jli - l )e)a>.. Once again, (6.4) and (6.8) imply that 
s(k+i-l ) ~ Jl and thus (6.22) is well defined. Furthermore it is easy to verify that 
:.\(k+i-l ) = Ai. Moreover 

vz 'li(X(k+i-l), A(k+i-l ), s(k+i-l» = 2e(x(k+i- l ) - 1) _ 3ex(k+i-l ) 


= -e(2 +X(k+i-l» 

(6.23) 

= -2f (1 - Vr------pJ-·--l-s(-k+-i--.....l)) .1 t

But then (6.7), (6.23) and the inequality s(k+i-l ) ~ Jl yield 

IIP(x(k+i-l), V:r; 'li(x(k+i-l) , A(k+i-l), s(k+i -I»11 ~ ~eJli-1 s(k+i-l ) ~ ~eJli. (6.24) 

Thus, (6.24) and (6.4) give 

/lp(x(k+i-l), Vz'li(x(k+i-l), A(k+i-l), s(k+i -I»11 ~ WOJlaw+(i-I)Pw = w(k+i-l), (6.25) 

as Jll-aw+(i-l)(l-Pw) ~ Jll-aw ~ Jl~-aw ~ wo/«6 +1/(1 - it}) e) ~ 2wo/e. Furthermore, 
from (6.1) and (6.4), 

I/c(X(k+i-I»:.\(k+i-l) /(A(k+i-I»a>.11 = JlIIA~k+i-l) _ :.\~k+i-I)1I = ~Jlie 
(6.26)

~ 17oJla."+(i- I )P.,, = l1(k+i- l ) 

as Jll-a.,,+(i-l)(l-P.,,) ~ Jll-a." ~ Jl~-a." ~ tl1o/e. Thus x(k+i-l ) satisfies (3.6) and (3.8) 
and hence Step 3 of the algorithm will be executed. Therefore, in particular, w(k+i) = 
woJlaw+iPw, l1(k+i) = l1oJla."+ip.,, and A(k+i) = )Ai. 

http:A(k+i-I�a>.11
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4. We pick x(k+i) 	as the largest root of the nonlinear equation 

3xs(k+i) 
4>( x) == 2(x - 1) - 2 (k+") = 0, (6.27) 

x -4+s J 

where s(k+i) = Jt(!e)o,\, Equation (6.27) defines the stationary points of the Lagrangian 
barrier function for the problem (6.3). This choice ensures that (3.6) is trivially satisfied. 
As 4>(2) = -4 and 4>(x) increases without bound as x tends to infinity, the largest root of 
(6.27) is greater than 2. The function Xgiven by (2.4) is a decreasing function of x as x 

grows beyond 2. Now let x = J4+ ts(k+i). It is easy to show that X(x,,xi,s(k+i » =e. 

Moreover 4>(x) = 2(x - 1) - 2x = -2. Therefore, x(k+i) > x and thus X(k+i) < e. But 
then, using (6.1), 

Ilc(x(k+i»X(k+i ) /(,x(k+i»O" 1I = Jt(,x(k+i ) - X(k+i » ~ Jt(te - e) = teJt 
(6.28)> 1JoJt0 ",+i{j", =1J(k+i) 

from (6.5). Thus the test (3.8) is violated and the penalty parameter subsequently reduced. 
This ensures that w(k+i+l) = wo(Jt)af4/, 1J(k+i +l) = 1Jo(Jt)a", and ,x(k+i+1) = ,xi. 

Hence, a cycle as described at the start of this section is possible and we conclude 
that, in the absence of AS6, the penalty parameter generated by Algorithm 1 may indeed 
converge to zero. 

Second-order conditions 

It is useful to know how our algorithms behave if we impose further conditions on the 
iterates generated by the inner iteration. In particular, suppose that x(k) satisfies the 
following second-order sufficiency condition: 

AS9: Suppose that the iterates x(k) and Lagrange multiplier estimates X(k), generated by 
Algorithm 1, converge to the Kuhn-Tucker point (x*,,x*) for k E JC and that 31 and 
32 are as defined by (5.2). Then we assume that V'xxq;t~,.1] is uniformly positive 
definite (that is, its smallest eigenvalue is uniformly bounded away from zero) for all 
k E JC sufficiently large and all sets 3, where 3 is any set made up from the union 
of .Ji and any subset of 32. 

With such a condition we have the following result. 

Theorem 7.1 Under AS1, AS2, AS7 and AS9, the iterates x(k), k E JC, generated by 
Algorithm 1 converge to an isolated local solution of (1. 15}-(1.17}. 

