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Abstract 

It is proposed to observe the effects of the long range component of the nuclear 

force by making precise measurements of the angular distribution of the cross section 

of the low energy p-p scatterings. Parameters of the long range force determined by 

the analysis of the once subtracted Kantor amplitude of the S-wave are used to predict 

the pattern of the destructive interference arising from the repulsive Coulomb force 

and the attractive long range force of the van der Waals type. It is shown that the 

most favorable energy range to carry out the experiments is 11... = 25 ..... 30MeV., 'and 

the required accuracy of the measurement is higher than 0.08%, because the depth 
t' 

of the dip, which is characteristic to such an interference pattern, is -0.4%. Since 

the location of such a dip occurs at 12° of the scattering angle of the centre of mass 

system, measurements in the forward domain are necessary. Possible effects of the 

confirmation of the long range component of the nuclear force to the hadron physics 

are also discussed. 
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exchanges of a meson and a set of mesons with non-vanishing masses. Subsequent experi­

mental discovery of the pion made his theory convincing. Today it is customary to regard 

.the nuclear force as short range, and to retain only a few terms of the partial waves when 
t ' 
we ~alyse the data of the low energy nucleon-nucleon scatterings. 

On the other hand, in the most of the composite models of hadron, the constructive 

force among the constituent particles is the Coulombic type, and the long range force 

between hadrons emerges as a secondary force. To explain the situation of the appearance 

of the long range force, let us consider the dyon model of hadron due to Schwinger as 

a definite example. In such a magnetic monopole model of hadron[2], the constructive 

force is the super-strong magnetic Coulomb force acting between the constituent magnetic 

monopoles and the magnetically neutral composite system is identified with the hadron. 

This is analogous to the case of the ordinary atom, where the electric Coulomb force is the 

constructive force and the atom is, the electrically neutral composite particle. Therefore 

in the magnetic monopole model of hadron, we can regard the hadrons as the "magnetic 

atoms". Since we know that the van der Wa.aJs force is acting between atoms, we can expect 

that the same mechanism gives rise to the van der Wa.aJs force betweem the magnetic 

atoms, namely between the hadrons. 

Because of the charge quantization condition of Dirac, the electric charge e and the 

magnetic charge *e are quantized each other:[3] 

*ee n 
with n 0, ±1, ±2··· (1)nc 2 

the smallness of the fine structure contant, namely e2Inc = 1/137, implies the largeness of 

the unit magnetic charge, that is *e2Inc = 137/4. With such a super-strong funtamental 

Coulomb force, we can expect that the induced van der Waals force between hadrons 

still has the strength of the strong interaction[4]. Therefore there is no apriori reason to 



believe that the nuclear force is strictly short rather it belongs to the problem to 

be determined only by experiments. 

In this article, we analyse the low energy phase shift data of the proton-proton scat­

tering in search for possible long range component of the nuclear force, and also propose 

to measure precisely the angular distribution of the cross section in T/ab = 25 ..... 30MeV. 

region in search for the possible destructive interference pattern arising from the repulsive 

Coulomb force and the attractive long range force such as the strong van der Waals force. 

These two topics will be treated in Section 2 and Section 3, respectively. 

In order to fix the notation, we shall write the spectral representation of the scattering 

amplitude A(s, t), relation between the potential and the spectral function At(s, t') and 

the explicite form of the cross section, which is to be measured by experiments of the 

proton-proton scatterings. We shall start by introducing two kinematical variables v and 

8, they are the momentum squared and the scattering angle in the center of the mass 

system. In the p-p interaction, the potential is the sum of four terms: 

+ + + 

, where the first three terms of the r.h.s. are the Coulomb, vacuum polarization and the 

one-pion exchange potentials respectively, and their forms are already well known. For 

example VtJac( r) is[6] 

VtJac(r) =A~ roo dt + 2m;)V1 - 4m~ (3) 
r J4m~ t t 

• where me is the mass of the electron, and A= 2a/3'1r =1.549 X 10-3• Therefore what we 

are going to determine is the remainder Hereafter the tilde indicates the quantities 

in which the Coulomb, the vacuum polarization and the one-pion exchange contributions 

are separated. It is convenient to represent the potential as the superposition of the states 

exchanged with mass #: 

11100- -.,fii 2V(r)=- M2- dt'Ac(s,t')e- r t with s=4M . (4) 
'Ir r 0 
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, in which s is fixed at the threshold value 4M2 in order to avoid the weak momentum 

dependency of the potential[17]. 

