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ABSTRACT 

The need for a fine tuned hierarchy between a strong coupling high energy compositeness scale 
and a much lower chiral symmetry breaking scale exists in many models of dynamical electroweak 
symmetry breaking. We explore the stability of such hierarchies against quantum fluctuations. A 
nonperturbative Wilson renormalization group equation approach is introduced. 

A common feature of many of the currently 
studied models of dynamical electroweak symme
try breaking is the presence of some strong in
teractions acting at a high energy scale, A > 
10 TeV, which produces an essentially composite 
scalar bosonic degree of freedom. This dynamics 
also plays an important role in the electroweak 
symmetry breaking whose characteristic scale is 
much lower; AF ~ 250Ge V . Thus these mod
els require that a significant hierarchy can be es
tablished between these scales. The hierarchy is 
achieved by a fine tuning of parameters close to 
the critical value for the chiral symmetry break
ing. A prototype of this behavior is exhibited by 
the Nambu Jona-Lasinio (NJL) model[l], where 
a fine tuning of the four-fermion coupling allows 
the emergence of a chiral symmetry breaking scale 
far below the compositeness scale. In more re
cent work, such fine tunings are necessary ingre
dients in strong extended technicolor mo dels [2] , 

models involving heavy quark condensation[3] and 
their generalizations. In order for this hierarchy 
to be maintained and not have the electroweak 
scale driven to be of order A, it is necessary that 
the chiral symmetry phase transition be. of sec
ond order. That is, the order parameter charac
terizing the chiral transition must remain zero as 
the theory is scaled from A into the infrared un
til one reaches the electroweak scale. If, on the 
other hand, the transition turns first order at a 
scale e-to A > > AF, then the order parameter will 
jump discontinuously to be of this value and it 

will be impossible to maintain the hierarchy all 
the way down to the electroweak scale. Instead 
the hierarchy will destabilize after to e-foldings. 
It is important to recognize that this question is 
distinct from that of the naturalness of the fine 
tuning of additive quadratic divergences. Clearly, 
it becomes necessary to explore[4] when the hi
erarchy can be self consistently maintained and 
not destroyed by quantum fluctuations (Coleman
Weinberg phenomenon[5]). 

Since models with a single scalar quartic self 
coupling or the minimal Nambu-Jona Lasinio 
model exhibit a Gaussian second order chiral 
transition, we are led to investigate generaliza
tions containing multiple scalar quartic self cou
plings. In particular, we focus on a model possess
ing a global chiral U(2)L x U(2)R symmetry which 
has two independent scalar quartic self couplings. 
The model degrees of freedom include left and 
right handed chiral fermions ..piL and ..piR, i = 1,2, 
transforming as the fundamental representation 
of the left and right handed U(2) groups respec
tively which further carry the fundamental, Ne , 
representation of a gauged symmetry. It is as
sumed that this chiral symmetry is spontaneously 
broken as a consequence of some unspecified dy
namics acting at scale A. This symmetry break
ing is further assumed to produce a gauge singlet 
scalar composite Eij which has the U(2)L x U(2)R 
quantum numbers of the fermion bilinear ;jJjR..piL 
and whose vacuum expectation value, v/.J2, acts 
an an order parameter for the chiral symmetry 
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breaking. Since we are assuming the chiral sym
metry phase transition is second order, we are led 
to study a Ginzburg-Landau effective Lagrangian 
at scale A which includes the Yukawa coupling 
-Jig(O)(1[JLE,pR + 1[JREt,pL) and the invariant po
tential function 

1 1['2 1['2 

V(z,y,O) = '2m2(O)z + 12;\I(O)z2 + 6";\2(O)y. 

(1) 
Here z = tr(EtE), y = tr(EtE)2 are indepen
dent U(2)L X U(2)R invariants. The Coleman
Weinberg instability is signalled by the appear
ance of a non-trivial global minimum of the effec
tive potential with vanishing renormalized mass 
appearing at the scale 11 = e-to A. In such a case, 
the phase transition is driven first order by quan
tum fluctuations and one can technically achieve 
a hierarchy of only to e-foldings. 

Using the I-loop perturbation theory im
proved effective potential while keeping the 
Yukawa coupling fixed, the renormalization group 
trajectories are found[4] to either run to the in
frared quasi fixed point near the origin, lead to 
a first order transition or simply run away in 
which case the model is ill defined. In particu
lar, for the region of coupling space correspond
ing to the initial couplings ;\1 (0) = 0 and ;\2(0) 
and g2(O) both large and positive, the transition 
goes first order for sufficiently large ;\2(0)/g2(O) 
ratio (~ 7). Moreover, this occurs, in general, 
near to the compositeness scale. For example, for 
;\2(0) = 10 and g2(O) = 1 (and Nc = 3), the hi
erarchy destabilizes after 1"0.1 1.3 e-foldings (which 
corresponds to 11 0.27 A). However, since theI'V 

