
I

f\J
c~
i~

I

~

t~

..~

I

On Persistence Interfaces for Scientific Data

Stores * J

I,----··--·---~·-··-·· F·--·-',:,..·~..-,.~.,
I! "~,-- ~,--- "--..,.~~-.-

David M. Malon, Edward N. M~y
t "'''''~._".,'',...,.' "--"" ,. Of'" ,- ..."."..""'."""~ "'; -••7

t
I;
I

Argonne N ational Laboratoryr""'"'''···~-'~··''·· ~ ,,",~- ,
malon@anl.gov, may@anl.gov[·······~-·.·.~..._·4,••,-_,.~,•••• ,

I ~-~......"..""" ..--..~ .'.~,... v

9 February 1996

Abstract

A common dilemma among builders of large scientific datastores'nrwnether\~'---~~;-_-_..
to use a lightweight object persistence manager or a gennine-..ebjoot-ociented. i ... _ --~_.... L.~._,,__j
database. There are often good reasons to consider each Qf these strategies;:'a : .. ;E':l~H'f' I
few of these reasons are described in this paper. Too often,'-Iiowever~"erectTng-·"'~~--""
to use a lightweight approach has meant programming to an interface that is
entirely different than that expected by commercial object-oriented databases.
With the emergence of object database standards, it is possible to provide an
interface to persistence managers that does not needlessly inhibit coexistence
with (and, perhaps, eventual migration to) object-oriented databases. In this
paper, we describe an implementation of a substantial subset of the ODMG
93[1] C++ specification that allows clients to use many of today's lightweight
object persistence managers through an interface that conforms to the ODMG
standard. We also describe a minimal interface that persistence software should
support in order to provide persistence services for ODMG implementations.

"'KEYWORDS: ODMG, database standards, scientific data, persistence services, persistence
interfaces

tThe submitted manuscript has been authored by a contractor of the U.S. Government under
contract No. W-31-109-Eng-38. Accordingly, the U.S. Government retains a nonexclusive, royalty
free license to publish or reproduce the published form of this contribution, or allow others to do so,
for U.S. Government purposes.

1

mailto:may@anl.gov
mailto:malon@anl.gov

1 Introduction

There are often good reasons for designers of large scientific data stores to consider
lightweight approaches to object data persistence. Prominent among these reasons
are performance, scalability (data requirements are sometimes in petabyte ranges),
portability, adaptability to specific high-performance architectures, and price. More
over, data access is often anticipated to be primarily from inside of user-written,
numerically intensive programs. Access characteristics are usually close to Write
Once, Read Many times (WO RM), so elaborate locking and transaction mechanisms
may be unnecessary. On the other hand, there is a well-founded fear of nonstan
dard, home-grown solutions, and concerns about the adequacy of data protection and
integrity in non-database solutions.

One attractive strategy in many cases is to use a lightweight persistence manager
today to exploit special-purpose architectures or to otherwise meet performance de
mands, while leaving open the possibility of migrating data to true object databases
as commercial products begin to provide the performance or scale or portability that
applications require. Another is to support an architecture in which some data are
maintained in true object databases, while other data reside in a persistent store, ac
cording to the application's requirements. One problem with both of these strategies
has been that choosing to use object persistence managers has often meant writ
ing code and class definitions entirely different than those expected by true object
databases. With the emergence of object database standards, many of these differ
ences are needless handicaps to users of persistence software. It is a disservice to
users of lightweight persistence managers to make coexistence with, or migration to,
object databases unduly difficult.

The Object Database Management Group (ODMG) is an industry consortium
of database vendors and others who have come together to agree upon aspects of a
common specification for object databases. These efforts have resulted in an emerging
standard (currently ODMG-93 Release 1.2 [1]) whose components include: an object
model; an Object Definition Language (ODL); an Object Query Language (OQL);
a C++ binding for ODL and OQL, and a C++ Object Manipulation Language; a
Smalltalk binding for ODL and OQL, and a Smalltalk Object Manipulation Language.
While ODMG-93 is an object database specification, a significant subset of it can be
supported in a natural way by many lightweight object persistence managers.

