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Abstract 

Einstein r S radiation formula is supported by the Taylor-Hulse Expe

riment, although its derivation is not self-consistent. It is further 

confirmed, as discovered by Einstein, that his radiation formula is not 

compatible with his field equation. As suggested by Einstein r sown 

remark, modifications to the source tensor are necessary. Based on the 

Taylor-Hulse experiment, a theory is developed within the theoretical 

framework of general relativity. And the radiation formula remains the 

same for the binary stars. Concurrently, it is determined that, due to 

radiation, the source tensor is not zero in a vacuum. Anti-gravity coupl

ing, discovered by Pauli as a possibility, is a necessary feature. Also, 

the current theory of linearized gravity is not valid for radiation. 
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EINSTEIN'S RADIATION FORMULA 


AND 


MODIFICATIONS IN THE EINSTEIN EQUATION 


I. Introduction. 

General relativity suggests the existence of gravitational waves 

(1,2). Although gravity waves have never been directly observed, the 

Taylor-Hulse experiment supports energy loss by gravitational radiation 

(3,4). While Einstein's radiation formula is supported by the observed 

data (3), one should not consider this as a verification of Einstein's 

gravitational radiation theory (see §II and §III) because his theory does 

not produce the radiation formula in a self-consistent manner (4,5). 

Instead, one should first identify the problems in its derivation and 

deduce its theoretical implications. Accordingly, to support the radiat

ion formula, one may attempt to develop a self-consistent theory within 

the theoretical framework of general relativity. 

Einstein's radiation formula is based on his notion of energy

momentum components of the gravitational field, a pseudotensor tab(g) 

(6) . Since his theory is not covariant, doubts have been raised by Lorentz 

(7), Levi-Civita (8), and Einstein (9) himself. Moreover, it has been 

proven by Denisov et. al. [10) that the radiation formula is not an in

variant; and the rate of energy emission, depending on the choice of the 

system of coordinates, may be positive, negative or zero. It seems, only a 

covariant theory can be valid in physics (see Appendix A). Moreover, 

linearized gravity necessarily implies the linearized conservation law. 
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This law implies no radiation [4,5) . Thus, it seems, there was little hope 

to develop a self-consistent theory to support Einstein's formula. 

Then, in the question of radiation, theorists seem to be divided 

into three schools. One school is happy with the radiation formula and 

accepts the 1 imi tations 0 f Einstein r s theory [11). Another school would 

develop a theory within the theoretical framework of general relativity 

[4,12). But, some has gone so far as to justify an alternative gravity 

theory (13). The crucial question, whether Einstein's radiation formula 

can be supported by a self-consistent theory, has not been answered. 

However, as noted by Einstein (14), linearized gravity is not reli

able. Recently, it is found that the principle of equivalence is also a 

crucial requirement for a physical coordinate system, and therefore a 

gauge condition may not be valid (15). Then, it becomes clear that a pre

viously seemingly impossible task would be feasible (see §II, §III and 

§IV). Although a covariant theory does not produce the same radiation 

formula, as far as agreements with data, it is sufficient to show that 

their rates of energy loss, on the time average, are the same. 

In this paper, it will be shown that the radiation formula has im

portant implications (see §III). Because of radiation, the source in a 

vacuum is necessarily not zero. Anti-gravi ty coupling, which is a possi

bility pointed out by Pauli (6), is a necessary feature. The linearized 

gauge is incompatible with the radiaton formula. Moreover, Einstein's 

radiation formula can, indeed, be supported wi th a self-consistent 

theory within the theoretical framework of general relativity_ 
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II. Derivation of the Radiation Formula and Self-consistence. 

