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1 	 Four Dimensional Gauge Theories and Instan­
tons 

1.1 Notation 

Nonabelian gauge theories deal with matrix-valued vector potentials which can be de­
composed with respect to a basis oC the Lie algebra oC a gauge group G:l 

Ap(x) = A:(x)rS 
• 	 (1) 

The group generators are in my notation [1] the (Cor SU(N) N'J. - 1) antihermitean, 
traceless matrices TA obeying the normalization condition and algebra 

TAt = _TA , trTATIi = _toAIi 	 (2) 

[TG,TII] =r6c Tc 	 (3) 

with !de the totally antisymmetric, real structure constants. 
The covariant derivative, field strength tensor and Lagrangean of the Yang-Mills 

field are given by 

'VI' = 81' +Ap acting on a representation oC G, (4) 

DI' = 8p + [AI" .] = TG (oGC8p +!dCA~) acting on a rep. oC the Lie algebra (5) 

FI'II == F:IITG:= ['VI" 'VII] = 81'AII-811AI' + [AI"All] , (6) 

F:II =81'A~ - 8I1 A:+ !IlkA~A~ (7) 
CYM = _~FI'IIGF:II = ttrFl'1IFI'II . (8) 

Note that we have scaled the potentials so that the coupling constant is absorbed into Ap 
in order to simpliCy notation. To make contact with the conventions used in perturbation 
theory (eg. [2]), one should substitute -i~ for TG, -igA:~ for AI" where -\G are 
the (hermitean) Gell-Mann matrices, and in addition replace FI'IIG by -igFpIIA. The 
Lagrangean density (8) remains unchanged. 

Under a gauge transCormation g( x) e G at a point x in spacetime, the fields transform 
as 

AI' - gAp := g-I (AI' +8p)g (9) 
FI'II _ 9 Fpll := g- IFl"'g , (10) 

ISummation over repeated indices is understood, as is the use of the natural system of units h = 
c 1. 
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which shows that the Lagrangean (8) remains unchanged. 
The equations oC motion (transCorming covariantly under gauge transCormations) 

DI'FPII =0 8p FPIIG + rile A~FPllc 	 (11) 

show that, due to the self-coupling in the second term, the theory is not Cree even in the 
absence oC matter. Indeed, in most what follows we will not bother with matter fields. 

From the definition (6) of the field strength tensor one finally obtains the Bianchi 
identity: 

el'lIfH/ DIIFfHI = 0 	 (12) 

1.2 Canonical Quantization 

As in Maxwell theory, a straightCorward quantization of nonabelian gauge theories is 
impossible due to the absence oC a momentum conjugate to Ag: 

8C~M =0 	 (13) 
8A~ 

There is a variety of ways to handle this problem: In QED, one introduces a "transversal" 
Dirac function in order to obtain canonical commutation relations which are consistent 
with GauS's law a· E = 0 [3], but this procedure obscures the physics in Yang-Mills 
theory since from GauS's law the transversality oC the gauge bosons does not follow (see 
Section 1.3). Technically even more involved is a constraint quantization following Dirac 
[4]. 

If we do not want to use the path integral Cormalism, the simplest way of quantization 
is to perform a classical gauge transformation yielding the Weyl gauge Ao = 0 before 
quantizing [1]. One finds Cor the momentum conjugate to .4(i) the chromoelectric field 

Go~ =~ = -F:o• = -A.~ = -E~ 	 (14)
I I I I8AiG 

and thereCore postulates the canonical equal time commutation relations 

[Ar(i),O~(i)] = iO;jOAbO(31(i- i) = [EJ(i), 	 (15) 

[Ar(i), A!(i)] =0 = [Or(i), O~(i)] . 

The Hamiltonian equations of motion obtained Crom the Hamilton operator 

H = ~J~x [EA(i)EG(i) + ~.Fij(i).Fij(i)] (17) 
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reproduce the generalized Ampere's law as the spatial components of (11) 

i !H, Ai(x)] = Ai(x) = Ei(x) , i [H, Ei(x)] = Ei(x) = (DjFjj)'" (x) 
=> D""F""i(x) 0, 

but the time component of (11), the generalized GauB's law G(x) := D. E(x) = 0, is 
absent, as it is an equation at fixed time. 

Note that the resulting theory (without GauB's law) has its own right, but it is not 
clear whether it is renormalizable, and Lorentz invariance is surely lost. Rather than 
imposing it, one regains GauB's law by the following considerations: 

Going to the Weyl gauge before quantization does not fix the gauge completely: 
One can still perform residual, time independent gauge transformations, in particular 
infinitesimal ones 

SA(x) = D{J(x) + O({J2) 

which are symmetries of H. Since 

i [/ rfy {JC (Y)Gc (y), Aj(x)] SAj(x), (20) 

i [H, / d3 x {JC(x)OC(x)] 0, (21) 

GauB's law is the generator of the infinitesimal gauge transformations and commutes 
with the Hamilton operator. It also obeys the commutation relations of group genera­
tors: 

i [GC(x), d(Y)] = r bcGc(x)S(3)(x - Y) (22) 

which means that there exist in general only as many independent constants of motion 
associated with the GC's as there are linearly independent matrices TC which can be 
diagonalized simultaneously, namely N - 1 in SU(N). 

One can think of the GC's as generators of a symmetry of H we just discovered, 
without any reference to the Lagrangean (8) we started with. Imposing as a constraint 
on physical states 

OC(x) I phys >= 0 , (23) 

one regains Gau6's law and therefore the complete quantum theory of the Lagrangean 
(8). Note that since [H, GC(x)] 0, the sector of physical states is invariant under time 
development. 
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All topological effects of the quantum theory can be uncovered by looking at the 
GauB's law operator in a theory which is carefully quantized in this way, as can be seen 
from experience [1]. 

An analogy of the above situation is known from rotation invariant Hamilton oper­
ators in quantum mechanics. In the s-wave sector, the angular momentum operators j 
as generators of this symmetry have to annihilate the states one allowes for: 

j Is-wave >= 0 (24) 

Setting j 0 is inconsistent since its components do not commute with each other. In 
contradistinction to this example, the GauB's law operators have a continuous spectrum 
and hence in looking at their zero eigenvalues one obtains non-normalizable states. 

A note on the procedure: We first quantized the theory and t en imposed the con­
straint on physical states. In general, reversing this order will yieid a different result to 
order Ii, none of the two ways being a priori right or wrong. 

Furthermore it is not trivial that choosing the Weyl gauge and quantizing commute 
with each other. Again, one example for that is the rotation invariant Hamilton operator 
in quantum mechanics [4]: Quantizing first yields a centrifugal barrier proportional to 
j(j + l)/r', while first going to polar coordinates one misses the barrier. It is only rein­
troduced if one observes that the momentum conjugate to r, -ia/ 8r is not hermitean, 
and the true canonical momentum is -i (fr +n. If both procedures do not commute, 
the transformation eliminating Ao would induce a curvature, and the momentum - E't 
would not be self-adjoint as is the case for the central force potential. Instead, one would 
have to hermitize it, ni = -E't + fNA), so that the c~mponents of the chromoelectric 
field do not commute with each other, thus revealing the curvature in the "Christoffel 
symbols" ft'(A). 

In both cases, one prefers to take the procedure for which one regains the classical 
theory for Ii -+ O. The problem is that one doesn't know whether - due to confinement 
- a classical limit to the quantum Yang-Mills theory exists at all. However, in QED the 
classical limit exists and - what is more one can show that all quantization methods 
yield the same result. One therefore can expect this to hold in Yang-Mills theory, too. 
At least the induction of a curvature by the Weyl gauge can be ruled out, since ghosts 
decouple in the path integral version when choosing an axial gauge. 
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1.3 The Schrodinger Representation 

In the Schrodinger representation, 

o 
Ei(i) = TIi(i) = -icAr(i) , (25) 

one obtains as fixed time Schrodinger equation for energy eigenstates 

Jlfx [ ~OAr(i~;Ar(i) + lFiJ(i)F,j(i)] llIe[A'] = Ellie [A'] , (26) 

and GauS's law constraint (23) on physical states reads 

(2;)[ai CA:(i) +rbc A~(i)OA:(i)] I{fphys[A] = 0 

In the abelian theory (fo.bc = 0) one considers III [Aj to be a functional of the Fourier 

transform of A(i) AT(i) +aAL(i) decomposed into its transverse (8. AT(i) 0) 
and longitudinal part7.. GauS's law reads after applying the chain rule 

kikiAdk) = 0 , (28) 

and hence physical states can be an arbitrary functional of the transverse components of 
Aonly, independent of its longitudinal degrees of freedom. This can also be seen from the 
fact that an abelian gauge transformation Ai(i) -+ Aj(i) +a,,8(i) leaves the transverse 
components untouched and changes only the longitudinal ones. Therefore the choice 
of the Coulomb gauge for free QED is unavoidable in the Hamiltonian formulation. In 
Yang-Mills theories, the Coulomb gauge is no natural choice since from Gau6's law (27) 
one cannot conclude that the wave functional depends on AT only. 

