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ABSTRACT. We consider the covariance matrix 

Gmft(z - y) = (q6(O'z, m) q6(0'1I' n») - (q6(O'z, m») (q6(0'1I' n») 

of the d-dimensional q-states Potts model, rewriting it in terms of the connectivity, 
the finite-cluster connectivity and the infinite-cluster covariance in the random clus­
ter representation of Fortuin and Kasteleyn. In any of the q ordered phases, we show 
that - in addition to the trivial eigenvalue 0 - the matrix Gmft(z - y) has one simple 

eigenvalue G~i~(Z - y) and one (q - 2)-fold degenerate eigenvalue G~i~(Z - y). Fur­
thermore, we identify the eigenvalues both in terms of representations of the unbroken 
symmetry group of the model, and in terms of connectivities and cluster covariances, 
thereby attributing algebraic significance to these stochastic geometric quantities. In 
addition to establishing the existence of the correlation lengths ~~i~ and ~~: corre­

sponding to G~i~(z - y) and G~i~(z - y), we show that ~~i~(t1) ~ ~~~(8) for all 

inverse temperatures {3. We also prove that ~~~ coincides with the decay rate of the 
diameter of finite clusters. 

For dimension d = 2 and q ~ 1, we establish a duality relation between ~~~ and 
~free, the correlation length of the two-point function with free boundary conditions: 
We show ~~~({3) = t~free(t~·) for all {3 ~ {3o, where {3. is the dual inverse temperature 
and {3o is the self-dual point. For systems with first-order transitions, this relation 
helps to resolve certain inconsistencies between recent exact and numerical work on 
correlation lengths at {3 = {3o. For systems with second order transitions, this relation 
implies Widom scaling. Namely, asssuming that ~1ree({3) - 1{3 - {3ol-v as {3 1 {3o, the 
duality relation gives ~~~({3.) -1{3· - {3ol-ii as {3. ! {3o with;; =v. 

In the course of proving the above results, we establish several properties of inde­
pendent interest for the random cluster model, including left continuity of the inverse 
correlation length 1/f.free(l3) and upper semicontinuity of the inverse length 1/f.~~({3) 
in all dimensions, and left continuity of the two-dimensional free boundary condition 
percolation probability at {3o. We also introduce DLR equations for the random 
cluster model and use them to establish ergodicity of the free measure. 

In order to prove the above results, we introduce a new class of events which we 
call decoupling events and two inequalities for these events. The first is similar to the 
FKG inequality, but holds for events which are neither increasing nor decreasing, and 
replaces independence in the standard percolation model; the second replaces the van 
den Berg - Kesten inequality. 
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1. INTRODUCTION: BACKGROUND AND DISCUSSION OF RESULTS 


The q-state Potts model has been the subject of increasing interest in recent 
years. On the one hand, it has been studied by probabilists and statistical mechani­
cists due to its relationship to the random cluster model (see [FK] and [ACCND, 
where many of the known results for percolation are open and interesting problems. 
On the other hand, the phase transitions in the Potts model provide a paradigm 
for testing numerical methods developed for more complex transitions, such as de­
confinement in lattice QCD: The Potts model is relatively easy to simulate with 
efficient algorithms (see e.g. [SW]), it can be tuned from a second-order through a 
weakly first-order to a strong first-order transition by varying the number of states 
q, and many quantities of interest are explicitly known for dimension d = 2, thus 
allowing for a direct test of numerical methods. Finally, many of the exact re­
sults on the Potts model have recently been shown to have fascinating algebraic 
interpretations (see e.g. section VILB in the review of [W]). 

Motivated by discrepancies between recent exact and numerical results on the 
correlation length of the Potts model, we have undertaken to identify and study the 
relevant length scales in the problem. We relate these scales both to the algebraic 
structure of the unbroken symmetry group and to stochastic geometric quantities in 
the random cluster representation of the Potts model. In the process, we show that 
the some of the natural stochastic geometric quantities one defines in the random 
cluster representation - e.g. the finite-cluster connectivity - have independent al­
gebraic significance. In two dimensions, we prove a relation between various scales 
which is an extension of known relations for percolation and the Ising magnet, and 
which establishes a strong form of Widom scaling for Potts models with continuous 
transitions. We also prove an analogue of this relation for two-dimensional Potts 
models with discontinuous transitions; this analogue helps to explain the apparent 
discrepancy between the exact and numerical results. 

Adopting a field theoretic perspective, we identify the relevant lengths in the 
model by studying the eigenvalues of the covariance matrix 

(1.1) 

Here D'z E {O,,·. ,q - I} are the usual spins of the Potts model, 6(·,·) is the 
Kronecker delta, ( . )6 is the expectation with respect to the infinite-volume state 
obtained from finite-volume states with "b" boundary conditions, and (A; B) 6 = 
(AB)6 - (Ah(B)" is the truncated expectation of the functions A and B. 

In the disordered phase, we consider the covariance matrix with free boundary 
conditions, Ghe~(x - y). We find that this is proportional to the standard two-point 
function, which in turn is equal to the connectivity function in the random cluster 
representation: 

Ghe~(x - y) = (q6(m, n) -1)(~1 (q6(D'z, D'1f) -l))free = (q6(m, n) -l)Tfree(x - y).
q­

(1.2) 
Here the connectivity, Tfree(X - y), is the probabililty with respect to the free bound­
ary condition random cluster measure that x and y lie in the same component. That 
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Tfree(X - y) is equal to the two-point function in finite volume is well known both to 
probabilists and to numerical physicists, the latter of whom use this equivalence to 
measure the two-point function according to the "improved estimators" approach. 
Our only contribution here is to verify the equivalence in infinite volume. We note 
that, in the disordered phase, the covariance matrix contains no more information 
than the standard two-point function, or equivalently, the connectivity function. 

The problem is more subtle in the ordered phase, where we consider the matrix 
G~n(x - y) with fixed constant boundary conditions, c E S = {O,'" ,q - I}. 
Defining the finite-cluster connectivity, T!l!.(X - y), to be the probability, in the so­
called wired random cluster measure, that x and y lie in the same finite component, 
and the infinite-cluster covariance, Cwir(x - y), to be the covariance, again in the 
wired measure, of the events that x and y lie in the infinite component, we prove 
that the matrix elements G~R(X - y) are linear combinations of T!l!.(X - y) and 
Cwir(X - y), namely 

G:aR(x - y) = (q8(m, n) -1) T!~(X - y) + (q8(m, c) -1)(q8(n, c) -l)Cwir(x - y). 
(1.3) 

We remark that such a relation was not known previously, either in finite or infinite 
volume; furthermore, the proof of the infinite-volume limit involves some subtleties 
related to how the infinite cluster emerges from large finite clusters in the wired 
problem (for more details, see the remark following Proposition 3.4). 

Percolation analogues of T!l!.(X - y) and Cwir(X - y) - in the absence of boundary 
conditions - have arisen previously in [CCGKS], where they appeared as a natu­
ral decomposition of the truncated percolation connectivity in the ordered phase. 
There, however, they did not have independent signficance, appearing only as a 
sum. The question naturally arises whether they have independent significance 
here. Obviously, this is not the case for q = 2, for which (1.3) can be rewritten as 

G:aR(x - y) = (2t5(m, n) -l)(T!h(x - y) +Cwir(X - y)), 

involving again only the sum T!l!.(X - y) +Cwir(x - y). 
For q ~ 3, however, the fixed boundary condition covariance matrix G~R(X - y) 

has a richer structure. We prove that it has a simple eigenvalue zero and a nontrivial 
simple eigenvalue 

G~i!(X - y) = q T!h(X - y) +q(q - l)Cwir(X - y), (1.4) 

both corresponding to the trival representation of the unbroken subgroup 5q- 1 of 
permutations of 5 \ {c}, as well as one (q - 2)-fold degenerate eigenvalue 

G(2) ( ) _ fin ( )wir x - Y - q Twir x - Y , (1.5) 

corresponding to the remaining orthogonal subspace. l Thus we see that for q ~ 3, 
the finite-cluster cluster connectivity, T!l!.(X - y), has independent algebraic signifi­
cance as an eigenvalue of the covariance matrix, and hence also physical .significance 

1 For the Ising model (q =2), G:'''(z - y) has only the trivial eigenvalue zero and the eigenvalue 

G~i~(Z - y). 
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in terms of the associated one-particle spectrum. As for the infinite cluster covari­
ance Cwir(X - y), we will show in Theorem 4.3 that its decay rate is equal to the 
decay rate of the eigenvalue G~li! whenever the magnetization is positive. Thus al­
though Cwir(x - y) does not have independent algebraic significance, its decay rate 
does. 

For completeness, we note that the free boundary condition matrix, Ghe~(x - y), 
can be diagonalized as well, yielding a simple eigenvalue zero and a (q - l)-fold 
degenerate eigenvalue 

Gfree(X - y) = q Tfree(X - y). (1.6) 

Given the eigenvalues (1.4)-(1.6), one naturally defines the inverse correlation 
lengths: 

~ \.8) = lim- -111 log Gfree(X) , (1.7)
free 1%1-00 X 

1 . 1 (1) 
(1) = - lIm -,I log Gwir(x) (1.8)

{wir({3) 1%1-00 x 

and 
1 . 1 (2) 

(2) = - lIm -II log Gwir(x) . (1.9) 
{wir({3) 1%1-00 x 

Here, as usual, {3 is the inverse temperature of the model. In all cases, the limits 
are taken so that x lies along a coordinate axis. In order to establish the existence 
of the limits, we return to the spin representation and use reflection positivity. 
We also give alternative subadditive proofs of the existence of the limits (1.7) and 
(1.9), which though more complicated than the reflection positivity arguments, have 
the advantage that they hold for non-integer q ~ 1 and can be used to establish 
additional properties. In particular, we use subadditivity to show left continuity 
of the inverse correlation length l/{free({3) and upper semi continuity of the inverse 
correlation length 1/e~~~({3). We also use subadditivity arguments to prove that 
e~~;({3) is equal to several other geometrical correlation lengths in the problem, one 
of which is the decay rate of the diameter of finite clusters in the wired measure 
a quantity which should be easiy accessible to numerical measurement. 

All three correlation lengths coincide in the high-temperature regime, where their 
common value is often denoted by {dis ({3). In the low-temperature regime, we expect 
{free({3) == 00. The non-trivial correlation length in this regime is often denoted by 
eord({3). Here, however, we see that for q ~ 3, there are two a priori different non­

trivial lengths, e~~~({3) and e~~!(8). Equations (1.4) and (1.5) immediately imply 
that 

(1)() (2)«(.1){wit {3 ~ {wir fJ , (1.10) 

so that the correlation length e~! of the symmetric state (i.e. symmetric with re­
spect to 5 9- 1 ) is not smaller than those of the unsymmetric states. An interesting 
open question is whether or not the inequality is strict. It is worth noting that in 
percolation, analogues of Cwir (x - y) and T!h- (x - y) in the absence of boundary 
conditions have equal exponential decay rates [CCGKS], which here would imply 
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equality of e~~~(t~) and e~!(p). However, it is not at all clear whether the Potts 
models for q ~ 3 should have analogous behavior. 

We return finally to our original question, namely the discrepancy between the 
exact and numerical correlation lengths of two-dimensional Potts models with dis­
continuous transitions. Explicit calculations based on a mapping to the six-vertex 
model yielded a correlation length edis({3o) of the disordered phase at the self-dual 
point Po ([BW], [KSZ) , [Kl)) which disagreed with previous numerical measure­
ments ([PL), [GI)) of the ordered correlation length at the transition point {ord({3o) 
by roughly a factor of 2, suggesting the possible relation eord(Po) = iedis({3o) [BJ]. 
A continuous transition analogue of this relation is already known for both two­
dimensional bond percolation, where e(p) = te(l - p) has been rigorously es­
tablished for all p > Pc [CCGKS], and the two-dimensional Ising magnet, where 
e(p) = te(p*) has been been established via exact solution for all P > Po [MW]. 
Here, as usual, P* is the dual inverse temperature. However, from our results dis­
cussed above, we now know that the situation is more complicated in the q-state 
Potts model, q ~ 3, than it is in either percolation or the Ising magnet, since in the 
ordered phase the Potts model has two a priori different correlation lengths. One 
of our principal results is a relation of the conjectured form in terms of the smaller 
ordered correlation length, e~~!. 

Our result follows from a dichotomy which we prove for all two-dimensional 
random cluster models with q ~ 1. In addition to the conjectured relation, the 
dichotomy implies Widom scaling for Potts models with continuous transitions. 
Let p!:oee(p) be the percolation probabilty in the free boundary condition random 
cluster measure. Our dichotomy is: If p!:,ee(p*) = 0, then 

(2) () 1 (.)ewir P = 2"erree P , (1.11) 

whereas if p!:oee(p*) > 0, then 

(1.12) 

In order to interpret the dichotomy, we supplement it with the two-dimensional 
relation 

(1.13) 

where p~r(f3) is the percolation probability in the wired measure, which is of 
course equal to the spontaneous magnetization M(P). Note that (1.13) shows that 
p!:oee(p.) > 0 implies M(P) = 0, so that (1.12) is simply the equality of the three 
correlation lengths in the high-temperature regime, as mentioned earlier. 

Our more interesting corollaries follow from the first branch of the dichotomy, i.e. 
the duality relation (1.11). In order to see this, we combine (1.13) with the obvious 
bound p;}r(p) ~ p!:oee(p) to obtain p!:,ee(p) p!:,ee(p*) = 0, so that p!:oee(Po) = o. 
Since p::,ee(p*) is an increasing function of p*, this in turn implies 

(1.14) 
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Equation (1.14) implies in particular that p~ee(fJ) is left continuous at the self­
dual point fJo< Moreover, it means that that the first branch of the dichotomy (i.e. 
equation (1.11» holds throughout the low-temperature phase fJ ~ fJo. For systems 
with first-order transitions, this implies the conjectured relation at fJo: 

(1.15) 

For systems with second-order transitions, (1.11) is a generalization of the afore­
mentioined results on two-dimensional percolation [CCGKS) and the Ising magnet 
[MW). In particular, it gives a strong form of Widom scaling as fJ --+ fJo: IT efree(fJ*) 
diverges with critical exponent II, efree(fJ*) ,...., IfJ* - fJol-1l as fJ* i fJo, (1.11) implies 

that e~~~(fJ) diverges with the same exponent: e~~~(fJ) ,...., IfJ - fJt 1-;; as fJ ~ fJo with 
iI = v. 

As noted above, the interpretation (and in fact, the proof) of the dichotomy 
(1.11) and (1.12) requires the relation (1.13), which we obtain as a special case of 
a general two-dimensional result of Gandolfi, Keane and Russo [GKR). However, in 
order to apply the [GKR] theorem, we need to know that the free random measure 
is ergodic, a result which we establish in all dimensions. We prove ergodicity by 
introducing suitable DLR equations ([D], [LR)) for the random cluster problem. 
Here the justification of the DLR equations is much more delicate than in standard 
spin systems due to the nonlocal nature of the random cluster weights: because of 
this nonlocality, the specification used to construct the DLR states is not quasilocal, 
and thus standard theorems do not apply. 

