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Abstract 

----it was believed that, for Riemannian geometry, the satisfaction of Einstein's equivalence principle is eq­

uivalent to a proper metric signature, which mathematically impJies the existence of local Minkowski spaces. 

The equivalence principle requires that a "free falling" of an observer must result in a local Minkowski 

space, whose spatial coordinates are statically attached to the observer I as the local space-time of a space­

ship under the influence of only gravity. However, for some Lorentz manifolds, a "free falling" may not 

result in a statically attached local Minkowski space. In particular I three independent proofs including cli!r,e,ct 

caiClltlaAiotv.;, are provided to show through examples that the Galilean transformation is unequivocally 

incompatible with the equivalence principle. Therefore, general covariance must be /teI.)tJr,icte4. Moreover f 

there are unphysical Lorentz manifolds, none of which can be diffeomorphic to a physical space-time, where 

the physical principles are satisfied. Another result from this analysis is that the time-coordinate rnuot be 

<Yr.thogoncd to the space-coordinates if a particle can rest relative to the frame of reference. 



II As far as the prepositions of mathematics refer to reality, they are not certain; and as far as they are 

certain, they do not refer to reality.1I -- A. Einstein (in 'Geometry and Experience', 1921). 

1. Introduction. 

A major problem in general relativity is that any Riemannian geometry with the proper metric signature 

would be accepted as a valid solution of Einstein's equation of 1915. Consequently, many unphysical solutions 

were accepted as valid [1). This is, in part, due to the fact that the nature of the source term has been 

obscure since the beginning [2,3J. When a source term is given, the adequacy of this term for a physical 

situation is often not clear. For instance, although the electromagnetic energy-stress tensor provides an 

adequate source term for the Riessner-Nordstrom metric (4,5), Us adequacy for gravity involving an 

electromagnetic wave, is questionable [6,7). Thus, to determine whether a solution is valid and whether a 

given source term is adequate, it is necessary to consider general physical requirements. 

In general relativity, the most crucial physical requi rement is the satisfaction of Einstein's equivalence 

principle in a physical space [2,3] . Mathematically, however, the equivalence principle can be incompatible 

with a solution of Einstein1s equation, even if it is a Lorentz manifold (whose space-time metric has the same 

signature as that of the Minkowski space) {7,B). Unfortunately, some relativists [4,9 1 10J seem to be un­

aware of this. Thus, to many theorists, a proper metric signature has become almost a synonym to the satis­

faction of the equivalence principle, and they believe incorrectly that thjs had been proven in mathematics. 

To clarify this confusion, let us first review the situation. Physically, the equivalence principle requires 

that a "free fallingll results jn a local Minkowski space (3 J . Mathematically f although there always exists a 

local Minkowski space for any point in a Lorentz manifold (which has the proper metric signature), it should 

be noted that a ".f!r,ee. (,aUing" may not aiwayo -te6t.dt in a loC<d Minkowoki opace [8,11]. In other 

words, while the proper signature of the metric is a mathematical necessity, a "free fallingll results in a 

statically attached local Minkowski space is a physical requirement (§§ 2 & 3). 

Einstein proposed that the equivalence principle is satisfied in a physical space-time. ThUl.l, a Rie­

mannian opace, wheAe the equiva4e.nce plUnciple i6 not 6~t i6 not phy~ctUly 'l,eaMzab-te; 

and in a phyoictUly uMeaMzab-te l1opace-timel1 • the eqtdvcdence plUncipte cannot 6e o~. 
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Thus, although defining a coordinate system for the purpose of calculation is only a mathematical step, choos­

ing a space-time coordinate system, which must be physically realizable, requires physical considerations. 

Although the equivalence principle does not determine the space-time coordinates, it does reject physical 

unrealizable coordinate systems. Whereas in special relativity the Minkowski metric limits the coordinate 

transformations to the Lorentz transformations; in general relativity the equivalence principle limits the 

coordinate transformations to be among physical space-time coordinate systems. Thus, the role played by the 

Minkowski metric in special relativity, is extended by the equivalence principle (see also § 6). 

The misconception that, in a Lorentz manifold, a "free falling" would automatically result in a local 

Minkowski space [12,13J, has deep-rooted mathematical errors and misunderstandings from believing in the 

general mathematical covariance in physics (§§ 2-4 & [11]). Thus, to some theorists, it would be necessa­

ry to demonstrate this misconception through examples with detailed calculations (see §§ 4-6). 