Free QED can even be solved this way [I}: Looking at the Schrodinger equation 

3~J d x [ OAj(i~;Ai(i) +Ai(i)hijAi(i)] llIe[A] Ellle[A'], (29) 

hij := -§lotj +ai8j , (30) 

AWe neglect the zero mode of A. 
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one constructs the gauge invariant ground state in analogy to the harmonic oscillator as 

ex: exp 1 J~x~Y A,(i)wij(i,Y}Aj(Y) (31 ) 

ex: exp 1 J~x~Y Fii(i) ~Fij(Y} , (32) 
V-a7. 

w,j(i,Y}:= hij J~k e-ik'(i'-i)~ = 
I k I 

2 (0" _2 Xi yj) (33) 
_ ..--... IJ lillYJ 

with the infinite vacuum energy Eo ttrw. 

Since 1110 [A'] depends on transverse fields only, GauS's law is automatically satisfied, 
and the vacuum state of the free theory is unique. One can now construct excited states 
like the one photon state 

Il/! [A'] := At(P)ll/o[A'] , Anp) = - P~j) Jlfx eip . .fAJ(i) . (34) 

The Schrodinger representation offers an alternative way to derive GauS's law. As 
remarked above, states should be invariant against infinitesimal spatial gauge transfor­
mations: III [A + 15,8] J: III [A'], so that expanding around III fAJ yields 

(35)Jlfx (Di,8)" o~r III [A'] =0 , 

and one recovers (27) after partial integration. 

1.4 Large Gauge Transformations and the f) Angle 

GauS's law (23) as generator of infinitesimal gauge transformations annihilates physical 
states, and therefore physical states are invariant under infinitesimal gauge transfor­
mations and all gauge transformations that can be built up by iterating infinitesimal 
ones, called small gauge transformations. The question arises whether all gauge trans­
formations are small or whether there exist large gauge transformations, i.e. if there are 
solutions to (26,27) which obey GauS's law but are not gauge invariant: 

Il/ [gA'] ~ Il/[A'] . (36) 

Let's turn to the question of boundary conditions for the fields. Assuming the 
absence of monopoles, all position dependent observables should vanish faster than I~~ 
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for Ixl -+ 00. This means that going to spatial infinity one finds a unique 
vacuum. Strictly speaking, the vector potentials have only to approach a pure gauge 
configuration at spatial infinity, but one can show that there exists always a regular 
gauge transformation after which 

lim =0,
lil-oo 

simultaneously reducing the set of possible gauge transformations to those that do not 
violate this condition: 

lim g(x) = const. (38)
Ill-oo 

These boundary conditions have been used to derive (20,21). 
The last requirement identifies all points at spatial infinity so that 9 is uniquely 

defined there, and one compactifies the Euclidean space R3 to the sphere S3 when 
considering g. 

One may investigate whether the maps g(x) : S3 -+ G can be decomposed into 
different classes. All maps in a given class can be deformed into each other and differ only 
by small gauge transformations. The classes are separated by topologically nontrivial, 
large gauge transformations. The set of· all classes clearly forms a group. called the 
third homotopy group of G, Ih(G) [5]. If Ih(G) = 1, as is the case in QED, only small 
gauge transformations exist, and all of these can be continuously deformed to the map 
S3 -+ 1. For any semisimple Lie group G, particularly for SU(N), it has been shown 
that Il3(G) = Z, the additive group of integers, and hence large gauge transformations 
do exist. One can indeed show the existence of large gauge transformations without 
bothering with such topological considerations [6, 7], as we will explain now. 

There exists a functional of Awhich satisfies Gau6's law but is not gauge invariant, 
known as the integral over the Chern-Simons three form: 

w[Al Jd3 x eijktr (Fjle - ~AjAIe)] = (39) 

Jtfx eijktr [Ai (OjAk + ~AjAk)] 

Since 
[til Jc5W AJ = _1_eiile Fi'k(i) +--2 d3ye'J"kOJ - y)AZLvl]

6A~(i) 1671'2 1671' 

9 

and the surface term vanishes due to (38), fulfills Gau6's law because of the 
Bianchi identity (12): 

sw[Al 
(41)Di 6Af(i) = 0 . 

On the other hand, 

w [g Al- w [Al = n(g) - 8~2 Jtfx eijkoitr [(Ojg)g-I Ak] , (42) 

n(g) := 24171'2 Jd3x eijktr [(g-10jg)(g-10jg)(g-l ok9 )] , 

where with the boundary conditions (37,38) the surface term vanishes again. n(g) is in 
general a nonzero integer and corresponds to the winding number of the map 9 : S3 --+ G, 
as can be seen most easily for G =SU(2)~ S3. As one can imagine, there are infinitely 
many ways to map spheres on spheres which are not continuously deformable into each 
other and can be labeled by the number of times one sphere is wrapped around the 
other. This winding number is additive: 

n(glg2) = n(gd +n(g2) + a vanishing surface term . (43) 

As an example, one representative of each class can be obtained by considering the 
following gauge transformations obeying the boundary conditions (37,38). where qi are 
the Pauli matrices which for SU(N) only have to be embedded into the higher groups: 

9(i)=exPia'I~I/(lxl) 1(0)=0, Jim"f(lxl) n7l'. (44)
x l.rl-oo 

Assuming physical states to be eigenstates of all unitary operators nn[P] implementing 
gauge transformations gn(i) = ei13(i) of winding number n, we see that 

=e- it1n(g")1lIfl.. [P] III [Al = iii (45) 

because flo[P] describes a gauge transformation generated by (a succession of) infinites­
imal ones, and hence III [AJ is invariant under it by virtue of Gau6's law (23). {) is 
the Yang-Mills vacuum angle [6, 7], a new, hidden parameter in the quantum theory, 
which has been derived without any approximations here. Its effects will be examined 
in greater detail later. 
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It is tantalizing to observe that exp( ±811"2 W [A1) solves the non-abelian functional 
Schrodinger equation (26) with zero eigenvalue (even in QED). Unfortunately, this so­
lution is divergent for large Aand hence not normalizable3 • On top of that, it lacks any 
physical meaning; yet one can use it to show that the gauge invariant state 

~[Aj :=ei"W[AJtII[Aj : nn[p]~[Aj = 

is an eigenstate to the same energy eigenvalue as the original state and obeys a 
Schrodinger equation which reads: 

Jd'x [ ( -iM~(i) + 1:.2 <;;.fJ.( i») \ iF;j( i)F;j(i)1q, [AJ Eq, [AI. (47) 

By that, one moved the d angle from the state to a Hamilton operator which can be 
obtained from the Lagrangean 

3 3
/ d x £" = / d x £YM 1:11"2 Jd3x e""P(7tr[FI'"FP(7] (48) 

3
/ d x .cYM +d~W [Aj , 

where in order to derive the last line one used tha.t the Chern-Simons term is related 
to the Chern-Pontryagin density [5] via 

16111"2e1'IIPI7tr [F""FPI7] = 8~20,.e""PI7tr [All (OpA(7 + ~ApA(7)] 
and that the surface terms at spatial infinity do not contribute due to (37,38). Therefore 
one can make three observations: 

(i) The d angle can be removed from the gauge variant states til [Aj making them 
gauge invariant (46), but only on the expense of breaking the invariance of the 
Lagrangean under large gauge transformations, changing £YM to £" by adding a 
Lorentz invariant, but P and T violating term. 

The additional term in (48) is independent of the choice Ao = 0, and therefore 
the occurence of the angle d does not depend on choosing the Weyl gauge before 
quantization. It is a new, unremovable hidden parameter in the theory, and no 
principle is known which requires it to be zero. The unique classical Yang-Mills 
theory gives rise to a d-family of quantum theories. 

3Compare to all E i- (n + !)w solutions of the quantum mechanical harmonic oscillator: They 
also diverge Cor large x. 
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There is no remnance of the Yang-Mills angle in the equations of motion, nor in 
the Hamilton operator obtained from £" via the procedure described above, as 
long as one writes it in terms of the vector potential and chromoelectric field. Yet 
since under a large, time dependent gauge transformation Jd3 x £" changes by 
a total time derivative df,n(g), gauge invariant quantum states acquire a phase 
in the temporal developement between two states that are connected by g". as is 
familiar from quantum mechanics. 

(iii) The previous point 	is connected with the fact that the momentum conjugate to 
AWl) in £" is no longer -Er(i) (14), but (cr. (47)) 

nO( -) EO( -) d ijlcFo (-) (50)i x 	 = - i x - 1611"2 e jlc x 

Therefore the components of the electric field do not commute with each other, 
and a connection is introduced in the physical Hilbert space thus revealing its 
nonzero curvature. 