Before reviewing the organization of the paper, let us briefly discuss our meth­
ods. These methods are necessarily quite different from those used in the analysis of 
the Bernoulli percolation model, since the random cluster model lacks several prop­
erties which are used extensively in percolation - namely, independence of events 
occurring on fixed disjoint sets and the van den Berg - Kesten [BK) inequality for 
events occurring on random disjoint sets. Moreover, the random cluster model has 
an additional feature - boundary conditions - which significantly complicates its 
analysis relative to the independent model. However, it is by actually focusing on 
the boundary conditions that we are able to circumvent the other difficulties and 
in fact derive two correlation inequalities which we expect will be useful in many 
other contexts. We do this by noting that in many cases, the events of interest 
carry with them boundary conditions which decouple them from other events and 
thus effectively overcome the coupling of the random cluster weights. This idea is 
formalized by introducing the notion of decoupling events. We use our decoupling 
events in formulating and proving two sets of inequalities which effectively replace 
independence and the BK inequality. The independence is replaced by a relation 
which resembles the FKG inequality, but contains two decoupling events and holds 
for a much larger class of events than the original FKG inequality - in particular, for 
events which are neither increasing nor decreasing. The BK inequality is replaced 
by a relation which resembles the independent BK inequality but contains a decou­
pIing event. Both inequalities hold for any FKG measure, and thus in particular 
for the free and wired random cluster measures with q ~ 1. 
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The organization of this paper is as follows. In first two parts of Section 2, we 
review the necessary properties of the standard spin and random cluster represen­
tations of the Potts model. The third part of Section 2 contains our inequalities for 
decoupling events. In the last part of the section, we derive the DLR equation and 
establish ergodicity of the free measure. Section 3 is concerned with the covariance 
matrix. In the first part of the section, we derive the finite- and infinite-volume rep­
resentations of the matrix with free and constant boundary conditions, in particular 
establishing the infinite-volume limits of Tfree(X - y), T!ir(X - y) and Cwir(X - y) 
from their finite-volume analogues. The matrix is diagonalized in the second part of 
Section 3. Section 4 concerns the correlation lengths efree, e~~ and e~!. In the first 
part of the section, we establish existence of the lengths using reflection positivity, 
as reviewed in the Appendix. The second part of the section concerns alternative 
characterizations of efree, e~~ and e~~~, proved via subadditivity arguments and our 
inequalities for decoupling events. In particular, we show that l/efree is left continu­
ous and 1 / e~~~ is upper semicontinuous; we prove that e~~! is the decay rate of Cwir 

whenever the magnetization is positive; and we establish that e~! coincides with 
the decay rate of the diameter of finite clusters, as well as with the limiting decay 
rate of connectivity functions for clusters in boxes. Section 5 contains our proof 
of the two-dimensional dichotomy (1.11) and (1.12), as well as derivations of a few 
results on two-dimensional percolation probabilities. The first part of this section 
contains a discussion of the heuristics of the duality relation (1.11) in terms of the 
behavior of interfaces in the system. In the second and third parts of the section, 
we prove upper and lower bounds of the form needed for the duality relation (1.11). 
Finally, in the fourth part of the section, we combine these upper and lower bounds 
with several results from Section 4 and the relation (1.13) to obtain our dichotomy. 

2. 	 PRELIMINARIES 

2.1. 	Definition of the Spin Model. 

We consider the q-states Potts ferromagnet, a model with spins (Ix in the set 
S = {O, 1"" ,q - I}, q ~ 1. In a finite volume A C Zd, the Hamiltonian with free 
boundary conditions is 

Hfree«(lA) = - E (6((Ix, (ly) - 1) 	 (2.1) 
(z,y)EB(A) 

where the sum goes over the set B(A) of all nearest neighbor pairs (x, y) for which 
both x and y lie in A. The Hamiltonian with c-boundary conditions, c E S = 
{ 0, 1, ... ,q ­ I}, is 

Hc«(lA) = Hfree«(lA) - E (6«(lx,(ly) -1), (2.2) 
&tEA, 
.E8A 

where 8A = {x f. Aldist(x,A) = I} is the (outer) boundary of A. Using the label b 
for "free" or c E S, one introduces the partition function with boundary condition 
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bas 

Zb(A) = E e-/JH.{tI/t.) (2.3) 
till. 

where the sum runs over all configurations 0'A : A -+ S, Z 1-+ 0'z and {3 is the inverse 
temperature {3 = 1/kBT. 

As usual, an observable A with support suppA is a function A : 0'A -+ C which 
does not depend on the spin variables 0'z for z rJ. suppA. A local observable is an 
observable with a support suppA not depending on A. Expectation values of a local 
observable A are defined as 

(2.4) 

If A and A are two local observables, one also considers the truncated expectation 
value defined by 

{A;A)b,A = {AA)b,A - (A)b,A(A)b,A' (2.5) 

For observables of the form 

Ap = exp(i(O',p)) = exp(i E O'zpz), 
xEsuppAp 

where p is a function of finite support from Zd into S= {0,21l'/q,'" , 21T(q -1)/q}, 
the expectation values (AP)free,A are monotone increasing (Le. non-decreasing) in 
A, while the expectation values (Ap)O,A are monotone decreasing in A by Griffiths' 
second inequality [Grfj, as generalized by Ginibre [Gil. As a consequence, for b = 
"free" or b = 0, the thermodynamic limit 

(2.6) 

exists for all local observables of the form Ap = ei{tI,p) and hence for all local 
observables A. In (2.6), the limit may be taken through any increasing sequence of 
sets. Using the permutation symmetry of the Hamitonian (2.2), one concludes that 
the limit (2.6) exists for all boundary conditons b considered here (i.e. free or any 
constant boundary conditions). Also by Griffiths' second inequality ([Grf], [GiD, 
the limit (2.6) is translation invariant. 

The order parameter of the Potts model is the magnetization 

1 
M({3) = -1 (q6(O'zo, 0) -1)0' (2.7)

q-

where Xo is an arbitrary point in Zd (recall that the infinite-volume states ( . )b are 
translation invariant). It is known that M({3) is increasing in {3 ([Gil, [ACCND, 
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decreasing in q [ACCN], and that the infinite-volume states ( . ) c' c E S are equal 
to ( · }free if and only if M(P) = 0 [ACCN]2. Defining the transition point 

f3t 	 = inf{f3IM(P) > OJ, (2.8) 

we remark that it is believed that M(P') is increasing in q, and that 

qc = max{q E NIM(f3t) = O} 	 (2.9) 

is 4 for d = 2 and 2 for d > 2. The fact that M(f3t) > 0, i.e. the existence of a 
first-order phase transition, has been rigorously established for all d 2:: 2 provided q 
is sufficiently large ([KoS], see also [LMR] and [LMMRS]). 

2.2. 	The Random Cluster Representation: Review of Basic Properties. 

It is often useful to reexpress the q-state Potts model as an integer value of a 
two-parameter interacting percolation model, the so-called random cluster model 
of Fortuin and Kasteleyn [FK]. In order to set our notation and state the results 
we will use in the rest of this paper, we briefly review the derivation and some 
basic properties of the FK representation. The representation is defined in terms 
ofconfigurationsw E n ={O,l}Bd, whereBd = {(x,y)lx,y E Zd} is the nearest­
neighbor bond lattice. For subsets B C Bd, the configuration space is denoted by 
nB ={O,l}B. 

Let us start with the finite-volume partition funtion with free boundary condi­
tions. We write the Gibbs factor e-PHrree(O'A) as 

II eP(6(O'z,0',)-1) 

(z,y)eB(A) 

and expand the product with the help of the identity 

pe,8(cS(O'z,O',)-l) = (1- p) + p8(O'z,O'y) where p = 1- e- . (2.10) 

We identify each term of this expansion with a configuration w E nB(A); w is chosen 
so that it is zero on those bonds for which the factor in the product is p, and one 
on those bonds for which the factor is p6(0'z, 0',1 ). Geometrically, we think of the 
bonds b = (x, y) for which w(b) = 1 as occupied or ordered, and those for which 
w( b) = 0 as vacant or disordered. With a slight abuse of notation, we sometimes 
use the symbol w to denote the set of occupied bonds in B(A), and W C to denote 
the set of empty bonds in B(A), see e.g. (2.11) below. 

Rewriting the Gibbs factor in expanded form, we obtain 

Zfree(A) = :E :E(l - p),wc1p,wl II 6(O'z, O'y) . (2.11) 
WeSlB(A) O'A 	 (z,y)ew 

2Actually, [ACCN] proved that all infinite-volume Gibbs states are equal to ( . hree if and only 
if M(f3) = O. 
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Evaluating the sum over O'A, we pick up a factor q for each connected component 
of the graph (A,w) (regarding isolated points as separate clusters). Denoting the 
number of clusters in this graph by #(w), we find 

Zfree(A) = L (1 _ p)lwclplwlq#(w) . 	 (2.12) 
WenB(A) 

It is an easy exercise to generalize (2.12) to the expectations of local observables 
A = A(0'). One obtains 

(A)free,A = L Gfree,A(W)Efree (Alw ) 
WenS(A) 

(2.13) 

where 

(2.14) 

is the weight of the configuration w, while Efree( 'Iw) is an average over spins with 
the spins constrained to be constant on each connected cluster of w and with values 
for different clusters being chosen uniformly from {O, 1"" ,q -1}. We remark that 
for the purposes of interpreting expectations of this sort, it is often convenient to 
consider the joint distribution on the spin and bond variables with weights given by 
the terms in (2.11), as introduced implicitly in [SW] and explicitly in [ES]. In terms 
of this distribution, the expectation Efree( 'Iw) is an average over the conditional 
distribution of spins, given the bond variables. 

For constant boundary conditions, one obtains a similar representation, with the 
following differences (as noted in [ACCN]): 
i) The set B(A) is replaced by the set B+(A) of all nearest neighbor pairs (x, y) for 

which at least one of the two points x and y lies in A. 
ii) 	The points of the boundary aA are regarded as preconnected or wired, in the sense 

that these points are taken to be lying in one cluster. This of course modifies the 
value of #(w). 

iii) 	The expectation Efree(Alw) in (2.14) is replaced by Ec(Alw), where the average 
is computed with the additional constraint that spins in clusters connected to 
the boundary now only assume the value O':t = c. 

We have: 
(A)c,A = L GWir,A(W)Ec(Alw), (2.15) 

wEOS+(A) 

where 

(2.16) 

and Zwir = ECES Ze = qZo-
We denote by Pfree,A(') and I'wir,A(') the finite-volume measures defined by the 

weights (2.14) and (2.16), respectively. 

Remark. The measures Pfree,A (.) and Pwir ,A ( .) are defined on the probability spaces 
(OB(A),:FB(A») and (OB+(A),:FB+(A»), respectively. (In general, we use:FB to denote 
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the u-algebra generated by cylinder events A C !lB.) It is sometimes convenient to 
extend these to measures on the full space (!l,F) by declaring all bonds in Bd \B(A) 
to be vacant for Pfree,A('), and all bonds in Bd \B+(A) to be occupied for PwirtA(')' 

An important property of the FK representation is that it obeys the Harris­
FKG inequality. This inequality, first proved for percolation in [H] and proved for 
a large class of models in [FKG], was established for the q ~ 1 random cluster 
representation in [F] (see also [ACCN]). We begin with the standard: 

Definition 2.1. Consider the natural partial order on bond configurations w E {lB, 

B C Bd, namely w -< w' ifw(b) =1 => w'(b) =1. A function f : !lB --.. R is said to be 
incretUing if it is nondecreasing with respect to this partial order, i.e. f(w) ~ f(w' ) 
for all w -< w'. An event is said to be increasing if its indicator is an increasing 
function. Similarly, a function f is decretUing if the function - f is increasing, and 
an event is decreasing if its complement is increasing. 

A measure P on (!lB, F B) is said to be an FKG meaJure if it obeys the so-called 
Harris-FKG inequality 

(2.17) 

for all pairs of increasing events AI, A2 E F B. It is said to be a Jtrong F KG meaJU re 
if for each cylinder event C E FB, the conditional measure p(. I C) is an FKG 
measure. Finally, a measure P on (!lB,FB) is said to FKG dominate a measure II 
on (!lB,FB), denoted by II ~ p, if II(A) ~ p(A) for all increasing events A E FB. 

FKG 

Proposition 2.2. ([Fl, [ACCN]) Let q ~ 1. Then the finite-volume free and wired 
FK measures, Pfree,A and Pwir ,A, are strong FKG measures. 

ConJequenceJ (See e.g. [ACCN]). 
1) The finite-volume measures are monotonic in the volume: 

Pfree,A :5 Pfree,A'
FKG 

if A C A' (2.18) 

and 
Pwir,A ~ Pwir,A'

FKG 
if A C A' , (2.19) 

from which it follows that the infinite-volume measures 

(2.20) 

and 
Pwir(') = lim Pwir,A (.) (2.21) 

A-Z~ 

exist for all monotone local functions, and hence for all local functions. further­
more, these infinite-volume measures are translation invariant and inherit the 
strong FKG property. 

2) The wired measures FKG dominate the free measures, i.e. 

Pfree,A :5 Pwir,A (2.22)
FKG 
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and 
J.tfree ::; J.twir· (2.23)

FKG 

Another useful property of these measures is that they have finite energy, a notion 
introduced by Newman and Schulman [NS]. 

Definition 2.3. Let B C Bet, IBI < 00, and t/J E nB a configuration on B. H wEn 
is a configuration on the full space, let t/J(w) be the configuration which agrees with 
t/J on B and with w on BC: 

t/J(w)(b) = {t/J(b) bE B . 
w(b) bE B C 

Finally, if A C n is an event, let t/J(A) = {t/J(w) Iw E A}. The measure J.t on n is 
said to have finite energy if for every finite B C Bd and for every t/J E {lB, 

J.t(A) > 0 :=:} J.t(t/J(A)) > O. 

It is easy to see that finite energy is equivalent to the statement: For each bond 
b, the conditional probability of the event that b is occupied, given the configuration 
on all the other bonds, is non-trivial: 

o < J.t(w(b)=llw(b),b;eb) < 1. 

For the free and wired measures, it was observed in [ACCN] that this probability 
can be explicitly calculated: 

if the endpoints of b are connected, 

J.t(w(b) = 11 w(b), b ;e b) = P p regardless of w(b) (2.24)
{ 

p+q(l-p) otherwise 

where J.t = J.tfree or J.twir. Thus for all q ~ 1 and all p ;e 0,1, the random cluster 
measures J.tfree and J.twir have finite energy. Note that this is not true in all ran­
dom cluster measures: Boundary conditions can impose constraints which exclude 
certain configurations. 

Given stationarity and finite energy, it follows immediately from a general result 
of Burton and Keane [BuK] that the infinite cluster is unique: 

Proposition 2.4. For any q ~ 1 and any p E (0,1), the free and wired random 
cluster states have at most one infinite cluster with probability one. 

Since the Burton and Keane theorem requires only stationarity, it applies also to 
non-extremal states, and therefore allows the possibility of a convex combination of 
states with zero and one infinite cluster. If, in addition, the measures are ergodic, 
then at any given value of p, there is either zero or one infinite cluster with probabil­
ityone. This is presumably the case for both the free and wired measures, although 
we only prove it for the free state (see subsection 2.4). Of course, ergodicity does 
not exclude the possibility that, for a fixed value of p, the wired state has an infinite 
cluster and the free state does not - indeed, for q large enough, this is exactly what 
happens at the transition point. 
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2.3. 	Two Useful Inequalities. 
There are three main technical tools for factoring intersections of events in stan­

dard Bernoulli percolation: the FKG inequality for monotone events, independence 
for events which occur on nonrandom disjoint sets, and the van den Berg - Kesten 
[BK] inequality for events which occur on random disjoint sets. As discussed in the 
last section, the free and wired random cluster measures obey an FKG inequality. 
However, due to the nonlocality of the weights (2.14) and (2.16), they satisfy nei­
ther an independence condition nor a BK inequality. Indeed, it is clear from (2.24) 
that the probability of even a simple bond occupation event can be enhanced by 
the occurrence of some other event at an arbitrarily long distance from the bond in 
question. In this subsection, we provide alternatives to independence and the BK 
inequality for many events of interest in a general setting. 

