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ABSTRACT 

Nonperturbative triviality and vacuum stability mass bounds are obtained for the scalar and fermion 
degrees of freedom in a Yukawa model using Wilson renormalization group techniques. Particular 
attention is given to the effect of the generalized Yukawa coupling on the scalar mass upper bound 
which is to slightly increase it. 

Numerous studies of self coupled Acp4 field 
theory using I-loop perturbation theory as well 
as nonperturbative lattice Monte Carlo simula
tions conclude that the model can only be con
sistently defined as an effective description of the 
dynamics below some momentum cutoff A, with 
the A --+- 00 limit characterized by a vanishing 
renormalized coupling. This in turn constrains 
the parameters of the model and leads to an up
per (triviality) bound on the scalar mass. When 
a huge hierarchy exists between the cutoff and 
the scalar mass (generally accomplished by a fine 
tuning of parameters), then the infrared Gaus
sian (trivial) fixed point focuses the renormal
ization group trajectories to a low energy value 
which is basically insensitive to the exact form of 
the short distance couplings and in a way which 
is amenable to a perturbative analysis. On the 
other hand, when determining scalar mass abso
lute upper bounds, the mass value will not be 
too far removed from the cutoff and some form 
of nonperturbative calculational procedure is re
quired. One such nonperturbative approach to 
the study of the critical dynamics in this system 
is to use the continuous Wilson renormalization 
group equation (WRGE)[l]. This functional dif
ferential equation satisfied by the action is con
structed by integrating out the degrees of free
dom between the original cutoff and a new, lower 
cutoff while demanding that the physics (ie- the 
renormalized Green functions) remain unchanged 

on all momentum scales less than the lower cut
off. The change in the cutoff is compensated by 
changing the coupling constants of a complete set 
of local operators. This includes irrelevant as well 
as relevant and marginal operators. The various 
action functionals satisfying this equation corre
spond to points on a particular (Wilson) renor
malization group trajectory each producing the 
same physics on momentum scales less than the 
UV cutoff used in its definition. Moreover, as the 
construction is independent of the strength of the 
initial coupling ( s), it constitutes a nonperturba
tive approach to the study of the critical behavior. 
Using a local action approximation to this exact 
functional equation, an upper bound on the scalar 
mass consistent with the perturbative[2] and the 
nonperturbative lattice bounds[3] was extracted[4]. 

We have extended this approach to con
struct the Wilson renormalization group equa
tion for models containing fermions in addition to 
scalars[5] . The need to include fermions in such 
a nonperturbative analysis is clearly motivated 
by the large top quark mass and its associated 
Yukawa coupling. Once again employing the local 
action approximation which ignores anomalous 
dimensions and derivative couplings, we study a 
Euclidean space action at the scale e-t A which in
vol ves a scalar cp and a Dirac fermion "p and takes 
the form 

S[cp, 1/1, tii; t] =f crz[~8cp, 8cp +-tiii' 81/1 +U( cp, iT; t)], 

. (1) 
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where tT = {n/l. Here 

U( cp, CT; t) =V( cp; t) + CTG( cp; t) (2) 

is a generalized potential which is the sum of the 
effective potential V which dictates the vacuum 
structure and a generalized Yukawa coupling G. 
Defining F(cp;t) = VIP(<p;t), (subscripts denote 
differentiation) so that the ground state corre
sponds to the zeros of F, the WRGE reduces to 
the coupled partial differential equations 

8F 1 FIP'P 1 GGIPat =3F - rpFIP + 1611"2 1 + FIP - 211"2 1 + G2 ' 