1.5 QED in Two Dimensional Spacetime 

There is an intriguing example of the occurence of a new hidden parameter [8,9,1, 11] in 
two dimensions. The Hamilton operator and Gauf3's law of QED are in the Schrodinger 
representation given by (cr. (26,27»; 

2 

H = 21/dx E2(x) =- 21/dx--6	 (51) 

d 	 6 
(52)dx 6A(x) til [A] O. 

Therefore, tII[A] is a function of the zero mode of A only: 

~[AJ =f (I dx A(X») . 	 (.53) 

The wave functional solving both the Schrodiner equation and Gauf3's law is 

tII[A] =exp-iEo / dx A(x) , 	 (54) 
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where applying E(x) = i 5A~'I') (25) shows that Eo, due to Gau6's law the only observable, 

is the zero mode of the electric field. The energy density is finite and given by tEJ. 
In analogy to the discussion above, compactifying the space R1 to SI by requiring 

all field fluctuations to vanish at spatial infinity4 amounts to the following boundary 
condition on the gauge transformations allowed: 

e-iA(oo) = e-iA(-oo) • (.55) 

Again, e-iA('I') has a well defined value at spatial infinity. 
We again ask whether there exist large gauge transformations, i.e. transformations 

which are not generated by Gau6's law. The mappings g(x) : SI _ U(1) SI decom­
pose obviously into different classes, labeled by the number of times one circle winds 
around the other. Hence, under a gauge transformation in QED 

d 
A(x) - A(x) dx A(x) , (56) 

the zero mode 

jdxA(x)_jdxA(x)-fJ.A, fJ.A:=A(oo) A(-oo)= 211"n ,nEZ (57) 

changes by 211" times the winding number n (55). If n :f: 0, the unitary operator imple­
menting the gauge transformation is not 

expijdx(:XE(X))A(X) ,but O[A]=exp-ijdxE(X)d~A(x), (.58) 

because the surface term in which the two expressions differ cannot be dropped. 
The effect of such gauge transformations on q,[A] can easily be calculated: 

On[A]q,[A] = e-in"q,[A] , iJ:= 211"Eo . (59) 

So the iJ angle emerges as a constant electric background field which cannot be changed 
within the theory since [H, Eoj = 0, and whose different values therefore separate differ­
ent worlds. 

The operator which is invariant under small gauge transformations, but changes 
under large ones is the zero mode of the vector potential (57), d. (39): 

W[A] = 1 j dx A(x) : On[A]W[AjO![A] = W[AA] = W[A] + n . (60) 

"Note that one may not demand physical observables to vanish at infinity since then Eo =0 and 
the wave functional (54) is 1. 
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In order to construct the Schrodinger equation for gauge invariant states, CC. (46), 

~[A] := e~Jd'l' A('I')q,[A] , 

one has to move the iJ angle to the Hamiltonian and Lagrangean (d. (48)): 

1 2 iJ
C" = -E (x) - -E(x) (62)

2 211" 

The momentum conjugate to A(x) is given by 

ac" . iJ 
I1(x) -a' A(x) + ­

A(x) 211" 

Since C changes by a total time derivative under these operations, there is again no 
remnance of iJ in the equations of motion, yet physical states acquire a phase under 
time developement. 

If one incorporates fermions into the theory, 

c = c" +t.b(hl'V'1' - m),p , (64) 

one notes that in the Schwinger model (m = 0) C changes under a chiral redefinition of 

the fermionic fields due to the axial anomaly (see Section 1.8) ( ../ -1'st) [10, 11, 1]: 

,p_eOt"'l~,p : C-C+~E(x). (65)
11" 

Since it can be eliminated by re-defining the fermionic fields 2a iJ, the Yang-Mills 
vacuum angle is physically irrelevant in that case. 

Yet as soon as m :f: 0, this chiral redefinition is impossible and the iJ angle is physical 
[8,9], giving the value of the background electric field, on which e.g. the number of stable 
particles and the spacing between successive isosingulet states crucially depend. 

If one would embed two dimensional QED into a larger theory, the background field 
might be determined by the new theory, dynamically fixing iJ; but no such mechanism 
has been found so far. 

1.6 A Physical Picture of () Vacua and Instantons 

Before deriving the axial anomaly in four dimensions and showing that the value of {) 
is unobservable in QeD in the presence of massless fermions by the same mechanism as 
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in twodimensional QED, we compare the situation in QCD with a well-known quantum 
mechanical example. 

A physical picture of the vacuum tJ angle [12, 13, 6, 7] emerges when one looks at a 
particle in a periodic potential (Figure 1): 

L = !x2 
- V(x) ,H ~p2 + 

V(x+a)=V(x) , p=x. 

\,/\[/\,(
X-I Xo XI X 

Figure 1: Particle in a Periodic Potential 

The discrete displacement as implemented by the translation operator 

0" : O"xO~ X +na , n E Z (68) 

is a symmetry of the system. 0" should be compared to the operator O,,[,BJ implementing 
large gauge transformations in the physical Hilbert space of QCD. The infinite degen­
eracy of the classically stable "ground state" solutions at x" : V(xn) = 0 corresponds 
to an infinite number of classical gauge field configurations ..4(i) = 9;; lli9n which are 
"pure gauge" and therefore have zero kinetic and potential energy but are topologically 
distinct from the trivial vacuum ..4 =0 because of their nonzero winding numbers n. 

In the interpretation of Floquet's (Bloch's) Theorem via the tight binding approxi. 
mation of solid state physics, this degeneracy is removed in Quantum Mechanics by a 
nonzero tunneling probability from one xn-"vacuum" to another. If the wave function 
"",,,(x) is an approximate solution of least energy to one well of the potential, localized 
around the n-th minimum xn , the superposition 

"",,,(x) =L:>-i"""",,,(X) (69) 

" 
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is an eigenfunction to 0" (cf. 45) 

0" "",,,(x) e-i
"" "",,,(x) , (70) 

and the ground state energy now depends on the Bloch momentum {). 
How can one describe the tunneling process just sketched in classical mechanics? Of 

course, there exists no classical zero energy solution which interpolates between different 
classical minima. Yet going to imaginary time t - -iT, one interchanges the role of 
Hamiltonian and Lagrangean 

L - LI =-1 (a-=.)2 +V(x) (71)
2 aT 

1 (a )2 
 (72)H - HI = 2" a; V(x) 

and thus obtains a classical solution in imaginary time 

aX ±V2V(x) (73) 

that maintains zero energy throughout the interpolation between two different classical 
vacua x" , X m • Such a solution is called "instanton". 

The instanton action is given by 

SI = JdTLr = j""dx V2V(x) (74) 
z" 

which is closely connected to the tunneling amplitude through the potential barrier in 
real time as given by the WKB approximation 

p~~B oc exp -7dx V2V(x) (75) 

z" 

In Yang Mills theory, instantons are classical solutions of .least energy interpolating 
between two classical vacua of different winding number, localized both in space and 
time, as explicit construction shows. They can be constructed [12] in the same way as 
above by going to imaginary time and solving 

HI = ! Jiflx [£I1(i)£I1(i) - !Fi'j(i)Fj'j(i)] (76) 

=> F:", = ±!CI'",pc1Fpc111 (7i) 
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So instantons are classical (anti)selfdual solutions to the Euclidean Yang Mills equations 
with zero energy. 

The tunneling amplitude between two vacua which can only be connected by a large 
gauge transformation of winding number n is (74,75) 

1 811"2 
exp- drLl(r)=exp- cf4x'4el'lp<7trP'"FPf7=exP-'92,nl,J J 

where we reintroduced the coupling constant g as described in Section 1.1. Note the 
interplay between the instanton action, the Chern-Pontryagin density (49) and the 
winding number of the gauge transformation 9n.. 

A word of caution is in order here: 
The analogy between the tunneling process in solid state physics and the connection 

of different classical QCD vacua by instantons should not be pushed too far. After all, 
the occurence of a physically measurable Bloch momentum is connected to On. being 
a "physical" transformation, namely implementing spatial displacement. The gauge 
transformation 01\[13] is unobservable. The Bloch momentum can also be changed, while 
there is - as indicated no way to change the vacuum {} angle, which moreover becomes 
physically irrelevant in certain situations e.g. the chirallimit, as has been hinted on in 
the previous section and we shall see now. 

1.7 The Axial Anomaly 

In the two dimensional example we gave in Section 1.5 it was shown that there exists a 
connection between the chiral symmetry of massless fermions and the {}-angle. 

