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.s=-ru::::1_~ The nervous system represents time-dependent signals in sequences ;discrete action potentials 
!_c or spikes; all spikes are identical so that information is carried only in e spike arrival times. We 
1==c show how to quantify this information, in bits, free from any assumpti . about which features of 
1lIIiE~ the spike train or input waveform are most important. We apply this ctpproac~:tis qf B-_c 
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As you read this text, optical signals reaching your 
retina are encoded into sequences of identical pulses, 
termed action potentials or spikes, that propagate along 
the'" 106 fibers of the optic nerve from eye to brain. 
This spike encoding appears almost universal, occurring 
in animals as diverse as worms and man, and spanning 
all the sensory modalities [1]. The molecular mechanisms I J	for the generation and propagation of action potentials 
are well understood [2], as are the mathematical reasons 
for the selection of stereotyped pulses by the dynamics 

\_C\ 	 of the nerve cell membrane [3]. Less well understood is 
the function of these spikes as a code [4]: How do the 
sequences of spikes represent the sensory world, and how 
much information is conveyed in this representation? 

Experiments on spiking neurons are usually analyzed 
either by making assumptions about which features of 
the spike train are significant in the code, or by making 
assumptions about which features of the sensory input 
are being encoded. These assumptions become less com­
pelling in deeper layers of the brain, so one would like a 
model independent approach. 

Imagine that we present a long duration sensory stimu­
lus drawn from some particular ensemble of stimuli, per­
haps the natural one. During this long period the spike 
train varies, and we can quantify this variability by the 
entropy per unit time of the spike train. Because neurons 
have a minimum "refractory period" separating succes­
sive spikes, we can digitize the spike train in bins of size 
A1" so that we never observe more than one spike per bin 
(Fig. la). The spikes then form an Ising chain where spin 
up (down) represents the presence (absence) of a spike in 
a given time bin. If there is a deterministic mapping from 
input signals to output spike trains, then the entropy of 
this Ising chain is exactly the information, as defined by 
Shannon [5], that the spike train provides about the sen­
sory stimulus. In fact repeated presentations of the same 
stimulus lead to different spike trains (Fig. 1 b). This 
variability can also be quantified by an entropy, which we 
call the conditional or noise entropy. We think of this as 
the entropy of an ensemble of Ising chains with quenched 
interactions determined by the stimulus. The informa­

!!!! r1I experiments on a motion-sensitive neuron in the fly visual system. 
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FIG. 1. (A) Raw voltage records from a tungsten micro­
electrode near the cell H1 are filtered and discretized to form 
(for physicists) a chain of Ising spins or (for computer scien­
tists) a binary string. (B)Angular velocity of a pattern mov­
ing across the :6.y's visual field produces a sequence of spikes 
in H1, indicated by dots. Repeated presentations produce 
slightly different spike sequences. For experimental methods 
see Ref. [14]. 

The problem of measuring information transmission by 
spiking neurons is thus exactly the problem of estimating 
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the elltropy of Ising chains from examples of their con­
figurations. This analogy is model independent, making 
no assumptions about the structure of the input signal 
or the encodillg process. These ideas allow us to quan­
tify the response of neurons in a very general way, even 
when they are responding to complex, time dependent 
stimuli. The difficulty is that brute force application of 
these ideas requires large amounts of data. 

The most obvious way to estimate the entropy from 
examples of the configuration is to accumulate a large 
number of these configurations into a histogram, as­
sume that the (normalized) count ill each bin of the his­
togram approximates the probability of that configura­
tion, and evaluate the entropy directly from the defini­
tion S = - 2:iPi log2Pi bits. This procedure works only 
if each bin contains many counts. Imagine that we have 
a spike train with mean spike rate f ,...., 40 spikes/s and 
we sample with a time resolution ~T =3 ms. The maxi­
mum entropy distribution consistent with this mean rate 
is, in the Ising language, a set of uncoupled spins with 
magnetic field chosen so that the probability of spin up 
is f~T = 0.12. Then the entropy of the configurations in 
a window of size T = 100 ms is 

T 
Sma:x = ~T [-(f~T) log2(f~T) 

-(1- f~T) log2(1 - f~T)J ,...., 17.8 bits. (1) 

Naively, then, we need to see more than 2s ,...., 2 X 105 

examples of the 100 ms windows. If these windows have 
to be non-overlapping, then we need more than three 
hours of data, and one might think that we need much 
more data than this to illsure that the probability of oc­
cupying each bin is estimated with reasonable accuracy. 
Such large quantities of data are generally inaccessible 
for experiments on real neurons. 

Here we report that it is possible to make progress 
despite these pessimistic estimates. There are several in­
gredients: First, we examine explicitly the dependence 
of our entropy estimates on the size of the data set and 
find regular behaviors [6J that can be extrapolated to the 
infinite data limit. Second, generalizing the suggestion 
by Ma [7], we evaluate lower bounds to the entropy that 
are much less prolle to samplillg errors. Third, we are 
interested in the extensive component of the entropy in 
large time windows, and we find that a clean approach 
to extensivity is visible before sampling problems set in. 
Finally, we study a neuron-the motion-sensitive neuron 
HI in the fly's visual system-where we can actually col­
lect many hours of data. Lessons from this large data 
set provide some guidance for the design and analysis of 
experiments with more limited recording times. 