Moreover, there are irr..tlr!inl.YicaUy unphysical Lorentz manifolds none of which is diffeomorphic [4J to 

a physical space-time. Thus, to accept a Lorentz manifold as valid in physics, it is necessary to verify the 

validity of the equivalence principle in a space-time coordinate system on which physical interpretation can 

be based. Then, for the purpose of calculation only, any diffeomorphism can be used to obtain new coordin­

ates. It is only in this sense that a coordinate system for a physical space-time can be arbitrary (§ § 4-6). 

Note that Einstein's requirement of a mathematical general covariance among all concievable coordinate 

systems [2], has been proven to be an over-extended demand (11 J . (Note that the gauge related to general 

mathematical covariance, was not accepted by Eddington [14).) To reaffirm this for the skeptics, it will be 

proved directly that mathematical coordinate systems are not always equivalent in physics (see § 4)~ Analysis 

shows that covariance must be restricted by requiring a satisfaction of the equivalence principle (see §§ 4­

6). After this necessary rectification, some currently accepted well-known Lorentz manifolds would be ex­

posed as unphysical, although geneJrM 'teA,a;tioity a{) a phyoiCOtl theolf..y it.> una(,.f,ected [11]. 

2. Two Mathematical Theorems in Riemannian Space and Einsteinls Equivalence Principle 

Now let us discuss two mathematical theorems of Riemannian space (15,16) which are often confused 

with Einstein's equivalence principle by some mathematicians and theorists. They are: 
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Theorem 1. Given any point P in any Lorentz manifold (whose metric signature is the same as a Minkowski 

space) there always exist coordinate systems (xj) in which ogik/OxJ = 0 at P. 

Theorem 2. Given any time-like curve r there always exist a coordinate system (so-called Fermi 

coordinates) (xi) in which ogik/oxi = 0 along r. 

But, these theorems do not constitute a physical principle since there are insufficient specifics in physics to 

exclude unphysical situations. From Theorem 1, it is clear that a local Minkowski metric exists at any given 

point. From Theorem 2, it is claimed (15, 16J that the existence of Fermi coordinate implies the existence 

of freely falling i.e. inertial observers in any Lorenz manifold. It should be noted, however, that here the 

existence of inertial observers means only local constant metrices but not necessarily local Minkowski spaces. 

Although it is possible to transform a local constant metric to a local Minkowski space, ~uch a wc,a,{, 

Minkow~ cooltdinate ~yMem may not ne~a/ltUy lYe ",eAated to tIte ffoe,e (,aUing (§ § 3 & 4). 

But, in a physical space, a free falling must result in a local Minkowski space1). For instance, the local 

space-time of a space-ship under the influence of only gravity, is a Minkowski space. Thus, validity of the 

equivalence principle is needed to ensure that (2) II special theory of relativity applies to the case of the 

absence of a gravitational field:1 Einstein (17) pointed out, II As far as the prepositions of mathematics refers 

to reality, they are not certain; and as far as they are certain, they do not refer to reality," 

3. The Restriction of Covariance and the Equivalence Principle 

The foundation of general relativity consists of the equivalence principle and covariance. The principle of 

covariance (2] states that liThe general laws of nature are to be expressed by equations which hold good for 

all systems of coordinates, that is, are covariant with respect to any substitutions whatever (generally covar­

iant) ,II The covariance principle can be considered as consisting of two features: 1) the mathematical formul­

ation in terms of Riemannian geometry and 2) the general validity of any Gaussian coordinate system as a 

space-time coordinate system in physics. While feature 1) was eloquently established by Einstein, feature 2) 

is actually over-extended. The equivalence of all frames of reference simply does not require the equivalence 
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of all coordinate systems [11]. Eddington [14] pointed out that "space is not a lot of points close together; 

it is a lot of distances interiocked. 1I Moreover, because of the equivalence principle, it is found that the 

general mathematical covariance must be restricted [7,8,11]. 

Kretschmann (18] pointed out that the postulate of general covariance does not make any assertions 

about the physical content of the physical laws, but only about their mathematical formulation, and Einstein 

entirely concurred with his view. Pauli [10] pointed out further that liThe generally covariant formulation of 

the physical laws acquires a physical content only through the principle of equivalence, .... " Thus, one has to 

modify the mathematical general covariance to accommodate the equivalence principle if incompatibility can 

occur. Einstein [2] argued that " ... there is no immediate reason for preferring certain systems of coordin­

ates to others, that is to say, we arrive at the requirement of general co-variance." This is, of course, 

incorrect since the equivalence principle is a reason to Jr-e.;ect some coordinate systems (see also § § 5 & 6). 