In the integral representation ofthe scattering amplitude A(±)(s,t), the same spectral 

function At(s, t') appears, namely 

A(±)(s,t) = 1 roo dt,At(s,t') ±.!:. roo du,Au(s,u') 
1(' Jo t' ­ t 1(' Jo u' u 

(5) 

, where the u-channel spectral function Au is the same as that of the t-channel, namely 

Au(s, *) At(s, The plus and minus signs between the integrations of Eq.(5) corre­

spond to the spin singlet and the spin triplet states respectively. The coefficient appeared 

in front of the integration of Eq.(4) can be checked by making the Fourier transformation 

f d3rexp[-iK.r'] ... of Eq.(4) to obtain the first term of Eq.(5), in which the momentum 

transfer vector K relates to the Mandelstam variable t by 

• 

t -IKI2 = -2v(1 ­ cos 8). (6) 

The second term of the r.h.s. of Eq.(5) is obtained by simply replacing t by u, where 

u -2v(1 + cos 8). 

In the lower limit of the integration is for the case of the meson theory, 

wherea.<> it is zero for the case of the long range potential, and moreover the asymptotic 

behavior of the potential VCr) "'" -C/ra is solely determined by the threshold behavior of 

the spectral function At(4M2 , t') 'lrC'tl"'f + . ". They are related by 

a 27+3 (7) 

and , 
(8) 

For the case of the van der Waals potential of the Casimir-Polder type, the power a of the 

potential is 7, therefore the power 7 of the threshold behavior of is 2.0. 

In Section 2, we shall search for the spectral function for small t' with the form of three 

free parameters: 

* 
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At (4M2,t') 1rC't"e-f3t' 

, by fitting to the once subtracted Kantor amplitude of the S-wave[7]. It turns out that 

"y :::: 1.55 '" 2.0, and it is consistent with the van der Wa.a.ls force. For wider range of t', the 

spectral function is reproduced well by a functional form with more parameters, and we 

shall use these parameters when we calculate the interference pattern in Section 3. They 

ill' 
are : 

+B3t3e-f3bt in t < 16'!'A 
t
(4M2 t):::: { (A2t2 + (10)

1r ' (,.,6 in t > 16L..J=2 

, where the values of parameters are 

f3o. :::: 0.346, A2 0.603, A3 = -2.824 X 10-2 

f3b :::: 3.20 x 10-4 , B3 1.625 X 10-4 

f3e 0.0124, C2 = 3.889 X 10-2, C3 :::: -4.517 X 10-3 

C4 = 1.638 X 10-4, Cs :::: -1.170 X 10-6 , C6 :::: 1.862 X 10-9 

, hereafter units of masses are the mass of the neutral pion, unless the use of other unit is 

stated explicitely. 

Finally, it will be helpful to write the differential cross section 0'(0) ofthe proton-proton 

scattering explicitely[8]. 

vO'(8) 

+2exp[i6~J sin 6~ + aeven(z)12 + 
'* 3+ :I1/t(O) +68tcz +aodd(z)!A: +6. (11) 

, where 6tc is the central P-wave phase shift, and 6. is the contribution from the noncentral 

amplitUdes, which do not interfere with the Coulomb amplitude. a even and aodd come from 

the higher partial waves other than the OPE contributions. rand p are the spin singlet 

4 

and the spin triplet amplitudes respectively, which arise from the Coulomb and the one­

pion exchange potentials. If we use variables s = sine8/2), c cost0/2) and 17 

their explicite forms are 

reO) = 


!l2 {..;. exp[ -i17ln s2] +~ exp[ -i17ln e2l} + 

s c 


2 1 1 2 1
+ / MJV{(- + - -Qo(1 +-)}
1 - t 2v 2v 

and 

2!l{ ~exp[-i17lns2] ~ exp[-i17In c ]} + 
2 s e 

/2 1 1 6 1

-MJV{(- -Ql(1 + -)z}
3 1-t 2v 2v 

,where VL is the velocity in the labratory system. In the one-pion exchange (OPE) terms, 

the Sand P waves are subtracted. 

