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Einstein makes clear that a physical coordinate system must satisfy the equivalence principle. He further de­

monstrated the meaning of this principle by explicit calculations. Unfortunately, his viewpoint is not presented 

fully in current text books, which implicitly substitute the equivalence principle with a mathematical require­

ment of an appropriate metric signature. Recently, it was discovered that the current notion of gauge, which 

ignores the equivalence principle, is problematic and is obstructive to the developments of relativity, which is 

necessitated by the Taylor-Hulse experiment. It is shown: i) Einstein's theory is incompatible with such 

viewpoints; ii) There are unphysical solutions (with a proper signature) which do not satisfy the equivalence 

principle; iii) There are solutions (with a proper signature) any of which is not diffeomorphic to a physical 

solution. Thus, it is necessary to recover the essence of general relativity as Einstein presented. 



The Coordinate Systems in Physics and Einstein's Equivalence Principle. 

1. Introduction. 

A physical foundation of Einstein's theory is his equivalence principle [1). This principle's satisfaction 

is necessary for the validity of a coordinate system in physics. This validity, in turn, is the basis for the 

notion of gauge in general relativity. Thus, to understand general relativity, it is essential and necessary to 

make clear the equivalence principle in connection with the validity of a coordinate system in physics. 

However I it has been discovered [2) that the current notion of gauge, which ignores the equivalence 

principle, is problematic. Moreover, it has been proven (3] that this notion of gauge is also obstructive to 

the developments of relativity since such a notion is a major stumpling block to understanding the far reaching 

implications of the Taylor-Hulse experiment (4] on binary pulsar PSR 1913+ 16. 

Since such a gauge is due to insufficient understanding of physics, one may wonder whether the current 

viewpoints are in agreement with Einstein's. This question is strengthened by Eddington's claim (5] that few 

people understand relativity in spite of many existing text books. We found our suspicion confirmed by 

Einstein's work, liThe Meaning of Relativity" [1) edited by Einstein in 1954. This work reveals that his 

viewpoints are self-consistent, in agreement with experiments, but incompatible with those viewpoints in 

current text books. This conclusion is also supported by his other articles (6-9]. Thus, to have a meaningful 

physical theory, it is necessary to recover the essence of general relativity as Einstein presented it. 

Historically, as shown by Hilbert [10], Einstein's equation, 

(1 ) 

where RJ,Jv is the Ricci curvature tensor, gJ,Jv is the spacetime metric, T J,JV is an energy-stress tensor, and K 

is the coupling constant, is insufficient to obtain a solution. Because of the identity, 

(2) 

four more conditions are needed. These conditions, which result in a choice of coordinates, is called the 
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gauge. But, the choice of gauge is not entirely arbitrary because a physical space must satisfy the equivalence 

principle. An often used condition is the harmonic gauge (11), 

(3) 

However, this gauge can be incompatible with the equivalence principle (12). 

It should be noted that it is because of the equivalence principle that the geodesic equation, 

(4) 

The current viewpoint on gauge is based on the diffeomorphism, which is one-one onto, Coo (infinitely 

differentiable) map between two manifolds and its inverse map is Coo. It is claimed that two diffeomorphic 

manifolds have physically identical properties (13-16). One may note, however, that a diffeomorphism 

ignores the physical nature of the space time, and therefore provides no assurance to the physical reality. 

2. Einstein's Viewpoints on 	the Coordinate Systems in Physics 

However, the above viewpoint differs from Einstein's theory in the understanding and the interpretation 

of the physical principles; and results in invalid criteria for a physical solution. Einstein's viewpoints are: 

1) 	A physical coordinate system must be physically reaHzable. 

Einstein (6) made clear in Whatf/.) the T~y 0(, Re-lativity? (1919) that "In physics, the body to 

which events are spatially referred is called the coordinate system. JI Furthermore, Einstein wrote Jllf it is 

necessary for the purpose of describing nature, to make use of a coordinate system arbitrarily introduced 

by us, then the choice of its state of motion ought to be subject to no restriction; the laws ought to be 

entirely independent of this choice (general principle of relativity) (6). Thus, Einstein's coordinate 

system has a state of motion and is usually referred to a physical body. 