As a substitute for independence of events occuring on nonrandom disjoint sets, 
we might try to use the FKG inequality as a bound, provided that the desired 
events are monotone. However, many of the events we care about - especially in 
the low-temperature phase - are not monotone. For example, the probability of a 
connection via finite clusters is the intersection of an increasing and a decreasing 
event. The presence of boundary conditions, which very often complicates proofs 
in the random cluster model, can be used to our advantage here. Certain boundary 
conditions decouple a set from its exterior. Many events of interest carry with them 
decoupling boundary conditions for the (random) sets on which they occur. We 
make this notion precise by introducing the definition of a decoupling event below. 
It turns out that, given this definition, it is possible to prove a general inequality 
which is similar to the FKG inequality and which replaces independence for events 
whose random boundaries occur within disjoint nonrandom sets. Our inequality 
holds for any FKG measure and for events which are intersections of arbitrary 
events with monotone decoupling events. 

As explained above, the BK inequality is certainly not true in general for the 
random duster model - there are numerous examples in which the occurrence of 
one event enhances the occurrence of another. However, this enhancement cannot 
take place if the two events are decoupled from one another, in a sense to be made 
precise in the definition below. Thus we prove a second inequality, which replaces 
the BK inequality of Bernoulli percolation, and which holds for the intersection of 
an arbitrary event, an increasing event and a decreasing decoupling event. 

In Proposition 2.6 below, we actually present two versions of each of our inequal­
ities: one which is easy to formulate (but not that useful), and a more involved one 
which is of the form needed for our applications. All of these inequalities hold for 
general FKG measures. We also give a useful corollary that concerns monotonicity 
in the volume and FKG domination in the random cluster model. We begin with 
the definition of a decoupling event. 

Definition 2.5. Given a probability space (0, F, J.l) and events AI, A2 , D E F, we 
say that D is a decoupling event for Al and A 2 , if 

(2.25) 

For brevity, we will sometimes say D decouples Al from A2 • 
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While this definition makes sense in any probability space, it may be useful to 
illustrate it with a typical example from the random cluster model. Consider a set 
B C Bd such that Bd \ B = BI U B2, BI n B2 = 0. The event that the bonds of 
B are vacant then decouples any event Al E :FBluB from any event A2 E :FB2U B. 
In this paper, such decoupling events typically occur when B is the boundary of a 
finite occupied cluster. Returning to the general context of Definition 2.5, we have: 

Proposition 2.6. Let (O,:F,p) be a probability space with 0 partially ordered 
and p. an FKG measure with respect to this order. Then the following inequalities 
hold: 
1) The First Inequality 

i) Consider two arbitrary events At, A2 E :F, and two increasing (or two decreas­
ing) events DI, D2 E :F such that DI decouples Al from D2 while D2 decouples 
A2 from At n Dt . Then E t = At n Dt and E2 = A2 n D2 obey the inequality 

(2.26) 

ii) More generally, let Ei, i = 1, 2, be disjoint unions of the form 

Ei = U Ai,k n Di,k, (2.27) 
kEKi 

where Ki are countable index sets, Ai,k E :F are arbitrary events, Di,k E :F are 
all increasing (or all decreasing) events, and Dt,k decouples At,k from D2,k' while 
D2,k' decouples A2,k' from AI,k n DI,k for all k E K t and k' E K 2. Then Et and 
E2 obey the inequality (2.26). 

2) The Second Inequality 
i) Let At E :F be an increasing event, A2 E :F be arbitrary, and D E :F be a 
decreasing event which decouples At from A2 • Then 

(2.28) 

ii) More generally, let At E :F be an increasing event, and let A2 E :F and D E :F 
be events for which DnA2 can be rewritten as a disjoint union of the form (2.27), 
with D2,k decreasing events that decouple At from A2,k for all k E K 2. Then 
the bound (2.28) remains valid. 

Proof Rewriting the left hand side of (2.26) as 

and using the fact that D2 decouples A2 from Al n Dt , we obtain 

Applying the same procedure to the term P.(AI nDt nD2) and using the decoupling 
event D I , we get 
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which by the FKG inequality (2.17) implies (2.26). Part Iii) of the proposition then 
follows from the countable additivity of the measure JL and the fact that the events 
E t and E2 are disjoint unions of events for which (2.26) is valid. 

In order to prove 2i), we observe that 

JL(At n D n A2 ) = JL(D) JL(At ID) JL(A2 ID) 

by the definition of conditional expectations and (2.25). Using the FKG inequality 
(2.17) to bound JL(At I D) by JL(A t ), the bound (2.28) now follows. Again, 2ii) 
follows from 2i) and the countable additivity of the measure. 0 

Remark. It is clear from the above proof that the inequality (2.26) is reversed if one 
of the two decoupling events Dt and D2 is increasing and the other is decreasing. 
Similarly, the first inequality in (2.28) is reversed if Al and D are both decreasing 
or both increasing. 

Corollary. Let q ~ 1, A C Z d and b = "wir" or "ftee". Consider the random clus­
ter measure JLb,A and the corresponding probability space (o'B,.,.1'B,., JLb,A), where 
Bb = B+(A) if b = "wir" and Bb = B(A) if b = "free". Let B eBb, and let E be 
an event of the form (2.27) where the index set is the set of all subsets of B, i.e. 

E= U AsnDs, 
SeB 

with As E .1'B,. arbitrary events, and Ds E .1'B,. decreasing events that decouple As 
from all events in .1'B,. \B' If the events Ds are decoupling events with respect to 
the measure JLfree,A, then 

JLfree,A,(E) ~ JLfree,A(E) provided A' C A and B C B(A/). (2.29) 

If the events D s are decoupling events with respect to the measure JLwir,A, then 

JLwir,A,(E) ~ JLwir,A(E) provided A' C A and B C B+(A/) (2.30) 

and 
JLwir,A(E) ~ JLfree,A(E) provided B C B(A). (2.31 ) 

Proof. Let Al be the event that all bonds in B(A) \ B(A') are vacant. Then Al E 
.1'B(A)\B(A') C .1'B(A)\B is decoupled from As by the event Ds. Since both Al and 
Ds are decreasing events, 

JLfree,A(E IAI) ~ JLfree,A(E) 

by the remark following the proof of Proposition 2.6. Observing that JLfree,A,(E) = 
J.lfree,A(E I At), this proves (2.29). Defining Al as the event that all bonds in 
B+(A)\B+(A') are occupied (all bonds in B(A)+ \B(A) are vacant), the remaining 
two inequalities are proved in the same way. 0 

In order to illustrate the utility of Proposition 2.6, we conclude this subsection 
with applications of each of the two inequalities. These applications will be needed 
in our subsequent analysis and may be of independent interest. As usual, we denote 
by C(x) = C(x;w) the set of occupied bonds connected to x in the configuration w, 
and define {x ~ y} as the event that x is connected to y by a finite path of occupied 
bonds. We also define, for each finite set A C Zd and any two points x, yEA, the 
event R~~y(A) that x and y are connected by a cluster C(x) C B(A): 
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Proposition 2.7. Let q ~ 1, A C Zd be finite or infinite, and let Jl = Jlwir,A or 
JlCree,A. Then for all finite A},A2 C A with B+(AI )nB(A2) = B(AI )nB+(A2) = 0, 
and all x,y E AI, z,w E A2 , 

Proposition 2.8. Let q ~ 1, A C Zd be finite, and let Jl = Jlwir,A or Jlfree,A' Let 
x, y, z, w E A, and let D be the event {x 1-+ z} n {y 1-+ w}. Then 

Jl( {x +-+ y} n D n {z +-+ w}) ~ Jl(x +-+ y) Jl( z +-+ w). 

Clearly, Proposition 2.7 is an application of the first inequality in Proposition 
2.6 the connections in question occur on fixed disjoint sets, B(AI) and B(A2), 
and due to the finiteness of the clusters, each connection carries its own decoupling 
event. Note that if B+(AI) n B+(A2) = 0, then in percolation, the probability of 
the intersection of the events in Proposition 2.7 would factor exactly. Here our 
first inequality replaces this independence. In fact, given that the decoupling events 
can overlap, Proposition 2.7 gives a new result even in the case of percolation. 
Proposition 2.8 is an application of the second inequality in Proposition 2.6 - the 
connections in question occur on random disjoint sets separated by the decoupling 
event D. This obviously replaces the BK inequality. Note that, in marked contrast 
to percolation, the inequality would fail to hold if we removed the decoupling event. 

Proof of Proposition £.7. Introducing BI as the family of all sets B C B(AI) such 
that B connects x to y, and B2 as the family of all B c B(A2) connecting z to w, 
we decompose R~~y(AI) and R~~w(A2) as 

R~~y(AI) = U {C(x) = B} = U {WB = I} n {Wa·B = O} 

and 
R~~w(A2) = U{C(z) = B} = U {WB = I} n {Wa·B = O}. 

Be82 Be82 

Here W B is the configuration w restricted to the set B and a*B is the set of all 
bonds in Bd \ B which are connected to B. Observing that for all B E Bl and 
all iJ E B2, D1,B = {Wa.B = O} decouples A1,B = {WB = I} from all events in 
FBc ::> F B+(A2)' while D2,B = {wa.jj = O} decouples A2,jj = {Wjj = I} from all 
events in Fjjc ::> FB+(Ad' one easily verifies that R~~y(AI) and R~~w(A2) are events 
of the form considered in part Iii) of Proposition 2.6. 0 

Proof of Propo.Jition 1.8. Defining Al = {x +-+ y} and A2 = {z +-+ w}, we rewrite 
Al as the disjoint union Arn u A~nf, with 

and 
A~nf = Al n {x +-+ 8A}. 
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Notice that /J-free,A (A~nf) = 0, since with free boundary conditions, x cannot be 
connected to the outer boundary 8A = {x ~ Aldist(x, A) = I}. Introducing the 
family Bl of sets B C B(A) that connect x to y but do not connect x to z or y to 
w, we then decompose A~n n D as 

A~n n D = U {WB = I} n {Wa-B = O}. 
Be81 

Observing that for all B E B}, the event {wa- B = O} decouples A2 from the event 
{WB = I}, we obtain 

where we have used the second inequality of Proposition 2.6 in the first step. This 
completes the proof for the free measure. 

In order to complete the proof for the wired measure, we will show 

To this end, we define 

Since the wiring would connect two points if they were both connected to the bound­
ary, we have 

A\nf n D n A2 = A\nf n D n A~n 

with probability one with respect to the wired measure. Applying the same strategy 
as before, we then obtain 

as claimed. 0 

Remarks. 
1) 	As can be seen from the above proof, the finite-volume free measure actually 

obeys the stronger inequality 

Piree,A({x .... y} n D n {z .... w}) :5 Jlfree,A ({x .... y} n D) Jlfree,A(z .... w) . 

2) Using uniqueness of the infinite cluster [BuK] (see also Proposition 2.4 above), 
it follows immediately that A\nf n D n A2 = A\nf n D n A~n with probability one 
with respect to the infinite-volume measures /J-free and Jlwir. Hence Proposition 
2.8 holds for these measures as well. 
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2.4. 	DLR Equations and States of the Random Cluster Model. 

In this subsection, we introduce the notion of (unconstrained) DLR states for the 
random cluster model, prove that the free measure is such a state, and use this to 
show that it is ergodic - a property we will need in our subsequent analysis. It is 
usually straightforward to establish such results by invoking the general theory of 
Gibbs states (see e.g. [Prj and [Ge]). However, the general theory requires that the 
finite-volume expectations used to construct the DLR states are quasilocal functions 
of the boundary conditions, a property which fails to hold here due to the nonlo­
cality of the random cluster weights. Thus the DLR equation has to be established 
explicitly. 

We start by defining finite-volume measures with general unconstrained boundary 
conditions - conditions which permit any component to be connected to any other 
component. The set of states generated by all such boundary conditions is quite 
natural in the random cluster model. A larger class including constrained states 
will be discussed briefly at the end of this subsection. Each measure is defined on 
an arbitrary finite set of bonds B C Bd with boundary 

8B = {x E Zd I 3y, z E Zd with (x, y) E B, (x, z) E Be} . 

We specify the boundary condition by introducing a wiring diagram, W, which is a 
disjoint partition of 8B into nw = 1"" ,18BI components: 

nw 
W = {WI,'" ,Wnw} with 8B = UWi, Wi n Wj = 0 if i =F j . 

i=l 

We denote by W(8B) the set of all such wiring diagrams - i.e. the set of all disjoint 
partitions of 8B. Each component, Wi, of the wiring diagram W is considered to 
be preconnected or wired, so that all bonds b E B connected to points of Wi are 
regarded as being connected to each other. The number of components #(w) is 
then computed as usual. The random cluster weight 

(2.32) 

defines the finite-volume measure I'W,B(')' Denoting by Wfree the partition with 
nw = 18BI components and by Wwir the partition with only a single component, 
we see that I'free,A(') = I'Wrr.. ,B(A)(·) and I'wir,A(·) = I'Wwir,B+(A)(·), so that the 
free and (fully) wired measures are just special cases of jtW,B(')' Note that among 
the measures JlW,B(') are some that cannot be obtained as transforms of any finite­
volume states in the spin system, namely those in which W has more than q com­
ponents Wi with JWil ~ 2. 

There is a natural partial order on the set W(8B). If W, W' E W(8B), we say 
that W' is coarser than W, denoted by W' >- W, if for each W; E W' there exist 
Wil' Wi2' ... ,Wim E W such that W; = UJ=t Wij. Notice that Wfree is the least 
coarse and Wwit is the most coarse of all wiring diagrams. Moreover if W' >- W, 
then jtW',B dominates jtW,B in the sense of FKG (see Definition 2.1 above). 
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Each configuration w E 0 induces a wiring diagram on each finite set B C Bd. 
The induced wiring diagram W(B,w) is a partition into components of 8B, each of 
which is connected using occupied bonds in wBe. Thus each w E 0 gives rise to a 
sequence of induced finite-volume measures I-'W(B,w),B for any increasing sequence 
of sets B C Bd. Henceforth we will extend the induced finite-volume measure 
I-'W(B,w),B to a measure on the full space (0,.1") by declaring all bonds in Be to 
have the configuration specified by w. (Compare this to our extensions of of I-'free,A 

and I-'wir,A discussed in the remark following equation (2.16).) Using the form 
(2.32) of the weights GW,B and our definition of induced wiring diagrams, it is 
straightforward to check that the (extended) induced finite-volume measures obey 
the consistency condition 

(2.33)PW(B,w),B(A) =f PW(B,w),B(dW) PW(B,w),B(A) 

for all local events A E :F, any finite set B and all iJ c B. 
For each finite B, we may define the function 7rB : (:F,O) --. 1R by 7rB(Alw) = 

I-'W(B,w),B(A). Since the family 1 = {7rB I B C Bd, IBI < co} is a set of proper 
probability kernels obeying the consistency condition (2.33), 1 is a specification in 
the sense of [Pr]. 