In summary our task is to observe the effects of the singularity at t 0 in the forward 

region, and in particular for the case of the van der Waals force of the Casimir-Polder 

type, the form of the singularity is C't2 ln( -t). 

2. The Kantor Amplitude Simplified 

In this section, we shall consider scatterings by a short range potential, and inclusion 

of the Coulombic potential will be done only in the final part of this section when we 

tabulate the Kantor amplitude of the S-wave of the p-p scattering. It is well-known that 

H1Xt(v) = v / 2 cot 6t(v) 

is regular at v :::: 0, and can be expanded in terms of v. Partial wave amplitudes relate to 

the phase shifts 6t{v) in the elastic region by 

sin6t(v). (15) 
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From Eqs.(14} and (15), 

ht(v) v'M2+V 
-;;r- = Xt(v) - iyIV vl 

Since we analyse the S-wave amplitude in this paper, we set l :::: 0 hereafter, however 

equations for the higher partial waves are recovered if ho(v) is replaced by ht(v)/vt . The 

integral representation of the partial wave amplitude is 

11-0./4 1m ho(v')d' 11000 1m ho(v')d ' ho()v::::- v+- v 	 (17)
11" -00 (II'-V) 11" 0 (v'-v) 

where Va is the smallest mass of the excha.nged states. The right hand cut ( v > 0 ) is the 

unitarity cut and whose spectral function Imho(v') is determined directly from the phase 

shift data. By collecting the terms, which a.re calculated from the experimental data, in 

the integral representation of Eq.(17), the Kantor amplitude Ko(v) is introduced by[9] 

.!:. t JO 1m hO(II') dll'Ko(v) :::: 	 (18)
11" 10 (v' - II) 

and EQ.n7) becomes 

Ko(v) = 	1 ro./4 1m ho(v') , 

11" Loo (II' - v' dll . 


Equation(19) indicates Ko(v) is regular at v :::: 0, and the nearest singularity occurs 

at II -a/4. For p-p scattering, a = JL5, where JLo is the mass of the neutral pion. 

When we need the wider domain of analyticity, we subtract the contribution of the one­

pion exchange, then a moves to 4JL5, which corresponds to the threshold of the two-pion 

exchange spectrum. When we calculate KO(II) for real positive values of v, we must 

evaluate the pricipal value integration in Eq.(18), however the direct numerical integration 

is extemely difficult because the "anti-bound state" causes the rapid change of oo(v), and 

it does not respect the ordinary threshold behavior except in the region of extremely small 

value of v. 

However the difficulty is bypassed, if we first calculate K~JI (v). We introduce a poly­

nomial X~JI(v), which is the effective range expansion of Xo(v) defined in Eq.(14). h~JJ(v) 

and K~ff(lI) are obtained from Eqs.(16) and (18) simply by substituting Xo(v) by X~ff (v). 
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We point out that from h~JI (v) is a meromorphic function* on the k-plane, where 

k:::: yIV. The upper half k-plane corresponds to the first sheet of v. We claim 

Keff (v) = L Res(h~JJ(Vi» 	 (20) 
o i (v - vi) 

,where Res(h~ff(Vj» are the residues of the poles, and the sum extends to all the poles 

on the first sheet of v. This is shown by writing the Kantor amplitude in the form of the 

contour integration : 

Ko(v) 	 -~ rdv,ho(v') (21)
211",1c v' v 

, where the contour C is given in Figure 1. When Xo(v') is a polynomial of v', such as 

X~JJ(v'), then the singularities in the closed contour C are the poles of ho(v). There­

fore we can evaluate the contour integration by using the positions of the poles and 

their residues. The numerical evaluation of the correction to K~JI(v) to obtain Ko(v) 

is straightforward, because the spectral function of the principal value integration is 

- h~JI(v'», which does not involve the dominant effect of the "anti-bound 

state" . 

Finally, in order to guarantee the convergence of the integral representation Eq.(17) of 

the S-wave amplihide, we shall consider the once subtracted form of the Kantor amplitude 

K~l)(V), which is 

K~l)(V) == Ko(v) Ko(O) (22) 
v 

From the effective range parameters and the phase shift data, we can determine the precise 
,

values of the once subtracted Kantor amplitude K~l)(V) by 

= L Res(h~JJ(Vi» +[~K~l)(v)lR +[~KJl)(V)]I 	 (23) 
i Vj(v-Vj) 

, where the corrections consist of two terms, which come from the real and imaginary part 

of (ho(v) - h~JI(v» respectively. They are 

·Strictly speaking, this is true in the nonrelativistic approximation in which ../m2 + II in Eq.{16} is 
repla.ced by m. 
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[aK~l)(V)]R = Re(ho(v) - ho(O) hgff(v) hgff(O) (24)v v) 

, and 

= !:.. (00 Im(ho(v') h~ff(v'» dv' 
1(" 10 v'(v' v) 

, where P stands for the principal value integration. 