2) 	A physical coordinate system is a Causs coordinate system in which the equivalence principle satisfies. 
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The current viewpoint implies a physical coordinate is just a Gauss system. One might attempt to justify 

this viewpoint by pointing out that Einstein [1] also wrote that "In an analogous way (to Gauss 

curvillear coordinates) we shall introduce in the general theory of relativity arbitrary co-ordinates, x1 , 

x2 ' x3 ' x4 ' which shall number uniquely the space-time points, so that neighbouring events are 

associated with neighbouring values of the coordinates; otherwise, the choice of co-ordinate is arbitrary." 

But, he [1] qualifies this with a physical statement that "In the immediate neighbour of an observer, 

falling freely in a gravitational field, there exists no gravitational field." 

3) The equivalence principle requires not only, at each point, the existence of a local Minkowski space 

,/ 

(5) 

but it must be obtained by free falling. Einstein (1 J wrote, "According to the principle of equivalence, 

the metrical relation of the Euclidean geometry are valid relative to a Cartesian system of reference of 

infinitely small dimensions, and in a suitable state of motion (free falling, and without rotation)." Thus, 

in addition to having the proper metric signature, a solution of eq. (1) must satisfy the equivalence 

principle as an independent physical requirement. 

3. Einstein's Illustration of a 	Physical Space 

Einstein (1 J illustrates the meaning of the equivalence principle by considering a space with metric 

(6) 

According to eq. (6), the unit measuring rod has the coordinate length 

in respect to the system of coordinate selected. The law of the propagation of light in general co-ordinates is, 
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according to general theory of relativity, characterized, by the light-cone condition, 

ds2 = o. 

Then, the velocity of light is expressed in our selected coordinates by 

(dx2 + dy2 + dz2] 1/1 K a 
dt = c(1 - 4TT SdVor)' (7) 

One can therefore draw the conclusion from this, that a ray of light passing near a large mass is deflected 

[1 J. Thus, Einstein demonstated that a coordinate system has physical meaning. Therefore, Hawking's claim 

(17] that there is no difference between a space coordinate and a time coordinate, is simply not valid. 

4. The Physical Validity of a Metric 

However, if the metric does not satisfy the equivalence principle, ds 2 = 0 would lead to an incorrect 

light velocity because the space is not physical. Let us demonstate this by considering the metric, 

(8) 

where a (>2c) is a constant. Metric (8) is a solution of the Einstein equation CJJv O. Then, ds2 = 0II: 

implies that the velocity of light is a. One might argue that metrice (8) can be transformed to 

ds2 = c2dt'2 - dx'2 - dy'2 - dz'2, (9) 

by the following diffeomorphism, 

x' X, y' = y, z' = z, and t' = talc. ( 10)II: 
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Eq. (10) implies, however, that the units of t and t' are distinct and the light speed remains a but not c. 

Now, let us consider another metric, 

ds 2 = [dz' + (c - v)dt') [-dz' + (c + v)dt') - dx'2 - dy'2, (11 ) 

which also satisfies the Einstein equation G a13 = O. Then, for light rays in the z' -direction, ds2 = 0 would 

imply the tight speeds were 

dz" dz" 
= c + v, or = -c + v. (12 )

dt" dt" 

Clearly, eq. (12) also does not give a correct light speed since (12) violates relativistic causality, i.e. no 

cause event can propagate faster than the velocity of light in a vacuum. 

Now, let us check whether the equivalence principle is satisfied. Since (8) and (11) are constant 

metr ices , all their Christoffel symbols r).la~ are zero. Therefore, the manifolds are flat and, according to the 

geodesic equation (4), there is no gravitational acceleration. Then, in a non-rotating free falling, the velocity 

of an observer is a constant. According to special relativity, this observer carries with himself a new 

coordinate system which must be obtained by a lorentz transformation. But, a lorentz transformation cannot 

transform metric (8) nor (11) to a local Minkowski space. Thus, the equivalence principle is not satisfied. 