To support Einstein r s formula, it would be necessary to identify the 

causes of inconsistence in the derivation. Then, necessary approaches 

and methods can be developed for a supporting theory_ 

First, the non-linear Einstein's field equation reads 

1 
Gab - Rab - "T R9ab = - K Tab , (la) 

where its source K Tab generally depends on the space-time metric gab- The 

harmonic coordinate condition [2,16) is 

a ab1-axa( Ig I~g ) = 0, (lb) 

where 9 is the determinant of the metric. For weak gravity, it is con

venient to consider equations, which is expressed in terms of deviations 

Yab (= gab - nab) from the flat metric. Then, eqs. (la) and (lb) are 

respectively linearized to [2,4) 

- K Tab 
I 

where (2a) 

where 

and 

(2b) 

where 
1 

Y ab - Y ab - "T nabY , and Y - nabYab . 
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The linearized "gauge" (2b) sufficiently reduces (2a) to 

(2c) 

It thus follows from eq. (2b) that the linearized conservation law, 

aa Tab = 0 , (2d) 

is necessarily exactly satisfied. Note that eq. (2d) is also implied 

directly by eq. (2a) since aaGab(l) == o. 

The effective stress-energy tensor of the gravitational field, 

valid to second order, is assumed to be (4) (see also Appendix A) 

(3a) 

where 

( 2) :; G G ( 1 ) (3b)Gab ab - ab • 

Then, the rate of energy loss due to radiation is [4) 

dE 
(3c) 

where 

where the first integral is the total energy associated with Yab. Note 

that E is unchanged if the Landau-Lifshitz "pseudotensor" is used in eq. 
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To evaluate formula (3c), one must solve eq. (2c), and obtain 

(4a) 

where 
3 

R2 = ~ (xi - yi)2. 
i=l 

In the far field from the source, eq. (4a) can be approximated by 

(4b) 

3 
where r2 = ~ (xi)2. Then, one can use eq. (2d) to establish [4] 

1=1 

1 
(5)=""2"" 

Substituting (5) to formula (4b), one obtains, 

(6) 


Eq. (6) manifests that the metric is periodic for periodic motions. 

Then the rate of energy loss formula (3c) becomes 

(7) 

where qjk is the quadrupole moment tensor of the material system. Eq. (7) 

is the famed "quadrupole radiation" formula. In this derivation eq. (2c), 

eq. (2d), and eq. (3c) are the independent equations. 
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However, Einstein r s theory is not self-consistent. As pointed 

out by Wald (4) and Yu (5) that the linearized conservation law eq. (2d) 

implies that "two stars would not orbit each other but would move on 

geodesics of the flat metric." This means q r jk is zero and therefore no 

gravitational radiation. The usual formula for the rate of change of 

orbital period has been derived assuming eq. (7) without reference to eq. 

(2d) and the analysis by Peters and Mathews (17) is based on Newtonian 

orbits. That derivation is illegetimate as eq. (7) has been derived from 

eq. (2d). The claim that observed data from PSR1913 + 16 has verified 

Einstein r S gravitational radiation theory is therefore groundless (5). 

Nevertheless, this conclusion was not generally accepted [11), and 

some conjectured that this could be a matter of an appropriate approxima

tion for Einstein equation (la). The futility of such efforts is mani

fested in a concluding remark of Damour (18) that "nearly all aspects of 

approximation methods need to be thoroughly re-investigated." As noted 

by Einstein [14) in 1936 that eq.(la) and eq.(2c) are not compatible. 

To have radiation, as pointed out by Wald (4), one must obtain a 

gravitational acceleration. From the conservation law, 

o ;;:; V Tab ;;:; a Tab + pb Tac + pa Tcb (8)a a ac ac 

one can see that, for a first order approximation of the metric, the 

conservation law is accurate upto the second order. Thus, it is possible 

to describe gravi tational radiation based on a first order approximation 

of the metric~ On the other hand, one must also show that the linearized 
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conservation law (2d) is not necessary. In the derivation, eq. (2d) is 

used only to obtain eq. (5). Due to weak gravity, eq. (5) can be derived 

with VaTab = O. In this alternative derivation, the accuracy of Gab (2), up 

to second order of deviations, remains the same. Thus, eq. (2d) is indeed 

not needed to obtain the radiation formula. 