Inclusion of the Coulombic force is not difficult and is publised in a separate paper[7]. 

Using the phase shift data of the Nijmegen group[10][1l] supplemented by the data of 

Arndt et. al.[12][13][14] in the higher energy region, the Kantor amplitude was calculated 

and tabulated. In Table 1, the once subtracted S-wave Kantor amplitude K~l)(V) is given, 

in which the one-pion exchange contribution is subtracted. We can use the Table of the 

Kantor amplitude, as in the same sense as the phase shift 01(v) or the effective range 

function Xo(v) introduced in However is more suitable to investigate the 

property of the potential acting between protons, because the spectral 

is related to the Kantor amplitude by 

k~l)(v) = roo dt'At(4m2, t')~ [4
1 

log(1 + 4~) - -t~]' (26)10 v v t 

, where the tilde indicates the subtraction of the one-pion exchange term. Equation (4) 

indicates the potential is the Laplace transformation of the spectral function appeared in 

Eq.(26). Therefore the Kantor amplitude and the nuclear potential are related linearly 

by the mediation of the spectral function At (4m2,t'). This is the merit to use the Kantor 

amplitude rather than the phase shift or the effective range function because the 

phase shift is disturbed by the "anti-bound state". Concerning the effective range function 

we can not separate the one-pion exchange term from Xo(v) without knowing the finite 

back ground term of the pion pole. We emphasize that the separation of the OPE term is 

important to expose the effect of the long range force, and to make it easy to obseve it. 

Figure 2 and 3 are the curves of k~l)(V), in which we can see an huge cusp of the 

attractive sign at v 0, which can not be attributed to the short range force of the 

two-pion exchange. Using Eq.(26), we searched the spectral function from the data of 
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the Kantor amplitude, the results are given in Eq.(lO). In figure 4, the spectral function 

At(4M2, t) devided by t is shown. Figure 5 is the graph of the once subtracted amplitude 

of A(s,t), namely of 

A(s, t) A(s,O) _ 1 roo ,At(s,t') 
(27)t -;10 dtt'(t'_t) 

,where s is fixed at 4M2. 

3. Angular Distribution of the Low Energy p-p Scattering 

Since we have determined the spectral function At(4M2 , tt), which is given in Eq.(10), 

we can evaluate the angular distribution of the low energy proton-proton scattering. In 

order to observe the destructive interference pattern[15] arising from the long range force 

of the attractive sign and the repulsive Coulomb force, we must first construct the cross 

section O'extrap (v,8), which is expected to occur if the nuclear force is the short range 

nature and the amplitude does not posess the singularity at t = 0. In the meson theory of 

the nuclear force, the nearest singularity of the amplitude A(s, t) occurs at t = 4 , which 

corresponds to the threshold of the two-pion exchange. Therefore on the compex z-plane 

the amplutudes A(s,t) are regular in 

-(1 +2/v) < z < (1 +2/v). (28) 

and for the low energy scattering ( v < 1 ), we have wide domain of analyticity, and the 

amplitude in the physical region -1 ::; z ::; 1 can be reproduced well by a few terms of a 

polynonial of z. 

On the other hand, if the long range force is involved, the amplitudes have singularities 

at t =°and at u = 0, namely in terms of the z variable the singularities occur at z ±1. 

To confirm the long range force is to observe the singularities, whose locations are at the 

end points of the physical region, by comparing the amplitude with what is expected in 

the case of the short range force. For such a purpose, after we obtain the precise data 
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of the cross section of the angular distribution, what we have to do are the followings. 