couplings are very large, the I-loop perturbative 
approximation can certainly be called into ques
tion. For instance, using the 2-1oop perturbative 
renormalization group functions for these large 
initial couplings, the renormalization group tra
jectories simply run away. Clearly, some non
perturbative approximation scheme is required 
to properly deal with the system in the vicin
ity -of the strong coupling compositeness scale. 
The purely bosonic U(2)L x U(2)R model (no 
chiral fermions) has been simulated using lattice 
Monte Carlo techniques[6] and was seen to un
dergo a Coleman-Weinberg instability. Another 

approach[7] includes the chiral fermions and uses 
a large Nc approximation in the vicinity of the 
compositeness scale so that the Yukawa coupling 
dominates. Retaining only it and the fine tuned 
scalar mass term needed to cancel the additive 
quadratic divergence, the model at scale A re
duces to the minimal NJL model which is ex
actly soluble in the large Nc limit and is known to 
exhibit a (trivial) second order chiral transition. 
Thus the large Nc approximation allows any sized 
hierarchy to be technically achieved. Running 
the couplings using this approximation (in which 
;\I(t) = 0) until ;\2(t) = 3g2(t) = N~~nt has de
creased sufficiently to be smoothly joined onto a 
2-100p perturbative (including Yukawa coupling) 
running, it is found that sizeable hierarchies can 
be established. To the extent that the large Nc 
approximation is nonperturbative, this procedure 
is a self consistent one. On the other hand, it can 
be reliably employed for only a very limited range 
of the initial parameter space. 

An alternate nonperturbative method is pro
vided by the continuous Wilson renormalization 
group equation (WRGE)[81 which has been ex
tended to include chiral fermions[9]. This ap
proach incorporates the contributions from a 
complete set of local operators (including irrele
vant ones). Using a local action approximation[I01 
which ignores anomalous dimensions and deriva
tive interactions and further neglecting operators 
higher than bilinear in the fermion fields, the· 
WRGE for fixed Yukawa coupling reduces to an 
equation for the potential function, V(z,y,t), at 
scale e-t A given by 

av 
at = 4V - 2zVx 4yVy 


1 

+81.2ln[(1 + V'" + 2",v,,)2 - 2(",2 y)v;l 

+ 16 2ln[(1 + Vz )2 + 2z(1 + Vz)Vy 
1[' 1 

+2(z2 - y)Vy
2]+ 161['2ln[(1 + Vx)(1 + 'V;; 

+6zVy + 2zVxx + 8y'V;;y + 4z(3y - z2)Vyy ) 

+6(z2 - y)Vy(3Vy + 2'V;;x + 4z'V;;y 
+4yVw ) + 8(z2 - y)(z2 - 2y)(V;y - VzxVw )] 

Nc 1['2 1['4 

- 41['2ln[1 + 2zg2(0) + 8(Z2 - y)g4(0)] , 

(2) 



... 


with Vz = ~~ etc, subject to the initial condi
tion of Eq.(l). For t ~ 0, each action constructed 
using the V (Z, y, t ) satisfying this equation lies 
on the same Wilson renormalization group trajec
tory and produces the same physics on all scales 
less than e-t A. Unfortunately, the solution to 
Eq.(2) is currently beyond our numerical abilities. 
Thus we make the further truncation of retaining 
terms only up to linear in y with coeficients which 
are arbitrary functions of z. Eq.(2) then reduces 
to two coupled equations which are of a similiar 
(although considerably more complicated) form 
to what we previously solved in obtaining non
perturbative mass bounds[g,lll. While the trunca
tions used are drastic and uncontrolled, they still 
include contributions from an infinite number of 
operators. 

The resulting equations are then numerically 
solved for t values up to some t* , where t* lies in a 
region where V(z,y,t) is found to be linear in t
t* with a slope of the same form as the linearized 
in t - t* I-loop effective potential. The effec
tive potential is then constructed as 'VeJJ(z,y) = 
V(z,y,t*)+ Vi-loop(Z,y,t*), where Vi-'oop(Z,y,t*) 
is the I-loop effective potential which accounts for 
the effects of the degrees of freedom carrying mo
mentum less than e-t • A. A Coleman-Weinberg 
instability is signalled by a non-trivial global min
imum of'VeJJ(v) = 'VeJJ(Z,y)u=lz2=!114 with van
ishing renormalized mass. If suc:h a minimum ap
pears at v = e-to A, then the system can sustain 
a hierarchy only over to e-foldings. For the spe
cial case of Al(O) = 0, A2(0) = 10,g2(0) = 1, we 
integrated the WRGE and found that for t* ,....., 1, 
V(z, y, t) was linear in t - t* and smoothly joined 
onto the I-loop effective potential. The transi
tion was seen to go first order at to ,....., 1.6. Thus 
a hierarchy of only,....., 1.6 e-foldings can be es
tablished (v ,....., 0.20A). This result is in qualita
tive agreement with that found using the I-loop 
perturbative approximation. In a similar man
ner, one can nonperturbatively investigate[12] the 
initial parameter space and map out the model 
phase structure. 
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