A DLR equation ([D], [LR]) is just an infinite-volume analogue of a consistency 
condition like (2.33). Thus we introduce the (unconstrained) DLR equation for an 
infinite-volume random cluster state 1-': 

p(A) =f p(dw) PW(B.w).B(A) (2.34) 

where A E :F is any local observable and B C Bd is any finite set. As usual, the DLR 
equation (2.34) - if it holds - allows us to write the infinite-volume expectation 
of A as an average over finite-volume expectations. It is closed in the sense that the 
average is computed with respect to the given measure 1-'. Note that this is different 
from the equation for states given in [ACCN], where a random cluster measure 
was obtained as a transform of a measure obeying the DLR equation in the spin 
system. On the other hand, a DLR equation was implicit in the discussion of states 
in [Grm]; there, however, the question of existence of solutions to the equation was 
not addressed. 

Let us denote the set of states obeying (2.34) by g = g("Y), where as above 1 
denotes the specification. States I-' E g will be called DLR states or Gibbs states. 
A priori it is not clear whether g is nonempty, i.e. whether there exists any p 

satsifying (2.34). One might try to construct such a I-' as a subsequential limit 
of finite-volume measures I-'W,B - which clearly exists by compactness - but the 
question of whether such a limit obeys (2.34) involves a delicate interchange of 
limits. The theory of Gibbs states ([Prj, [Ge]) provides general conditions under 
which (2.34) is satisfied, one of which is quasilocality of the specification. 

A function f is quasilocal if it can be approximated in the supremum norm by 
local functions, a property which is equivalent ([Ge], Remark 2.21) to the statement 

sup 1few) - f('1) 1--. 0 as B --. Bd . 
W,'1: WB ='1B 
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A specification {7rB} is quasilocal if the functions 7rB{A,·) are quasilocal for all 
finite B C Bd and all local events A E F. 

Unfortunately, due to nonlocality of the weights GW,B, our specification is not 
quasilocal. For example, the probability of the simple event {w{b) = 1}, conditioned 
on the bonds in Bd \ {b}, changes discontinuously depending on whether or not the 
endpoints of b are connected by a path (of any length) in Bd \ {b} (see equation 
(2.24». The general theory of Gibbs states can therefore not be applied here. 
However, we can verify the DLR equation (2.34) explicitly in the case of the free 
measure: 

Proposition 2.9. For all q ;::: 1 and 0 :::; f3 :::; 00, J.lfree E g. 

Proof. Let B C Bd be a finite set and A E F a local event. We wish to show 

I'free(A) =JI'free(dw) I'W(B,w),B(A). (2.35) 

By the finite-volume consistency condition (2.33) and convergence of the finite­
volume measures (2.20), it suffices to prove 

AI~z. JI'free,A(dw) I'W(B,w),B(A) =JI'free(dw) I'W(B,w)'B(A). (2.36) 

Inserting the partition of unity 2:wEW(8B) ][{W(B,w)=W} = 1 into (2.36) and noting 
that J.lw,B{A) is independent of A, we see that it is enough to prove 

AI~~ J.lfree ,A { {W(B, w) = W}) = J.lfree { {W(B, w) = W}) , (2.37) 

i.e. that the probability of a given wiring diagram converges. 
Let RWi{BC) denote the event that all sites within the set Wi are connected to 

each other via bonds in BC, let Sw{BC) = nWiEW Rw,(BC), and let NWi,Wj (BC) 
denote the event that none of the sites in Wi is connected to any of the sites in Wj 
via bonds in BC. Then 

{W{B,w) = W} = Sw{BC) n n NWi,Wj{BC}. {2.38} 
Wi'Wi EW 

iJl:j 

By inclusion-exclusion, it is not hard to show that if B{A} :> B, then 

J.lfree,A{ {W{B,w) =W}) = E kw{W) J.lfree,A{Sw{BC)) , {2.39} 
We W (8B): 

W)ooW 

where the sum is over 'IV coarser than W (see the definition a paragraph below 
(2.32», and kw(W) E Z are computable coefficients with kw(W) = 1. Thus by 
{2.37)-(2.39}, we only need to show that for all 'IV E W(8B) 

(2.40) 

http:2.37)-(2.39
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Let 'tV E W(8B) and choose A such that B(A) :::> B. Due to the free boundary 
conditions on 8A, the argument of the left hand side of (2.40) can be rewritten as 

(2.41) 

Approximating the wiring event Sw{BC) by local events, we see that the right hand 
side of (2.40) is actually a double limit: 

Jlfree(Sw{BC)) = lim Jlfree{Sw{B(A') \ B))
A'-Za 

/= AJ~Za AI~Za Jlfree,A{Sw(B{A ) \ B)). (2.42) 

Thus by (2.40)-(2.42), we must show 

lim Jlfree,A(Sw(B(A) \ B)) = lim lim Jlfree,A(Sw{B(A/) \ B)). (2.43)
A-Za 	 A' -Za A-Za 

In order to prove this, we note that for all A' c A 

Jlfree,A,(Sw(B(A')\B)) :::; Jlfree,A(Sw(B(A/)\B)) :::; Jlfree,A(Sw(B(A)\B)) , (2.44) 

where the first inequality follows from the monotonicity property (2.18) and the 
second is just a consequence of Sw(B(A') \ B) c Sw(B(A) \ B) if A' c A. Taking 
the limits A -+ Zd and A' -+ Zd, equation (2.44) yields (2.43) and hence (2.35). 0 

Remarks. 
1) 	The only property of the free measure that was used to reduce the proposition 

to equation (2.40) was convergence of the finite-volume measures. Thus the 
wired analogue of (2.40) - i.e. convergence of the probability of the wiring 
events Sw(BC) with respect to the finite-volume wired measures - is sufficient 
to prove Jlwir E g. Unfortunately, however, Jlwir does not have nice monotonicity 
properties like those in equation (2.44). 

2) 	Equation (2.43) of the proof is our first example of the problem of interchange 
of limits which arises again in Proposition 3.4 and in many theorems in Section 
4. Whenever we deal with the infinite-volume limit of an event which is not 
confined to a finite volume, we encounter a double limit - one for the construc­
tion of the infinite-volume measure and the other for the approximation of the 
given event by local events. Hence the problem of interchange of limits. This 
problem does not arise in percolation because the measure is defined directly in 
the infinite-volume limit. Here, when we can deal with interchange, it is usually 
accomplished via either simple FKG monotonicity (equations (2.18) and (2.19)) 
or our monotonicity involving decoupling events (corollary to Proposition 2.6). 

It is now straightforward to show that Jlfree is ergodic. We have: 

Theorem 2.10. Let H be any nontrivial subgroup of the translation group and 
let go C g be the set of all H -invariant DLR states. Then for all q ~ 1, Jlfree is 
extremal in go and hence is H-ergodic. 

Proof. As noted earlier, Wfree is the least coarse of all wiring diagrams, so that 

JlWtree,B :::; JlW,B for all WE W(8B) , 	 (2.45)
FKG 

http:2.40)-(2.42
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and thus by convergence of the measure (2.20) 

Jlfree ~ Jl for all Jl E 9 . 	 (2.46)
FKG 

Given that Jlfree E 9 (Proposition 2.9), it follows immediately from (2.46) that 
Jlfree is extremal in 9 and hence also in 90 (since Jlfree is of course H-invariant). 
Ergodicity then follows from the fact that all extremal measures in 90 are H-ergodic 
([Prj, Theorem 4.1). 0 

RemarL. 
1) FKG Ordering of State&: Using the fact that the wired state is the coarsest of all 

states, we have analogues of (2.45) and (2.46) for the wired measure, and thus 

Jlfree ~ Jl ~ Jlwir for all Jl E 9 . (2.47)
FKG FKG 

Note of course that this does not imply Jlwir E 9. 
2) 	 The Size of9: By Proposition 2.9, Jlfree E 9 so that 191 ~ 1 for all q ~ 1 and all in­

verse temperatures f3. Let p;ir(f3) denote the percolation probabilty in the wired 
measure, which of course coincides with the magnetization for integer q. Accord­
ing to a result of [ACCN] (Theorem A.2), whenever p;jr(f3) = 0 (Le. f3 ~ f3t for 
systems with second-order transitions and f3 < f3t for those with first-order tran­
sitions) Jlfree = Jlwir, so that by (2.47) and Proposition 2.9, 191 = 1. It is expected 
that 191 =1 also for f3 > f3t, but there are only incomplete results for d =2: The 
two-dimensional dual of the [ACCN] result says p:jr«(3*) = 0 implies 191 = 1, i.e. 
there is one state for (3 > (3:, which presumably coincides with (3t (see also [Grm]). 
However, one expects more states at the transition point in systems with first­
order transitions. For q large enough and d = 2, convergent expansions ([KoS] , 
[LMR]) can be used to show that there are q + 1 distinct translation-invariant 
spin states (which transform into two distinct translation-invariant random clus­
ter states - the free and the wired). There are presumably no non-translation­
invariant states. Thus we expect 191 = 2 for f3 = f3t and q large enough in d = 2. 
In three dimensions, convergent expansions [MMRS] can be used to show that for 
q large enough, in addition to the translation-invariant states discussed above, 
there are infinitely many non-translation-invariant "Dobrushin-type" states cor­
responding here to states constructed from wiring diagrams which coincide with 
W wit above a certain hyperplane and with Wfree below that plane. We expect that 
these expansions can also be used to show that these non-translation-invariant 
states satisfy our DLR equation (2.34), so that at (3 = (3" 191 = 00 for q large 
enough in d ~ 3, in contrast to the conjecture of [Grm]. 

3) 	 State& with Con&traint&: In the remark above, we mentioned "Dobrushin-type" 
states which we expect to be in 9; these states were constructed from a combina­
tion of wired and free boundary conditions. There are, however, many Dobrushin­
type states in the spin system whose transforms are not in 9 - namely, mixed 
states in which various components of the boundary have different values of the 
spin. In the random cluster model, these correspond to states with constraints 
- certain components cannot be connected to other components. Therefore, in 
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order to formulate D LR equations for these states, one has to supplement our 
wiring diagrams with some notion of constraints. While this is possible for in­
dividual finite-volume states, it is not clear how constraints should be induced 
by a given configuration w E {l, nor whether the resulting measures would obey 
even finite-volume consistency conditions. 

3. 	THE COVARIANCE MATRIX 

3.1. 	The Random Cluster Representation of the Covariance Matrix. 
In this section, we rewrite the covariance matrices with free and constant bound­

ary conditions, 
Ghe~(x - y) = (q6(uz , m); q6(uy, n»)free (3.1) 

and 
(3.2) 

in terms of the random cluster representation of Fortuin and Kasteleyn [FK]. We 
do this by first deriving finite-volume expressions and then taking infinite-volume 
limits. 

9.1.1. The Covariance Matrix in Finite Volume. 

Before deriving our representation for the covariance matrix, we recall the corre­
sponding result for the (finite-volume) magnetization 

1 
M z (/3, A) = -1 (q6(uz , 0) - 1)0 A' 	 (3.3)q- , 

U sing the symbol X +-+ Y for the event that the set X is connected to the set Y by 
a finite path of occupied bonds, the expression (2.15) almost immediately gives 

M z (/3, A) = Ilwir,A(X +-+ 8A). (3.4) 

For future reference, we note that this can be easily generalized to the expectation 
of eiPC1 

:r: with pES \ {OJ = {27r/ q,' .. 27r(q - 1)/q}. We obtain 

(3.5) 

We begin by considering the finite-volume two-point function with free boundary 
conditions, 

Ghe~,A (x, y) = (q6(uz , m); q6(uy , n»)free,A . (3.6) 

Using the fact that (q6(uz , m»)free,A = 1 for all m and all x E A, we first rewrite 
Ghe'!,A(x, y) as an untruncated expectation value 

Ghe~,A(X, y) = (q6(uz , m) - 1)(q6(uy , n) - 1»)free,A . (3.7) 

Now observe that Efree«q6(uz,m) -1)(q6(uy,n) - 1)lw) = 0 if x and y are not 
connected in the configuration w, while Efree«q6(uz ,m) -1)(q6(uy,n) - 1)lw) = 
q6(m, n) - 1 if x and y are connected. Thus, defining the connectivity in the FK 
representation 

Tfree,A (x, y) = Ilfree,A (x +-+ y) , (3.8) 

we obtain the following: 
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Lemma 3.1. The finite-volume covariance matrix with free boundary conditions 
has the representation 

Ghe'!,A(X, y) = (q8(m, n) - l)Tfree,A(x, y). (3.9) 

Remark. The result (2.9) in [ACCN] for the usual two-point function, 

1 
--1(q8(O'z, 0',,) - l)free A = Tfree,A(X, y),q- , 

is proportional to the trace of our expression (3.9). 

Next, we rewrite the finite-volume covariance matrix with constant boundary 
conditions, 

G~:\(X - y) = (q8(O'z,m); q8(O'y,n»)c,A' (3.10) 

To this end, we define the finite-cluster connectivity 

(3.11) 

and the covariance of the events that x and y are connected to the boundary 8A 

Cwir,A(X, y) = Jlwir,A( {x +-+ 8A} n {y +-+ 8A)} - Jlwir,A(X +-+ 8A)Jlwir,A(y +-+ 8A). 
(3.12) 

We have: 

Lemma 3.2. The finite-volume covariance matrix wit~ constant boundary condi­
tions has the representation 

G':::\(X,y) = (q8(m,n) -l)T!~,A(x,y) + (q8(m, c) -1)(q8(n,c) -l)Cwir,A(x,y). 
(3.13) 

Proof. By the symmetry of the model, it is enough to establish the lemma for c = O. 
In a first step, we prove a similar relation for (e ipt1

; 
ip 't1')O,A' namely11: e­

(e ipt1
l1:; e-ip't1')O,A = (1- 8(p,0))(1- 8(p',0»(Cwir,A(X,y) + 8(p,p')T!~,A(X,y», 

(3.14) 

Assume w.l.o.g. that p =F 0 and p' =F 0, since otherwise (e ipt1l1:; e- ip't1, )O,A = 0. 
Then recalling the definition of truncated expectation values and observing that by 
(3.5) 

(eipt1 
11: )O,A (e- ip

't1, )O,A = Jlwir,A(X +-+ 8A)Jlwir,A(y +-+ 8A), 

the proof of (3.14) reduces to showing that 

(eipt1 ip
11: e- 't1, )O,A = J.lwir,A( {x H vA} n {y H vA}) +6(p,p')r!h,A(x, y). (3.15) 
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We consider the cases p = p' and p =1= p' separately: If p =1= p', the expectation 
Eo{eiPC1ae-ip'C1'lw) is zero unless both x and y are connected to the boundary, in 
which case Eo{eiPC1a e-ip'C1, Iw) =1. As a consequence, 

(eiPC1ae-ip'C1')O,A = Jo'wirtA{{X +-+ 8A} n {y +-+ 8A}) if p =1= p'. (3.16) 

If p = p', we consider two cases: either x +-+ 8A in the configuration w or x f+ 8A. In 
the first case, Eo{eiPC1a e- ip'C1, Iw) = 1 if y +-+ 8A as well, and Eo{eiPC1a e-ip' C1, Iw) = 0 
if y f+ 8A, yielding a contribution of Jo'wir,A{X +-+ 8A and y +-+ 8A). In the second 
case, Eo{ eiPC1a e-ip'C1, Iw) = 1 if x +-+ y, and Eo( eiPC1a e-ip'C1, Iw) = 0 if x f+ y, yielding 
r!h-tA(x,y). Thus 

(eiPC1ae-iP'C1')O,A = Jo'wir,A{{X +-+ 8A}n{y +-+ 8A})+r!h-,A{x,y) if p =p'. (3.17) 

Equations (3.16) and (3.17) establish (3.15) and hence (3.14). 
Given (3.14), the proof of the lemma is an easy exercise: observing that the 

delta functions q6{O'z,m) and q6{O'y,n) can be rewritten as I:PEseip(C1a-m) and 

I:P'Es e-ip'(C1, -n), respectively, we multiply both sides of (3.14) by ei(p'n-pm) and 
sum over p and pi to obtain (3.13) for c = O. 0 

9.1.£. The Covariance Matrix in Infinite Volume. 