Moreover, a mathematical general covariance requi res the indistinguishability between the time-coordi­

nate and a space-coodinate. On the other hand, the equivalence principle is related to the Minkowski space 

which requires a distinction between the time-coordinate and a space-coordinate. It follows that the mathe­

matical general covariance is inherently inconsistent with the equivalence principle. Thus, the mathematical 

general covariance must be restricted in physics (see also § 6). 

If, at the earlier stage, Einstein's arguments are not so perfect, he seldom allowed such defects be used 

in his calculations. This is evident in his book, 'The Meaning of Relativity' which he edited in 1954. 

According to his book and related papers, Einstein's viewpoints on space-time coordinates are: 

1) A physical (space-time) coordinate system must be physically realizable (see also 2) & 3) below). 

Einstein (19] made clear in 'What is the Theory of Relativity? (1919)' that "In physics, the body to 

which events are spatially referred is called the coordinate system. II Furthermore, Einstein wrote "If it is 

necessary for the purpose of describing nature, to make use of a coordinate system arbitrari Iy introduced 

by us, then the choice of its state of motion ought to be subject to no restriction; the laws ought to be 

entirely independent of this choice (general principle of relativity) ". Thus, Einstein's coordinate system 

has a state of motion and is usually referred to a physical body. Since the time coordinate is acco'td­

irtg,f,y fyixed, choosing a space-time system is not only a mathematical but also a physical step. 

5 



2) A physical coordinate system is a Gaussian system such that the equivalence principle is satisfied. 

One might attempt to justify the viewpoint of accepting any Gaussian system as a space-time 

coordinate system by pointing out that Einstein [3 J also wrote in his book that Illn an analogous way (to 

Gaussian curvilinear coordinates) we shall introduce in the general theory of relativity arbitrary co­

ordinates, x" x2 ' x3 ' x4 ' which shall number uniquely the space-time points, so that neighbouring 

events are associated with neighbouring values of the coordinates; otherwise, the choice of co-ordinate 

is arbitrary, II But, Einstein [3J qualified this with a physical statement that IIln the immediate neighbour 

of an observer, falling freely in a gravitational field, there exists no gravitational field," This statement 

will be clarified later with a demonstration of the equivalence principle (see eqs. (7) & [8J). 

3) The equivalence principle requires not only, at each point, the existence of a local Minkowski space1 ) 

( 1 ) 

but a free falling mu6t result in a local Minkowskian space (see also [5,9, 10,20] ). 

Note that any "(,!tee f,atUing" mt.J!.:A; Jr-eOtdt in a ~occd Minkowoki opace. is a physical requirement for a 

Lorentz metric solution, since Einstein proposed this to be universally valid in any space-time (see § 5). 

4. Free Falling and the Equivalence Principle 

To clarify the 1916 paper [2J, Einstein wrote in his book (3). "According to the principle of equi­

valence, the metrical relation of the Euclidean geometry are valid relative to a Cartesian system of reference 

of infinitely small dimensions, and in a suitable state of motion (free falling, and without rotation)." Thus, at 

each point (x,y,z,t) of a physical space, a IIfree fallingll observer P must be in a local MinkowolU opace 

(1 ), whose spatial coordinates are otaticaUy attached to P, whose motion is governed by the geodesic, 

(2 ) 
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(3) 

Thus, there is a clear physical distinction between a space-coordinate and the time-coordinate. This free 

fall ing is equivalent to the existence (9 J of "orthogonal tetrad of arbitrari Iy accelerated observer. II In away, 

the "free falling" of an observer locally extends the Minkowski space to general relativity. For instance, when 

a space-ship is under the influence of gravity only, the local space-time is automatiCillUy Minkowski, 

because for a free falling observer, the local Minkowski space is statically attached to the observer. 

However, some theorists mistook Einstein's [3] other statements as the equivalence principle. The 

quotation is "In the immediate neighbourhood of an observer, falling freely in a gravitational field, there 

exists no gravitational field. We can therefore always regard an infinitesimally small region of the space-time 

continuum as Galilean. For such an infinitely small region there will be an inertial system (with the space 

coordinates, Xl' X2 , X3, and the time coordinate X4 ) relatively to which we are to regard the taws of the 

special theory of relativity as val id./I These statements are essentially the mathematical theorems in § 2, alth­

ough the language is in physics. From these statements, the free falling observer I though in the neighbourhood 

of a local Minkowski space, may not move with the II inertial system II , 

However, a possible mathematical choice of coordinates is inadequate in physics, since its It,eOtUzation 

must be specific. Einstein (2] proposed that the acceleration of the system of reference must be in a free 

falling with the observer. This observation is echoed by Pauli (10J. He wrote that "For every infinitely small 

world region, there always exists a coordinate system Ko (X l' X2' X3 1 X4) in which gravitation has no 

influence either on the motion of particles or any other physical processes. II and that "We can think of the 

physical realization of the local coordinate system Ko in terms of a freely floating, sufficiently small, box 

which is not subjected to any external forces apart from gravity, and which is freely falling under the action 

of the latter. 1I and that lilt is evidently natural to assume that the special theory of relativity should be valid in 