However, eq. (2a) directly implies eq. (2d). Moreover, although 

Einstein r s formula is based on the subsequent eq. (2c), "gauge condi tion" 

(2b) still implies eq. (2d). Thus, his radiation formula is not only inde

pendent of, but inconsistent with linearized gravity. Therefore, a nec

essary impl ication of his formula is that eq. (2c) should be justifiable 

without eq. (2b). Then, analysis by Peters and Mathews becomes valid. 

Because observation supports eq. (1) and therefore eq.(2c), it is 

necessary to mOdify eq. (Ia). Then one must show also such a modification 

is compatible with eq. (3c). Moreover, this can be done within the 

theoretical framework of general relativity. 

III. Modifications in the Einstein Equation. 

The existence of gravitational waves is due to physical considera

tions which are independent of Einstein's equation (1). Since such waves 

should carry energy-momentum (19), an expected modification would be 

that the source term should not be zero in a vacuum. This means that a 

source tensor due to gravity energy-stress tensor must exist. Moreover, 

such a tensor should have an anti-gravity coupling since gravity would 

not be self-generating. The radiation formula precisely confirm these. 
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In other words, while his radiation formula supports the Einstein tensor, 

it is necessary to modify the source tensor. 

Although Einstein (14) was aware of the inconsistency between his 

equation and his formula, due to a lack of an experimental evidence, he 

could not resolve this difficulty. However, as if to encourage a modifi

cation, Einstein once remarked that the left-hand side of his equation 

was granite, but the right-hand side (the source) was sand (20). 

In view of the fact that there is no existing gravity energy-stress 

tensor, it seems simple and natural to assume that the source tensor Tab 

is zero in vacuum. Now, let us show that such a current Einstein's field 

equation is not consistent with Einstein's radiation formula. 

Einstein equation can be written in an alternative form, 

Gab (1) = - K Tab = - K(Tab + tab) , (9a) 

where 

tab = Gab (2) /K . 
Then, 

aaTab = 0 (9b) 

is exact since aaGab (l) o. If the linearized gauge (2b), aaYab = 0, is 

applied, then eq. (9a) is reduced to 

(9c) 
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A formal "solution" of eq. (9c) would be as follows: 

(9d) 

where 
3 

R2 = L (xi - yi)2.
i=l 

In the right-hand side of (9d), the metric is implicitly included. Now, it 

seems, eq. (9b) implies that there is no difficulty to accommodate the 

linearized gauge (2b). 

However, the problem of compatibility with Einstein's radiation 

formula remains, unless the contribution of Tab dominates the effect of 

tab (= Gab (2)/K). If KTab is non-zero only in a finite region, then it is 

not clear whether the contribution of Ktab (= Gab (2) which may be non-zero 

almost everywhere) is negligible. Now, one can see that the contribution 

of a radiating Tab may not be dominating. 

It will be shown that, according to eq. (4a), the contribution of 

Gab (2) diverges. At large r, we have approximately [2,4J 

(ge) 

The contribution of (Gab (2) + Hab(l» to Ytt (xi,t) would be 

1 
[X + X J. (9f)

r:5a r>a 
Note that 

dr 
-4nX (9g)r ' r>a 
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for large a and xi near the origin. Thus, (9f) may not be mathematically 

negligible if the source has been emitting waves long enough (2], and 

diveJt{llbnce wotdd Occ.ult, 60 -long a6 the 60lJt'r,ce. i6 non-zeM oYttly in a (,i,nite !f,egwn. More

over, since such a divergence has nothing to do with the emmision process 

(2), the approximation is not valid in physics. 