In this section we continue to discuss topological aspects of the standard model with 
a more detailed analysis of the chiral symmetry [1]. Therefore we consider the quark 
sector of a four-dimensional gauge theory. The Lagrangean density is 

Cquark =;j,i (iJ +11) 1/J , (79) 

where A: describes a nonabelian background gauge field. 
On the classical level this Lagrangean has the global chiral symmetry 

t/J -+ e"''''Bt/J , ;j, -+ ;j,e"''''rs ('Y: = -'Ys) . (80) 

Since {"(5, 'YI'} 0 we get for the classical theory Cquark -+ Cquark under this transfor­
mation. 
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The Noether current connected to the chiral symmetry is 

i~ = i;jJ'Y"'Yst/J (81) 

which is classically conserved 
o,.i~ =0 . (82) 

This can easily be verified to be a consequence of the equation of motion 

i (iJ +11) t/J = 0 . (83) 

For a quantum theory the situation is different. Expressions like Cquark in (79) or if 
in (81) are not well defined. The product of two field operators at the same space­
time p;;int is singular and requires regularisation. This is most easily seen from the 
quanti~."tion relation 

{t/J (x) (Y)}xO=Vl c5(3) (i Y). 

The regularisation may be carried out using point splitting. However it has to be done 
carefully since the introduction of a further parameter may spoil the symmetries of the 
theory. Nevertheless it is possible to regularize the theory in a way that the local gauge 
invariance is maintained. This is necessary since the gauge symmetry is a fundamental 
intrinsic property of the theory and it should not be spoiled. 

The requirement of keeping the gauge symmetry restricts the freedom how to reg· 
ularize. Therefore one has to take into account that other, less important symmetries 
may be violated within the regularization procedure. For such a symmetry the corre­
sponding currents are not conserved. The symmetry is said to be broken by an anomaly. 
One example is the axial symmetry which is spoiled by quantization according to the 
axial anomaly. 

Since if has no gauge group label it is a gauge singlet current. In this sense we call 
the axial anomaly also "abelian anomaly". 

We will proceed with a discussion of this anomaly. We take the expectation value of if 
with respect to the perturbative fermionic vacuum. 

(OFlif(x)IOF) == Uf(x)} = (;j,(x)i'YI''Ys1/J(x)) == (;j,(x)r~t/J(x)} (85) 

This can be done without loosing information since we expect the result for o,.jf to 
have no fermion operator components. The result may be regarded as the amplitude 
for a quark to interact at the space-time point x with r~, to propagate in the gauge 
background field and to return to :t. The background field coupling can be treated as 

is confirmed by the path integral approach, which gives the same result as our calculations 
(see ego [14, p. 100]). 

60r close to it, when we are applying point splitting to regularize the theory. 
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two point interaction, So the propagation in the background field may be calculated 
perturbativdy to get a power series in the backgroud field A", 

(j~'(X)} (t,b(x)r~1,b(x)} (86) 

r P r I.l r P r j.trsl.l 

(~ (x)+?x\+~+(~

~j ~ VU/~~T+ AY· · · AQ AU f-\ A(J A' 

When calculating DIJ(j~) we recognize that the first term on the right hand side does 
not contribute since it is x-independent;, The second term does not contribute since it 
is linear in A and we expect the background field to be invariant under charge conjuga­
tion. If the background field stems f!"Om the Feynman integral of a physical theory this 
property is guaranteedS

, With the same reasoning the third order term in ;1 vanishes, 
as does every odd order in A. 

With each interaction of the background field one gets an extra fermion propagator 
SF = l/(p + ie) and the amplitude becomes more convergent. So, by power countiug. 
terms of fourth and higher order are finite. Their amplitudes can not contribute to
Dliun since i: is classically conserved order by order, and for finite amplitudes we can 
apply the classical J'esult. 

Therefore the only diagram that can give rise to a non-vanishing 0 (j~) is the second 
" order contribution in Aw We will focus on it in the following. Its cOlltribution to 

is given by (the trace goes over COIOl' as well as spinor indices) 

U: (X)}A' i Jcrz Jd'IZ2 tl' [r~SF(X - Z.){\(ZI)SF(ZI - Z2){\(Z2)SF(Z2­

Jd4Z1~Z2A: (z.) It: (Z2) Jd"pd"qei(p+q)zeip'leiq:2T:r (p, q), (8i) 

1To be precise each of the lower order contributions of (in is singular. Therefore it gets a more 
complicated %- and AI'"dependence as a consequence of a gauge invariant regularization prescription. 
For details see [201. [17]. 

8From experiments we know that, in contrnry to the two dimensional theory (s. below), the charge 
conjugation symmetry is not dynamically broken. 
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where T::u (P, q) is given by the triangle graph 

P 
rs 

r+p"/~r-q 

9T io GTb + crossed graph 0 a t r 

~ ~ p q 
T IJPU' , 2 J dolr Ii 1 PT. 1 u1l 1 

ab -2e --'1 tr liSt J. ,I at--·I "t--;: .(271') + I' + 2e + te - !'I + 2€ 

+ (p +-4 (f, P +-4 q) 

1 ,2 J J:'l' ,IJ 1 P 1 <r 1 
2'0a"te (21:' )4 tr I 15 t + P+ ie I t + i€ I t - fJ + it 

1+ (p +-4 (f, P +-4 q) -"20abTIJPU (p,q) (88) 

The integral is linearly divergent which reflects the fact that i~'(x) was not properly 
regula.rized. This has the consequence that a shift in the integration variable r _ r + a 
changes the value of the (finite part of the) integral by a surface term9• This can easily 
be seen in a one dimensional ana.logon: Consider the integral 

8 (a) - 1(x)) dx (89)=L: (f (x + a) 

where 1is an analytic function. 
We expand I(x + a) in a Taylor sel'ies a.t the point x and perform the integral with 

the result 

a2 

8 = a (f(oo) - 1(-00)) +- (00) - /'(-00)) + ... (~,u)
2 

9The Feynman ruls do not describe how to introduce the loop integration variable. Each of the 
choices r + a are a priory possible. 
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If the integral would be convergent or at most logarithmically divergent then, of course, 
0= f{±oo) = f'(±oo) = ... and the integral vanishes. 

However if the integral is linearly divergent we only have 0 =1'( ±oo) 1"(±oo) = 
... and we get for .6.(a) the surface contribution 

.6. a (f (00) - f (-00)) (91 ) 

which is in general non zero. 
The same applies to the four-dimensional integral TI'P". The surface term can be 

calculated quite easily. We start with the first part of TI'P<' and get 

2 J d4r (( 8) ) 1 p_l ,,_I
.6.da ) -ie (211'/ tr I'1'I's exp aOt 8rOt - 1 f +P+ ie I' f + ie I' 

.2 J d"r 8 ( ( -I)) I' 1 p_l_ ,,_I . 
o-le a (211")4 8rOt 1+ (9 r tr I' I's f +p + ie I' f + ie I' f - f + ie 

Now we Wick-rotate to Euclidean space-time (t -+ iX4) and use "one quarter" of the 
four-dimensional GauS theorem 

f d4r88 f = f d(1Ot f (r) (9:2)1M laMrOt 

where 8M is the boundary of M (which is the sphere S3(R) in our case) and f d(1Ot is 
the a-component of the surface integral. We get (R -+ 00) 

2 
e aOt f d Ot 1 p 1" 16.1 (211")4 lS3(R) tr I' 

I' 

I'sf + pI' 71' f - f(1 

2 
e a(211" )~ Jdna tr [-y1'I'sl''''I'Pl'sl''' I'P]R",RsRtJ/ If 

_ e a Jdno 4 1'''''''' R", 
2 Ot 

(211")4 £ R' 

Now we introduce polar coordinates and let the north pole point into the a-direction. 
Since f dnOt Rv/R is zero if a # v we get 

2 2 
e a e a.6.1 (a) - -_v£I'VP<' lo" dlJ sin2 lJ cos lJ . cos lJ = ___"CI'IIPU . 

11"3 0 811"2 
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The crossed term gives the same result so that the total surface term is 

2 

.6. (a) = _~el'''P<' . (93)
411"2 

The vector Ward identities which enssure gauge invariance have the form 

ppTI'P<' (p, q) = 0 • q"TI'P<' (p, q) =0 . (94) 

The chiral Ward identity which is connected to the chiral symmetry is 

(p + q)I' TI'P" (p, q) =0 . (95) 

Gauge invariance is one of the most fundamental principles of QeD and in fact there 
exists a choice of the integration variable r + a that enssures (94) (namely a -2p [20, 
p. 122]). but for any other a the gauge symmetry is spoiled by the surface term (93). 