Firstly, we divide the data into two groups, the forward group ( 0 ~ Omin ) and the middle 

angle group ( Omin < 0 ~ 90° ). Secondly by using the formulae of the cross section of 

Eq.(l1), we make the exprapolation of the cross section from the middle angular region 

to the forward region. When we use Eq.(l1). Oeven and 00dd are the polynomials of z of 

the even power and the odd power respectively, and whose coefficients are fixed by fitting 

to the data in the middle angular region. Thirdly we take the difference of the measured 

cross section and the extrapolated cross section in the forward region: 

.t1.u(v,O) =u(v,O) - ueztrap(v, 0). (29) 

When the destructive interfererce exits a negative cusp in .t1.u(v,O) must appear at 

o O. If we consider'the ratio R(v, 0) 

R(v, 0) = .t1.u(v,O)/u(v,O) (30) 

, the cusp changes to a dip in the forward region, because of the Coulombic terms in 

u(v, 0). In order to find the most suitable energy region and the required precision of 

the measurements, the ratio R are calculated for various incident energies TiaD' In the 

calculation the ampltides ...1(+) and ...1(-) of Eq.(5) are evaluated by using the spectral 

function of Eq.(10) determined from the Kantor amplitude, and then the cross section is 

determined from in which a's are chosen to be 

Oeven ...1(+) - (polynomial of z2) 

and 

00dd = .4:(-) z(polynomial of z2) 

, where the polynomials are to be subtracted to minimize the deviatin of .t1.u from zero 

in the middle angular region. The patterns of R turn out to be common, namely in the 

middle region of the angle Omin < 0 < 1800 
- Omin , R is close to zero, as it must be, 
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and on the other hand R has a dip in the forward region whose minimum occurs around 

o= 12°. The depth of the dip depends on the energy T,ab. 

The favorable energy range to measure is relatively narrow: 

25MeV. ~ T'ab ~ 30MeV. (31) 

To understand the situation, four figures (fig.6 '" fig.9) of .t1.u(v,O)/u(v,O) are shown for 

fiexd energies of 20, 25, 30 and 40 MeV. respectively, in which minimum angle of the 

middle angular region is chosen to be Omin = 30°. The depths of the dips are -0.15%, 

-0.26%, -0.42% and -0.29% respectively. Since the strength of the singularity at z 

is proportional to v2 for the case of the van der Waals force of the Casimir-Polder type, 

as the incident energy decreases it becomes more and more difficult to observe the dip 

of the destructive interference. However the higher incident energy does not necessarily 

mean the easiness of the observation of the dip, as we can see the situation in the figure of 

T'ab = 40MeV.. It is true that for fixed Lma:s;, the highest power of the polynomial fitted 

to the amplitude ...1(s,t) in the middle angular region, the depth of the dip increases with 

the energy. However the error in the middle angUlar region also increases and exceeds 

the allowed limit, and therefore we must increases Lmaz by one, namely in this case Lma:s; 

must be changed from 4 to 5. Then as the figure of Tiab = 40MeV. indicates, the depth 

changes from -0.82% to -0.29%. Therefore there is no merit to increase the incident 

energy Tlab, moreover in general as the energy increases the uncertainty in the estimations 

of the non-central amplitudes also increases. From these reasons, the recommended energy 

is ristricted to somewhere around Tiab 25", 30MeV.. 
.. 

The figure of T'ab = 25MeV. indicates that the requirement of the precisins are 0.05% 

in 30° < 0 ~ 90° and 0.06% in the forward region of 0 < 30°, because the depths and 

the locations of the bottoms are -0.27% and 12° for Lma:s: =3, and -0.26% and 14° for " 
Lma:s: = 4 respectively. And in order to see the bottom, measurement of the small angular 

region down to 0 = 10° is essential. In the same way, for Tiab = 30MeV. the required 

precisions are 0.05% in 30° < 0 ~ 90° and 0.10% in the forward region of 0 < 30°, because 
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the depths and the locations of the bottoms are - 0.42% and 12° for Lmo:z: = 3, and -0.42% 

and 13° for Lmo:z: = 4 respectively. In this energy, measurements of the cross section in 

the smaller angular region is also required. 

In this way, we found that in order to confirm the destructive interference pattern 

of the attractive long range force of the nuclear interaction and the repulsive Coulombic 

force, two rather challenging requirements must be fulfilled, namely one is the precision 

(0.05%), and the other is the measurement of the forward region (down to 10° of the 

scattering angle of the center ofthe mass system). However there is one thing to make the 

experiments easier, since we are going to measure the shape of the interference pattern, 

the high precision of the normalization of the incident beam is not necessarily required. 