The cause of an incorrect light speed is identified as the failure of satisfying the equivalence principle. 

Moreover, metric (11) is obtained from the flat metric (ds2 = c 2dt2 - dx 2 - dy2 - dz2 ) by 

X' X, y' y, z' z + vt, and t' t, (13 ) 

where t is the time coordinate and v is a constant. The Galilean transformation (13) is clearly a 

diffeomorphism. But, one cannot justify transformation (13) as physically realizable. 

According to z' = z + vt, the prime coordinate system would be associated with an observer on an 

object moving with a uniform velocity in the z-direction. However, if this prime observer measures light 
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speeds from this object, he finds, as in the Michelson-Morley experiment and etc, that a light velocity in the 

z'-direction is again :tc, but not according to eq. (12). Thus, transformation (13) and therefore metric (11) 

is not physically realizable, and the prime system is merely a manifold in mathematics. 

In conclusion, due to the requirement of the equivalence principle, a diffeomorphism may not be valid in 

physics (see also §§ 5-7) although such a diffeomorphism could be useful for the purpose of calculation in 

mathematics. In particular, the Calilean transformation (13) is also not valid in general relativity. 

However, one may notice that all the above manifolds are diffeomorphic to physical spaces although 

these manifolds themselves are not physical. This is perhaps the underline thinking of the current viewpoint. 

5. An Invalid -Definition- of the Light Speed 

Currently, to circumvent the problem of a physical space and to avoid addressing the issue of light 

speeds in a coordinate system, some theorists Hdefine" a light speed at any point of a manifold in terms of a 

local Minkowski space. (Then, according to this, both metrices would be valid.) However, if the manifold is 

not a physical space, a light speed in a local Minkowski space is not only meaningless, but also misleading in 

physics. As illustrated by manifold (8), its "light speed" is larger than 2c. More important, there are 

manifolds any of which is not diffeomorphic to a physical space. As Kramer et al. (18J pointed out, almost 

any metric could be considered as a solution since the source has not been determined. 

An example of such an intrinsically unphysical manifold has a metric (2) as follows: 

(14 ) 

where u = t - z, v = t + z (the light speed in a vacuum is denoted as 1) f hjj(u) ::: 0, and hij = hW Its 

physical cause can be an electromagnetic plane wave [19]. This metric clearly violates the principle of 

causality [2J since the gravitational force (related to r Z == (1/2)B(hijxixi)/Bt) has arbitrary parameterstt 

(the coordinate origin). Metric (13) also does not satisfy relativistic causality. 

This shows that it is futile to attempt in resolving a physical problem, without addressing the physics, 

but by mathematical manipulations alone. 
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6. Relativistic Causality as a Criterion 

Since the principJe of equivalence physically implies relativistic causality, a physical space necessarily 

satisfies relativistic causality. It can, therefore, be used as a convenient criterion. Then, the laborious process 

of showing the satisfaction of the equivalence principle, can be circumvented if only the necessary condition 

for the equivalence principle are needed to be considered. Obviously, the requirement that a speed of light is 

smaller than or equal to c (the light speed in a vacuum) may not be valid for some diffeomorphic manifolds. 

Nw~. ~~ 01, cooatdanae. ~ compatiUe wiJA ~iI.:.tic C4UIlaMtg Mnce, fAt., 

(lio,(,a,ti,on mean6 tAat the ~ 0(, co~ ~ not (laUd in phyMc6. 

It is not difficult to see that relativistic causality is satisfied by the Schwarzschild solution (13), 

c C 
ds2 = (1 - -r)dt2 - (1 - -r)-1dr2 - r2dQ2, (15 ) 

where C (= KM/41T) is a positive constant, d02 = (de2 + sin2e d<i>2) , and (r,e,<i» are spherical 

coordinates. Thus, for r > C, the light speeds in the r-direction and a-direction are respectively, 

dr C rda C 

dt = ± (1 - -r), and dt = ± (1 - -r )'12 • (16 ) 


Eq. (16) shows that, due to gravity, light speeds are slower. 