Unfortunately we need different a's to assure (94) and (95). So it is impossible to 
have both gauge symmetry and chiral symmetry. We choose (94) to hold and get a 
correction on the right hand side of (95) [16J, [17J: 

2 

(p+ TI'P<' -~cP<'I'''pl'q", (96) 
211" 

If this is plugged into (88) we get 

el'''P<' 
(8I'i:) = 811"2 (tr (8I'A" 8",AI') (8pA" - 8"Ap)) 

The right hand side equals 1/811"2. (tr F- I'"FI''') for the following reason: The third order 
term in A,. vanishes since we have invariance under charge conjugation. The fourth order 
term is proportional to cl''''P<'tr ([AI',A",]lAp,A"j) = -~cl''''P<' A:AtA~A:f..b.fcd. where f 
are the structure constants of the SU(3) group. One can now use the total antisymmetry 
of f and the Jacobi identity to show that the last expression is zero. 

Thus we have motivated the final result 

f) '1' 1 F- FI'''' (97),.Js = 811"2 tr ,.'" . 

It can be shown that there are no other contributions to the anomaly as for example 
virtual gluon effects10 [17], [21]. The expression on the right hand side of (97) has a 
topological interpretation: It is just twice the four-dimensional Pontryagin density. 

IOThe fermion loop becomes more convergent with every internal gluon line and the intergrations 
over the gluon lines do not contribute to the anomaly. 
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Although the axial current is not conserved we can carryon by constructing a con­
served current. Due to (49) we have 

tr F-IJ .. F'JII = 4{)lJelJ"PIT tr (~A..{)pAIT + ~A .. ApAIT) (98) 

and therefore 
{),.J~ = 0 	 (99) 

with 
>1'J IJ 1 IJ"PIT ( 1 A () A 1A A A ) s =)s - 21r2e tr 2 .. P IT + 3' .. P IT 

The conserved charge Qs of Jf is 

Qs 	 Jtfr (j~ - 1 tr (~AiajAk + ~AiAiAk)) 
Jd3 

r (j~ +2W (101) 

where W(A) is the Chern Simons three-form which was already defined in (39). 
Qs consists of two pieces, a gauge invariant fermion contribution coming from j; 

and an anomalous term constructed from the gauge potentials. This term has the 
immediate consequence that neither Jf nor Qs are invariant under topological non­
trivial (large) gauge transformations On (under (small) gauge transformations that are 
smoothly connected to unity they are still invariant). Qs changes by two times the 
winding number. 

OnQsO;1 Os - 2n 	 (102) 

The commutator algebra of the Hamilton operator H, Qs and On is 

= 0, [H, = 0, [nn, Qs] =2nnn (103) 

Since the {i-angle is defined by 

nnl{j} = 	 (104) 

we conclude that Qs acts as a shift operator for {j: 

ei~Q~t/J ({j) = t/J ({j + {j') 	 (105) 

Since Hand Qs can be diagonalized simultaneously, applying eifQ~ can not change the 
energy eigenvalue of an energy eigenstate t/J. Therefore the energy spectrum does not 
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depend on {i. The value of the {i-angle is physically irrelevant. If on the other hand 
fermions are massive, Eq. (91) and all successive equations acquire a mass correction 
and we can not argue that the {i. angle has no physical consequences. 

The same result may be obtained in a functional integral formulation. If one decides 
to have massless fermions and to translate the {i-dependence from the wavefunctions to 
the Lagrangean one gets the action (48) 

z" = JVt/JVtiJVA~ exp (i JdxC" (x)) , (106) 

where 

C" = 2~2 tr [FIJ.. FIJ"j 1:11'2 tr IJ.. FIJ"j + itiJ (si' + ") t/J . 

Redefining the fermionic integration variables according to the chiraltransformation 
law (80) C" remains unaffected, but we get a contribution from the integration measure. 
This contribution corresponds to the anomaly, and we get 

Z" - Z"+2a . 

Since we just substituted our integration variables, Z" does not change. Therefore 
Z" = Z"+2a has to be independent of {i. So we can conclude that in the presence of 
massless fermions the {i-angle is no physical parameter. 

1.8 	 The Two Dimensional Analogon 

Let us come back to the two dimensional example QED1+! that was already discussed 
in Sec. 1.5. 

In a two dimensional space-time, the Dirac spinors become two-component objects. 
The Dirac matrices may be chosen to be the Pauli matrices 

"l = 0'1 , 'YI = i0'2 , 'Ys = _i0'3 • 

It is a particular property of two dimensions that axial vectors are dual to vectors 

1 r~ = i-y1J'Ys =elJ..'Y" , e0 = 1 = -eOI (110) 

and therefore the axial vector current is dual to the vector current 

j: = elJ ..j" 	 (Ill ) 
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Let us consider the fermionic sector of two dimensional QED. We start to calculate the 
divergence of the chiral current in the same way as in the four-dimensional case. 

U:{x)) can be expanded in a power series of the background ,.1" field: 

rs~ rsfJ Is ~ 
U: (x)) = 	 (112)C)+C)+u

Ai) AV AQ 
In two dimensional QED we can not use chat'gc conjugation to sin1J)lifv the result 

since the symmetry under charge conjugation is dynamically broken. 
eluded most easily from the existence of a constant electric field Eo (Eq. 
is incompatible with the symmetry under charge conjugation. However, the 
is already convergent enough not to produce an anomaly. Instead of the triangle graph 
we get the relevant contribution from 

r + pfJ V 

T""(p) = CY~~ 	 (II:) ) 

r 
We are using the duality between axial vectors and vectors to obtain 

T"" (p) e"pn
p

" 	 (114) 

where IIPII(p) is the vacuum polarization tensor. Its space-time structure is detcrmined 
by the requirement of gauge invariance 

(p) = PIIW" (p) = 0 	 (115) 

to be of the form 
IIP" (p) (X gP" - (IIG) 

Therefore we have 
PIIT"V o , (117) 
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but the Ward identity related to the chiral symmetry, 

p"T"" (p) (X p"e"" , 	 (118) 

does not vanish. 
So we regain the result that gauge symmetry can be maintained, while the axial 

symmetry is broken on the quantum level. 
The result of a detailed calculation is [10], [18] 

!l '1' 1 I'IIF 1F'" 
up.)s = - 211" e I'" -; 	 (119) 

where we have once more absorbed the electromagnetic charge e in the AI' field. The 
anomaly is now given by twice the two dimensional Pontryagin density. 

Therefore it is again possible to define a conserved current Jf and its time indepen­
dent charge Qs 

'1' 1 ,,11 AJf 	 Js + -c ". (120) 
11" 

Qs 	 Jdx (j~ (x) + ~Al 
Jdxj~ (x) + 2W (A) (121) 

In the Feynman path integral approach a chiral re-definition (SO) of the fermionic inte­
gration variables amounts, due to the measure, to a new term in the Lagrangean 

J 'D.,p'DtjJ'DA"eiIc -t J'D.,p'DtjJ'DAl'eiI(C+f;;F") (122) 

which coincides with (65). Thus QED with massless fermions in 1+1 dimensions (the 
Schwinger model) has no physically relevant d-angle [18). [19). 

Let us close this section with a remark that is specific to a two dimensional theory. 
If we contract the gauge field equation 

ol'FI''' = e2j" 	 (123) 

with CliP and use the antisymmetry of FIJ" we get 

o"F* = e2jt 	 (124) 
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The divergence of this equation yields 

'l 

OF- = e28",jr = -=-r 	 (125)
7r 

Thus the gauge field acquires the topological mass m2 e2/7r. 
Whereas in three-dimensional space-time there exists another topological mechanism 

for vector meson mass generation (see below), no similarly elegant result has yet been 
established in four dimensions. 

1.9 Conclusions of the First Part 

(i) For a long time it appeared that QCD possesses too much symmetry. An additional 
chiral U(I) symmetry would predict that there would be a particle degenerate with 
the pion, but no such particle exists [23]. Now we have recognized that the chiral 
symmetry is broken by an anomaly and the U(l) problem has dissolved [13]. 

(ii) 	If the theory includes massless fermions the t?·angle is unphysical. 

But physical fermions are not massless and the t?-angle is supposed to remain 
observable. For t? ::/: 0 CP-invariance is violated, but in QCD the experiments 
require that t? = 0 and CP is not violated (measurements of the electric dipole 
moment of the neutron give t? $ 10-9 [22]). 

No principle is known that insures the vanishing of t? In fact the situation is even 
more complicated: If we suppose that the fermion masses arise from spontaneous 
symmetry breaking then we would expect that the fermion mass matrix in the 
QCD Lagrangean would point in an arbitrary CP direction ,¢Ml'I/J + ,¢-u,M2t{" 
One can remove the M2-term by a chiral transformation. But this induces, due 
to the anomaly, a tr[F-",,,F"'''j-term giving rise to a t?-angle. This angle has to 
be canceled by the "initial" t?-angle in the Lagrangean in order not to yield CP­
violating effectsll. 

This problem is not unlike that of the cosmological constant which is a parameter 
that in principle is present, but experiments force it to be zero. 