In this subsection, we extend our representations of the covariance matrix with 
free and wired boundary conditions to the infinite volume. To this end, we again 
denote by G{x) = G(x;w) the set of occupied bonds connected to x in the configu­
ration w, and define the (translation-invariant) analogues of expression (3.8) for the 
connectivi ty, 

rfree{x - y) = Jo'free{x +-+ y) , (3.18) 

expression (3.11) for the finite-cluster connectivity, 

r!h-{x - y) = Jo'wir(x +-+ y and IG{x)1 < 00), (3.19) 

and expression (3.12) for the covariance, 

Gwir(X - y) = Cov"wir{IG{x)1 = 00, IG{y)1 = 00). (3.20) 

where in general Cov,,(A, B) = Jl(A n B) - Jl{A)Jl{B) is the covariance of events A 
and B with respect to a measure Jl. We call the function Gwir{x - y) defined in (3.20) 
the infinite-cluster covariance. Our infinite-volume representation is contained in: 

Theorem 3.3. The covariance matrices Gfr'e'!{x - y) and G~n(x - y) can be ex­
pressed as 

Gfre~{x - y) = (q6{m, n) - l)r(x, y) (3.21) 

and 

G~n{x - y) = (q6{m, n) - 1) r!h-(x - y) + (q6(m, c) - 1){q6{n, c) - l)Gwir(x - y). 
(3.22) 

Proof Given the corresponding finite-volume statements in Lemma 3.1 and Lemma 
3.2, the theorem is an immediate consequence of the following proposition. 
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Proposition 3.4. Let q ~ 1 be real, let Tfree,A(X,y), T!~,A(X,y) and Cwir,A(X,y) 
be the quantities defined in equations (3.8), (3.11) and (3.12), and let Tfree(X - y), 
Tfin(X_Y) and Cwir(X-y) be the corresponding infinite-volume quantities, defined in 
equations (3.18), (3.19) and (3.20). Then the infinite-volume limits of Tfree,A(X, y), 
T~l!.,A (x, y) and Cwir,A(X, y) exist, and 

Tfree(X - y) = lim Tfree,A(X, y), (3.23)
A_Zd. 

(3.24) 

and 
Cwir(X - y) = lim Cwir,A(X, y). (3.25)

A_Zd. 

Remark. For local observables, the existence of the thermodynamic limit follows 
immediately from the FKG monotonicity properties '(2.18) and (2.19) - see equa­
tions (2.20) and (2.21). This, however, does not imply the relations (3.23), (3.24) 
and (3.25), since the events in question are nonlocal; the relations can only be es­
tablished after an interchange of limits. In the ordered phase, this interchange is not 
merely technical - it is related to the question of how the infinite cluster emerges 
from large clusters in a finite volume. Thus it depends sensitively on boundary con­
ditions. For example, for a free boundary condition analogue of the finite-cluster 
connectivity (3.19), an infinite-volume statement like (3.24) is actually false. 

Proof. Introducing the event Rz,y(A) that x and y are connected in B(A), the right 
hand side of (3.23) is 

lim /-lfree A(X +-+ y) = lim /-lfree A(Rz .. (A))
A_Zd' A_Zd'"'' 

while the left hand side is 

/-lfree(X +-+ y) = lim /-lfree(Rz ,,(A')) = lim lim /-lfree A(Rz ,,(A')) . 
A'_Zd " A'_Zd A_Zd ' " 

We therefore have to show that 

lim lim /-lfree,A(Rz,y(A')) = lim /-lfree,A(Rz,,(A)). (3.26)
A'_ZtI A_Zd. A_ZtI 

In order to prove (3.26), we combine the monotonicity property (2.18) with the fact 
that Rz,y(A/) C Rz,,(A) if A' c A to get 

Jlfree,A,(Rz,,(A/)) $ Jlfree,A(Rz,y(A/)) $ Jlfree,A(Rz,y(A)) if A' cA. (3.27) 

Taking the limits A -+ Zd and A' -+ Zd, the inequality (3.27) implies equation (3.26). 
In order to prove (3.24), we consider the event R~~y{A) that x and yare connected 

by a cluster C(x) C B{A), as introduced in Proposition 2.7. Recalling that 8A = 
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{x ~ Aldist(x,A) = I}, we see that R~~II(A) is the intersection of th~ event RZ:,II(A) 
with the event that x is not connected to oA. We claim that 

(3.28) 

As before, the second inequality follows from the fact that R~~y(A') C R~~II(A) if 
A' c A, which implies that Jlwir,A(R~~II(A')) is monotone increasing in A'. However, 
the monotonicity of J.twir,A(R~~II(A')) in A is less obvious because R~~II(A') is neither 
an increasing nor a decreasing event. It is, however, an event of the form (2.27) 
considered in Proposition 2.6 and its corollary. Namely, 

R~:II(A') = U{C(x) = B} = U{WB = I} n {W8*B = a}, (3.29) 
B B 

where the union goes over all connected sets B C B(A') that join x to y, WB is the 
configuration W restricted to the set B, and 0* B is the set of all bonds in Bd \ B 
which are connected to B, as in the proof of Proposition 2.7. Thus by the corollary 
to Proposition 2.6, J.twjr,A(R~~II(A')) is an increasing function of A' C A, which is 
actually stronger than the first inequality of (3.28). This completes the proof of 
(3.24). 

In order to prove (3.25), we remark that it has been already shown in [ACCN] 
(Theorem 2.3c) that J.twir(IC(x)1 = 00) = limA_zd J.twir,A(X +-+ oA). The proof of 
(3.25) therefore reduces to showing 

J.twir(IC(x)1 = 00 and IC(Y)I = 00)) = }.!..~d J.twir,A{X +-+ oA and y +-+ oA). (3.30) 

Proceeding as before, we now introduce R~~ as the event that both x and Y are 
connected to oA. With this notation, equation (3.30) can be rewritten as 

lim lim J.twir ,A (R~AII/) = lim J.twir A(R~~,) . (3.31)A'_Zd A_Zd ' A_Zd ' ,. 

Using (2.19) instead of (2.18), and observing that R~~: :> R~~ if A' c A, we obtain 

(R8A') (R8A') ( 8A) • A' (3.32)J.twir ,A' Z:,II ~ J.twir ,A z: ,y ~ J.twir ,A Rz: ,y If CA. 

As before, the proof is completed by taking the limits A --. Zd and A' --. Zd. 

3.2. 	The Covariance Matrix and its Eigenvalues. 

Here we analyze the structure of the covariance matrix 

(3.33) 

with free and constant boundary conditions, summarizing our results in Theorem 
3.5 at the end of the section. Before discussing particular boundary conditions, we 
note that in general 

(3.34) 
m n 

0 
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which follows from the fact that any truncated expectation (A; B)6 vanishes if either 
A or B is constant, and from the obvious relation Emes 6{uz , m) = 1. In particular, 
this implies that, independent of boundary conditions, Grn always has a trivial 
eigenvalue 0, corresponding to an eigenvector Vo = (I"" ,1) E ag• 

Now consider the matrix with free boundary conditions 

Gfre~{x - y) = (q6(uz , m); q6{u,l , n))free' (3.35) 

Due to the permutation symmetry of the Hamilton function (2.1) and the symmetry 
of the boundary conditions, a.ll diagonal elements are equal, as are all off-diagonal 
elements. Combining this with the observation (3.34), we conclude that 

Gfre~{x - y) = (6{m, n) - (I - 6(m, n))_I_) G~r~e(x - y). (3.36)
q-l 

Given (3.36), the matrix Gfre~(x - y) is easily diagonalized. We find one trivial 
eigenvalue 0, corresponding to an eigenvector Vo = (1,··· ,1), and one (q - I)-fold 
degenerate eigenvalue 

(3.37) 

corresponding to the (q - 1)-dimensional eigenspace orthogonal to vo. In the second 
equality in (3.37), we have reexpressed G~r~e{x - y) as the usual two-point function. 

Remark. The above results imply that, in the free boundary condition case, the 
covariance matrix of the q-state Potts model does not contain more information 
than the standard two-point function. As we will see below (and as should be 
clear from the fact that Gmn(x - y) always has one trivial eigenvalue), the same is 
true of the covariance matrix of the Ising model (q = 2) with constant boundary 
conditions. This may explain why the covariance matrix has not been more widely 
studied previously. However, as we shall see below and in subsequent sections, the 
q ~ 3 state matrix with constant boundary conditions does have additional content, 
and this content has a clear stochastic geometric interpretation. 

Next we analyze the covariance matrix with constant boundary conditions, 

(3.38) 

Starting with the special case q = 2, we use (3.34) to conclude that G~O{x - y) = 
G~l(x_y) = -G~l{x_y) = -G!O(x-y). Combined with the fact that GgO(x-y) = 
GIl (x - y) by the symmetry of the model, we obtain 

G:;'ft(x - y) = (6(m, n) - (1 - c5(n, m»)GgO(x - y) for q = 2. (3.39) 

Observing that the matrix structure of (3.39) is identical to that of (3.36) with 
q = 2, we see that we again obtain a trivial eigenvalue of °and an eigenvalue 

(3.40) 
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Here we have rewritten GgO(x-y) in terms of standard Ising spins Sz = 26(f7z, O)-l. 
For q =F 2, the matrix structure of G:,n(x - y) is less trivial. Using relation 

(3.34) and the fact that constant boundary conditions e E 5 leave the symmetry 
of permutations among elements of 5 \ {e} unbroken, it is easy to show that there 
are only two independent matrix elements. Taking these to be Ggo(x - y) and 
GAI(x - y), we obtain 

G~C(x - y) = GgO(x - y) if e E 5, 

G~n(x_y)=G~I(x_y) if n=F e, 

1


G~n(x - y) = G~C(x - y) = ---1GgO(x - y) if n =F e, and 
q-

G~"(x-y)= (q_l)1(q_2)G~O(x-y)- q~2G~1(X_Y) if n#m, n,m#c. 

(3.41) 

In order to diagonalize G:,n(x - y), we begin by observing that the expectation 
(.) c is invariant under the group 5,-1 of permutations of 5\ {e}. Diagonalizing G:,n 
first on the Hilbert space corresponding to the trivial representation of 5,-1, we 
identify two eigenvectors: Vo = (1"" ,1), corresponding to the simple eigenvalue 
zero, and VI, with components (VI)m = q6(m, e) -1, corresponding to the nontrivial 
simple eigenvalue 

(3.42) 

On the remaining (q - 2 )-dimensional subspace orthogonal to Vo and VI, we finally 
obtain the (q - 2)-fold degenerate eigenvalue 

(2)( ) q-1 11() 1 00
GWir x-y = q_2 Go x-y - (q-1)(q-2) Go (x-y) 

=G~1(X - y) - G~2(X - y). (3.43) 

It is interesting to note that, as in (3.37), it is possible to express the eigenvalue 

G~~!(x - y) in terms of an untruncated expectation. Indeed, we may simply rewrite 
the second line in (3.43) as 

(3.44) 

We both summarize the results of this section and establish their stochastic 
geometric significance in the following: 
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Theorem 3.5. Consider the q-state Potts model with q ~ 2. Then the free bound­
ary condition covariance matrix Gfie'!(x - y) has the simple eigenvalue zero corre­
sponding to the eigenvector Vo = (1, ... ,1), and a (q - I)-fold degenerate eigenvalue 

(3.45) 

corresponding to the subspace orthogonal to vo. For q ~ 3 and all c E 5, the 
constant boundary condition covariance matrix G~n (x-y) has the simple eigenvalue 
zero corresponding to the eigenvector Vo = (1, ... ,1), a nontrivial simple eigenvalue 

(3.46) 

corresponding to the eigenvector Vb with components (Vt)m = q6(m,c) - 1, where 
Vo and Vt belong to the trivial representation of the unbroken subgroup Sq-b and 
a (q - 2)-fold degenerate eigenvalue 

(3.47) 

corresponding to the subspace orthogonal to Vo and Vt. For q = 2, the matrix 
G~n(x - y) has only the trivial eigenvalue zero and the eigenvalue G~j!{x - y). 

Moreover, the eigenvalues Gfree{X - y), G~j!{x - y) and G~!(x - y) can be 
expressed in the random cluster representation as 

Gfree{X - y) = q Tfree{X - y), (3.48) 

G~j!{X - y) = q T!h(X - y) +q(q - l)Cw ir(x - y) (3.49) 

and 
G(2) ( x Y) - q Twirfi n ( - ) . (3.50)wir - - x Y 

Proof. It only remains to establish the random cluster representations (3.48), (3.49) 
and (3.50) of the eigenvalues. But these follow immediately from expressions (3.37), 
(3.42) and (3.43) for the eigenvalues in terms of the matrix elements, and expressions 
(3.21) and (3.22) relating the matrix elements to the random cluster connectivities 
and cluster covariance. 0 

4. THE CORRELATION LENGTHS 

4.1. Existence of the Lengths efree, e~~~ and e~~~. 
In this subsection, we establish the existence of the limits (1.7), (1.8) and (1.9) 

using standard reflection positivity arguments. Namely, introducing the unit lattice 
vector et = (I, 0"" ,0) E .zd, we prove the following: 
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Theorem 4.1. Let q ~ 2 be an integer, and let G(t) denote Gfree(tel), G~i~(tel) or 

(for q ~ 3) G~~(tel)' see Theorem 3.5. Then G(t) is a non-negative, monotone de­
creasing and log convex function oft, so that (G(t)/G(O))I/t is monotone increasing 
in t, the limit 

l/e =- lim log G(t) (4.1) 
t-oo t 

exists and the function G(t) obeys the a priori bound 

G(t) ::; G(O)e-t/~. (4.2) 

Furthermore, denoting the correlation lengths defined in (4.1) by efree, e~~~ and e~~~, 
we bave 

t'(~) > t'(~) (4.3)'-wu - '-wu' 

Proof. We start with the observation that each G(t) can be written as a truncated 
(infinite-volume) expectation of the form 

(4.4) 


where b denotes either free or constant boundary conditions, A = A((f:r) is an 
observable which depends on the spin variable (f:r of a single point x E Zd, and Tt A 
is the translation of the observable A by tel. Equation (4.4) follows from (3.37) and 

(3.35) for Gfree, from (3.42) for G~i~ and from (3.44) for G~~. 
Due to the reflection positivity of the model (see Appendix A for a review of the 

basic ideas), T can be represented as a non-negative contraction (0 ::; T ::; 1) on a 
Hilbert space ri, and 

G(t) = (1jJ, Tt 1jJ ) 

for a suitable vector 1jJ E ri. Obviously, this implies that G(t) is a monotone 
decreasing, non-negative function of t. By the Cauchy-Schwarz inequality, 

G(i(tl +t2)) = (Ttl/21jJ,Tt2/21jJ)::; VG(tl)G(t2)' 

so that G(t) is log convex. Noting 0 < G(O) < 00, this implies that (G(t)/G(O))l/t 
is monotone increasing in t, which in turn immediately implies existence of the limit 
and the a priori bound. Finally, (4.3) follows immediately from the representation 
in Theorem 3.5 and existence of the limits. 0 

Remark. For Gfree and G~!, the existence of the corresponding correlation lengths 
can also be established by subadditivity arguments (see Section 4.2 below). While 
these arguments are more involved than the reflection positivity proof presented 
above, they have the advantage that they give existence of limits analogous to (1.7) 
and (1.9) for non-integer values of q, defined directly in terms of Tfree and T!~ 
(c.f. (equations (3.48) and (3.50)). Moreover, a slight. variation of these arguments 
can be used to establish left continuity of the inverse correlation length l/efree(f3) 

(Theorem 4.2) and upper semi continuity of l/e~~~ (Theorem 4.3). On the other 
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hand, subadditivity does not establish log convexity of G(t) and hence monotonicity 
of the full sequence (G(t)/G(O))l/t, as we have from the above theorem for integer 

q. Furthermore, we are not aware of any proof of the existence of e~~! which does 
not involve reflection positivity. 