In response to the petabyte-scale data needs of high energy physics experiments,
Argonne has developed a lightweight object persistence manager that provides trans
parent access to data on local and remote disk, U ni tree hierarchical storage, raw RAID
disk arrays, D D2 and 8mm magnetic tape, and such parallel file systems as IBM's
PIOFS and Vesta. This system runs on single processors, heterogeneous collections
of Unix workstations, and high performance parallel architectures such as the IBM

2

USER APPUCATION

, .• .

•r

supported unsupported

ODMG C++ BINDI

•

Figure 1: The solid-arrow path is the subject of this paper. Unsupported ODMG
features are primarily those that require query processing. Persistence service fea
tures orthogonal to ODMG-93 include, for example, optional methods for multilevel
distributed storage management.

SP PowerParallel system. The features of this software are described elsewhere [3].
It is the portable ODMG-aware interface layer of this software that is the subject of
this paper.

Our primary goal in defining the interface has been to provide high-performance
access to the functionality of the underlying persistence manager, while maintaining
compatibility wherever possible with the C++ binding defined in the ODMG-93 stan
dard. Where this has not been possible, we have striven to carefully document the
differences and the reasons for them.

Along the way, we have tried to define and maintain a clear and consistent bound
ary between the ODMG-aware interface layer of our software and the underlying per
sistence manager. To this end, we have asked the question, "What is the minimal
interface that any persistence manager should support in order that it be possible
to build an ODMG-compliant database on top of it?" We have evolved an interface
that we believe is a viable first draft of an answer to this question. Figure 1 depicts
our vision of this architecture; its solid-arrow path is the subject of this paper. One
measure of our success is that it should be possible to implement our ODMG-aware
software on top of a wide range of lightweight object persistence servers other than
our own, as long as they are capable of supporting this minimal interface. To date,

3

"
Interface for ODMG Support Orthogonal Features Interface

LIGHTWEIGHT OBJECT PERSISTENCE SERVICE

we have tested this idea in two implementations, one using the Argonne Lightweight
Object Persistence Manager as the underlying persistence service, the other using a
locally enhanced version of the PTool[2] persistence software from the University of
Illinois at Chicago.

2 An ODMG-93 Interface Layer

2.1 An Example

Consider the following simplified example, compliant with the ODMG-93 Release 1.2
C++ binding. Note that conforming implementations need not require inheritance
from d_Object; ours, for example, does not. 1

typedef int eventDataj //Event constructor input, typedef'ed for simplicity
typedef int muonData; //Muon constructor input, typedef'ed for simplicity

class Muon : public d_Object {
public:

d_Long datal;
Muon(const muonData& inData);
methodl();

class Event public d_Object {
public:

d_Long datal;
d_Double data2;
d_String data3;
d_Set<d_Ref<Muon> > muons;

Event(const eventData& inData);
d_Long methodl();
friend ostreami operator«(ostreami, Event&);

};

void populate() {

d_Database db1;

dbl.open("Physics Simulations" , d_Database: :read_WTite) ;

ITry to overlook the distracting d_ prefix, chosen in ODMG-93 Release 1.2 to avoid name col
lisions. The standard-length types d..Long, d-Double, etc., were added in Release 1.2 to address
operation in heterogeneous environments, but int, double, and so on, are still supported.

4

d_Transaction a;

a.beginO;

d_Ref<d_Set<d_Ref<Event> > > allEvents = new(tdb1, "d_Set<d_Ref<Event> >")

d_Set<d_Ref<Event> >;

db1.set_object_name(allEvents, "Data Set 1");

d_Ref<Event> myEvent;

d_Ref<Muon> myMuon;

eventData inEvent;

int muonCount;

muonData inMuon;

while (cin»inEvent) {

myEvent = new(tdb1, "Event") Event (inEvent) ;

allEvents->insert_element(myEvent);

cin»muonCount:

for (int i=O: i<muonCount; ++i) {

cin»inMuon;

myMuon = new(tdb1, "Muon") Muon(inMuon);

myEvent->muons.insert_element(myMuon);

}
}

a.commitO;

db1. close 0 ;