(iii) 	 In the electroweak sector of the standard model couplings to ')''''(1 -i')'s) are present 
due to the coupling of only left-handed fermions to the weak charged currents. The 

1I0r there exists a reason why even in the presence of massive fermions the t1-angle is unphysical 
and not CP-violating. 
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requirement of renormalizability forces the theory to avoid the anomalies in the 
gauge current (anomalies may not occour in subdiagrams where the axial current 
couples to internal lines). This is only possible if the quarks and leptons balance 
in number. In particular the existence of a tOP-Quark is demanded. 

(iv) 	In the standard model the baryon numbel' current acquires an anomaly [24]. The 
decay rate is controled by tr[F-,.."F"'''j. There arc two mechanisms for baryon 
decay known: 

The first involves tunnelling. The tunnelling rate is given by the exponential 
of the instanton action (in a semiclassical description). But exp( - instanton 
action)=exp(-87r2/g2 ) is a negligible small number (:::::: 1O- '22year- ' ) 

The second mechanism is connected to ,t Hooft-Polyakov monopoles [25J. The 
magnitude of this eITect is still controversial (but it seems to suffice) and moreover 
an experimental evidence for monopoles is still missing. 

(v) 	The hypothesis of partial conservation of flavour 8U(2) axial vector currents 
(PCAC) implies, in the absence of anomalies, that a massless neutral pion can 
not decay into two photons [15]. But the physical pion'does decay with a width of 
about 7.9 eV. This large number can only be understood with the axial anomaly 

[21]. • ~ 

os~;'osr;" 
Moreover one gcts the result that the width depends on the number of quark 
colors. The best agreement with the expcriment is achieved for N = 3 colors. The 
remaining discrepancy of about 10% can be understood as an eITect due to the 
non-zero pion mass. 

Therefore the anomaly allows an experimental determination of the number of 
colors. 

28 



2 High-Temperature Quantum Chromodynamics 

In Section 1 we were discussing more or less settled physics, i.e. work that has been done 
during the eighties. Now we would like to come to talk about some current research 
in QeD. In this section, we are going to show you the connections between QCD at 
high temperature (QCD well in the deconfined, chirally symmetric region) and a three­
dimensional topolgical field theory: the nonabelian Chern-Simons (CS) theory. More 
explicitly, we want to show you that the generating functional of the so-called hard 
thermal loops in QCD is the eikonal of the nonabelian CS theory. These connections 
have been established recently by several people [26], [27J, [29]. They are relevant 
for the nonabelian generalization of the Kubo formula as well as for a gauge-invariant 
description of Landau damping in the quark-gluon plasma at high temperature. 

First of all, we would like to give you a short introduction to thermal field theory. 
For details, see, for example, [30], [31]. 

2.1 Temperature Green Functions 

The objects of study in a field theory at finite temperature are the temperature n-point 
correlation (or Green) functions 

Gn(x), ... , xn) := (¢>(x.) ... (126) 

where the Xi are elements of Minkowski space, and the ¢>(xd are the generic fields of the 
theory in the Heisenberg picture. The angle brackets denote thermal average within the 
canonical ensemble 

(... ) tr(e-PH 
... ) (127)

tre-PH 

Here, H is the Hamiltonian of the theory, and /3-1 represents the inverse temperature 
in natural units that we are going to use for the rest of the talk. 

Depending on the boundary conditions chosen to solve the equations of motion, 
one defines various Green functions. For example, (T¢>(x)¢>(y)) gives the time-ordered 
two-point function, whereas 8(xO - yO)([¢>(x), ¢>(y)]) defines the retarded commutato1' 
two·point function. 

The set of all these n-point Green functions, e.g. in momentum space representation, 

P ) '- J 14. x 14. x .,i(PP;'I+",P""")G ( )G n (p..... , n'- a - I· .. a - n" n Xl!'" ,Xn (128) 
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with real Pi and real Xi, contains all the physical information about the system at finite 
temperature. But, as a matter of fact, perturbation theory within this description is 
rather difficult. A simpler perturbation theory can, however, be established on accom­
plishing the following unphysical continuation: one allows the time arguments x? to be 
complex valued. For Bose fields, it can be shown that - for analyticity reasons of the 
n-point functions - they have to be periodic in the imaginary time direction 

¢>( xo, x) = ¢>(xo - i/3, x). 

Similarly, fermionic fields tP(xO,x) have to obey antiperiodic boundary conditions: 

tP(xO,x) = -tP(xo - i/3,x). (130) 

Note that these boundary conditions are the essential differences between field theory at 
zero and field theory at finite temperature; the equations of motions do not differ except 
for a thermal average, of course, in the latter case. This extension to complex values of 

Im,rD 

Re,ro 

-i/l 

Figure 2: Time contour in the ITF 

xo is certainly not unique. In the so-called imaginary-time formalism (ITF) one restricts 
Xo to the imaginary axis in the complex xO·plane, i.e. XO E [0, -i/3] (d. Fig. 2). 

This can for Bose fields - be interpreted as a transition from the Minkowski 
space-time manifold IR3 x IR to the new space-time manifold lR3 x 51. 

Besides the ITF scheme, another popular choice for the complex time-path contour 
is shown in Fig. 3. This is just one of infinitely many possibilities (the choice depends 
on the parameter 0-) of setting up the real time formalism (RTF) using the time-path 
contour method. Choosing 0- = 1/2 provides equivalence with yet another formulation 
of field theory at finite temperature, called thermo field dynamics [32J, [33J. In actual 
calculations, one always considers the limit to -+ 00. The advantage of the RTF over the 
ITF is that perturbation theory can be defined with Green functions depending solely 
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-iu/3 

-i/3 

Figure 3: Time contour in the RTF with u = 1/2 

on real time arguments. Thus one does not have the problem of a backward continuation 
from purely imaginary times to purely real, hence physical, time arguments. 

In turn, perturbation theory is a bit more cumbersome as, for example, the RTF 
two-point function is a 2 x 2 matrix. 

2.2 Imaginary-Time Formalism 

In the imaginary-time formalism, perturbation theory corresponds to the well-kwown 
Dyson-Feynman series with the integration over Po replaced by an infinite sum 

Jdpo - iT L . (131) 
21f' nEZ 

The usual time-ordering along the real xC-axis is converted into an imaginary-time­
ordering down the imaginary xC-axis. That is, later times are positioned below earlier 
times (cr. Fig. 2). Furthermore, all the Green functions are unique, because the inverse 
d'Alembertian 0-1 is unique on IR3 x 51. 

(Anti-)periodicity in position space on the interval [0, -i,8] provides for discrete imag­
inary energies Po =21f'inT (for hosons) and Po = 21f'iT(n + !) for fermions, nEZ, in 
momentum space. These discrete energies are (proportional to) the so-called Matsubara 
frequencies. 

At this point, it is interestin~ high-temperature limit. In 
space, the time interval shrinks down to a point when T - 00, since 

,8 l/T - O. Hence we lose time dimension and end up with a three­
dimenional field theory: 

IR3 X 51 ~ IR3. (132) 
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In momentum space, the same result can be deduced by looking at some generic 
perturbation theoretic diagram. Let the boson propagator have the form 

D(p) = '2 ~Z2 ." where Po = 21f'inT, (133)
Po-P -m 

while a fermion propagator be 

5(p) = ~ ~ ,where Po = 21f'(n + !liT. (134)
'loPo -'l'p-m 

So our diagram might be something like 

3. J d p (135)zT ~ (211-)3 e ... e ... , 

where e denotes the coupling constant. In the limit T - 00, all modes with n :F 0 
decouple they behave like very heavy particles. Only the zero mode survives, and so 
we are left with 

J d3p 1 
--3 err~err ... (136)
(21f') p + m 

This is exactly what one would find in a field theory on a Eulidean space of one dimension 
less. Moreover, fermion contributions are obviously subdominant since the energy modes 
in the fermion propagator never vanish. Taking the infinite temperature limit in this 
way means, in the end, setting external Po = 21f'niT niJEp O. A more detailed treatment 
must, however, allow for a high-temperature limit with fixed, nonvanishing external Po 
in order to be able to continue back to real energies. But, even in the case Po is kept 
finite one has a problem. Namely, does one try to continue backward 

21f'nT - -iPo, (137) 

one immediately notices that this continuation is not unique. I.e., from a single Eu­
clidean Green function one can obtain several Minkowski Green functions. Which one 
to take depends on the physical setting. 

As a rule, the ITF represents the natural scheme for calculating static quantities like 
the effective potential. 
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2.3 Hard Thermal Loops 

By transferring the QeD Feynman rules for T = 0 to finite temperature in a naive way 
one gets a confusing infra-red limit: on mass-shell both the sign and the magnitude of 
the gluon damping rate appear to be gauge dependent. Braaten and Pisarski [34J have 
argued that whenever a quantity is calculated perturbatively in a hot nonabelian gauge 
theory, sooner or later an infinite subset of diagrams nominally of higher order in the loop 
expansion contribute to the same order in the coupling constant g. These higher-loop 
diagrams have to be isolated and resummed into an effective expansion which includes 
all effects to leading order in g. This resummation technique is necessary to get, even 
at one loop, gauge invariant results. 