KO'" \'Veinberg [5] and Will (20) wrote also some equivalent statements. 

Mathematically, the existence of a Local Minkowski space alone implies only that it is possible to constr­

uct a Cartesian coordinate system covering an infinitesimal neighberhood of a freely falling observer, i.e., the 

local space-time of a space-ship under gravity may not be Minkowski. It is the equivalence principle that 
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ensures its local space-time to be Minkowski. Thus, one must carefully distinquish mathematical properties of 

a lorentz metric from physical requirements. Apparently, a discussion on the possibility that the equivalence 

principle can fail in a Lorentz manifold, was over-looked by Einstein and others (see also § 6). 

To see the need of considering beyond the metric signature, we artificially define a Lorentz metric, 

(4a) 

where a (?: 2c) is a constant. The unit of t is second, the unit of x, y, or z is centimeter and the 

unit of a is em/sec. Metric (4a) is a solution of the Einstein equation G~v = O. Then, ds 2 = 0 would 

imply that the velocity of light is a. One might argue that metrice (4a) can be transformed to 

ds 2 c2dt'2 - dx'2 - dy'2 - dz'2, (4b) 

by the following diffeomorphism, 

Xl = X, y' = y, Zl z, and e = talc. (4c) 

Eq. (4c) implies, however, that the units of t and t' are distinct and the light speed remains a but not c. 

Eq. (4a) is not a rescaling. In a rescaling only the physical units, but not the physics, are changed. For 

example, the light speed can be expressed as 1 light year per year or 3 X 1010 cm/sec. However .. if a = 2c, 

1010metric (4a) implies that the light speed would be 2c, i.e., 6 x cm/sec; and metric (4b) implies that 

1010the light speed is 3 x cm/half-sec. Thus, if metric (4b) were considered as Minkowski, the 

diffeomorphism (4c) would amount to redefining the space. 

Einstein [3] illustrated his equivalence principle in his calculation of the light bending. (Note, the other 

method does not have such a benefit.) First, using his field equation of 191 he justified the linear equation, 

( Sa) 
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where Y)1V (= g)1V - n)1v) is the deviation from the flat metric Tlj.lV T)1v is the energy-stress tensor forI 

massive matter I and K is the coupling constant. Then, from eq. (Sa) t he obtained the metric 

K a 2 K a,
ds 2 = c2 (1 - 4lf SdVo7)dt (1 + 41T SdVo7)(dx2 + dy2 + dz2). (Sb) 

by using the asymptotically flat of the metric. (Note that eq. (Sa) can be justified with physical considerations 

(21 ) , 	which are independent of the Einstein equation.) 

Now, although d2xj.l/ds2 '* 0, consider an observer P at (xo,yo,zo,to) in a "free fallingll state of 

dx/ds == dy/ds = dz/ds = O. 	 (6 ) 

According to the equivalent principle and eq. (1), state (6) of P implies at (xo'YO,ZOf to) 

since the local coordinate system is attached to the observer P (i.e., dX == dY == dZ = 0 in eq. (1)). 

Because the space coordinates are orthogonal to dt, at (xo,yo,zo,to) one has (3) 

(8) 

In general relativity, the law of the propagation of light is characterized by the light-cone condition, 

ds 2 	 = O. ( 9) 

Then, the velocity of light is expressed in our selected coordinates by 

(dx2 + dy2 + dz2 ] 1/2 K a 
dt == c( 1 - 41T SdVo7)· (10) 

9 



Einstein wrote [3] "We can therefore draw the conclusion from this, that a ray of light passing near a large 

mass is deflected. II Thus, Einstein has demon stated that the eqldvrdenooplrinciple 'r,eq~ that a 

6pace-time cooutin~ 6y6tem mt.lI.).t have a phy6iC<.ltl meaning; and a space-time coordinate system 

cannot be just any Gaussian coordinate system. It seems, Einstein chose this calculation method to cJarify h1s 

statements on the equivalence principle which may be presented somewhat ambiguously in 1916 [2]. 