Proof. Let::r be any set as described in AS9. Then 

(V'xxq;(k»[.7,.1] = 	(Ht(x(k) , X(k»)[.7 • .1]+ 

(A~.1*..1])TD~.1* .A*]A~.1*..1] + (A~~!..1])TD~! .x*] Af;!..1] (7.1) 

where D(k) is a diagonal matrix with entries 

D~~) = ,x~k) s~k) = X~k) 
(7.2)

*,1 (Ci(x(k» +s~k»2 Ci(x(k» + s~k) 

for 1 i ~ m. Let S[.1] be any non-zero vector satisfying 

(7.3) 
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Then for any such vector, 

(7.4) 

for so:me f > 0, under AS9. We note that the diagonal entries D!~), i E I*, converge to 
zero. Hence, for k sufficiently large 

s&](A~;!,.1])TD~;!,I.]A~;!,.1]S[31 ::; fs&Js[31 (7.5) 

and thus combining (7.1)-(7.5), 

s&J(Hi(x(k) , X(k»))[.1,31 S[31 ;::: fs&Js[31 (7.6) 

By continuity of Hi asx(k) and X(k) approach their limits, this gives that 

(7.7) 

for all non-zero S[.1] satisfying 
(7.8) 

which, given AS7, implies that x* is an isolated local solution to (1.15)-(1.17) (see, for 
example, Avriel, 1976, Theorem 3.11). • 

We would be able to relax the reliance on AS7 in Theorem 7.1 if it were clear that the 
elements D!~), i E .A;, converged t~ zero for some subsequence of K.. However, it is not 
known if such a result holds in general. 

The importance of AS9 is that one might tighten the inner iteration termination test 
(Step 2 of the algorithm) so that, in addition to (3.5)), V xx~f~,~ is required to be 
uniformly positive definite, for all floating variables :1 and all k sufficiently large. If the 
strict complementary slackness condition AS8 holds at x*, Theorem 5.4 ensures that the 
set :12 is empty and :11 identical to the set of floating variables after a finite number of 
iterations and thus, under this tighter termination test, AS9 and Theorem 7.1 holds. 

There is a weaker version of this result, proved in the same way, that if the assumption 
of uniform positive-definiteness in AS9 is replaced by an assumption of positive semi­
definiteness, the limit point then satisfies second-order necessary conditions (Avriel, 1976, 
Theorem 3.10) for a minimizer. This weaker version of AS9 is easier to ensure in practice 
as certain methods for solving the inner iteration subproblem, for instance that of Conn et 
al. (1988a), guarantee that the second derivative matrix at the limit point of a sequence 
of generated inner iterates will be positive semi-definite. 

Feasible starting points 

We now return to the issue raised in Section 3.2, namely, how to find a point for which 

c(x) +s(k+l) > 0 and x E B (8.1) 

from which to start the k +1-st inner iteration of Algorithm 1. We saw in Lemma 3.1 that 
this is trivial whenever (3.8) holds as the current estimate of the solution x(k) satisfies 
(3.11). Furthermore, under the assumptions of Theorem 5.3, we know that (3.8) will hold 
for all sufficiently large k. The main difficulty we face is that, when (3.8) fails to hold, 
the updates (3.10) do not guarantee that (3.11) holds and thus we may need a different 
starting point for the k +1-st inner iteration. 

http:1.15)-(1.17


37 

There is, of course, one case where satisfying (8.1) is trivial. In certain circumstances, 
we may know of a feasible point, that is a point xfeas which satisfies (1.16) and (1.17). 
This may be because we have a priori knowledge of our problem, or because we encounter 
such a point as the algorithm progresses. Any feasible point automatically satisfies (8.1) 
as s(k+l) > O. One could start the k + 1-st inner iteration from xfeas whenever (3.11) is 
violated. 

There is, however, a disadvantage to this approach in that a "poor" feasible point 
may result in considerable expense when solving the inner-iteration subproblem. Ideally, 
one would like a feasible point "close" to x(k) or x· as there is then some likelihood that 
solving the inner-iteration will be inexpensive. It may, of course, be possible to find a 
"good" interpolatory point between x(k) and xfeas satisfying (8.1). This would indeed be 
possible if the general constraints were linear. 

We consider the following alternative. Suppose that the k-th iteration of Algorithm 3.1 
involves the execution of Step 4. Let A(k+I) be any diagonal matrix of order 1n whose 
diagonal entries satisfy 

(k+I) 
Sj < A(~+l) < 1 (8.2)--:v;r - -,- -' s· 

-
Note that A(k+l) is well defined as (3.1) and (3.10) ensure s~k+I) ~ s~k) for all i. Consider 
the auxiliary problem 

minimize ~ (8.3) 
zERR,eER 

sub ject to the constraints 

(8.4) 

Then it follows from (8.2) that if we can find suitable values x = x and ~ = i. < 1 to satisfy 
(8.4), the same values x = x satisfy (8.1) and thus give an appropriate starting point for 
the k+ 1-st inner iteration. Furthermore, the problem (8.3)-(8.4) has a solution value zero 
if and only if the solution is a feasible point for the original constraint set (1.16)-(1.17). 
Thus we can guarantee that there are suitable values x = x and ~ = i. whenever the 
original problem (1.15)-(1.17) has a solution. 