ThuS, the problem of compatibility can be resolved only in terms of 

physics. The divergent contribution must be canceled by an additional 

source tensor which must be of second order and non-zero almost every

where in vacuum. From the viewpoint of physics, this should be the energy

stress tensor t(g)ab for gravity. These suggest the modified Einstein 

equation would be Gab = -K(Tab - t(g)abJ. Tensor t(g)ab should have the 

anti-gravity coupling because gravity should not be self-generating. 

Thus, the radiation formula implies that the assumption of a zero source 

in vacuum is incorrect; and current Einstein's equation is problematic 

for questions related to radiation. 

:r.loreover, if the metric is periodic, then a certain time average of 

GaO(l) is zero. It follows from eq. (la) that the time average of -Gao (2) is 

the time average of KTaO. Eq. (3c) implies that the time average of GrO (2) 

(where r is the radial direction) is non-zero in vacuum. This is supported 

by Einstein's own conclusion that based on exact solutions of his field 

equation, there is no radiation (14). Thus, eq.(3c) implies that the 

source Tab cannot be zero in vacuum. This is also supported by the fact 

that, in the literature [21], there is no exact physical solution of 

radiation when the source tensor in vacuum is assumed to be zero . 
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In conclusion, Einstein r s radiation formula implies that his field 

equation must be modified such that the source tensor is non-zero in 

vacuum. The detailed theoretical implications are the following: 

1) 	tab(g), the effective stress-energy tensor of the gravitational 

field, is actually a tensor. The assumption that Gab(l) = 0 in 

vacuum is equivalent to 

(10) 


Therefore, t(g)ab is actually a tensor although its approximation 

appears in eq. (3a) as a pseudotensor. This means that the 

covariant nature of general relativity is maintained. 

2) 	The coupling of tab(g) is anti-gravity_ Eq. (10) means that the 

factual assumption in vacuum is 

(11) 


Eq. 	(11) means that the tensor tab has anti-gravi ty coupling. Pauli 

(6) pointed out that general relativi ty does not provide a physical 

interpretation for the sign of the gravitational coupling 

constant. Thus, in principle, anti-gravity coupling is allowed. 

Now, this is necessary due to the radiation formula. Moreover, 

anti-gravity coupling is supported by the fact that the Einstein 

tensor of a gravitational plane wave has, on the average, a differ

ent sign from that of the massive matter [15,22). 

12 



3) Eq. (10) and eq. (11) imply that, in general, Einstein equation 

must be extended to the following form, 

(12a) 

where Tab(m) is the stress tensor for massive matter and tab(g) is 

for the field energy_ The term tab' as indicated in (9d), cancels 

the divergent integral. Now it is clear, if the stress tensor Tab is 

zero in vacuum, then it is not possible to have gravitational 

radiation since tab = 0 (see also [12,14)). Note that eq. (12a) 

extends the suggestion of Lorentz [7) and Levi-Civita [8J. 

4) Due to energy-momentum conservation, eq. (12a) implies 

(12b) 

and 

(12c) 

because of their coupling sign difference. Thus, for a point-like 

particle, the equation of motion is still a geodesic equation. 

Note that tab(g), being an energy-stress tensor, is not a geometric

al part. In the literature, based on different theoretical considera

tions, there are theories [12,23) in which a non-matter term is present in 

the source. But, there was no anti-gravity coupling. Note that 60~ ~ 

plUv.\ence 0{, the g'LaVitationai enellgy-MMM td( g) and ~ a,nK"i-gw.vuy coupling aII,e. ~y 

due to the, TayM-Hl.Itl6e ex~nt. 
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Since the linearized gauge (2b) is not valid, according to eq. (2c), 

one obtains approximately 

(13) 

Eq. (13) implies that eq. (3c) would be modified. However, if tbe motion 

is periodic, on the time average, the tensor component tOk (k = x, y, z) 

remains essentially G(2)Ok/K as assumed earlier. 