}

void access() {
d_Database db1;
db1.open("Physics Simulations", d_Database: :read_only) ;

d_Transaction a;

a.beginO;

d_Ref<d_Set<d_Ref<Event> > > allEvents = db1. lookup_object ("Data Set 1");

cout«"There are "«allEvents->cardinalityO«" events in Data Set 1."« endl;
d_Ref<Event> myEvent;

d_Iterator<d_Ref<Event> > iter = allEvents->create_iterator();
while (iter.next(myEvent» cout« *myEvent «endl;

a.commitO;

db1. close 0 ;

}

void mainO {
populate 0 ;
accessO;

}

5

This example captures most of the functionality that users of our scientific data
stores demand. Its salient features are object class definitions that are valid C++,
Databases that may be opened in read-write or read-only mode, Ref-based access
to persistent data consistent with C++ pointer usage, support for object naming,
support for string storage and retrieval, and provision of collection classes and their
associated iterators.

Many C++-based lightweight object persistence managers support all of these
features, or are capable of delivering equivalent services. The problem has been that
each persistence manager seems to have its own idiosyncratic way of providing this
functionality.

2.2 Principles

A number of principles have guided our selection of ODMG-93 features for support
in the current version of our software.

Our aim has been to enable use of as much of the ODMG-93 C++ binding as
possible without requiring query parsing, preprocessing object schemata, or access to
compiler-generated run-time type information. We support

• 	 the d_Database class;

• 	 the templated collection facilities d_Collection<T>, d_Bag<T>, d_List<T>,
d_Set<T>, and d_VArray<T>, and their auxiliary iterator class d_Iterator<T>,
except for the four d_Collection<T> methods that require parsing OQL query
strings;

• 	 the time utility classes d_Date, d_Time, d_Timestamp, and d_Interval;

• 	 the d_String class;

• reference-based object 	access via the template class d_Ref<T> and the class
d_Ref_Any;

• 	 a rudimentary d_Object implementation (but classes need not derive from it
to be persistence-capable);

• 	 the semantics of d_Transact ions, and the use of d_Transact ions as scoping
rules.

Because we do not parse queries, the ODMG-93 class d_OQL_Query is not sup
ported, nor is the global d_oql_execute function.

The lack of schema preprocessing and the assumed lack of access to compiler
generated run-time type information have a number of implications. A beneficial

6

consequence of this approach is that users may allocate an object in persistent mem
ory without our software being aware of the object's schema. On the other hand,
there are ODMG non-compliance consequences as well: for example, while ODMG
93 prescribes that a d_Error object be thrown if an assignment of a d_Ref to a
d_Ref<A> is attempted when a B is not an A, we do not detect this problem. More
significantly, we do not support Relationships. Maintaining referential integrity of
this sort is the responsibility of the user.

Finally, while our architecture is capable of supporting transactions, we do not as
sume that the underlying persistence service has the requisite capability. Transaction
aborts and rollbacks, therefore, are not guaranteed to succeed.

We have attempted to be quite parsimonious in what we require of the underlying
persistence server. We require the existence of two classes, which we denote by Store
and Pptr, as underlying implementation classes for ODMG-93's d_Database and
d_Ref<T> classes, respectively. We assume that we can open and close a Store, and
allocate contiguous blocks of bytes therein. We assume that the persistence server
can convert a persistent pointer (a Pptr) that refers to an object in a Store into
a valid memory address of that object's image. Only a few additional features are
required; these are described in Section 3.

2.3 The Database Interface

An area in which there is considerable difference among persistence managers is the
interface to the underlying store in which objects are contained. The corresponding
ODMG-93 C++ class is a d_Database, defined as follows:

II based upon ODMG-93 Release 1.2, pages 134-135

class d_Database {
public:

static const d_Database* const transient_memory;
enum access_status {not_open, read_write, read_only, exclusive};

void open(const char* database_name,
access_status status = read_write);

void close();
void set_object_name(const d_Ref_Any& theObject,

const char* theName);
void rename_object(const char* oldName,

const char* newName);
d_Ref_Any lookup_object(const char* name) const;

private:
d_Database(const ~Database&);

7

d_Databaset operator=(const d_Databaset>;
};

We have implemented the d_Database class by mapping its open and close meth
ods to those of an underlying Store, and by building support for object naming as a
layer above the underlying persistence service. We have added a create method, so
that a d_Database can be created under program control, even though database cre
ation is outside of the scope of the ODMG-93 specification. We have also addressed
minor problems in the specification (so that, for example, allocation of objects in
transient memory can occur without complaints about violating const-ness).

