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Abstract 

The renormalization group equation in finite-temperature field theory is discussed. It is 

shown that the mass-independent temperature-independent form is satisfied to two 

loops for q,4 theory. This form is applied to show the invalidity ofthe usual derivation 

of the expression for the thermal mass and the large-T expansion of the finite­

temperature effective potential.. Relevance to high-temperature symmetry restoration 

is pointed out. 
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Investigation of symmetry restoration in a renonnalizable finite-temperature 

field th(,~ry (FTFT) requires knowledge of the asymptotic behaviour of its effective 

potential at high temperature[1,2]. Such behaviour is usually obtained from the 

truncated loop-expansion of the effective potential. Although the loop-expansion is 

known to break down near the critical temperature T c [2], it is common practice to 

extend the asymptotic expression down to T=Tc, to obrain a rough estimate ofTc. To 

partially circumvent this difficulty and to improve the large-temperature behaviour, 

modifications of the loop expanssion have been proposed. These may, for example, 

involve the addition of a temperature-dependent mass tenn in the origniallagraugian 

density, the replacement of the free propagator by the full propagator or the 

resummation ofa sub-class ofFeynman graphs [1-8]. 

In this letter we show that an important check on the validity ofasymptotic 

fonns ofthe finite temperature effective potential (FTEP) is provided by the constraint 

of the renonnalization group equation (RGE). Our analysis clearly indicates the 

invalidity of the usual practice of deriving the expression for the thennal mass, and 

deducing the restoration of symmetry, from the tenn-by-tenn high-temperature 

behaviour ofthe truncated loop expansion. 

We restrict our considerations to cl>4 theory and use the mass-independent 

temperature-independent renonnalization scheme with dimensional regularization 

[9-10] In this scheme the renonnalization group (RG) functions and the running 

couplings are temperature-independent. The RGE for the FTEP V(cI>,T) is 

DV(cI>,T) = 0, (1) 

where D is the RG differential operator 

o 0 0 0
D = J.!-+P-+y m-+yq,- (2)

oJ.! 01.. m Om oq, 
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and (3(A), Ym' yeA) are the RG functions. 

It has been suggested by some authors [II] that, in addition to the usual RGE 

based on the arbitrariness of the renormalization scale in momentum, one must also 

consider an independent RGE obtained from an arbitrary renormaIization scale in 

temperature. More recently it has been proposed that adequate treatment of the 

renormaIization constraint in FTFT requires the consideration of temperature­

dependent renorma1ization schemes [12]. It is however clear that ifequation (I) is 

valid, then it fully embodies the condition of the renorma1izability ofthe theory and 

must therefore contain all information that may be extracted from the renormalization 

constraint. There is thus no need to consider an independent arbitrary temperature 

scale, as in ref. [II]. It is also not necessary to consider temperature-dependent RG 

functions in the usual RGE, as in ref. [12]. 

We now explicitly check that the RGE (I) is satisfied by the loop expansion of 

the effective potential up to two loops. 

One may write 

Y(cI>, T) = Y(cI» + VeT) (cI>, T) (3) 

where V(cp) is the zero-temperature effective potential. Since V(cp) satisfies the 

RGE(I), one has 

Dy(T)(q" T) = 0 (4) 

The loop expansion gives power series in h: 
~ ~ 

D =j.l-
o 

+ L Dttl, veT) (cI>, T) =L ylT) (cI>, T)ll , 
OJ.l t=1 t=1 

} (5) 

D~= A(f.) ~+'V(t)m~+'V(t)J.~ 12 
(. p oA I m Otn 'I' aq, , .{,IJ = , , ...,I 
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where, e.g., f3(l)(.~.,) is the i-loop contribution to ~(A). 

Substituting from equ.(5) iuto equ.(4) one obrains the following RG equations 

for VjT)(+,T): 

O~(T)(+,T)
J.! 1 =0 (6)

OJ.! 