8G G G 1 GIP'P 1 G~ 
at = -'I' IP+ 1611"2 1 + Fr.p 811"2 (1 + G2)(1 + F

IP
) • 

(3) 
To complete the description of the model, the form 

of the generalized potential at the initial UV cutoff 
A(t =0) is specified as 

Note that the t = 0 model contains only relevant and 
marginal operators and moreover, possesses the dis
crete is-symmetry: rp -+ -cp, '" -+ is"', -¢ -+ -frs, 
which forbids an explicit fermion mass term. We seek 
solutions for F, G which spontaneously break this dis
crete is-symmetry, ie- < cp >=/: o. This in tum re
stricts the ",2(0), A(O),g(O) parameter space. Specif
ically, ",'f:r is defined as the maximum value of 1'2(0) 
for a 'given A(ij), g(0) which results in a nontrivial zero 
of F( '1'; t) as t increases into the infrared. To deter
mine 1';', we evaluate F(cp;t) for ",2(0) well into the 
broken phase and then increase 1'2 (0) until the zero 
of F decreases as t increases. The' transition value 
of 1'2(0) defines p,;'. So doing, we establish the in
frared Gaussian fixed point. From the solution, we 
also see that the induced irrelevant operators can give 
sizeable contributions for small t values and play an 
important role in driving the theory toward his fixed 
point. Furthermore, the nummcally generated solu
tion to the WllGE is seen to smoothly join onto the 
I-loop solution (which includes irrelevant operato~s) 
for t values beyond some, t*• . 

To extract the scalar and fermion mass bounds, 
we choose a point in the allowed .\(0),g(0),J.'2(0) < 
I't:r parameter space corresponding to the sponta
neous symmetry breaking solution and then numer
ically integrate the WRGE to obtain F and G for 
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Fi~.ue 1: Ms/vas a. function of A/M. for different 
initial .\(0) values and 9(0) = o. 
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Figure 2: M.lv'as a. function of AIM. for clliferent 
initiall(O) and 9(0) values. 
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Figure 3: Allowed range of M./1J and ml/1J values 
for A/1J = 5. 

o < t < t*. We next include the degrees of freedom 
with IpI < e- t * A via the I-loop perturbative solution 
which smoothly joins onto the numerically generated 
solution at t*. Summing the contributions produces 
the functions pell(cp) and Gell (cp) from which the 
nontrivial scalar vacuum expectation value (v) and 
scalar and fermion masses (M. and ml respectively) 
are secured as 

pell(:!!..) =o. M; =pell(:!!"). ml =Gell(:!!..)
A 'A2 VI A' A A . 

(5) 
The value of t* is chosen such that the computed 
masses are stable to within an error the size of the 
t-grid spacing. Finally, the computation is repeated 
varying over the allowed parameter space. 

In the absence of any initial Yukawa coupling, 
g(O) = 0, we see from Fig.1 that as the initial l(O) 
coupling is increased, a dynamical envelope is seen 
to be established. When combined with the physical 
restriction that M. ~ A, it follows that for fixed Alv, 
the ratio Mlllv converges to an upper limit. The 
scalar mass absolute upper bound is estimated as 
~ 900 GeV for v =175 Ge V which is in line with the 
lattice estimates. This scalar mass bound increases 
somewhat in the presence ofa nonzero initial Yukawa 
coupling as is shown in Fig. 2. The amount of in
crease depends on the strength of the initial scalar 
self coupling. For l(O} = 5, M.lv increases by 15
20% as g{O) varies from 0 to 7, while for leO) =15, 
the increase in M.Iv is 6-10% as g(0) varies from 0 
to 7. The allowed domain of Mlllv and fflJlv for 
A = 5v is displayed in Fig. 3. The upper portion of 
the boundary, denoted by the (x) marks is the scalar 
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triviality bound discussed above. The (0) markings 
correspond to triviality bounds on m I, obtained by 
finding the largest g(O) values for a given l(O) pro
ducing an envelope in the mlIv versus A/ml plane. 
Finally, the (<» points arise from the vacuum stability 
requirement that limIVlI_ooP( cp; t) > 0 for all t. Note 
that for larger fermion masses, the fermion mass triv
iality constaint provides a more stringent bound than 
that due to vacuum stability. This is not the case for 
huge A/v ratios where the vacuum stability always 
provides the more stringent bound[6] . 

This work was performed in an enjoyable collabo
ration with T.E. Clark and B. Haeri. I thank the As
pen Center for Physics for providing an atmosphere 
allowing for the preparation of this talk. This work 
was supported in part by the U.S. Department of En
ergy under contract DE-AC02-76ER01428 (Task B). 
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