IV. Maxwell-Newtonian Approximation and Einstein's Radiation Formula 

Now, it remains to just i fy eq. (2c). Physically, eq. (2c) gives the 

direct influence of the massive source to the field. Whereas the right

hand side of eq. (13) represents the gravity self-interaction; tab(g) is 

the gravitational energy-stress. Eq. (2c) implies also that a 

gravitational wave propagates with the speed of light. Given a particle 

moving along a geodesic, eq. (2c) is the natural extension from Newtonian 

theory. For clarity, eq. (2c) is written as, 

(14) 

where Yab(l) (;;;; Yab-Yab(2») is an approximation of the first order deviat

ions, Yab(2) is of second order, and Tab(m) is the energy-stress tensor for 

massive matter. Note that eq. (14) is now an approximation of eq. (12). 

(In linearized gravity, Tab instead of Tab(m) would be used.) 

Obviously, eq. (14) is an approximation after the coordinate system 
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has been chosen. The asymptotic flatness of the metric is the implicit 

gauge. Mathematically, as shown above, eq. (14) manifests the necessary 

approximate cancellation of the second order terms, and therefore is not 

a simple linearization. For the case of an electromagnetic plane wave 

[15J, eq. (14) is exact since Tab(m) = O. 

Moreover, eq. (14) is justified on its agreements with experiments 

[11,24). For a static mass distribution, it produces Newton's law of 

gravity. For non-static cases, it produces Einstein's radiation formula. 

To be distinct from linearized gravity, eq. (14) shall be calleq the 

Maxwell-Newtonian approximation. The validity of this approximation 

will be further tested in the Stanford Gyroscope experiment [20J. 

Having made clear the underline physics, it remains to show that 

such an approach provides the required approximation as follows: 

i) For self-consistency, it is necessary that according to eq. (12a), 

eq. (14) gives indeed a first order approximation. 

ii) To support a radiation formula, eq. (14) must imply, to second 

order, 8atad ~ O. This is also required by eq. (12c). 

Note that i) implies also that 'VaTad(m) = 0 is satisfied to second order. 

It follows from eq. (14) that 

where (lSa) 
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Since VaT(m)ab ; 0, K8 aT(m)ab are second order of deviations. It follows 

from eq. (lSa) or solution (4a) that Lb are also second order. This 

implies, from eq. (12a), that up to first order of deviations, 

(lSb) 

Physically, Since tab is induced by Tab(m), Ktab would be of 2nd order. If 

eq. (14) is a val id approximation, Ktab has to be of 2nd order. Thus, eq. 

(14), as a first order approximation, is consistent with eq. (12a). 

It will be shown that K8at ab is of third order. Let us denote 

(16) 

where 

and 

up to second order deviations. It follows from eq. (16) that 

(17a) 

(17b) 

and 
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Lengthy but straight forward calculation shows, up to second order, 

a Gcd c 

(18) 

It follows from eq. (12a) that eq. (18) implies, to second order, 

(19a) 

and 

(19b) 

Thus, it has been proven that the Maxwell-Newtonian approximation is a 

self-consistent approach with valid physical justifications. In parti

cular, it unequivocally supports that Einsteinrs radiation formula is a 

consequence of general relativity_ 

Since aaGab(l) - 0, eq. (12) implies 

(20a) 

and 

(20b) 
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For weak gravity, owing to aatab ~ 0 up to second order, aaGab (2) would 

relate mainly to the energy-momentum of matter as its source while, in 

vacuum, aaGab (2)/K is equal to aatab(g). In other words, gravity energy and 

the motion of particles influence each other mainly through geometry. 

It follows from eq. (20) that approximately 

dE 
- dt = (21) 

Note that the second integral comes from aaGab (1) == o. Since such a 

relation is independent of the physical process, from the viewpoint of 

physics, the second integral is irrelevant. In fact, based on solution 

(6), calculation shows that the time average of the second integral is 

zero. Then, eq. (21) is reduced back to eq. (3c). 