4.2. Equivalent Characterizations of efree, e~~! and e~!. 
We already have stochastic geometric representations for the correlation lengths 

efree and e~~! as the decay rates of of Tfree and T!f!. - see Theorem 3.5. In this 
subsection, we provide a stochastic geometric representation for e~~! (Theorem 4.4) 

and give alternative representations for efree and e~~! (Theorem 4.3, Lemmas 4.6, 
4.7 and 4.8). On the one hand, these alternative representations allow us to prove 

several results on the behaviour of efree and e~!, in particular left continuity of 

l/efree(j3) (Theorem 4.2), upper semicontinuity of l/e~~! (Theorem 4.3), and the 
two-dimensional dichotomy (1.11) and (1.12) involving efree and e~~! discussed in 
the introduction. On the other hand, the alternative representations may be of 
interest for numerical determinations - in particular the representation of e~~! in 
terms of the probability T~~~rn(n) that the diameter of the cluster C(O) is n (The­
orem 4.3). The representation of e~~! as the decay rate of the covariance Cwir, 

provided the magnetization M(j3) > 0, may be of interest both to mathematicians 
and numerical physicists. It is worth noting that many of the results of this subsec­
tion are generalizations of corresponding percolation results of [CCGKS] to q ~ 1, 
but the proofs are quite different due to the lack of independence, the lack of a BK 
inequality, and the presence of boundary conditions. 

Some of the results in this section (and most of the proofs) are of a rather techni­
cal nature. In particular, we introduce many connectivity functions and ultimately 
show that they have only a few independent decay rates. However, in the process, 
the notation and the arguments become rather cumbersome. In order to simplify 
matters, we first introduce only a few "physical" connectivity functions and sum­
marize the results of independent interest on efree, e~~! and e~~! in Theorems 4.2, 4.3 
and 4.4, respectively. The remainder of the subsection is devoted both to the proof 
of these results and to the statement and proof of several more techncial results 
which we will need for our proof of the two-dimensional dichotomy in Section 5. 

We start with a few definitions. For b = "wir" or "free" , we introduce the on-axis 
connectivity function 

(4.5) 

the on-axis finite-cluster connectivity 

(4.6) 

the diameter function 

(4.7) 



32 C. BOROS, J. T. CHAVES 

where diam C(O) denotes the diameter of the cluster C(O) in the loo norm, i. e. the 
maximum diameter in any of the d coordinate directions, and the covariance 

Cb(X - y) = #lb( {IC(x)1 = oo} n {IC(y)1 = oo}) - p!.,(f3)2, (4.8) 

where 

P!.,(f3) = #lb(IC(O)/ = 00). (4.9) 

We denote the corresponding correlation lengths - whenever they exist - by eb, ern,
e:iam and ef. 
Theorem 4.2. Let 0 ~ f3 ~ 00 and q ~ 1. Then the correlation lenths ewir and 
efree exist, efree ~ ewir, and 1/efree is a left continuous function of f3. 

Theorem 4.3. Let 0 < f3 < 00 and q ~ 1. Then for b = "wir" or "free", the 
fin diam fincorrelation lengths cfin and cdjam exist and are equal' c = c Also cfi!l < c~b ~b . ~b ~b' ~WJr - ~free' 

and 1/e~jr is an upper semicontinuous function of f3. If q ~ 3 is an integer, then in 
addition 

(4.10) 

Remark. Combined with the obvious inequality et~e ~ efree, the inequalities from 
Theorem 4.2 and Theorem 4.3 give 

provided 0 < f3 < 00 and q ~ 1. 

Theorem 4.4. Let 0 ~ f3 ~ 00 and q ~ 2 be an integer. Then the correlation 
length e~jr exists and 

cC _ c(1) if M(f3) > 0 (4.11)~wjr - ~wjr 

while 
(1) (2) ifand e wir = ewir = efree M(f3) = O. (4.12) 

In order to prove Theorem 4.4, we use a proposition which may be of independent 
interest and is stated next. 

Proposition 4.5. Let 0 ~ f3 :5 00 and q ~ 1. Then 

(4.13) 

Proof of Proposition 4.5. The proof of this proposition is an easy generalization of 
the proof of the corresponding statement in [CCGKS]. For a set B C Bd, let P(B) 
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be the set of points x such that x E ob for some bond b E B. Denoting by 8% the 
family of finite connected subsets B c Bd for which x E PCB), we have 

Cb(X - y) = Jlb(IC(x)1 < oo)Jlb(IC(y)1 = (0) - Jlb({IC(x)1 < oo)} n {IC(y)1 = oo}) 

= L (Jlb(C(X) = B)Jlb(IC(y)1 = (0) - Jlb( {C(x) = B} n {IC(y)1 = oo})) 
Bes. 

= L Jlb(C(X) = B)(Jlb(IC(y)1 = (0) - Jlb(IC(y)1 = 00 IC(x) = B)) 
Bes. 

~ L Jlb(C(X) = B)(Jlb(IC(y)1 = (0) - Jlb(IC(y)1 = 00 I C(x) = B)) 
BeS.: 
,ep(B) 

= L Jlb(C(X) = B)Jlb(IC(y)1 = (0) = Trn(X - y)P:O(f3) 
BeS.: 
,ep(B) 

where in the fourth step we have used that for all B E 8% 

{C(x) = B} = {WB = I} n {Wa*B = O} =A2 nD 

is an event of the form considered in the second inequality (part 2i) of Proposition 
2.6, and hence 

Jlb(IC(y)1 = (0) - Jlb(IC(y)1 = 00 IC(x) = B) ~ O. 

Here, as in the proof of Proposition 2.7, W B is the configuration W restricted to B, 
and the boundary 0* B of B is the set of all bonds in lRd \ B which are connected 
to B. 0 

Proof of Theorem 4.4. Since M(f3) = p:.;r(f3), we have that for M(f3) > 0 

(q - 1)Cwir(X - y) + r!l!.(x - y) ~ ((q - 1) + M~.a») Cwir(X - y) ~ 

~ (1 + (q -l~M(.B») (q -1)Cwir(x - y) + r!l!.(x - y») 

by Proposition 4.5 and the fact that T!h ~ O. Combined with Theorem 4.1., which 
guarantees the existence of the inverse correlation length 

provided q ~ 2 is an integer, we obtain the statement of Theorem 4.4 for M(f3) > O. 
On the other hand, if M(f3) = p:';r(f3) = 0, then T!h = Twir and Cwir(X - y) = 0 
which implies e~~! = e~! and e~r = O. Finally, M(f3) = 0 implies Jlwir = Jlfree 

(2)
[] and hence ewir 0A CCN = erree. 
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In order to prove Theorems 4.2 and 4.3, we will need several approximations to 
the connectivity functions Tb(LeI) and Trn(LeI). Additional approximations will 
be needed to prove the dichotomy (1.11) and (1.12) discussed in the introduction. 
Rather than introducing them as they arise, we define all of them here, so that 
the reader may more easily refer back to the definitions. We will consider several 
subsets of Zd, namely the the "cylinder" 

H(L) = {xEZdIO~XI ~L}, (4.14) 

the "tunnel" 

T(M) = {x E Zd I-M/2 ~ Xi ~ (M + 1)/2 i = 2"" ,d} (4.15) 

and the "box" 
A(L, M) = T(M) n H(L). ( 4.16) 

We then consider the following approximation to Tb(LeI) in the cylinder, tunnel 
and box: 

T~YI(L) = Jlb,H(L)(O ~ LeI), ( 4.17) 

Tlun(L, M) = Jlb,T(M)(O ~ LeI) (4.18) 

and 
(4.19) 

In all cases b = "wir" or "free". Assuming that they exist, we denote the corre­
sponding correlation lengths by e~YI, elun(M), and e~OX(M). We also consider the 
several approximations to Trn(LeI), namely 

f~Yl(L) = Jlb,H(L)( {O ~ LeI} n {IC(O)I < oo} n {O 1+ 8H(L)}), (4.20) 

f~OX(L,M) = Jlb,A(L,M)({O ~ LeI} n {O 1+ 8A(L,M)}), (4.21) 

r~Yl(L) = Jlb({O ~ LeI} n {IC(O)I < oo} n {C(O) c B(H(L))}) (4.22) 

and 
r~OX(L,M) = Jlb({O ~ Let} n {C(O) c B(A(L,M))}), (4.23) 

denoting the corresponding correlation lengths - whenever they exist - by t~Yl, 
~OX(M), e~Yl and aOX(M). 

We note that the distinction between (4.17) - (4.21) and (4.22), (4.23) is that in 
the former quantities the probabilities are computed with respect to measures that 
live on the relevant sets A, while in the latter the probabilites are computed with 
respect to the full measures Jlb, but the events in question occur in the relevant sets 
B(A). 

Our first lemma gives the equivalence of several definitions of the correlation 
length ell and will be used at the end of this section to prove Theorem 4.2. 
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Lemma 4.6. Let 0 :5 (J :5 00 and q ~ 1. Let T(L) denote Twir(Lel), Tfree(Lel), 
Tf~::(L, M), Tf~~~(L), or Tf~::(L, M). Then the correlation length ecorresponding to 
T(L) exists, and T(L) :5 e-L/F.. Furthermore, the correlation lengths e;~!(M) and 
e~::(M) are monotone decreasing in M, e~~!(M) = e~::(M), and 

t _ 
~free ­

tCY} _ 
~free ­

ttun _ 
~free ­

t box 
~free' ( 4.24) 

h ttun - l' ttun (M)w. ere ~free - ImM_oo ~free d tbox - l' tbOX(M)an ~free - ImM_oo ~free • 

Proof. Considering an arbitrary subset A C Zd and two points x and y in A, we 
note that by the FKG inequality (2.17) 

(4.25) 


for all Z E A; furthermore, by the FKG monotonicity (2.18) 

Pfree,A (x +-+ y) ~ Pfree,A I (x +-+ y) (4.26) 

for all A' C A containing x and y. Using these inequalities, one obtains subaddi­
tivity, and hence existence of the corresponding correlation length e, together with 
the a priori bound T(L) :5 e-L/F. for all five connectivity functions T(L) considered 
in the theorem. Observing that the monotonicity (4.26) implies the monotonicity 
of Tf~~:(L, M) and Tf~~:(L, M) in M, one obtains the monotonicity of e;~~(M) and 
e~::(M) in M, as well as the justification of the interchange of limits 

Il'm l' log Tlr~:(L, M) l' l' log Tf~::(L, M)
1m = 1m 1m 

M-oo L-oo L L-oo M-oo L 

and similarly for Ti::. The only additional ingredient needed in the proof of the 
equalities 

tcyl _ l' tbOX(M)
{free = lim e:r~~(M) and ~free - 1m ~free •

M-oo M-oo 

is that Pfree,T(M)(X +-+ y) converges to P.free(X +-+ y) (and similarly for Tf~~:)' which 
is established in the same way as (3.23). 

We are left with the proof of the equalities efree = e~:ele and e;~~(M) = e~::(M). 
To this end, we use (4.25) and (4.26) to get the bound 

n-l 

J.lfree(O +-+ nLel) > Jlfree,H(nL)(O +-+ nLel) ~ II Pfree,H(nL)( iLel +-+ (i + 1)Lel ). 
*=0 

(4.27) 
Taking the limit n -+ 00, and noting that all but say ..;n terms on the right hand 
side have arguments which are sufficiently far from the boundary, we obtain 
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which, in the limit L -+ 00, implies that efree = e~:ele' The equality of e:~~(M) and 
err::(M) is proved in the same way. 0 

The next two lemmas give several useful relations between the correlation lengths 
corresponding to (4.20) - (4.23), and are important ingredients for the proof of 
Theorem 4.3 (see below) and for the proof of the dichotomy (1.11) and (1.12) (see 
Section 5). In order to state the first of these two lemmas, we introduce for each 
X.L 	 E Zd-l n [-M, M]d-l the off-axis connectivity function in the box, 

f~OX(L,M;x.L) = jJb({O ..... (L,x.L)} n {C(O) c B(A(L,M))}), (4.28) 

and for each X.L E Zd-l the off-axis connectivity function in the cylinder 

f~Yl(L; X.L) = Jlb( {O ..... (L, X.L)} n {IC(O)I < oo} n {C(O) C B(H(L))}). (4.29) 

We note that AM = {C(O) C B(A(L, M))} is an increasing sequence of events which 
converges to the event {IC(O)I < oo} n {C(O) C B(H(L))}. As a consequence, 

as M /00. (4.30) 

Lemma 4.7. Let 0 < (3 < 00 and q 2::: 1. Then for b = "wir" or "free", the 
correlation lengths e~Yl and ~OX(M) corresponding to the connectivity functions 
(4.22) and (4.23), as well as the limit etox = limM_oo etoX(M), exist and 

lcyl _ ibox 
~b -	 ~b • (4.31) 

In addition, 

(4.32) 

and 
(4.33) 

where C({3, q) < 00 is continous as a function of {3 and independent of L and M. 

Remark. We will later show that aox = ern (see equation (4.53)), so that Lemma 
4.7, together with Theorem 4.3, gives us yet another characterization of ~~!. 

Proof. In order to prove the lemma, we first establish the existence of a constant 
C({3, q) < 00 such that for all X.L E Zd-l n [-M, M]d-l, 

(4.34) 

To this end, we first rewrite the left hand side of (4.34) in a form which allows us 
to apply Proposition 2.7. We consider the boxes Al = {x E T(M) 10 :$ Xl :5 L I }, 

A2 = {X E T(M) ILl + 1 :5 Xl :5 LI + L2 + I} and A = A(LI + L2 + I,M), and 
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the points x_ = (LI' Xl.), x+ = (LI + 1, Xl.) and y = (LI + L2 + 1,0). Using the 
translation and reflection invariance of the measures J1.b, we then rewrite 

(4.35) 

where, as in Proposition 2.7, R~~z_ (AI) is the event that 0 and x_ are connected 
by a cluster C(O) c B(A1 ), and similary for R~~,y(A2). Observing that B+(AI) n 
B(A2) = B(AI) n B+(A2) = 0, we apply Proposition 2.7 to obtain 

(4.36) 

Next we note that all configurations w E Rg~z_ (AI) n R~~,y(A2) would contribute 
to the event R~~y(A) if the vacant bond (x_, x+) were occupied. Using finite energy 
in the form (2.24), we therefore conclude that 

(4.37) 

for a suitable constant C({3, q) < 00. Observing that 

we obtain the subadditivity bound (4.34). By standard arguments, the bound 
(4.34), together with the monotone convergence (4.30), implies the existence of the 
correlation lengths {~Yl and erOX(M), and the limit erox = limL_oo {~OX(M), the a 

priori bounds (4.32) and (4.33), and the equality of {~Yl and ~ox. Finally, we note 
that by the finite energy relation (2.24), without loss of generality C({3, q) may be 
chosen to be a continuous function of {3. 0 

Lemma 4.8. Let 0 < {3 < 00 and q ~ 1. Then the correlation lengths t~! and 
t:i:(M) corresponding to the connectivity functions (4.20) and (4.21), as well as 
the limit t:i: = limM_oo ti:(M), exist and 

icy1 _ ibox _ ibox 

~wjr - ~wjr - ~wjr • (4.38) 


In addition, 

(4.39) 

and 
(4.40) 

where C({3, q) < 00 is continuous as a function of {3 and independent of L and M. 