2.4 References to Persistent Objects

In the ODMG-93 standard, the template class d_Ref<T> captures the semantics of
referring to persistent objects. The primary mechanism is the overloaded -> oper
ator, which does whatever is necessary to return a valid T* from a d_Ref<T>. The
d_Ref_Any class provides an untyped reference to a persistent object, for use in such
contexts as object naming (e.g., d_Database : : set_object_name(const d_Ref_Any&
theObject J const char* theName)). We have implemented these classes by means
of a private Pptr data member, where the Pptr is an instance of the underlying per
sistence manager's persistent pointer class. The features required of this Pptr class
(e.g., assignment, comparison, distinguished null value) are straightforward, and are
described in more detail in Section 3.

2.5 Collections and Iterators

The ODMG-93 specification defines a d_Collection template class, with template
classes d_Bag, d_List, d_Set, and d_ VArray derived from it, and an auxiliary iterator
class d_Iterator. In its Release 1.2 revision, the specification has been adapted for
compatibility with the C++ Standard Template Library.

Although many persistence managers offer their own collection capabilities, we
have chosen, for the sake of portability, to implement collections at a level entirely
above that of the persistence server, using only the server's persistent memory alloca
tion capabilities. While there are some ambiguities in the ODMG-93 collection class
specifications, these have nothing to do with the feasibility of implementing them on
top of most persistence managers. As noted above in Section 2.2, the only unsup
ported features of ODMG collection classes are the four methods (select_element,
select, query, and exists_element) whose implementations require the ability to
parse OQL query strings.

8

2.6 Utility Interfaces: Time Facilities and Strings

ODMG-93 provides date and time capabilities by means of the four classes d_Date,
d_Time, d_Timestamp, and d_Interval. In our implementation, these classes use
ANSI C time functions, and require nothing of the underlying persistence software.
The d_String class provides rudimentary string functionality; its implementation
requires only that the persistence software accept calls to allocate and free contiguous
blocks of bytes.

2.7 Transactions

Transactions play multiple roles in the ODMG-93 specification. They are imple
mented in the C++ binding by the d_Transaction class:

II based upon ODMG-93 Release 1.2, pages 132-134

class d_Transaction {
public:

d_TransactionO;
-d_Transaction();

void begin();
void commit();
void abort();
void checkpoint();

private:
d_Transaction(const d_Transactiont);

d_Transactiont operator=(const d_Transactiont);

};

Transactions provide the context for acquiring locks on objects, and set the bound
aries for aborts, checkpoints, and commits. They also provide scoping rules that de
termine how long ad_Ref, or a pointer or reference returned from it, is valid. The
ODMG-93 specification supports nested transactions.

Our implementation does not assume that the underlying persistence service is
capable of supporting transactions. There is, nonetheless, a need for scoping rules-a
user's method that requires a T* as an argument, for example, should have a means to
ensure that the pointer returned by ad_Ref <T> can be trusted throughout the execu
tion of the method. Our implementation allows the use of d_Transaction: :begin()
and d_Transaction: : commit () to provide a scope in which pointers from d_Ref<T>s
must remain valid.

9

2.8 Orthogonal Persistence: the d_Object Interface

The ODMG-93 C++ binding defines a d_Object class from which persistence-capable
classes may be derived. The interface definition is as follows:

II based upon ODMG-93 Release 1.2, pages 118-119

class d_Object {
public:

d_Object 0 ;
d_Object(const d_Object &);

virtual -d_ObjectO;
d_Object& operator=(const d_Object&);
void mark_modified();
void* operator new(size_t size);
void* operator new(size_t size, const d_Ref_Any& cluster,

const char* typename);
void* operator new(size_t size, d_Database *database,

const char* typename);
void operator delete(void*);
virtual void d_activate();
virtual void d_deactivate();

};

The standard also points out, however, that implementations need not require
persistence-capable classes to be derived from d_Object, and it is this tack that
we have taken. We have supported only a trivial resolution of class d_Object, and
have provided equivalent new operators as global methods, for the sake of allowing
allocation of arbitrary class instances in persistent memory.