In summary, assuming Einstein's radiation formula is valid, as if 

predicted by Einstein's remark, modifications on the source tensor are 

necessary. Remarkably, his radiation formula means that in vacuum the 

source tensor is not zero, and that its coupling is anti-gravity. Then, 

after the necessary modifications, the radiation formula remains the 

same. Thus, this modification process is self-consistent. 

v. Conclusion and Discussion. 

It is interesting that a self-consistent covariant theory can be de

veloped to support Einstein r s radiation formula. Some colleagues may ha

ve linked the validity of "gauge" and linearized gravity with his radia
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tion fo~mula. However, the fact is that both linearized gravity and the 

"gauge" is inconsistent with his formula. The most important conclusion 

is, however, that Einstein's radiation formula requires modifications of 

his field equation. A crucial starting point of this analysis is the 

observation that the gauge may not be applicable for gravitational waves. 

(In electrodynamics, classical gauge is also not valid [25,26].) The 

inadequacy of this notion is recently proven (15) because it can be incon

sistent with relativistic causality and the principle of equivalence. 

The source tensor in vacuum was controversial [12J. Now, based on 

Einstein's radiation formula, Tab is determined to be non-zero in a vacu

um. Consequently, Tab must consist of two parts: a massive tensor Tab(m) 

and a gravity energy-stress tensor tab(g). Now, it is clear that tab(g) 

only appears to be a pseudotensor due to approximation. Physically, since 

tab(g) is induced by Tab(m), tab(g) should, in agreement with this analy

sis, have a coupling sign which is opposite to the coupling sign of 

Tab(m). Such an anti-gravity coupling is further confirmed by gravitat

ional plane waves [15,22]. 

The main eq. (12) is within the theoretical framework of general re

lativity since general relativi ty does not specify the coupling constant 

nor the form of an energy-stress tensor (6]. (One may recall that the 

initial field equation was Rab = -KTab in general relativity.) Moreover, 

as an Einstein s field equation, eq. (12) is covariant and can be derivedI 

from a Lagrange function with the variational principle. 

It should be pOinted out that tab(g), being an energy-stress tensor, 
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is not a geometrical part although tab(g) involves only gravity. More

over, tensor tab (g) is not a physical cause of the metric whi Ie Ktab (g) is 

a source term in Einstein r s equation. A physical cause and a mathematical 

source term can be different (15) although they are the same in electrody

namics. In general relativi ty , an energy-stress tensor involves the 

metric, and therefore cannot be a cause of the metric. Thus, tab(g) is a 

valid source term in Einstein's field equation. Note that eq. (12a) 

extends the proposal made by Lorentz (7) and Levi-Civita (8). 

In short, this modification is necessary if Einstein's radiation 

formula is valid. Also, this modification is self-consistent. 

The Maxwell-Newtonian approximation eq. (14) is not general covari

ant and is an approximation after the coordinate system has been chosen. 

Eq. (14), is based on physics instead of the notion of gauge. From the 

viewpoint of physics, this is appropriate. As pointed out by Wheeler [1), 

radiation is due to the fact that gravity travels at a fini te speed; and 

should not be inextricably related to a notion in pure mathematics. It 

seems, once eq. (14) is accepted, in this new derivation, problems 

related to the linearized conservation law no longer exist. Damour (18) 

has concluded that nearly all aspects of approximation methods need to be 

thoroughly re- investigated. Without tab (g), as shown in § I I I, Einstein r s 

field equation is inconsistent with Einstein's radiation formula. Thus, 

this analysis also supports Damour's conclusion. 