More explicitly, hard thermal loops are the ones with exceptional (soft) external 
momenta 

both Po and IPl of order gT (l38) 

and large (hard) internal momenta 

ko and/or Ikl of order T. ( 139) 

The need for resummation can be seen from a simple example. Look at the one- and 
two-loop contributions to the gluonic self energy depicted in Figs. 4 and 5. 

p-k 

nz(p) = ~ 
p V P 

k 

Figure 4: The one-loop self energy contribution 

Let us write them as 

== JttkIl2 (k,p) (140) 

== Jd4 kIl4 (k,p). (141) 
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p-k 

04(P) = 
p 

Figure 5: The two-loop self energy contribution Il ..(p) 

One can then easily derive for the quotient symbolizes the free gluon 
propagator) 

Il4 (k,p) 
Il2 (k,p) 

'Il,(k)D(k)'. (142) 

For small k, Il2(k) is known to behave like g2T2. Hence 

Il4(k,p) smallk g2T2 
(143)

Il2(k,p) ~ k2' 

Hence, for soft internal momentum k ,.." gT, the two contributions are of the same order 
in g. Stated in a slightly different way, the fourth order diagram contains second order 
contributions. 

2.4 The Kubo Formula 

A recent application of hard thermal loops is the generalization of Kubo's formula of 
linear response theory to nonabelian gauge theories. In this subsection, we shall follow 
mainly reference [35]. 

Before tackling the nonabelian case, let me first remind you of Kubo's formula within 
quantum electrodynamics. 

The behavior of electromagnetic fields in a plasma of charged particles is described 
by the polarization tensor II/JoV 

( x, y) which is the two-point current correlation function 

ikIl/Jo"(x,y) == J(~~4 e- (r-lIl il/Jov(k) -i{j/Jo(x)r(Y))· 
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Perturbatively, this is a one-charged-particle-Ioop diagram with two external photon 
lines. 

The real part of this tensor describes phenomena such as Debye screening and prop­
agation of plasma waves; the imaginary part describes the damping of fields in the 
plasma (Landau damping). If one integrates out the charged fields in a functional in­
tegral for the theory, the polarization tensor naturally emerges as the thermal average 
of the time-ordered product of two currents. However, there are situations where the 
response of the plasma to the electromagnetic field is described as the average of the 
retarded commutator of currents. To see this in the case of QED with fermion current 
J"(x) = e~(xb"tP(x) and interaction Lagrangean Cint = -J"AJJ.' one calculates jJJ. in 
an expansion in small gauge fields A". The equation of motion for this theory is 

8"F"Ii(X) = J"(x). (145) 

is related to the scattering operator S[A] T exp[-i Jd4 x 
-= etbt(xhIiWt(x) and the subscript I denotes the interaction picture) in the fol­

lowing way: 

J"( ) = 'S-I 8S[A] (146)x I 8A,,(x) . 

The rhs of (146) is ready for an epansion in A. The result up to linear order is 

JIi(X) =r{x) - i Jcty9{xo yO)[r{x),j"(x)]A,,(y) +O(A2). (1-17) 

Using this in (145) and taking the thermal average with the unperturbed density matrix 
e- HoIT , one arrives at the I<ubo formula 

where nR"(x,y) = -i9(xO - yO)([i"(x),j"{x)j). Hence, the average of the retarded 
commutator is the appropriate function for the situation where we perturb the plasma 
by the field and ask how the field evol ves. 

Now, we discuss the relationship between the time-ordered and the retarded response 
functions, n~" and nR". The real part is the same for both of them 

Re n~" =Ren~. (149) 

This has long been familiar, see e.g. [36}. Here we shall concentrate on their imaginary 
parts. A large-T calculation to one-loop order yields for their imaginary parts 

ImnR" ~ (150) 
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as well as 
1m nJJ." 1m nli" + T3 PJJ." (lSI)

T R 6 ' 

where 

pli" _k29(_k2) ~11' (!PJJ." + !PJJ.,,)IPI 3 1 2 2 , 

pli"
1 gli" 

klik" 
(153) 

pliO
2 

pO"
2 

0 pij _ 8ij _ 
'2 -

k
i 
k

j 

k2 • (154) 

This relationship between n~" and n~ can be understood in the following way. nR", 
being retarded, obeys a spectral representation of the form {37J 

n::
b 
+Jdk;;, .~JJ."(k~, f), (1.55 )

ko-ko-U: 

for some spectral function pli"(k). n::b is a 'subtraction term' that can arise in the real 
part of nR". For n~", we then have [37} 

n li" nli" Jdk' p"" (k~,k) 2 'f( k ) Ii" (k k:) (156)T = sub + Ok' k . + 7rl ° P 0, ,° 0-1(; 

where 
1 

(157)f(ko) = eleolT _ 1 . 

The bosonic distribution function f(ko) appears because n~" is ultimatively part of the 
bosonic (i.e. photon) propagator, and also because it is given by the thermal average of 
the T-product of two bosonic operators, viz. the two currents j" and j". The essence of 
our results (150) and (151) is that the high-temperature spectral function is 

pli"(k) = koT2 pli" (158)
127r 

and the difference in the high-temperature behavior between 1m nR" and 1m n~"(O(T2) 
vs. O{T3)) is attributed to the presence in the latter of 27r f( ko)P"", which according to 
(157) and (158) tends to kT3 P"". 
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Our result for the retarded function n~ agrees with various previous calculations 
[36]. It is noteworthy, that these early calculations in the Soviet literature, based on 
the Boltzmann and Vlasov transport equations of kinetic theory, are here regained in 
quantum field theory at one-loop order. 

Another correlation function that is frequently considered is the imaginary-time one. 
It too is given by a dispersive integral 

IJ" nIJII' Jdk' pIJ"( k~, k) 2 . Tnim.t = sub + 0 k' , Wn = 1I'tn • (159) 
o Wn 

Because the external energy Wn is temperature dependent in imaginary time, it makes 
sense to speak of high-temperature behavior only for the n = 0 mode, effectively reducing 
dimensionality to three, where the spectral function enforces an O(T2) large-T behavior. 

In QED, the one-loop calculations at finite temperature are useful since higher-order 
contributions are down by the coupling e. This is related to the following consideration 
of the effective action rhigh-T[A] that produces the Kubo formula as the corresponding 
equation of motion 

rhigh.T[A] = -~ J d"xP'''(x)FIJ,,(x) ~ J d"xd"yAIJ(x)n~(x,y)A,,(y). (160) 

The important fact is that the expression above is gauge invariant. The polarization 
tensor of QCD (= SU(N) gauge theory with NF flavors of fermions in the fundamental 
representation) at finite temperature is related to the one of QED simply by factors 

n:~ = (N + ~NF)6"bnQED' (161) 

But, in the nonabelian case, Eq. (160) is no longer gauge invariant. The reason is, 
as one might already expect from the foregoing discussion of hard thermal loops, that 
higher-order contributions in the coupling must be taken into account. Hence, the task 
is to find the correct effective action rhigh-T[A] of QCD giving us the generalized Kubo 
formula. 

2.5 Analysis of Hard Thermal Loops in QeD 
One way of analyzing hard thermal loop contributions is the calculation of the cor­
responding Feynman diagrams (e.g. [28]). Another one is to use a high-temperature 
action and to require gauge invariance for it. The gauge invariance condition relates 
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the high-T QCD to a three-dimensional Yang-Mills theory with topological mass term, 
a theory worked out about ten years ago [38J. The high-temperature action is deduced 
in different publications (e.g. [34J, [28]): 

1 ) T2
rhigh-T[A] = ~Ja'x trfi"1II FIJ" + 1211' r(A].+ "2NF (162) 

In the following, light-like vectors are used 

Q± := ~(I,±q), q2 = 1 (163) 

A:I: := Q±AIJ (Ao ± qiA;) (164) 

and an angular integration f dOq over the directions of the unit vector q. 
The temperature-independent term r(A] has the form: 

= 211' J a'x A~A~ + J dOqW(A+). (165) 

Gauge invariance for the action requires gauge invariance for 

6r(A] = 6 [211' J a'x A~A~) + 6 [J dOqW(A+)) o (166) 

~ 8)" ~ 6W(A) j"bCAb 6W 
~ (v+ + - A++v+~+ +6Ac o (16;) 

+ + 

=> 0+ 6~~ [W(A+) + ~ Ja'x A~A~] + 

+rkA~6~+ [W(A+)+~J a'XA~A~] -(-)8_A~ =0. (168) 

Calling the term in the square bracket S, the gauge invariance condition gets the 
form 

81 6!jS - 82A~ + rbcA~ 6!iS = o. (169) 

S is an integrated functional of the fields, so we set by analogy with Hamilton-Jacobi 
theory 
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A; 6~iS' (liD) 

what gives Cor gauge invariance condition 

8, A; - a2A~ + r bcA~ A~ 0, 

With this constraint Cor the A-fields We can relate the high-temperature QCD to 
a topic oC topological field theory the Chern Simons theory, In the eighties [38] the 
CS-Lagrangean 

O(A) = (aiAjAk +~AiAj)h) (172) 

was used as topological mass term Cor three-dimensional Yang-Mills theories 

1 
C = "2trFI''' FI''' +811"2mfl(A) (173) 

with equations oC motion 

V FI''' + ~f",,(JF (J = 0 (174)I' 2 " 

where m is a gauge invariant mass which, in nonabelian theories, is quantized so that 

eiSl\'lm = 1 ==> m =n/411", (175) 

So we have a topological massive gauge theory with multi-valued action. But with the 
quantization condition the phase exponential of the action remains gauge invariant. 