3 A Minimal Persistence Server Interface

The d_Ref implementation requires access to the underlying persistence server via a
data member of class Pptr having at least the following interface:

class Pptr {
public:

pptr(void* ptr);
pptr& operator=(const Pptr& pp);

friend int operator==(const Pptr& pptrL, const pptr& pptrR);
void* convert();
void free(unsigned int size = 0);
int is_transient() const;
int is_null() const;
void clearO;

10

void lock(unsigned int size = 0);

void unlock(unsigned int size = 0);

static void unlockAll();

};

A Pptr must be able to point to a transient object.
The convert method dereferences the Pptr, and is the Pptr equivalent of the ->

operator for d_Refs.
The Pptr(void* ptr) constructor is the inverse of convert-it returns a Pptr

which, when dereferenced, points to the same storage as ptr. This must work even
when ptr points to transient memory.

The is_transient tests whether the Pptr points to an object in transient mem
ory. This method would not be necessary if the persistence manager supported a
distinguished Store corresponding to transient memory, but we have, for the sake of
portability, chosen to implement transient memory object allocation without relying
on the underlying persistence software.

The clear() method sets the Pptr to a distinguished null value. The is_null()
method returns TRUE if the Pptr is null, FALSE otherwise. (This is not quite a
minimal interface, since one could presumably check whether a Pptr A is null by
comparing it, via the operator ==, to a separate Pptr B that has been cleared.)

The lock methods support locking of contiguous blocks of bytes in memory, and
are used, for example, to ensure that a pointer obtained by the ODMG-93 d_Ref<T>
ptr() method remains valid.

The free method is used to allow the underlying persistence manager to reclaim
space; this may occur, for example, when a d_String grows and no longer fits in its
earlier location. We invoke the free method as a courtesy; whether such space is
actually reclaimed is immaterial to our implementation.

The d_Database implementation requires a Store class that supports at least the
following interface:

class Store {
public:

void create(const char* name);
void open(const char* name, const int iomode);
void close 0 ;
Pptr palloc(const int size);
int contains(const Pptrk pin);
Pptr root();

}

The palloc method allocates size bytes in the persistent store, and returns a
persistent pointer to those bytes.

11

4

The contains method was introduced to support ODMG-style clustering. It
returns TRUE if the Pptr corresponds to a location in the Store, FALSE otherwise.

The root method returns a Pptr to the location at which the first object in the
Store has been (or will be) allocated. This is used as an entry to the name table
needed by the ODMG-93 d_Database class. ODMG-93 provides access to root objects
via a lookup-by-name method, but in rudimentary storage managers, we need a way
to acquire a pointer to the collection in which to look up such names. (This would
not be necessary in storage managers that support root objects directly, nor would
it be necessary if we assumed the existence of a capability to externalize a Pptr, but
the latter strategy poses its own set of implementation issues.)

Note that database creation (and hence, Store creation) is outside of the scope
ODMG-93, but it was important to our suite of applications to allow d_Database
creation under program control.

Status

An early version of this software, conforming to a subset of the ODMG-93 Release 1.1
specification, has been tested using both the Argonne Lightweight Object Persistence
Manager and the UIC PTool persistence software as the underlying persistence layer.
The more extensive version described here is in use with the Argonne persistence
software on Argonne's 128-node IBM SP PowerParallel system and on several Unix
workstations. Current efforts are directed toward providing parallelism and access to
the persistence server's underlying multilevel storage allocation and management in
ways that are compatible with ODMG-93 compliance.

References

[1] 	 R.G.G. Cattell et aI, The Object Database Standard: ODMG-93 Release 1.2
(Morgan Kaufmann, San Francisco, 1996).

[2] 	 R. L. Grossman and X. Qin, "Ptool: a scalable persistent object manager,"
Proceedings of SIGMOD 94, ACM, 1994, page 510.

[3] 	 D.M. Malon, The Argonne Lightweight Object Persistence Manager (in prepara
tion, 1996).

12