Although Einstein emphasized the importance of satisfying the equivalence principle, he did not emphasis 

that this satisfaction is automatically only in a physical space-time. However, there are many ways to go 

wrong. For instance, if the requirement of asympotically flat were not used, one could obtain a solution which 

does not satisfy the equivalence principle. This illustrates also that to see whether the equivalence principle is 

satisfied, one must consider beyond the Einstein equation (see § 5). 

Moreover, if the metric did not satisfy the equivalence principle, ds 2 = 0 would lead to an incorrect 

light velocity because the manifold is not a physical space-time. In addition, Einstein's calculational approach 

would lead to contradictory results. To illustrate these, it will be shown in next section that <tn arbitrary 

Gaussian system as a space-time coordinate would lead to theoretical inconsistency and errors in physics. 

5. Validity of a Metric in Physics and the Equivalence Principle 

A given metric defines a physical space only if the space-time coordinate system is physically realizable, 

Le. the equivalence principle is satisfied. This will be illustated by a few examples of metric spaces. For 

cJarity and simplicity, we discuss cases without gravitational forces. 

Example 1, consider the metric (4) again. If the equivalence principle were valid, one would obtain 

(dx2 + dy2 + dz 2 ), (11 a) 

for a resting observer at a point (xo,yo,zo,to)' Eq. (11a) and ds 2 = 0 imply that the light speed is 

[dX 2 + dy2 + dz2] 1/2 (dx2 + dy2 + dz2 ] V2 
= 1 (11 b)cdT adt 
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Eq. (11b) implies, however, that the light speed is c in the local Minkowski coordinate, but is a (~ 2c) in 

the (x, y,z, t) space. But, since there is no gravitational force for this case, we can have also 

x = X, Y = V, and z = Z (12 ) 

Eqs. (11) and (12) absurdly mean that for the same frame of reference, we have light speeds. This I"tITTo ..onT 

certainly disagrees with Einstein1s statement [19] that "In physics, the body to which events are spatially 

referred is called the coordinate system II • In summary~ metric (4) is not physically realizable. 

Example 2, consider the transformation, which is a diffeomorphism, 

t = C{exp(T/C) - exp(-T/C)}/2. (13a) 

Then 

4 {exp(T/C) + "exp(-T/C)}2dT2 - dx 2 - dy2 - dz 2 (13b) 

repesents the Minkowski metric after the transformation. If metric (13b) is realizable, according to ds 2 = 0, 

the measured light speed would be {exp(T/C) + exp{ - TIC) }/2. 

From (13b), the Christoffel symbols r\J,oi3 {=Iaagvi3+a~vo-avgai3)/2), are zeros except 

(14 ) 

Then, according to the geodesic equation, the equation of motion for a particle at (x,y ,z, T) is 

d2T dT dT 
t (15 )ds2 + r tt ds ds = 0, and 

where 

r t tt = d T (I n { exp ( TIC)" + exp ( - TIC) } ) 

It follows eq. (15) that one obtains, for some constant k 
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dT dx)J :; constant ds 	 = k{exp(T/C) + exp( - T/C) }-1 and (16 )ds 

Now, consider the case dx/dT :; dy/dT :; dz/dT :; 0; and therefore dx/ds = dy/ds :; dz/ds = O. Thus, in such 

a IIfree fallingll, there is no change in the spatial position nor acceleration. Physically, this means that such an 

observer would have the same frame of reference, whether IIfree fallingll or not. Thus, he would absurdly 

have two different light speeds from the same frame of reference, if the equivalence principle were satisfied. 

According to Einstein, the equivalence principle is not satisfied and metric (1 3) is not rea~izable. 

Now, to see further that the equivalence principle is needed for the theoretical consistency of general 

relativity, let us consider Example 3, a frame of reference KI with a constant Lorentz metric, 

ds 2 (dz' + (c - v)dt'] (-dz' + {c + v)df] - dx'2 - dy'2, 	 (17 ) 

since any constant metric satisfies the Einstein equation C)Jv :; 0. Then, for light rays in the z'-direction, ds 2 

= °would imply at any point the tight speeds were 

~ 
or = -c + v. 	 (18 )dt' 	 = c + V, 

Clearly, eq. (18) also does not give a correct light speed since (18) also violates ooo'Utinate iUUativiMic 

caL.t6a«;ty, i.e. no cause event can propagate faster than the velocity of light in a vacuum. Thu6 t metric 

(17) 	is not physically realizable, and those in (18) cannot I>e If,egalrde,4 a6 coo'Utinate ve-to~. 