HI responds to motion across the entire visual field, 
producing more spikes for an inward horizontal motion 
and fewer spikes for an outward motion; vertical motions 
have no effect on this cell, but are coded by other neu­
rOIlS [8J. This circuitry provides visual feedback for flight 

,
control. In the experiments analyzed here [9], the fly is 
immobilized and views computer generated images on a 
display oscilloscope. For simplicity these images consist 
of a fixed pattern of vertical stripes with randomly chosen 
grey levels, and this pattern takes a random walk in the 
horizontal direction. The stimulus is the time dependent 
velocity of this walk. 

We begin our analysis with time bins of size ~T = 3 
ms. For a window of T = 30 ms-corresponding to the 
behavioral response time of the fly [10]-we can estimate 
the entropy rather accurately by the naive procedure de­
scribed above. Figure 2 shows the resulting entropies as 
a function of the amount of data included in the analysis, 
and we see that there are very small finite data set correc­
tions « 10-3

), well fit by Snaive = So +SI /size+S2/size2 
[6]. Under these conditions we feel confident that the ex­
trapolated S is the correct entropy for this combination 
of T and ~T. If we extend the naive procedure to win­
dows of T = 200 ms, finite size corrections become much 
larger, the contribution of the second correction is signif­
icant and the extrapolation to infinite size is ullstable. 
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FIG. 2. The estimated entropy, measured in bits, plotted 
versus the inverse size of the data set used in the estima­
tion. Results are for windows of length T = 30 ms and a 
time resolution of l:l.r = 3 ms; size = 1 corresponds to 2.5 
hours of recording. Also plotted is a least squares fit to the 
form 5 = 50 + 51/size + 52/size2. The intercept 50 is our 
extrapolation to the true value of the entropy with infinite 
data. 

Ma [7] discussed the problem of entropy estimation 
in the undersampled limit. For probability distributions 
that are uniform on a set of N bins (as in the micro­
canonical ensemble), the entropy is InN and the problem 
is to estimate N. Ma noted that this could be done by 
counting the number of times that two randomly chosen 
observations yield the same configuration, since the prob­
ability of such a coincidence is l/N. In the undersampled 
limit, Ma's procedure is actually the optimal estimator 
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of the entropy in the least-squares sense if all values of N 
are equally likely a priori [11]. More generally, for non­
uniform distributions the probability of a coincidence is 
Pc = ~ pr, and it is clear that 

S = - LPi log2 Pi = - (log2 Pi) 

~ -log2 ((Pi)) = -log2 Pc, (2) 

so we can compute a lower bound the the entropy by 
Couilting coincidences. This is the minimum entropy con­
sistent with a given Pc, and it is one of the Renyi en­
tropies [12]. It is also at the heart of algorithms for the 
analysis of attractors in dynamical systems [13]. 

The bound in Eq. (2) is tightest for distributions that 
are close to uniform. The distributions of spike sequences 
cannot be uniform because the spikes are sparse. But the 
distribution of sequences with fixed spike count Nsp could 
be more nearly uniform, and so we apply the Ma bound­
ing procedure independently in each Nsp sector. Thus we 
obtain a lower bound to the entropy, 

SMa = - L P(Nsp) 
Nsp 

where nc(Nsp ) is the number of coincidences observed 
among the words with Nsp spikes, Nobs(Nsp) is the to­
tal number of occurrences of words with Nsp spikes, and 
P(Nsp) is the fraction of words with Nsp spikes. 

The bound SMa suffers from two types of sampling 
errors. First, there are those associated with the esti­
mate of P(Nsp). A slight generalization of the analysis 
of Ref. [6] shows that the leading error in the entropy 
computation for each Nsp is simply -[Nobs(Nsp) In 2]-1. 
The second type of errors are associated with estimating 
~pr from the observed number of coincidences nc(Nsp ). 
This produces an error in the contribution to the entropy 
at each Nsp , 

(4) 

where the sum is taken only over words with Nsp spikes. 
This is again""' I/Nobs and exponentially smaller than 
the sampling errors expected for the naive estimator. 
For the case of uniform probability distributions at fixed 
spike number, even this leading term vanishes. 