Remark. While Lemma 4.7 gives us alternative representations of ern in terms of 
decay rates of infinite-volume connectivities, this lemma - together with equation 
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(4.53) and Theorem 4.3 - gives us representations of e~~! in terms of finite-volume 
quantities. 

Proof. Following the proof of Lemma 4.6, we first establish two inequalities analo­
gous to (4.25) and (4.26). In order to state them, we introduce the cylinders 

(4.41 ) 

the boxes 
A(LI' L2,M) = H(LI' L2) n T(M), (4.42) 

(with T(M) as defined in (4.15)), the events 

Rl~,L2(A) = {L1el ..... L 2el} u {C(O) c B(A)} , (4.43) 

and in particular 
Rl~,L,(M) = Rl~,L,(A(L),L2,M)). (4.44) 

We then claim that for a suitable constant C(/3, q) < 00, 

(4.45) 

Jiwjr ,A' (Rl~ ,L, (A)) ~ Jiwir ,A" (Rl~ ,L, (A)) (4.46) 

if A" ~ A' ~ A, and 

(4.47) 

if A' c A" C A. While the first of these three inequalities is proved in exactly the 
same way as (4.34) using finite energy and Proposition 2.6, the second follows from 
Proposition 2.6 (and its corollary) alone since Rl~ ,L, (A) is an event of the form 
(2.27), see proof of Proposition 2.7 and equation (3.29). The last of the inequalities 
follows from the fact that Rfin (A') C Rfin (A") if A' CAli.L1 ,L, L1 ,L, 

Given (4.45) - (4.47), the proof of Lemma 4.8 is analogous to that of Lemma 4.6, 
with 

C(/3, q)n-l/lwjr(Ro,(nL+n_I)(M)) 

~ C(/3, q)n-l/lwir,A(O,nL+n-I,M)(Ro,(nL+n-I)(M)) 

n-l 

~ II Jiwir,A(O,nL+n-I,M)(Ri(L+I),L+i(L+I)(M)) (4.48) 
i=O 

replacing the inequality (4.27). 0 

We finally turn to the proofs of Theorems 4.2 and 4.3. 
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Proof of Theorem 4.2. The existence of the correlation lengths efree and ewir has 
already been established in Lemma 4.6, and the inequality efree ::; ewir follows 
immediately from the FKG ordering (2.23), so all that remains to show is left 
continuity of 1/efree(f3). Due to equation (4.24), 1/efree(f3) is a limit of finite-volume 
(and hence continuous) quantities, namely 

(R) _ l' 1· log Tf~~:(L, M)l/c (4.49)'-free fJ - - 1m 1m L
M-ooL-oo 

As shown in the proof of Lemma 4.6, the finite-volume connectivity Tf~~:(L, M) is 
subadditive in L and monotone increasing in M. It is also monotone increasing and 
continuous in (3. Choosing suitable subsequences, e. g. L = 2n , and noting the minus 
sign in (4.49), this gives l/efree(f3) as the limit of a decreasing sequence of continuous 
decreasing functions, and hence establishes the desired left continuity. 0 

Proof of Theorem 4.9. We start with the obvious bounds 

frOX(L, M) ::; f~Yl(L) ::; Ttn(L) ::; L Ttiam(n) (4.50) 
n~L 

and 
for all M::; L. ( 4.51) 

Now consider the event {C(O) = B} where B is some given set of diameter L. Using 
suitable rotations and translations by vectors t E Zd, ItI ::; L, each such cluster B 
can be transformed into a cluster fJ C A(L,2L) connecting the origin to a point 
x = (L, xJ..) in the boundary of A(L, 2L). As a consequence, 

Tti&m(L)::; d(2L + l)d L frOX (L,2L,xJ..)::; d(2L + l?d-le-L/~ox, (4.52) 
IIEZd-l 
IIIJ.ISL 

where we have used the a priori bound (4.32) of Lemma 4.7 in the last step. 
Combining the bounds (4.51) and (4.52) with Lemma 4.7, we immediately obtain 

the existence of the correlation length eti&m and the equality of etiam and eJ:ox. 
Combining the bounds (4.50) and (4.52) gives the existence of ern and the equality 
of ern and e}:0x, provided e}:ox < 00. If, on the other hand, eJ:ox = (~Yl = 00, we use 
the bound f~Yl(L) ::; Ttn(L) ::; 1 to prove that the inverse correlation length l/ern 
exists and is equal to zero. Thus we have the existence of the correlation lengths 
ern and eti&m and the equality 

~ox _ cfin _ cdiameb - '-b - '-b • ( 4.53) 

The final equivalence of Theorem 4.3, namely e~~~ = e!rr for integer q ~ 3, follows 
immediately from relation (3.50) of Theorem 3.5. 

We are therefore left with the proofs of the inequality e!rr :::; ePr:e and the upper 
semicontinuity of l/e!rr' Noting that Trn is the probability of an event of the form 



40 C. 	BORGS, J. T. CHAVES 

considered in Proposition 2.6, the inequality follows immediately from the infinite­
volume limit of (2.31). To prove the upper semi continuity, we note that by Lemma 
4.8 and equation (4.53) above, l/e!rr can be written as a limit of finite-volume 
quantities, namely 

l/t'fi~ = l/eo~x = l/{b~x = _ lim lim log T~~X{L, M) . (4.54)
'-WIl WIl WIl M -00 L-oo L 

Combined with the a priori bound (4.39) of Lemma 4.8, this implies 

_1/t'1i~ {(T:~X{L,M»)l/L}e "-war = sup 
L,M C{{3, q) 

and hence 

l/ t'fi~ = . f {log C{{3, q) -log T~~X{L, M)} (4.55)'-WJr In 	 L .
L,M 

Since both log C{{3, q) and -log T~~X{L, M) are continuous and hence upper semi­
continuous functions of (3, and since the infimum of upper semi continuous functions 
is upper semicontinuous, this establishes the upper semi continuity of l/e~ir' 0 

In the above proof, we actually obtained one additional equivalence which is not 
stated in Theorem 4.3, but which will be necessary in the proof of our dichotomy. 
Namely, by equation (4.53), we have: 

Corollary. Let 0 < {3 < 00 and q ~ 1. Then (tox = ern. 

5. THE Two-DIMENSIONAL DICHOTOMY AND RELATED RESULTS 

5.1. 	Heuristics and Preliminaries. 

The goal of this section is a proof of the two-dimensional dichotomy, the principal 
part of which is the duality relation (1.11) for all {3 in the low-temperature regime. 
In this subsection, we discuss the heuristics of the relation, state our results and 
briefly review two-dimensional duality in the random cluster model. In the next two 
subsections, we derive upper and lower bounds on T!!!. and its approximations in 
terms of Tfree and approximations to TC:e' Finally in the fourth subsection, we put 
these bounds together with the equivalence lemmas of Section 4 and the ergodicity 
theorem of Section 2 to prove the dichotomy. 

In order to explain the heuristics of the duality relation (1.11), let us consider the 
representation of the random cluster model in terms of the order-disorder contours 
introduced in [LMMRS], see also [BKM]. In this representation, contours are defined 
as (the connected components of) the boundaries between regions of occupied bonds, 
regarded as ordered regions, and those of vacant bonds, regarded as disordered 
regions. Notice that in the wired measure, any finite cluster of occupied bonds 
must be separated from the infinite occupied cluster by a (disordered) region of 
vacant bonds. Thus all configurations contributing to T!!!.(X - y) have at least two 
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contours surrounding the points x and y - one being the boundary between the 
cluster connecting x and y and the disordered region, and the second being the 
boundary between the disordered region and the infinite cluster. 

Let us begin by considering systems with first-order transitions at the transition 
point Po. Since both the ordered and disordered phases are stable at Po, the two 
contours need not remain near each other. Indeed, under similar circumstances, 
[MMRS] proved that two such order-disorder interfaces tend to behave like inde­
pendent interfaces, leading to a surface tension 0'00 between two ordered phases 
which is exactly twice the surface tension 0'04 between an ordered and a disordered 
phase. Now in our case, the minimal combined area of the two interfaces is 41x - yl. 
Moreover, we expect that large interfaces are suppressed at a first-order transition. 
Thus we expect T!~(X - y) to decay exponentially with a rate 40'04 = 20'00' which 
would imply 

l/e!ir = 20'00' (5.1) 

Obviously, this relation should also be satisfied trivially at Po for systems with 
second-order transitions - both sides should vanish. 

Now consider the regime P > Po in a system with either a first- or second-order 
transition. In this regime, the disordered phase is unstable, so that large regions 
of vacant bonds are supressed. Thus the two contours surrounding x and y tend 
to bind together, leading to a single order-order interface surrounding the points 
of minimal area 21x - YI. This leads to a exponential decay with a rate 20'00' and 
hence again the relation (5.1). 

Note that due to the duality relation O'oo(P) = l/efree(P*), equation (5.1) is 
equivalent to the desired relation (1.11). 

It would be interesting to make the above heuristic arguments rigorous. While 
this could presumably be done for sufficiently large q, a direct translation of these 
heursitics into a proof for arbitrary q seems much more difficult. We therefore follow 
a different route, based on our inequalities involving decoupling events (Proposition 
2.6) and the equivalences established in Section 4. 

Before stating our main result, let us recall that the dual inverse temperature P* 
is defined by 

(ell - l)(ell• - 1) = q. (5.2) 

Our main result is: 

Theorem 5.1. Let d = 2, q ~ 1 real and 0 < P< 00. Then either 

and (5.3) 

or 
and e!rr(P) = efree(P) . (5.4) 

Remarh. 
1) 	If, in addition, q ~ 3 is an integer, it follows easily from the results of the last 

section and the duality relation (1.13) (a proof of which is given in Section 5.4) 
that (5.3) and (5.4) may be replaced by the dichotomy: Either 

p!ee(f3*) = 0 and e~~~(f3) ~ e~~~(f3) = tefree(P*) (5.3') 
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or 
p;;,ee(p*) > 0 and (5.4') 

2) It follows from the duality relation (1.13) and the monotonicity of P~ (b = "free" 
or "wir") as a function of P that the first branch of the dichotomy (i. e. (5.3) or 
(5.3')) occurs when P~ Po, the self-dual point, and that the second branch (i. e. 
(5.4) or (5.4')) occurs whenever P < Pt = inf{p I M(P) > OJ. It is presumably 
the case that Po = Ph but rigorously this is only known for sufficiently large q 
(see e.g. [LMR] where this has been shown for q > 25). 

We close this subsection with a few remarks on duality. As usual, the dual 
site lattice (Z*)2 is the set of points X* = (xi, X2) E (Z + !)2 with half-integer 
coordinates, and the dual bond lattice B2 is the set of nearest neighbor bonds in 
(Z*)2. To each bond b E B:z, there corresponds a dual bond b* E B2 which has the 
same midpoint as b. Similarly, to each configuration w on B C ~, there corresponds 
a dual configuration w* on B* = {b* Ib E B}, given by 

w*(b*) = {O if w(b) = 1 (5.5)
1 if w(b) = o. 

We will sometimes refer to the bonds b* E B2 for which w*(b*) = 1 as occupied dual 
bonds. Given a finite box 

A = {x E Z2 I0 ~ Xl ~ L, -M/2 ~ X2 ~ (M + 1)/2} 

and the corresponding set of bonds B+(A), one defines the dual of A as 

A* = {x E (Z*)2 13y E (Z*)2 with (x,y) E (B+(A))*}. (5.6) 

Note that in general A and A* are not of the same cardinality. Using the appropriate 
Euler relation to relate #(w) to #(w*), it is straightforward to check that for a given 
configuration won B+(A) and its dual w* on B(A*), 

GWir,p,A(W) = Gfree,p~A·(W*), (5.7) 

where we have explicitly indicated the temperature dependence of the weights (2.14) 
and (2.16). Thus for each A E FB+(A), 

Jlwir,p,A(A) = Jlfree,p~A·(A*), (5.8) 

where A* is the event A* = {w* Iw E A}. In the next two subsections, we will often 
characterize events A E FB+(A) in terms of the corresponding dual events. A typical 
example is the event that the cluster of the origin does not touch the boundary 8A, 
which is equivalent to the existence of a dual cluster in B(A*) containing a closed 
loop which surrounds the origin. 
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5.2. 	The Upper Bound. 
Our upper bound is stated in terms of the finite-volume approximation f!~x to 

T!f!., see equation (4.21). As in the last subsection, we will often explicitly indicate 
the ,8-dependence of the relevant quantities. 

Theorem 5.2. Let d = 2, 0 < /3 < 00 and q ~ 1. Then there exists a constant 
Ct (,8, q) < 00 such that 

(5.9) 

Proof. Let A denote the box A(L, M), see equation (4.16). By its definition (4.21), 
the connectivity function f!~~/t(L, M) is the probability, in the measure Jiwir,/t,A, of 
the event R:~L(A) = {O ..... Let} n {O 1+ vA}. Equivalently, Rg~L(A) can be defined 
as the intersection of the event {O ..... Let} and the event that there is a closed loop 
1* of occupied dual bonds surrounding the points 0 and Let. Consider the points 

x± = (-1/2, ±1/2) and y± = (L + 1/2, ±1/2) 

in A *. Given the fact that the connection from 0 to LeI must occur without touching 
vA, it is clear that the dual loop 1* must consist of four pieces: the bond (x~, x+), 
a path 1+ connecting the point x+ to the point y+, the bond (y~, y+), and a path 
1~ connecting the point y~ to the point x~. Moreover, the two paths 1± : x± -+ y± 
must occur in B(A*) \ {(x:",x+), (y~,y+)}. Let us denote by Rl, RR' R:" and R+ 
the four events described above, namely (dual) occupation of the bond (x~,x+), 
the bond (y~,y+) and some paths 1± : x± -+ y± in B(A*) \ {(x:",x+), (y~,y+)}, 
respectively. Then Rg~L(A) = {O ..... Let} n Rl n RR n R~ n R+. 

Consider now a configuration w E Rl n RR n R:" n R+. It is an easily verified 
geometrical fact that w E Rg~L(A) if and only if the dual cluster joining x+ to y+ 
and the dual cluster joining x:" to y:" are connected only via the two bonds (x:", x+) 
and (y:", yi-), i.e. if and only if there is no dual connection between x:" and x+ in the 
set B(A*) \ {(x:", x+), (y:", y+)}. Using finite energy in the form (2.24) to convert 
the two occupation events Ri. and RR to the events that the bonds (x:", x+) and 
(y:", y+) are vacant, and the duality relation (5.8) to transform the measure Jiwir,/t,A 

into the free measure Jifree,/t.,A - , we therefore obtain 

f!h.~/t(L,M) ~ Cl(,8,q)J.tfree,P"A-({X~ ..... y~} n {x+ +-+ y+} n {x:" ;4 x+}) (5.10) 

with Ct (/3, q) < 00 if 0 < ,8 < 00. 