Moreover, according to the geodesic equation (2), metric (17) implies d2x')1/ds 2 = 0, and thus 

dx')1 
ds = constant. where Xl~ (= Xl, yl, Zl, or t') (19 ) 

at any point. Now, according to metric (17), consider the case of IIfree fallingll at (x'o,y'o,z'o,t'o) 

dxl/ds:; dy'/ds.: dz'/ds = 0, and dt'/ds = (c2 - v2)-Vz, 	 (20) 
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Note that since there is no acceleration nor any change in the spatial position, such a "free fallingll observer 

carries with him the frame of reference K'. But, the K' metric (17) is not a Minkowski space. 

Nevertheless, mathematic/') ensures the existence of a local Minkowski space, which can be obtained by 

choosing first the path of a particle to be the time coordinate and then the other three space coordinates by 

orthogonality. Let us investigate this scenario. According to condition (20), the time coordinate would remain 

the same dt'. But, the coordinate dz' is not orthogonal to dt'. In order to have three orthongonal space 

coordinates to form a local Minkowski space, it is necessary to transform dz' by 

dT = dt', dX = dx' , dY = dy', and dZ = dz' - vdt'. (21 ) 

But, since the observer at (x'o,y'o,z'o,t'o) is in a state of dz' = 0 (i.e., dZ :j:: 0), this local system is not 

~ta;tic,a;U,y attached to the observer, and hence is unrelated to the "free falling ll Thus, the equivalence prin­• 

ciple is not applicable to Lorentz manifold (17). Nevertheless, at any space-time point, it is always possible 

to have a local Minkowski coordinate system which is related to a free falling and therefore Yu (p. 42 of 

[13] ) is incorrect. This illustrates that not OMy the ~nce 0(, a loC<d Minkow~ki ~pace, /,.ut aMO 

how t;}uoo a ioC<d t;}pace M wated to the geodeMc, M cAuciai fpi a phy~icai t;}pace. 

It has been shown in three different approaches that metric (17) is incompatibJe with the equivalence 

principle and therefore physically unrealizable. Also, (21) is clearly a Galilean transformation. Thus, it has 

been shown that the Galilean transformation is also not vaJid in general relativity. The failure of satisfying the 

equivalence principle should be expected since the Gal i lean transformation is experimentally not realizable. 

6. The EquivaJence Principle., Covariance, and IntrinsicaJly Unphysical Lorentz ManifoJds 

The foundation of general relativity consists of the equivalence principle and covariance. However, the 

principle of general relativity requi res only the equivalence of all frames of reference, but not all mathemati­

cal coordinate systems as claimed (22J. A distinction between time and space is inherent, as Hawking [23] 

pOinted out that II something that distinguished the past from the future~ giving a direction to time. II The 

equivalence principle is a physical requirement for a valid physical space-time coordinate system. 
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In terms of mathematics, t.he. 6~f,action o{, the eqtdvcdence pUncipi,e M t.he. ~y of, a 

cootuUnate t/l..arr.6boiUnaAiion which is subjected to the geodesic. The trajectory of a particle may relate to 

the metric in a manner depending the coordinate system. Also, a local coordinate system is restricted by the 

non-covariant requirement of being a Minkowski metric with spatial orthogonal coordinates statically attached 

to the geodesic. These would put a severe restriction on the possible Gaussian coordinate systems. 

Thus, the equivalence principle is related to the physical meaning of the coordinates in a space-time 

coordinate system. For instance, as shown by metric (10), the metric element gtt cannot be arbitrary. More­
l 

over, the trajectory of a particle, being also the local time, is orthogonal to the local spatial coordinates. this 

means, however, when the "timen coordinate is not orthogonal to the IIspace" coordinates, the equivalence 

principle is not satisfied if a particle is allowed to rest relative to the frame of reference. 

Let us illustrate this by revisiting metric (17). Consider the Galilean transformation 

t = t', x = Xl, Y = l f and z = z· - vtl. ( 22a) 

Then 

(22b) 

is obtained from metric (17), Now, at (x,y,z,t) the state (20) now becomes 

dx/ds = dy/ds = 0, dz/ds = -vdt/ds, and dt/ds = (c2 - V2)-V2, (23) 

The trajectory of the particle has the direction (O,O,dz,dt), and its orthogonal vector is (0,O,dt,dzc 2 ). Thus, 

the local Minkowski space can be obtained by a Lorentz transformation, which preserves orthogonality. 