One might argue on the ground that, based on the simultaneous distance and the local time, light speeds 

remain to be ± 1. However, a speed in terms of a local Minkowski space is not a speed in the manifold. 

Moreover, from metric (11), for a light ray in the z'-di rection, the simultaneous distance is determined by 

ds2 = -dz'2, and the local time is determined by ds2 == (c2- v2)dt2 • If such a z'-directional light speed 

were ± c, then one obtains ds 2 = 2vdt'dzl :\: O. For a light ray in the xl-direction, althought light cone 

condition is not violated, one would still obtain the unphysical relation that dx' 2/dt2 == c2 - v2. 

Now, let us examine the validity of relativistic causality of a slightly different metric, 

( 17) 
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where 0 (>2) is a constant. Then, for light speeds in the r-direction, they are 

dr C 

Tt= ± 0(1 - -r). (18 ) 


Thus, for a sufficiently large r, the light speeds would be faster than 1, and relativistic causality is violated. 

Therefore, metric (17) does not satisfy the equivalence principle, and is not physically realizable. 

From metric (11), the cross terms might be blamed for not satisfying relativistic causality. This is 

simply not valid and can be shown by the Kerr metric (13) as follows: 

2rM 4rMa sin29 
ds2 = (1- T)dt2 + dtd<!> - (r2 + a 2 + 

where 

a2r2 + - 2rM . (19) 

From metric (19), one can check easily that relativistic causality would be satisfied if r > a and 2M. 

One may ask whether metric (15) remains valid when r < C. Note that for r < C, the coefficients grr 

and gtt both change sign so t becomes a space-like and r a time-like coordinate. Then, the metric is neither 

static nor spherically symmetric. Such problems are usually "explained" in terms of the Kruskal metric. 

Bonnor [20) finds, however, that the Kruskal extension and other remedies are physically unrealistic. Since 

Einstein equation (1) has been experimentally proven to be only approximately valid (3), r < C would 

probably be beyond its valid range of application. The Kerr metric (19) also has similar problems. 

7. Conclusions and Discussions 

Some relativists were unable to distinguish physical from mathematical solutions because the physical 

requirements have not been considered adequately. It is often said that a coordinate system is arbitrary. 

However, this arbitrariness is only among physical coordinate systems (7). It is often said that coordinates 

have no meaning. This only means that the metric gik is essential to a physical space (8,9). In Einstein's 

calculation of the light speeds, a coordinate system clearly provides more than an identification. Also, Haw­
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king makes clear in 'The Arrow of Time' [17] that a time coordinate is distinct from a space coordinate. 

As pointed out by Weinberg (11], the mathematical viewpoint based on geometry may not be appropriate. 

Moreover, the principle of equivalence puts a ~n on physical coordinates. In particular, just as 

in special relativity, once the space coordinates are chosen, the time coordinate is fixed. This is why, without 

mentioning the time coordinate, Einstein [6] identifies the coordinate system with a referring body only. 

A Galilean transformation is not valid in physics because this diffeomorphism is in disagreement with 

experiments and theoretically incompatible with the equivalence principle. Thus, the equivalence principle 

necessarily restricts the general covariance. Moreover, from the viewpoint of physics, it is necessary to 

reduces the covariance to among physical coordinate systems only. This restricted mathematical covariance 

should be called the phyMca.(,-covaJr,ia,nc.e to distinguish the mathematical general covariance. 

On the issue of whether a manifold is physical and a coordinate system is realizable, some theorists 

simply ignore the issue and instead "define" a light speed for any point with a local Minkowski space. 

However, such a "definition" is not valid because it is meaningless to consider the light speed unless the 

manifold is a physical space. Moreover, there are solutions of which one cannot transform any to a physical 

space (2]. This shows that such a circumvention is not valid and one cannot resolve a physical problem by 

mathematical manipulations alone. It should be noted that the incorrect belief that a gauge is arbitrarily 

applicable, is also obstructive to theoretical developments in relativity (3). 