Turning to the auxiliary problem (8.3)-(8.4), we first observe from (3.6), (3.10) and 
(8.2) that the values x =x(k) and ~ =maxI<i<m(s~k) / s!k+l»)2 == T-2 give a feasible point 
for the constraint set (8.4). We may then-s~lve (8.3)-(8.4) using a traditional barrier 
function or interior point method (see, for instance, Fiacco and McCormick, 1968, or 
Wright, 1992) or by a Lagrangian barrier function method such as that proposed in this 
paper. 

If we attempt to solve (8.3)-(8.4) using a traditional barrier function / interior point 
method, we need not be overly concerned with the conditioning dangers often associated 
with these methods (see, for instance, Murray, 1971). For we only need an approxilllation 
to the solution for which ~ = ( < 1. Therefore, we can stop the minimization at the 
first point for which ~ < 1 and the method need never enter its potentially dangerous 
asymptotic phase. 

If, on the other hand, we chose to solve the auxiliary problem using the algorithm given 
in Section 3, the presence of an initial feasible point for this problem means that we avoid 
the need to solve a further auxiliary point problem for this problem. The introduction 
of additional shifts means that it is less apparent how early to stop the minimization in 

http:1.15)-(1.17
http:1.16)-(1.17
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order to satisfy (8.1) - the requirements (8.1) will have to be carefully monitored - but 
nonetheless early termination will still be possible. 

The problem (8.3)-(8.4) involves one more variable, ~ than the original problem (1.15)­
(1.17). Thus the data structures for solving both problems may be effectively shared 
between the problems. There are alternatives to (8.3)-(8.4). For instance, if w is a vector 
of strictly positive weights, one might consider the auxiliary problem 

minimize wT s (8.5) 
zE!Rn ,BE!Rm 

subject to the constraints 

c(x) + s ~ 0, s ~ 0, x E B (8.6) 

and stop when s < s{k+l). Again, an initial feasible point is available for this problem 
but the problem now involves m additional variables which is likely to add a significant 
overhead to the computational burden. Alternatively, if we partition {I, 2, ... ,m} into 
disjoint sets CI and C2 for which 

(8.7) 

and 
(8.8) 

and let °< s!k+l) < s~k+l) for i E' C2, we might consider the third alternative auxiliary 
problem 

minimize L: Wi Si (8.9) 
zE!Rn ,8i E!R iECl 

sub ject to the constraints 

Ci(x) + Si ~ 0, Si ~ 0, i E Ct, (8.10) 

1c(x) + s!k+ ) ~ 0, i E C2 (8.11) 

and (1.17) and stop when Si < s~k+l) for all i E CI. Once again, an initial feasible point is 
available for this problem and this time the problem involves ICII additional variables. IT 
ICII is small, solving (8.9)-(8.11) may be preferable to (8.3)-(8.4). 

9 Further comments 

9.1 The general problem 

We now brie:fly turn to the more general problem (1.1)-(1.3). As we indicated in our 
introduction, the presence of the more general constraints (1.3) do not significantly alter 
the conclusions that we have drawn so far. IT we define the appropriate generalization of 
the projection (2.8) by 

'i if Xi $ Ii 
(P[XDi ~ Ui if Xi ~ Ui (9.1)

{ 
Xi otherwise 

and let B = {xii $ x $ u}, we may then use the algorithm of Section 3 without further 
significan t modification. Our concept of :floating and dominated variables stays essentially 

, " 

http:8.9)-(8.11
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the same; for any iterate x(k) in B we have three mutually exclusive possibilities for each 
component x~k), namely 

(i) 0 :5 x~k) ­ li :5 (Vx 'P(k»i 

(ii) (Vx'P(k»i :5 x~k) - Ui :5 0 (9.2) 

(iii) x~k) - Ui < (Vx'P(k»i < x~k) -Ii. 