For the static case, the Maxwell-Newtonian approximation (MNA) co

incides with linearized gravity. Thus, MNA produces Newton's law and is 
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supported by experiments (24). The verification of Einstein's radiation 

formula can be considered as the strongest evidence which supports the 

MNA. Moreover, there would be one more evidence to establish MNA di

rectly. Because of the superficial mathematical similarity between MNA 

and the "linearized" Einstein's equation (due to the cancellation effect 

of two errors), existing theories to test linearized gravity can be used 

to check MNA. For instance, magnetic gravitational effects would provide 

a good test. An experiment in the near future is the Gravity Probe B 

gyroscopes (20), which measures the change of the spinning direction. 

In comparison with the massive tensor Tab(m), the field tensor 

t ab (g) is of a higher order. For static cases, this analysis implies that 

a zero tab(g) in vacuum would be a good approximation. This would mean 

that the effects of this modification will not be normally observed under 

most circumstances. Therefore, this modification would not noticably 

change the existing agreements between theory and previous observations. 

However, further investigations on strong gravity can be done only after 

the exact form of tab(g) is determined. Since Einstein's radiation 

formula is well supported by observations, it is expected that eq. (12) 

would give a more accurate physical description for verified predictions 

and may provide a more complete picture for unverified predictions 

because there is a gravity energy-stress tensor tab(g). 

Now, it seems, much of the severe criticism (13] of general relati

vity has become meaningless. They are as follows: 

i) Einstein r s quadrupole formula for gravitational radiation is not 
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a corollary of general relativity. 

ii) When a gravitational field and matter are taken in conjunction, 

the general theory of relativity has not, and cannot have, energy 

momentum conservation laws. 

iii) It does not follow from general relativity, in principle, that a 

double star loses its energy by gravitational radiation. 

iv) General relativity does not have the classical Newtonian limit 

and, hence, it does not satisfy a fundamental physical principle, 

that is the correspondence principle. 

However, this theory is not exactly complete since eq. (14) is only 

an approximation. It remains to find an exact expression for gravity 

tensor tab(g). Nevertheless, this theory does justify Einstein's radia

tion formula. In view of the absence of a commonly accepted theory, the 

present analysis may serve as an interim theory to be completed. 

The focus of this paper is limited to the necessary implications of 

the Tayulor-Hulse experiment. To address the possible exact forms of the 

gravitational energy-stress t(g)ab, requires extensive and thorough con

siderations. This is beyond the scope of this paper. This analysis has es

tablished a new criterion for the validity of a gravity theory if it 

includes the Einstein tensor in its field equation. This means that the 

existing theories of Brans and Dicke (23], of Yu (12], of Yilmaz (27], and 

etc. can be further examined with this criterion. I believe that at 

present such considerations should be left to those authors themselves. 

Such discussions would be more appropriate when the possible exact forms 

of t(g)ab are considered. 
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Appendix A: The Gravitational Energy-stress Tensor. 

In a field theory, a central problem is the exchange of energy betwe

en a particle and the field where the particle is located. Because a 

particle gains energy from or loss energy to the field, the field energy-

stress has to be f..ocaMzed. This is independent of the specif~c form of an 

energy conservation law. 

The energy-momentum conservation law is usually related to the equ

ation of motion for a particle. In the spirit of Faraday and Maxwell, the 

conservation law would be written in the following form: 

a~(T(p)~V + T(g)~V + T(E)~V + ••• J = O. (AI) 

where T(p)~V,T(g)~V, and T(E)~V are respectively the energy-stress tensor 

of the particle, of gravity, and of electromagnetism. In general relati

vity, the partial derivative a~ is supposedly just replaced by the co

variance derivative V~. This is, indeed, the case for electromagnetism. 

However, the terms a~(T(p)~V + T(g)~vJ are actually replaced by only 

V~T(P)~v. Thus, due to geometry is involved in gravity, the question of a 

gravitational energy-stress tensor is not a straight forward matter. 