In order to see that this theory resembles much of the hard thermal loop analysis in 
QCD, we must relate r[A] to the CS Cunctional OrAl. This can be done by the constraint 
(171), which arises also in CS theory. 

2.6 Pure Chern-Simons Theory 

Ces = (176) 

because C is a volume form, the corresponding action (here integration in 2+ 1 di­


mensions) is independent of a metric. So we are dealing with a topological field theory, a 

framework which is used in mathematics to investigate the topology oC low-dimensional 
manifolds' .. , 
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The equations oC motion are 

f"I'''FI''' =0, 


For doing canonical quantization we choose the condition Ao = 0, then we have 


r _ k ijA'DA"
J...cs - 2'f i j' (178) 

Now we can choose phase space variables by a method Cor first order Lagrangeans of the 
Corm C = w'iqiP;' so we have A~ q", A; = pD. By Legendre transformation we get a 
vanishing Hamiltonian 

H =0, 

which causes trivial equations of motion 

Ai O. (180) 

The O·component equation oC motion does not involve a time derivative. It is merely 
the Gau8's law constraint 

fij Fii = 0 (181) 
giving the generator Cor gauge transformations 

k .. 
G"(x) -2ft}Fjj(x). (182) 

We now implement the constraint as a relation for the quantum states, what means 
quantization before solving of constraints [39J. 

The antisymmetric matrix in the Lagrangean determines the symplectic structure of 
our theory and establishes the phase space commutation relations 

[A~(x), A~(y)] = ~fij6ab6(x- (183) 

Since H =0 all the dynamics is in the constraint 

G"(x)lw) = 0, (184) 

where are the physical states and 

i [G"(x), d(y)] = rbc GC (x)6(x - y) (185) 
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the algebra of the constraints, which follows the Lie algebra of the gauge transfomation 
group. 

For the realization of the quantum theory we have to get an irreducible representa­
tion of an algebra of observables, which consists of functions on the phase space. The 
irreducibility is obtained by choosing a polarization, what means stating what is p and 
what is q and what is the argument of the wave functions (there is not a single unique 
polarization, but quantization should be independent of which one is taken). Here we 
choose Cartesian polarization 

A~ == ¢a ,A~ 1 fJ (186) 

+-t Ilt(¢) (187) 

the phase space variables are represented as 

A~(x)!Ilt} +-t ¢a(x)Ilt(¢) (lS8) 

(189)A;(x)lllt} +-t AfJ¢~X) Ilt(¢). 

The constraint implies an equation for the physical states 

G4 (x)lllt) = 0 ~ 

(81 fJ¢:(X) + rbc¢b(x) fJ¢~X) - ik8:z¢a(X)) Ilt(¢) = o. (190) 

For finding a solution of this equation we use the WKB-method. Our Lagrangean has 
the form 

k ... 
£cs -e'}A~Aa - Hcs2 .) 

k A' a a k 'aA 4 (191)'2 IA2 - '2A2 I 

:::} kA~A~ == pq. (192) 

The WKB-eikonal of ordinary quantum mechanics is defined as 

t/J(q) eiJ'dq'p(qll. (193) 
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Analogously, we state for the CS-WKB-eikonal 

Ilt(¢) = eir"1JA,kA!(Ad. 

To get A;(Ad, we use the zero curvature condition for the A-fields 

81A~ +r bc A~ A~ = 8:zA~. (195) 

Now we take a solution for the Gau6's law constraint of the form 

== eiW(<I». (196) 

In the polarization chosen above we get 

(197)(81 fJ¢~(X) + rbctPb(x) 6q>~x) - ik8:z¢a(X)) llt(tP) = 0 

fJW(¢) abc b fJW(¢) a) 
:::} 8I fJ¢a(x) +f ¢ (x) fJ¢C(x) = kCh¢ (x . (198) 

Comparing this with (195) gives 

fJW(¢» == kA~(x) (199)
fJ¢a(x) 

By identifying S from (169) with Wand ¢ with AI and comparing the constraints (171) 
of the hard thermal loop analysis and of the CS-theory (19.)) we make the condus ion that 
the hard thermal loop generating function is given by the WKB-eikonal of CS-theory 

still remains to do, is to construct the phase W that means solving the 'quan­
tum' constraint. Questions of representation theory of symmetries on quantum states 
arise here. These are nontrivial and represent a source of anomalies. For the solution of 
the constraint we use a two-step strategy 

(i) determine eifx~"(x)G"(X)Ilt(¢) 

demand eifx~"(x)G"(X)Ilt(¢) = Ilt(¢) {:::: Gau6's law. 
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Whereas the GauB's law represents the infinitesimal action of the Lie algebra on the 
states, (i) and (ii) is the action of the Lie group (,xCI are the gauge parameters). 

For the exponent we get 

f NlGCI=i f ,x"(81-'£+roct/i.!..-.) -k f </>"82,x11. (200)lx lx 6</>11 6~ lx 

We define 
G == G,p + 2k Ltr</>82,x, (201) 

where G"" should only transform the argument 

eiG·II1(</» = 111(41) (202) 

with 9 =eA E gauge group and 

41 == g-l</>g +g-1819. (203) 

By gauge transformation the wave functional picks up a phase 

iG:} eiG II1(</» e e- iG_II1(</>O) 
-2",io.(';;0)eiGe- iG• e . (204) 

for at one gets {39} 

al(</>i9) = - 2~ Ltr (2</>82g9-1+g-18199-1829) +411"k LwO(g). (205) 

The w arising in at is a total derivative and has the form 

8"w" := w(g) := _1_ f oo""tr (9-18099-18099-18...,g) (206)
2411"2 

the w-term in al represents the winding number of the gauge transformation 9, so 
fxwO(g) is multi-valued, but this is innocuous when CS-quantization condition 

411"k =integer (207) 
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is fulfilled. 

Conclusion: 

From the quantum mechanical transformation law 


eiG II1(</» e-2l1'iO I (q,;g) 111 {<1>') 

111(</» <== GauB's law (208) 

111 (<I>') (209)e2l1' io ll,p;0) 111 {</» 

11I1(<I>'W jll1(</>W 

follows that at fulfills the cocycle condition 

at (</>j g) =al(</>jgg) - al(tf>9;g) (211) 

and so is a l-cocycle {42]. Such objects arise in quantum mechanics, if a symmetry 
transformation is represented not only by shifting the argument of the wave functions, 
but also giving them a phase (e.g. quantum mechanical representation of Galileo boosts). 
The response of the action to this implementation of gauge symmetry is a change by a 
total derivative 

d 
L(AO) - L(A) = ;U211"a1, (212) 

what indicates a residual symmetry of the theory. 
Solution: 

Explicit construction of states obeying (209). To this end, we write 

=e2",;oo(,p)ljl( </» (213) 

and seek a quantity ao( </» called a O-cochain that satisfies 

ao(<I>') - ao(</» =al(</>jg). (214) 

Then (213) solves (209) with gauge invariant ljl(</» 

ljl(</>9) = ljl(</». (215) 

If Eq. (214) holds the l-cocycle al is trivial-it is a coboundary. It is possible {39], to 
construct such an ao which trivializes al 

ao(</» = 411"k f wO(h) _ ?k f tr(</>h- 182h), (216)lx _11" lx 
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.. 


where h is defined by 
¢ == h-18I h. (217) 

The wave functional is single-valued provided 411'k = integer. 
The Hilbert space is one-dimensional when no gauge invariant functionals of ¢ can 

be constructed (e.g. physical plane). For that the explicit physical states are given by 

2JrioO(q)1l1{¢) N e (218) 

with Ai ll1(¢) h- 18ihll1(¢) (219) 
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