4. Conclusions and Comments 

In the hadron physics, the low energy proton-proton scattering occupy a special posi­

tion because of its high precision of the measurement, in fact in some of the measurements 

of the cross section of the p-p scattering[21][221. the accuracy exceeds 0.1%. I think we 

are now approaching to the point where we can confront the high precision data with the 

fundamental assumptions of the hadron. physics, such as the structure of the spectrum. 

By using the phase shift data, the once subtracted S-wave Kantor amplitude 

is calculated Table 1 and figures 4", 5). k~l)(v) has the characteristic cusp at v = 0 

of the long range force of the attractive sign. Various types of searches of the spectral 

function At to fit to the Kantor amplitude have been carried out. It turns out that the 

power 'Y of the threshold behavior is 1.55 "" 2.0. In terms of the asymptotic behavior of 

the potential V(r) rv -C/ra there remains only two possibilities a 6 and a = 7, if the 

power a is to be an integer, they corresponds to the van der Waals potential of the London 

type and the Casimir-Polder type respectively. If we consider the universal nature of the 

van der Waals interaction, we can expect that the forces of the same type must appear 

in other reactions such as '/f-N and '/f-'/f. However since the accuracy of the measurements 
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of such reactions are not very high, we must subtract the two-pion exhange spectrum in 

order to observe the effects of the long range IOrces.[H!JI 

The type of the singularity in the amplitude A(s, t) at t =0 is specified by the thresh­

old dehavior of the spectral function. For the case of 'Y = 2, the leading singularity is 

C't2 ln( -t). If we substitue t = -2v(1 z) into the amplitude, the leading singularity 

becomes 

A(s, t) = 4C'v2(1- z)2In(2v) +4C'v2(1 - z)2In(1 z) + .... (32) 

The first term of the r.h.s. becomes the singularity of the type v2 ln v in the partial wave 

ampitudes, whereas the second term is the singularity at z =1. In this paper, we proposed 

to observe the latter singularity as the inerference pattern with the Coulombic term. The 

importance of measuring the angular distribution in search of such an interference is that 

it can be done by a single experiment, whereas the phase shift function and the Kantor 

amplitude are obtained by the analysis of several different experiments. 

At this point I must emphasize that the long range force observed in the Kantor 

amplitude is not a sma.ll correction to the short range force in the nuclear force. This is 

because the total value of the once subtracted Kantor amplitude of the S-wave at v = 0 is 

-12.02, while the contribution[16] from the one-pion exchange is -7.20, and the remainder 

-4.82 is attributed to the long range force. 

Finally, when the strong van der Waals force appears in the hadron-hadron interaction, 

and the van der Waals force arises as the secondary force of the basic Coulomb interac­

tion between the constituent particles, it is tempting to regard the 'charge' of the basic 

Coulombic force as the colour. However after the strength C of the van der Waals potetial 

is known, there is a lower bound of the coupling constant *e2 of the basic Coulomb force, 

which is around 10. Therefore the coupling constant of the QCD seems to be too small. 

On the other hand Dirac's magnetic monopole, whose coupling constant is *e2 137/4, 

will be a good candidate[2]. Therefore the confirmation of the long range force in the 

nuclear force ma.y cause a drastic change of the hadron physics. 
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Figure Captions 

Fig.1 The contour C ofthe integration on Vi in Eq.(21). 

Fig.2 _{K~ll(v) K~ll·l1f(v)} is plotted against T'ab. The curve is the column [.c30] 

of Table 1. The dash curve is the one-pole fit to the data in 50Mev. < 11ab < 240Mev. 

with an additional back ground constant. 

Fig.3 . Amplified graphs of the low energy region in the box of fig.2. are displayed. 

The curve is [.c30] of Table 1, whereas the the open circles and the closed circles are the 

column [.c25] and of the Table 1, respectively. The dash curve is the same as that 

of fig.2. The cusp at v 0 indicates the long range force with attractive sign. 

Fig.4 The spectral function At(4M2,t) devided by t is plotted against t. 

Fig.5 The once subtracted amplitude (A(s,t) - A(s,O»/t is plotted against -t, where 

s is fixed at 4M2. 