In accord with these arguments, we found a very weak 
dependence of the Ma bound on the size of the data set. 
Furthermore, the error bars which we estimate by subdi­
viding the data are also extremely small. These results 
give us confidence that the procedure in Eq. (3) gives a 
reliable lower bound to the entropy. In Fig. 3 we finally 
plot the entropy as a function of the window size T, with 
results from both the naive procedure and from the Ma 
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bound. For sufficiently large windows the naive proce­
dure gives an answer smaller than the Ma bound, and 
hence the naive answer must be wrong because it is more 
sensitive to sampling problems. Before this sampling dis­
aster the lower bound and the naive estimate are never 
more than 10-15% apart. The point at which the naive 
estimate crashes into the Ma bound is also the point at 
which the second correction, S2, becomes significant and 
we lose control over the extrapolation to the infinite data 
limit. This point occurs at a window size of roughly 100 
ms. We can trust the Ma bound beyond this point, but 
it becomes steadily less powerful. The sudden transition 
from accurate estimation to a crude lower bound occurs 
because the number of possible spike trains is growing 
exponentially with window size, and hence we are either 
very well sampled or disastrously undersampled. Con­
versely, the critical window size is only logarithmically 
dependent on the size of the data set, so we do not sac­
rifice much if we pave more limited duration recordings. 
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FIG. 3. The total and noise entropies per unit time (in bits 
per second) are plotted versus the reciprocal of the window 
size (in S-l), with the time resolution held fixed at DoT = 3 
ms. Results are given both for the direct estimate and for the 
bounding procedure described in the text, and for each data 
point we apply the extrapolation procedures of Fig. 2. As 
discussed in the text, the plot is linear for wordlengths that 
are not too long, where undersampling is severe, and not too 
short, a regime where correlations spoil extensivity. The lin­
earity allows us to extrapolate to the entropy per unit time 
for words of infinite length. Arrows indicate upper bounds 
obtained by differentiating S(T), as explained in the text. 
The information transmitted per unit time about the stimu­
lus is the extrapolated total entropy per unit time minus the 
extrapolated noise entropy per unit time. 

If the correlations in the spike train have finite range, 
then the leading sub-extensive contribution to the en­
tropy will be a constant. Thus, if we plot the entropy per 
unit time as a function of inverse window size, we should 
see a linear behavior which can be extrapolated to the 



infinite time limit. This is seen clearly in Fig. 3, and 
emerges before the sampling disaster. Indeed the break 
away from linear behavior is close to the point where the 
naive estimate crashes into the Ma bound and 82 be­
comes large, confirming our identification of this point. 
Given the clean linear behavior in a well sampled region 
of the plot, we trust the extrapolation and arrive at an 
estimate of the entropy per unit time as seen with 3 ms 
resolution, 157 ± 3 bits/so 

In principle we can obtain an upper bound to the en­
tropy per unit time simply by differentiating 8(T) [5]. 
This bound becomes progressively tighter at larger T, 
until sampling problems set in. In fact there is a broad 
plateau (±2.7%) in the range 18 < T < 60 ms, leading 
to 8 ~ 157 ± 4 bits/s, in excellent agreement with the 
extrapolation in Fig. 3. 

The above discussion applies to the estimate of the to­
tal entropy. All the same issues arise in estimating the 
noise entropy, where the same stimulus has to be shown 
repeatedly, and Fig. 3 also shows the noise entropy re­
sults as a function of the window size. The difference be­
tween the two entropies is the information which the cell 
transmits, Rinfo = 78 ± 18 bits/s, or 1.8 ± 0.4 bits/spike 
at a resolution tl.T =3 ms. 

We repeated the analysis of entropy and information 
at several different values of the time resolution tl.T, 
from 0.7 ms to 12 ms. The information rate Rinfo has 
a very linear dependence on the log of the time resolu­
tion throughout this range; loss of one bit of precision 
in the specification of spike times (tl.T -t 2tl.T) causes a 
,.... 10 bit/s drop in the information rate. This is not what 
we expect for a system with a single scale characterizing 
the intrinsic temporal preCision of the code. Instead it 
suggests that different regions of the spike train have dif­
ferent intrinsic precisions [14]. 

The temporal sequence of spikes provides a large ca­
pacity for transmitting information, as emphasized by 
MacKay and McCulloch nearly 45 years ago [15]. One 
central question in studies of the brain is whether this 
large capacity is used, or whether the variations in spike 
timing represent noise which must be averaged away [16]. 
We suggest that the proper quantitative formulation of 
this question is the comparison of information transmis­
sion rates (in bits/s) with the total entropy of the spike 
train (also in bits/s) as a function of the time resolution 
tl.T [17]. For the sensory neurons which first convert con­
tinuous input signals into discrete spike trains, we under­
stand enough about what the spike train represents that 
direct "decoding" of the spike train is possible; this leads 
to information rates which are more than half the total 
entropy with timing resolutions of roughly 1 IDS [17,18]. 
The idea that sensory neurons provide a maximally ef­
ficient representation of the outside world has also been 
suggested as an optimization principle from which many 
features of these cells' responses can be derived [19]. But 
much of the current debate is focused on cells in the cen­
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tral nervous system [16], where assumptions about what 
is being encoded should be viewed with caution. 

Although we understand a good deal about the signals 
represented in HI [8,20], our present analysis does not 
hinge on this knowledge. Similarly, although it is pos­
sible to collect very large data sets from HI, it is clear 
from Fig. 's 2 and 3 that more limited data sets would 
compromise our conclusions only slightly. It therefore 
seems feasible to apply these same analysis techniques 
to cells in the mammalian brain. Like cells in the mon­
key or cat primary visual cortex, HI is four layers 'back' 
from the array of photodetectors and receives its inputs 
from thousands of synapses. For this central neuron, we 
find that information transmission rates are half the total 
spike train entropy at a time resolution of 1.5 InS. 
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