(7) 


Equ.(6) asserts the IJ-independence of VfT) (+, T) and is therefore satisfied by 

the well-known expression 

(8) 


where 0'2 =m2 +l.A+2. 
2 

For equ.(7) one only needs the IJ-dependent part of vi(+, T) [10]: 

A 0' a a J.!2 
VJT) (+,T) = - 4 JdO'O'{(2m2 -3O'2 )B(o;-)+6O'TB(1;-)}log2"+'" (9)

1281C T T a 

where 

1
v>-- (10)

2 ' 

and Kv (x) is the modified Bessel function of the second kind. Substituting from 

equs.(9) and (1~) into equ.(7) one finds: 

#1 Minor corrections to equ.(A.12) of ref.[lO] have been made to obtain the 
corrected expression in equ.(9). 

http:equ.(A.12
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This condition is identically satisfied for all O',m and T by the usual one-loop RG 

functions: 

2 
(1) _ A­J3(l) =~ "( (1) = (12)0, "( m - 321[2 ' 161[2 ' 

which confirms that the RGE'S for VjT)(q" T) are exactly satified. Thus the RGE (1) 

is perturbatively valid for all T. 

It is our purpose now to apply these equations to check the validity of the 

derivation of the usual expression of the induced thermal mass in massless cp4-theory, 

m~ =~T2. This is normally obtained from the large-T expression of the one-loop 
24 

FTEP, 

(13) 


In general the induced thermal mass in massless cp4 theory is given by 

2 _ (a2V(T)(cp, T» 
mth - 0+2 ,=0· (14) 

One therefore requires the behaviour of VeT) (q" T) near CP=O. It is known that, for 

T=O, this behaviour may be obtained from the RGE [13] and is not directly given by 

the perturbative loop expansion. 
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We now consider the small~ behaviour of VeT) (~,T) as detennined by the 

RGE. The general form ofthe loop expansion for massless: 

veT(+.T) =Ii-r4F(1..+; .1..+22 •IiA.), (15)
T J.1 

The solution ofthe RGE (1) gives 

(16) 

where t is an arbitrary parameter. To obtain a form of VeT) (~,T) in which we may 

usefully employ the loop expansion when cP is smaIl we take for the arbitrary parameter 

A~2 
t the value t =t 1(-2) where 

J.1 

(17) 

Using the one-loop RG functions, this condition yields 

1 321t2~2 1 {321t
2 

321t
2

}
tl =-log 2 -loglog -2-exp(-- +... (18)

2 liJ.1 2 liJ.1 3liA 

for sma1l cP. This implies 

(19) 

Using these express:.ons in equ. (16) one obtains, for small cP, 
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(20) 


where 

-l 
31iA 31iJ.12 

~= 1+--1og 2 2 +.... (21)
{ 2321t 321t ~ } 

We now use the loop expansion for V(T)(~,T): 

The integrals [10] defining the one-and two-loop contributions have the following 

behaviour for small x: 

(23) 


Thus working to order (/...'22 ), for smaJI cp, we obtain from equations (20) and (23):
T 

(24) 

This equation given the small-cl> expanrion of VeT) (~,T). One cannot obtain it directly 

from the loop expansion (22). This imphes that the loop expantion for VeT) (~,T) is 
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not a valid representation near cI> = 0, which is already known to be the case at zero 

temperature [13]. 

The difference between the liA and small cI> expantions lies in the form ofthe 

function ~ in equ.(21): 

327t2 
~ ~----~ for small cI> at fixed liA at fixed cI>, giving (24), while 

3liJ..l2 
3liAlog 2 2 

327t J..l 

I; -+ 1- 3/i~ log 3/i~22 for srnall/i')... at fixed 4>, giving (22). 
327t 327t + 

We also note that this RG analysis yields the large.T behaviour of V(T)<+, T), 

at fixed q" giving 

(25) 

It folows that the usual procedure ofderiving the large-T behaviour equ.( 13), directly 

from the loop expaurion is not valid. 

If one uses the correct exprerion near += 0, one finds 

«26) 


which contradicts the result m~ =J.... AT2 obtained from equ.(13).
24 

Further, our analysis casts doubt on the usual derivation ofthe restoration of 

synunetry at high temperature, since this also involves use ofthe loop expansion up to 

+= 0, where it is not valid. 
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