The equivalence principle implies that gravity is a manifestation 

of the metric and a neutral particle follows a geodesic. The geodesic 

equation is, 

(A2) 
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where 

are the christoffel symbols, and A is a parameter _ The fact that r°J.1\} is a 

pseudotensor leads to the viewpoint that the gravi tational energy-stress 

is not localizable [2] or even there is no energy conservation law in 

general relativity [13] _ While the latter view explicitly proclaims the 

invalidity of general relativity, the former view attempts to defense 

relativity_ However, since physics requires a field energy-stress to be 

localized, the effect of this defence is actually destructive. 

The non-localizable argwnent is as follows: The equivalence princi

pIe implies that all the Christoffel symbols are zero in a local Minkowski 

space. This implies no gravitational force and no force would means no 

energy_ First of all, in general relativity, there is no gravitational 

force. When all the Christoffel symbols are zero, the observed effect is 

no acceleration. But, no acceleration does not mean a non-localized 

energy-stress. For example, consider an electron in an electromagnetic 

field. The field energy-stress is localized; but, in the reference frame 

which the electron carries, the electron has no acceleration. 'rhus, non-

localizable argument based on the equivalence principle is not valid. 

Moreover, in Rl!.ItaiMJUy and P'W.MAu1l!':l of, Space. (1954) J Einstein (28) added 

the crucial phrase, rr at least to a first approximation" on the indistin

guishability between gravity and acceleration. Note that whereas a geo

desic equation requires only first order derivatives of the metric; the 

Einstein tensor requires second order derivatives. Eddington [29) also 
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pointed out the limitation of the equivalence principle. He wrote, 

rr ••• there are more complex phenomena governed by equations in 

which the curvatures of the world are involved; terms containing 

these curvatures will vanish in the equations summarising experi

ments made in a flat region, and would have to be reinstated in pas

sing to the general equations. Clearly there must be some phenomena 

of this kind which discriminate between a flat world and a curved 

world; otherwise we could have no knowledge of world-curvature. 

For these the principle of Equivalence breaks down." 

In short, both Einstein and Eddington recognize that the equivalence 

principle can be compatible with a localized energy-stress tensor. 

Since Einstein's notion of gravitational energy-stress is a 

pseudotensor, it can only be an approximation for some coordinate sys

tems. Einstein's radiation formula is expressed in terms of the quad

rupole moments of a Cartesian coordinate system. Moreover, the agreement 

wi th data is only on the time average. Thus, experiment supports only the 

time average of an integral which is based on Einstein f s notion. In other 

words, the gravitational energy-stress can be different from his. 

Einstein believed that the gravitational field together wi th matter 

must obey a conservation law of some kind. However, his derivation is 

based on intuition rather than a physical principle. (Einstein did not 

realize that, because geometry is involved in gravity, such a conser

vation law may not be as straight forward as in eq. (AI).) Moreover, from 

his derivation, his notion of gravi tational energy-stress is by no means 

unique. The Einstein tensor can be written as 
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where habc = - h acb . (A3) 

and 9 is the determinant of the metric. Then, Gab = -KTab , is equivalence 

to 

(A4) 

which implies 

(AS) 

Eq. (A4) can be written alternatively as 

(A6) 

Obviously, Tab depends on the choice of h abc (or acab ). If 

(A7a) 

then we arrive at the Einstein pseudotensor, 

(A7b) 

If 

(ABa) 
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then we arrive at the Landau-Lifshitz symmetric pseudotensor, 

(ASb) 

If 

(A9a) 

we arrive at the Lorentz's pseudotensor, 

(A9b) 

Note that there is no physical criterion to determine the gravitational 

energy-stress pseudotensor tab although they all give the same integral 

conservation law. It seems that considering the energy-stress without 

considering the geometry, one can not get a valid and complete physical 

picture of the energy-momentum transfer (see eq. (20)). 

In general relat i vi ty, as Hi lbert [30] pointed out there are simplyI 

no ordinary conservation laws for energy and momentum. Since experiments 

have proved that the current Einstein equation must be modified, the 

validity of these pseudotensors has become even more groundless. 
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