Next, we note that by Proposition 2.8, 

Jifree,/t-,A- ({x~ ..... y~} n {x+ ..... y.+} n {x~ 1+ x+}) 

:5 Jlfree,/t.,A- (x+ ..... yi-) Jifree,/t.,A- (x:" ..... y:"). (5.11) 

Using the monotonicity (2.18), we obtain 

Jifree,/t.,A - (x± ..... y±) :5 Jlfree,/t- (x± +-+ y±) = Tfree,p- « L + 1)el ) , (5.12) 

which, combined with (5.10) and (5.11), proves the theorem. 0 
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5.3. The Lower Bound. 
Our lower bound is given in terms of the approximation f~:: to 'TAr:e 

, see equation 
(4.23). 

Theorem 5.3. Let d = 2, 0 < P < 00 and q ~ 1. Then there exists a constant 
C2(P, q) > 0 such that for all positive integers M and L 

(5.13) 

Proof. In order to prove the theorem, we introduce several sets in both Z2 and in 
its dual (Z*)2. Consider the dual boxes 

A+ = {x* E (Z*)2 I t :5 x~ :5 L - t, t :5 xi :5 2M + t}, 
A: = {x * E (Z*)2 I t :5 xr :5 L - t, - (2M + t) :5 xi :5 - t } , 

dual points 

dual bonds 
b*±,r = (*y±,y±* + el.. ) , 

and dual vertical lines ""I; and ""I; joining the point x~ - el to the point x+ - et, 
and the point y~ + el to the point y+ + et, respectively. In addition to these sets 
in (Z*)2 and 1m2, consider the points 

and 

in Z2 and the vertical lines 71 and 7r in B-.z that join the point x_ to the point x+, 
and the point y_ to the point y+, respectively. 

Consider now the events R± that the points x± and y± are connected by a path 
of dual occupied bonds in A±, and the events R~ that all bonds in ""I: U b+,Q U b~,Q 
(Q = 1, r) are occupied. The event R+ n R~ n Ri n R; then clearly implies the 
existence of an occupied dual path surrounding the points 0 and Lei, so that the 
event {O +-+ Let} n R+ n R~ n Ri n R; is contained in the desired event .Rgl = 
{O +-+ Let} n {IC(O)I < oo}. As a consequence 

T!~.II(Lel} = Ilwir.II(~~L) ~ Ilwir.1I ({O H Led n R+ n R~ n Ri n R;). (5.14) 

Our goal is to modify the event in the argument of (5.14) so that (1) the event 
{O +-+ Let} is guaranteed to occur, and (2) the two dual paths across A+ and 
A~ carry decoupling events that allow us to apply Proposition 2.6 to factor their 
probabilities. We begin by degrading our estimate (5.14) by constructing vertical 
lines of occupied (direct) bonds: 

T!~.II(Led ~ Ilwir.1I ({w:y,u:y. = I} n {O H Led n R+ n R: n Ri nR;). 

http:Ilwir.1I
http:Ilwir.1I
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Here, as usual, WB denotes the configuration W restricted to B. Using finite energy 
in the form (2.24) to flip the 4M + 6 bonds in "'Ii U b+,1 U b~" U "'I; U b+,r U b~,r' we 
then obtain 

T!~,,(LeI) ~ C({3, q)4M+6 llwir" ({w'WY' = I} n {O +-+ LeI} n R+ n R"- ) 

with a suitable constant C«(3, q) > o. 
Consider now the events (R±)fin that x± and y± are connected by dual cluster 

C*(x±) c B(A±), i.e. by clusters that lie entirely within B(A±), and hence are 
surrounded by decoupling circuits of occupied (direct) bonds in (B+ (A±)) *. Clearly 
R± :> (R±)fin and thus 

T!~,,(LeI) ~ C({3, q)4M+6 llwir" ({W'i,U'i. = I} n {O +-+ Led n (R+ )fin n (R"- )fin) . 

(5.15) 
We now claim that 

{Wi,Uir = I} n {O +-+ LeI} n (R+)fin n (R~)fin = {Wi,Uir = I} n (R+)fin n (R~)fin . 
(5.16) 

In order to see this, let W be a configuration in (R+ )fin . As noted above, the 
condition C*(x±) C B(A*) implies the existence of a closed path of occupied bonds 

in (B+ (A+ ) ) * surrounding x+ and y+. Given W E (R+ )fin, let "'I be the innermost 
such path. Since "'I surrounds x+ and y+, but lies within (B+(A+)) *, it must visit 
the points x+ and y+; thus it provides a connection between x+ and y+ by a path of 
occupied bonds. Observing that the vertical paths 1'1 and 1'r connect the point 0 to 
the point x+ and the point LeI to the point y+, we see that there is automatically 
an occupied path from 0 to LeI, which completes the proof of (5.16). 

Using once more finite energy, the relations (5.15) and (5.16) together with the 
duality relation (5.8) now imply that 

T!~,,(LeJ) > C({3, q)4M+6 llwir" ({W'i'U'i. = I} n (R+)fin n (R,,-)fin) 

~ C(r;,q)8M+6Ilwir,~(R+)fin n (R~)fin) 
= C(,B, q)8M+6 Jlfree,,s- (R~n n R~n), (5.17) 

where R~n are the events dual to (R±)fin. . 
Finally, we use the fact that R~n and R~n are events of the form considered in 

Proposition 2.7, so that 

Ilfree,~- (R~n n R~n) ~ Ilfree,p- (R~n) Ilfree,~- (R~n) = (fl:~: (L, M))2 . (5.18) 

This completes the proof of Theorem 5.3. 0 

Notice that, in contrast to the proof of Theorem 5.2, the above proof does not 
invoke monotonicity properties which depend on boundary conditions. Thus it can 
be used equally well to give a lower bound on Tg:e , namely: 
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Corollary. Let d = 2, 0 < (3 < 00 and q ~ I'. Then there exists a constant 
C2 ({3, q) > 0 such that for all positive integers M and L 

(5.19) 

5.4. The Dichotomy and Percolation Probabilities. 

In this subsection we prove Theorem 5.1. We start with a proposition which is 
essentially a corollary to the upper and lower bounds of Theorems 5.2 and 5.3. 

Proposition 5.4. Let d = 2, 0 < (3 < 00 and q ~ 1. Then 

if (5.20) 

and 
if (5.21) 

Proof. Introducing the notation e!Y:(M; (3) and eg~~(M; (3) to indicate the (3-de­
pendence of the correlation lengths e!Y:(M) and efr~~(M) corresponding to f!irx 

and ff~~:' the upper and lower bounds of Theorem 5.2 and 5.3 imply that 

(5.22) 

and 
ieFr~~(M; (3*) ~ e!ir({3) (5.23) 

Taking the limit M -+ 00, and observing that the left hand side of (5.22) goes to 
e!ir({3) by Lemma 4.8 and the corollary at the end of Section 4, while the left hand 
side of (5.23) goes to et:e({3*) by the same corollary and Lemma 4.7, we conclude 
that 

(5.24) 

Since et:e({3*) = efree({3*) if p!ee({3*) = 0, this implies the first part of the proposi­
tion. If p;jr({3) = 0, then e!ir({3) = ewir({3). In addition, by the results of [ACCN], 
/-lwir,{J = /-lfree,{J whenever p;jr({3) = 0 and hence efree({3) = ewir({3). This implies 
the second part of the proposition. 0 

In order to complete the proof of Theorem 5.1, we use the fact, proven in Section 
2.4, that the free measure /-lfree is ergodic under any nontrivial subgroup of the 
translation group (Theorem 2.10). Since, in addition, /-lfree is an FKG measure 
which is invariant under horizontal and vertical translations and axis reflections, a 
bond percolation analogue of the theorem of [GKR] applies, leading to 

Theorem 5.5. Let d = 2, 0 < p < 00 and q ~ 1, and assume that p!ee(p) > o. 
Then, with probability one with respect to the free measure Pfree,{J, any finite set 
of sites in Z2 is surrounded by a circuit of occupied bonds. 
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Corollaries. Let d = 2, 0 < P< 00 and q ~ 1. Then 
1) 

(5.25) 

2) 	p~ee(p) = 0 for all P ~ Po. In particular, p;:"ee(p) is left continuous at Po. 

3) 	If p;1r(p) = 0 or p~ee(p) > 0, then Jlfree,/1(') = Jlwir,/1('), and in particular, 
p~ee(fJ) = p:oir(p). 

Proof. As noted above, the theorem follows from (a bond percolation analogue of) 
[GKR) and Theorem 2.10. Corollary 1 then follows immediately, and Corollary 2 
also follows easily - see equation (1.14) and the paragraph preceding it. The first 
part of Corollary 3, namely that p;1r (P) = 0 implies Jlfree,/1(') = Jlwir,/1('), is a result 
of [ACCN). That equality of the measures is also implied by p~ee(p) > 0 follows 
from (5.25), [ACCN] and the self-duality of the model. 0 

Remarks. 
1) Theorem 5.1 (the dichotomy) now follows immediately from Proposition 5.4 and 

equation (5.25). 
2) We expect that left continuity of p~ee(fJ) at the transition point holds in all 

dimensions provided q ~ 1. However, we do not expect p~ee(p) to be right 
continuous at the transition point if the system has a first-order transition; in­
deed, for q sufficiently large, this can be established using Pirogov-Sinai theory, 
as used e.g. in [LMMRS]. This is to be contrasted with the behavior of p:oir(p). 
By standard percolation arguments [R], namely expressing p;1r(p) as the de­
creasing limit of the finite-volume quantitie.s (3.4) (which are continuous and 
non-decreasing in P), p;1r(P) is right continuous for all p and all q ~ 1 in di­
mension d ~ 1. However, in dimension d ~ 2, convergent expansions have been 
used to show p;1r(p) is not left continuous at the transition point provided q is 
sufficiently large [KoS] (see also [LMR] and [LMMRS]). 

3) Corollary 3 implies that in two dimensions the Gibbs state is unique at all P 
except those for which p~ee({3) = 0 while p;;r ({3) > O. Presumably, this never 
occurs for systems with second-order transitions (q :5 4 in d = 2), and occurs only 
at a single point - the transition point - for systems with first-order transitions 
(q > 4 in d = 2). Again, this can be proven via expansion methods in d ~ 2 for 
q sufficiently large. 

We conclude this section with a little result which is an easy consequence of 
Proposition 5.4. The result shows that continuity of the magnetization at Po ensures 
criticality of the transition, i.e. divergence of the correlation length( s). 

Proposition 5.6. Let d = 2 and q 2 1. Then M(fJo) = p;1r(Po) = 0 implies 
e!rr(Po) = 00 and hence also efr!e(,8o) = (free({Jo) = ewir(fJo) = 00. 

Proof. By the assumption p;;r(Po) = 0, the FKG ordering of states (2.23) and the 
definition of Po, we have 0 = p~ee(f3o) = p;:"ee(f3;), and hence by the first branch 
(5.20) of Proposition 5.4: 

(5.26) 
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On the other hand, again by the assumption p;jr({3o) = 0, we have the second 
branch (5.21) of Proposition 5.4, namely: 

(5.27) 

From (5.26) and (5.27), we conclude that either efree({3o) = °or efree({3o) = 00. The 
first case is easily ruled out by considering e.g. Tfree(el)' That the other correlation 
lengths also diverge is an immediate consequence of remark following Theorem 
4.3. 0 

ApPENDIX: REFLECTION POSITIVITY AND THE TRANSFER MATRIX 

The concept of reflection positivity and its consequences are well-known tools in 
the context of field theory. For the convenience of the reader we give a brief review 
in this appendix. 

We consider a (finite or infinite) lattice A C Zd which is invariant under reflections 
at a plane E. Here E is either a lattice plane or a plane which lies halfway between 
two lattice planes. Denoting the reflection at E by r, we then decompose A as 
A = A+ uA_, where A+ are the points on one side of E, A_ = r(A+) are the points 
on the other side of E, and A_ n A+ = E n A (which is of course empty if E lies 
between two lattice planes). 

For a local observable A with support suppA C A+, one introduces the reflected 
observable r(A) as 

(r(A))(u) = A(r(u)) (A.I) 

where r(u)z = Ur(z). Reflection positivity of the Potts model is the statement that 

(r(A) Ah,A ~ o. (A.2) 

The proof of (A.2) is standard; for the strategy, see e.g. [FILS], [Se]. 
The inequality (A.2) has several important consequences. Here we are mainly 

interested in the representation of truncated expectation values as matrix elements 
of a suitably defined transfer matrix T. In order to define the transfer matrix T 
in the setting considered here, we need, in addition to the reflection invariance of 
A, that A is invariant under translations perpendicular to E. We therefore assume 
that A is of the form 

A = Z X Al 

where Al is a (finite or infinite) sublattice of Zd-l. We then consider the algebra 
A+ of local observables with support in A+, where from now on 

while E = {(x,x) E Zdlx =O,x E AI}. Due to (A.2), the equation 

(A,B) := (r(A)B)b,A (A.3) 
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defines a positive semi-definite scalar product over A+. Dividing out the corre­
sponding null space N and completing the resulting space in the usual way, this 
leads to the definition of a Hilbert space 11 = A+/N. 

Next, we introduce, for each local observable A E A+, the observable T A which 
is obtained from A by translation by one lattice unit in the positive direction per­
pendicular to!:. It is an easy consequence of the Cauchy-Schwarz inequality for the 
scalar product (A.3), see [Se] for details, that T obeys the inequalities 

o~ (A,TA) ~ (A,A). (A.4) 

The operator T therefore defines a positive transfer matrix, which obeys the in­
equalities 

O~T~1 

as an operator on 11. Observing that the vector °corresponding to the constant 
function 1 E A+ is an eigenvector of T with eigenvalue 1, we note that the norm of 
T is one. 

We finally consider the interpretation of truncated expectation values in the 
above Hilbert space representation. Since 

(A.5a) 

while 
(Tn A) 6,A = (0, Tn A) = (TnO, A) = (0, A) , (A.5b) 

one immediately obtains 

(rCA); Tn Ah,A = (A, Tn A) ­ (A, 0) (0, A) . (A.6) 

Introducing the projection operator PJ.. onto the Hilbert space orthogonal to 0, 
equation (A.6) becomes 

(A.7) 

where 
(A.B) 

If the support of A is a subset the lattice plane !:, r(A) = A, and equation (A. 7) 
reduces to 

(A.9) 

Equation (A.9) is an important technical tool in the proof of the existence of the 
· h (1) d (2)I ecorre atlon leng ts ewir an wir ' 

Remark:. In the context of Euclidean field theory, the direction perpendicular to !: 
is often interpretated as the Euclidean time. The Hilbert space 11 =A+ /N is then 
nothing but the quantum mechanical Hilbert space of the considered model, and T 
is the generator of the Euclidean time translations, i.e. T = e-€H, where E is the 
lattice spacing and H is the Hamilton operator of the theory. 

However, 11 and T have no such interpretation for the classical Potts model. This 
is due to the fact that here A is the lattice of a cla.s.sical system, and not a lattice 
approximation to Euclidean space-time. 
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