Fig.6 The interference patterns l:!..a / a are plotted against ()cm' The incident energy 

is T'ab 20MeV. . Lma:z: is the power of the polynomial of z fitted in the middle angular 

region of 300 
:::; () :::; 1500 

• 

Fig.7 The same graph as fig.6 for 11ab =25MeV.. 

Fig.8 The same graph as fig.6 for 11ab = 30MeV.. 

Fig.9 The same graph as fig.6 for 11ab =40MeV.. 

Table Caption 

Table 1 The first column is the incident energy T'ab in Mev.. The second column 

is Xo(v) . The third, fourth and fifth columns are {Ka1l(v) K~ll·l1f(v)}, in which the 

adopted effective range parameters are obtained by fitting to the data in 0.25 :::; 11ab :::; 3.0 

, 0.30 :::; 1iab :::; 3.0 and 0.35 :::; T'ab :::; 3.0 in Mev. respectively. The sixth column is the 
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error of and which is useful to estimate the error of the once subtracted Kantor 

amplitude, namely 

I. 

.. 
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Table 1. 

llab(Mev.) XO(II) 
Ka1)(11) Ka1),11l'(1I) 

t::.ho(11)/11
[.c25J [.c30] [.c35] 

0 .18716 -4.8701 -4.8238 -4.8172 ... 
1 .21158 -4.6629 -4.6344 -4.6303 . 102 + i.223 
2 .23610 -4.4856 -4.4693 -4.4670 .061 + i.168 
3 .25950 -4.3394 -4.3293 -4.3279 .027 + i.121 
4 .28315 -4.2302 -4.2226 -4.2215 .001 + i.083 
5 .30665 -4.1402 -4.1343 -4.1335 -.019 + i.053 
6 .33008 -4.0502 -4.0453 -4.0446 -.028 + i.034 
7 .35344 -3.9752 -3.9710 -3.9704 -.028 + i.026 
8 .37677 -3.9084 -3.9047 -3.9042 -.022 + i.026 
9 .40008 -3.8447 -3.8414 -3.8410 -.014 + i.027 
10 .42344 -3.7858 -3.7829 -3.7825 -.010 + i.026 
12 .47017 -3.6810 -3.6785 -3.6782 -.007 + i.018 
14 .51702 -3.5886 -3.5865 -3.5863 -.005 + i.014 
16 .56406 -3.5053 -3.5034 -3.5032 -.004 + i.012 
18 .61135 -3.4292 -3.4275 -3.4273 -.003 + i.011 
20 .65899 -3.3589 -3.3574 -3.3572 -.003 + i.011 
22 .70704 -3.2933 -3.2918 -3.2916 -.002 + i.011 
24 .75559 -3.2305 -3.2291 -3.2289 -.002 + i.Oll 
26 .80471 -3.1707 -3.1694 -3.1692 - .001 + i.009 
28 .85449 -3.1126 -3.1113 -3.1111 -.000 + i.OO8 
30 .90502 -3.0508 -3.0496 -3.0495 .0001 + i.0073 
40 1.1766 -2.8235 -2.8224 -2.8223 . 0008 + i_0052 
50 1.4735 -2.6650 -2.6642 -2.6641 .0009 + i.0043 
60 1.7949 -2.5299 -2.5293 -2.5292 .0014 + i.0030 
70 2.1749 -2.4075 -2.4070 -2.4069 .0016 + i.0024 
80 2.5366 -2.2962 -2.2958 -2.2957 .0016 + i.0022 
90 2.9706 -2.1948 -2.1944 -2.1943 .0016 + i.0021 

100 3.459 -2.1019 -2.1015 -2.1015 .0016 + i.0019 
120 4.662 -1.9396 -1.9393 -1.9392 .0018 + i.0015 
140 6.296 -1.8009 -1.8006 -1.8006 .0019 + i.0012 
160 8.66 -1.6803 -1.6801 -1.6800 .0020 + i.00l0 
180 12.4 -1.5742 -1.5740 -1.5739 .0019 + i.0007 
200 19.3 -1.4797 -1.4796 -1.4795 .0018 + i.0004 
220 36.1 -1.3951 -1.3949 -1.3949 .0016 + i.0002 
240 142. -1.3185 -1.3184 -1.3184 .0015 + i.OOOI 

.) 
1m v' l!' 

"" 

.1V Vp' 
x 

1Re ViVp ~l. tl .. 
0 

I 
x 

*Vpl 

Fig 1 
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