On the other hand, from metric (17) the direction of the particle is (O,O,O,dt') and its orthogonal 

vectors are (1,0,0,0), (0,1,0,0) and b.1= (0,0,0,{3) where 0 2 = 1 - v2/c 2, and f3 = -vjc 2a. However, 

since the state of (O,O,O,de) requires dz' = 0, but dt' :::f 0, the vector b.l is not statically attached to the 

particle. This is due to the fact that the local space (dx' ,dy' ,dz ' ) which is fixed to the particle is not ortho­

gonal to the the vector (O,O,O,df). This means that metric (17) is not physically realizable. 
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In the above analysis, it has been illustrated that the Galilean transformation is incompatible with the 

equivalence principle in the absence of gravity. In fact, the incompatibility is also true even when gravity is 

present. To illustrates this, let us consider metric (Sb) and the physical situation that a particle at (O,O,zo,to) 

moving with velicity v at the z-direction. The Calilean transformation (22a) transforms metric (4b) to 

K 0 '2 K 0, '[ )ds2 = (1 - 4Tr SdYo7)dt - (1 + 4TI SdVo7) (dx 2 + dy 2 + dz' - vdt' 2). (24) 

If metric (24) had a physical realizable coordinate system 5', the particle would be at (O,O,z'o,f o) in the 

state (O,O/O/dt') and the local spatial coordinates dx', dy', and dz' would be statically attached to the particle 

at the instance t'o- However, according to metric (24), the coordinate dz' is not orthogonal to dt'. 

But, in a local Minkowski space, dt' would be orthogonal to a statically attached three dimensional linear 

subspace. This is not possible because dx'i dy', and dz' can form a basis of a three dimensional subspace. 

Thus, the equivalence principle cannot be satisfied and metric (24) is not a physically realizable space. An 

interesting result from this analysis is that, due to the equivalence principle, the time-co~ YTUII.>t l>e 

O'ltthogonat to the opace.-cooJt4inatM jf a particle is allowed to rest relative to the frame of reference. 

Moroever I a Lorentz manifold may not be diffeomorphic to a physical space. Even a solution of Einstein's 

equation can be iJ1ilJf..in6ico,.Uy unphyoic<u if it fails physical requi rements. For instance, consider 

(25) 

where u = t - z, v = t + z, hid u) ::: 0, and hij = hji' Its physical cause can be an electromagnetic plane 

wave [24). Metric (25) does not satisfy coordinate relativistic causality and therefore the equivalence prin­

ciple because the requirement, 1 ::: (1 + H)/(1 - H) (where H =, hijxixi), may not.be satisfied. (Note, that 

metric (25) does not satisfy the equivalence principle, can also be shown as previously by direct caJulations.) 

Furthermore, this metric is incompatible with Einstein's notion of weak gravity and the correspondence 

principle since H can be arbitrarily large. The gravitational force (related to r Z = 1/20 (hijxi xi)/ot hastt 

arbitrary parameters (the coordinate origin). This arbitrariness in the metric violates the principle of causality 
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(Le., the causes of phenomena are identifiable) [8, 11 J. Although (25) is a Lorentz metric, it cannot be 

diffeomorphic to a physical space since a diffeomorphism cannot eliminate any parameter. 

7. Conclusions and Discussions 

The Minkowski metric in special relativity is a special case of the metric in general relativity. However, 

it was not clear that all the principles which lead to general relativity are compatible with each other in this 

special case. For instance, the equivalence principle can be considered as a generalization of the Minkowski 

metric, but this principle may not be compatible with the covariance principle. In fact, there is no physical 

need to extend the space-time physical coordinate system to an ~y Gaussian system [11 ) . 

Although the creation of general relativity is due to the desire to have a theory of gravity which is 

consistent with special relativity, the consistency between special relativity and general relativity has not been 

thoroughly checked. Note that, to establ ish special relativity, the Galilean transformation is proven to be 

physically uMeaUzaM.e by experiments. Thus, a Galilean transformation cannot be compatible with the equi­

valence principle which is applicable to only a physical space. This means that the equivalence of all frames 

of reference is not the same as the physical equivalence of all mathematical coordinate systems. In particular, 

due to the equivalence principle, the Minkowski metric is the OMU physical constant space-time metric. 

A Galilean transformation clearly leads to a violation of the equivalence principle that ds 2 = 0 would 

imply a light "velocityll larger than c [11). However I due to entrenched misconceptions [12,13), this pro­

blem was not even recognized for further investigations. Instead, strong denial in terms of false arguments 

was supported with misunderstandings in physics and/or erroneous statements in mathematics. Thus, it is 

necessary to calculate examples which directly demonstrate a violation of the equivalence principle. 