In case (i) we then have 

(9.3) 

. whereas in case (ii) we have 

(9.4) 

and in case (iii) 
(9.5) 

The x!k) which satisfies (i) or (ii) are now the dominated variables (the ones satisfying 
(i) are said to be dominated above and those satisfying (ii) dominated below); those which 
satisfy (iii) are the floating variables. As a consequence, the sets corresponding to those 
given in (2.13) are straightforward to define. Now:F1 contains variables which float for 
all k E J( sufficiently large and converge to the interior of B. Furthermore VI is the union 
of the two sets - Vu , lllade up of variables which are dominated above for all k E K.. 
sufficiently large, and VIu , ulade up of variables which are donunated below for all k E J( 

sufficiently large. Likewise:F2 is the union of the two sets :F2h made up of variables which 
are floating for all sufficiently large k E J( but converge to their lower bounds, and :F2u, 
lllade up of variables which are floating for all sufficiently large k E K but converge to 
their upper bounds. With such definitions, we lllay reprove all of the results of sections 
3 to 7, assumptions AS5 and AS8 being extended in the obvious way and Theorem 5.4 
being strengthened to say that, for all k E K sufficiently large, :Fll and :Flu are precisely 
the variables which lie at their lower and upper bounds (respectively) at x*. 

9.2 Equality constraints 

It lllay happen that we wish to solve a problem in which there are equality constraints 

(9.6) 

in addition to the constraints (1.2) and (1.3). In this case, we lllay construct a COlllposite 
Lagrangian barrier / auglllented Lagrangian function 

m mt 

9(x, >",s,p,) = f(x) - E >"isdog(Ci(X) +sd + E >"iCi(X) + 
i=l i=m+l 

and solve the general problem (1.1)-(1.3) and (9.6) by a sequential miniulization of (9.7) 
within the region defined by (1.3). 

The only change we need to make to the Algorithm 3.1 is to replace the test (3.8) by 
the alternative 



40 

and to use the definition Ai = Ai + Ci(X)/tt for m+ 1 ::5 i ::5 mt. It is obvious that 
replacing (3.8) by (9.8) in Algorithm 3.1 makes no difference if there are no equality con­
straints. Moreover, if, instead, there are no inequality constraints, the above modification 
to Algorithm 3.1 gives Algorithm 1 of Conn et al. (1991). 

A careful examination of the present paper and that by Conn et ala (1991) reveals that 
the exact form of the test (9.8) only plays a role in Lemmas 4.2 and 5.2 and Theorems 5.3 
and 5.5 in this paper and Lemmas 4.1 and Theorems 5.3 and 5.5 in its predecessor. We 
now briefly consider what can be deduced about the composite algorithm. 

In the first relevant lemma in each paper, one merely needs to obtain an upper bound 

on II [c,(x(k»X,(x(k), A(k), s(k»/(Ajk»".1:111 or II [Ci(x(k»J:m+t II as appropriate, when 

the Lagrange multipliers are updated. But satisfaction of (9.8) yields both that 

(9.9) 

and 
(9.10) 

Thus the conclussions of both lemmas are true when the composite algorithm is used. 
Furthermore, if we replace the set A* in AS3 from this paper by the union of A* and 
{m + 1" .. ,mt}, it is straightforward to deduce that Theorem 4.4 remains true and the 
error estimates provided by the present Theorem 4.4 and Theorem 4.3 of Conn et ala 
(1991) are valid. 

These estimates are sufficient to ensure that the test (9.8) were to fail for all k 2:: k}, 
one would obtain the analogue, 

(9.11) 

for some constant a26 for all k 2:: k2 2:: kt, of (5.45). This is sufficient to ensure that 
Lemma 5.2 remains true for the composite algorithm provided we replace the set Ai in 
AS5 from this paper by the union of Ai and {m +1"," mt}. The direct analogue of the 
error estimates provided by Lemma 2.1 suffice to enable one to establish Theorems 5.3 
and 5.5 for the composite algorithm. 

Thus the convergence properties of the composite algorithm are no worse that those 
predicted for the specific algorithms analyzed in sections 4 and 5 of Conn et ala (1991) 
and the same sections of the present paper. 

9.3 Final comments 

We note that the results given here are unaltered if the convergence tolerance (3.5) is 
replaced by 

(9.12) 

for any sequence of positive diagonal matrices {n(k)} with uniformly bounded condition 
number. This is important as the method of Conn et al. (1988a), which we would consider 
using to solve the inner iteration problem, allows for different scalings for the components 
of the gradients to cope with variables of differing magnitudes. 

Although the rules for how the convergence tolerances ",(k) and w(k) are updated have 
been made rather rigid in this paper and although the results contained here may be 
proved under more general updating rules, we have refrained from doing so here as the 
resulting conditions on the updates seemed rather complicated and are unlikely to provide 
more practical updates. 
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We have made no attempt in this paper to consider how algorithms for solving the 
inner-iteration subproblenl (see Section 3.3) Inesh with Algorithnl 3.1. Nor have we pro­
vided any nUlllerical evidence that the approach taken here is effective. We are currently 
considering the first issue and consequently cannot yet report on the second. Both of these 
issues will be the subject of future papers. 
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