In short, the Einstein equation and the equivalence principle are independent physical requirements. Thus, 

for a physical coordinate transformation, not only is it a diffeomorphism, but also the resulting manifold must 

satisfy the equivalence principle. Otherwise, theoretical inconsistency and disagreements with experiments 

would result [2,3,20]. Moreover, as Einstein [1] illustrated clearly, a satisfaction of the equivalence 

principle assures that the light speeds can be calculated with the light-cone condition ds2 = O. 

7. Acknowledgements 

The author gratefully acknowledges stimulating discussions with Professor John M. Charap, Professor A. 

Guth, Professor D. Kramer, Professor P. Morrison, Professor R.M. Wald, Professor H. Yilmaz and Professor 

X. Yu. This work is supported in part by Innotec Design, Inc., U.S.A. 

10 



REFERENCES 

1. 	A. Einstein, The Meanin,g 06 Relativity (Princeton Univ. Press, 1954), p. 63, p. 87 & p. 93. 

2. C.Y. Lo, Physics Essays, 7(4), 453-458 (Dec., 1994) . 
......_------_......."'­

3. C.Y. Lo, AstroQhY~~J., 455: 421-428 (Dec. 20,1995). 

4. 	R.A. Hulse & J.H. Taylor, Astrop~y~.!~_J~,J~tt. 195, L51 (1975); J.H. Taylor & J.M. Weisberg, ~~~ 

Rev. Lett. 52, 1348 (1984). 

5. 	K.S, Thorne, 13I4ck HoleI.> 8 Time W~ (Norton, New York, 1985). 

6. 	A. Einstein, 'What is the Theory of Relativity?' (1919) in IdeM and Opinion/.) (Crown Publishers, 

Inc., New York, 1954), p. 229. 

7. 	A. Einstein, 'The Fundaments of Theoretical Physics' (1940) in IdeM and Opin4,oM (Crown, New 

York, 1954). p. 330. 

8. 	A. Einstein, 'On the Theory of Relativity' (1934) in Id,eo/.) and Opinion/.) (Crown, 1954), p. 248. 

9. 	A. Einstein, 'Relativity and the Problem of Space' (1954) in I~ and OpinioM (Crown, New York, 

1945). p. 371 & p. 375. 

10. 	D. Hilbert, 'Grundlagen der physik', 2. Mitt., Nachr, Ges, Wiss. Gottingen 53 (1917). 

11. 	S. Weinberg, ~n and ~gy (John Wiley Inc., New York, 1972). 

12. 	C.Y. Lo, in Proc. of the 6th Macrcel Grossmann Meeting On General Relativity, ed. H. Sato & T. 

Nakamura, B 1496-1498 (World Sci., 1992); ibid., p~Y~ic:? Essays, 9 (4) (1996). 

13. 	R.M. Wald, Ge.neIf,al Relativity (The Univ. of Chicago Press, 1984), p. 14, p. 260, & p. 438. 

14. 	C.W. Misner, K.s. Thorne, and J.A. Wheeler, Gtt4vitation (W.H. Freeman, San Francisco, 1973). 

15. 	H. Stephani, Ge.neIf4l ReJ,o;tWity (Cambridge University Press, Cambridge, 1990). 

16. 	Hans C. Ohanian & Remo Ruffini, ~n and Spac.e.T.£rn,e (Norton, New York, 1994). 

17. 	S.W. Hawking, A ~H~y 0& T.{;me (Bantam, New York, 1988), p. 24 & p. 143-152. 

18. 	D. Kramer, H. Stephani, E. Herlt, and M. MacCallum, E«4Ct Solution!.; 0(, E~'~ FUdt:l 

Equation6. ed. E. Schmutzer (Cambridge University Press, Cambridge, 1980). 

19. 	R. Penrose, Rev. Mod. Phys~ 37 (1), 215-220, Jan. (1965). 

20. 	W. B. Bonner, Gen. Ret. & Grav. 24, 551-574 (1992). 

11 