Moreover, some II Theorists II actually distort Einstein's equivalence principle to fit the mathematical 

theorems (see §§ 3 & 4) because they are unable to tell the difference between mathematics and physics. 

However, unlike mathematics, physics is restricted by the physical reality. The fact that tJte, ,f.oeal 6pace­

time, 01, a 6pace6hip undeA tJte, inftlu.ence 0{, ot1!ly g-uwUy I ~ a Minkow6ki 6paoo 'UUluiltel.l that a 

flt.ee {,aiUng mu6t 'te61.dt in a weal MinkowMd 6paoo. As stated by Einstein, the equivalence principle 

is necessary to ensure that (2) "special theory of relativity applies to the case of the absence of a gravita­
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tional field." Thus, nature unequivocally defeats any attempt to misinterprete the equivalence principle. 

Einstein proposed the equivalence principle for physics (2,3). It was misunderstood that the equivalence 

principle is always applicable to a Lorentz manifold (9,13,20). However, for some of such metric spaces, a 

local Minkowski space may not be obtained in a "free falling". Apparently, Einstein1s quotation (1921) at the 

beginning of this paper is valid not only for Euclidean geometry but also for Riemannian geometry. 

Mathematically, a local Minkowski space for an hypothetical observer is obtained as follows: 

1) Choose the path of a IIfree fallingll hypotheical observer to be the local time coordinate. 

2) Choose the other three space coordinates by orthogonality. 

Thus, a local Minkowski space can always be constructed for any hypothetical observer. But, the so chosen 

spatial coordinates may not be statically attached to the hypothetical observer. In other words, the mathemat­

ically constructed local Minkowski space may be UMeAated to the "free falling" (§ 5). Thus, in contrast to 

the suggestion of Misner et al. [9), an existence of the tetrad in a Riemannian space, is not always possible. 

The fact that there is a distinction between the equivalence principle and the proper metric signature 

would imply also that the covariance principle must be restricted. However, general relativity as a physical 

theory is unaffected by the restriction due to the equivalence principle. An impoM;ant bunction 0(, the 

equivcUenoo P'W-noipte te/.)t io to cdiminate it1Jtlf;i~y unphy~ccd Lo't,entz ma~. any ob 

which cannot I>e ~omo't,phic to a phy~cat ~pace (see § 6 and also (11)). 

Since a Lorentz manifold may not satisfy the equivalence principle, further considerations must be made 

for its valid applicabil ity. For instance, since the principle of equivalence impl ies relativistic causality, a phy­

sical space must satisfy relativistic causality. When gravity is present, the light speed is smaller than maxi­

mum speed c due to the gravitational effects of space constraction and time dilation. Therefore, coO'Uiinate 

lUUativiotic cau6a«ty (Le., the light speed c is the maximum velocity of propagation for any event) can be 

used as a convenient criterion. For example, coordinate relativistic causality is satisfied by the exterior 

Schwarzschild solution (11). The princi~le of causality (Le., the causes of phenomena are identifiable) 

necessitates the asymptotic flatness of a metric due to an isolated source. However, these necessary conditions 

may not assure the theoretical validity of the equivalence principle in a metric space. 

Perhaps, due to a confusion in understanding Einstein1s equivalence principle, this principle is not exp­
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lained adequately in some text books [4,13,16,25J; and theorists such as Synge (16) even advocated that 

the basis of general relativity should be the Einstein field equation alone rather than the equivalence principle. 

However, theoretically there is no satisfactory proof of rigorous val idity of Einstein's field equation [26 J . 

Experimentally, the validity of Einstein's equation has not yet been established beyond doubt [27]. In fact, 

the invalidity of Einstein's equation for two-body problems was conjectured by Hogarth (28) in 1953; and 

Einstein himself had pointed out that his equation may not be valid for matter of very high density (3 J . 

Moreover, it has been proven experimentally that Einstein's equation must be modified (21). 

But, the equivalence principle remains indispensible because of its solid experimental foundation (20, 

21]. Thus, as Weinberg [5) points out, "it is much more useful to regard general relativity above all as a 

theory of g't.avitation, whose connection with geometry arises from the peculiar empirical properties of 

gravitation, properties summarized by Einstein's Principle of the Equivalence of Gravitation and Inertia." 
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ENDNOTES 

1) A local Minkowskian space is a short hand to express that special relatvity is locally valid, except for 

phenomena involving the space-time curvature. 
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