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Abstract 

It has recently been claimed that the Nonsymmetric Gravitational Theory (NGT) is unphysical 

due to radiative instability. This claim that NGT predicts an infinite flux of negative energy 

from gravitational waves is here proven to be false by demonstrating that the flux of gravitational 

radiation from an isolated source in NGT is positive definite. The reasons why erroneous results 

were arrived at are also discussed. 

Introduction 

Recently Damour, Deser and McCarthy [1] claimed that the Nonsymmetric Gravitational Theory 

(NGT) [2] is unphysical due to radiative instability. They claim that NGT necessarily possesses 

curvature coupled ghost modes and bad asymptotic behaviour. To be considered viable any theory 

of gravitation must satisfy two physical requirements: 

1. Correct Newtonian limit; 

2. No negative gravitational energy modes (no ghost poles). 

The former has not been disputed, but the latter was claimed by DDM to be violated even in the 

case without sources. I intend to show here that their assertion is incorrect due to not taking into 

IThis presentation draw. freely not only from the work done in collaboration with N. J. Cornish and J. W. MofFat, 

but aJao from their independent research. 
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account physical boundary conditions and the correct asymptotic llatness limits. 

In the work done since the initial DDM's claim, it has been shown that in the radiative 

solutions of NGT the leading order contribution to the llux of gravitational radiation is the same 

as in General Relativity (GR) [3]. The same result was shown to follow from the De Witt style, 

first order expansion about a curved GR background of the vacuum field equations for an isolated, 

axisymmetric, time dependent radiating NGT source [4]. (Notably, the same method was used by 

DDM in their claim of proving the contrary.) Also, an NGT generalization of the GR work by 

Bondi, van der Burg & Metzner [5] was obtained, giving an ezact axisymmetric, time dependent 

radiative solution. By using the same method, a completely analogous result was arrived at 

NGT has good radiation properties, just like GR [6]. Moreover, an analysis of the properties of 

gravitational radiation for the NGT field equations with sources now exists [7], extending beyond 

the vacuum case the assertion that the llux of gravitational waves, in NGT, including the possible 

contribution from the antisymmetric fields, is positive definite for an arbitrary source. 

However, the analysis presented here will be limited to the vacuum case. That was the case 

for which the initial claim of untenability was made and I will keep my response within its bounds. 

The 	theory 

Leaving aside a rigorous introduction to NGT that can be found elsewhere (e.g. [2]), let us recall 

that NGT is based on a general (not necessarily symmetric) metric and an affine connection: 

g,,11 = g(",,) + gu,.lI] , 	 (1) 

W:p = W(~p) + W[~p]. 	 (2) 

(Throughout this presentation parentheses and square brackets enclosing indices stand for sym

metrization and antisymmetrization, respectively.) 

The NGT Lagrangian without sources takes the form: 

£NGT 	 = Fig""R",,(W) 

= ";-gg""R",,(r) +~ (V-gg[II"]) ,IIW,." (3) 

with 
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and 9 the determinant of gl/oll. 

The NGT Ricci tensor is defined as: 

(4) 

and 

R,..,(r) = r!."p - ~(rf,.,8),v + rfvP)".) - r~vr::.a +rf"pl~v' (5) 

Finally, the NGT vacuum field equations can be expressed as: 

R(IJ.JI)(r) = 0, (6a) 
2 

R[IJ.v](r) = aW[II,I/o] , (6b) 

( Ag[lJ.v]),1I = 0, (6c) 

gl/oll,).. - gallr~ - gpar~1I = o. (6d) 

These field equations represent 12 independent equations for the 12 independent field variables 

glJ.Jl (there exist four arbitrary coordinate transformations: dz'l/o = (8z'l/o/ 8za)dza, which can be 

used to remove 4 of the 16 gl/oll's). 

Equation (6b) can be decomposed into the two sets of equations: 

(7) 

and 

(8) 

where ; denotes covariant differentiation with respect to the connection r~lI. Equations (6c) and 

(7) are constrained, in turn, by the identities 

( Ag[lJ.v]) ,11,1/0 = 0, (9) 

f,l/olltTp R{[JW]p} (r) ,p = o. (10) 

The field equations are further constrained by the four Bianchi identities, 

(11) 
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where G",,(r) = R",,(r) - 1/2g",IIR(r). 

If we employ the compatibility condition (6d) to eliminate r in favour of g",II' equations (6a), 

(6c) and (7) represent 18 equations for g"". Taking into account the six identities (9), (10) and (11), 

this set of equations provides 12 independent field equations for the 12 independent field variables, 

9"" . At no stage have we had to refer to the auxiliary condition (8). The vector W'" corresponds 

to a Lagrange multiplier and as such does not describe propagating dynamical degrees of freedom. 

3 The claim and the "proof" 

DDM proceed with the de Witt type analysis in the weak field limit. Treating NGT as a theory 

with two independent coupling constants (an Einsteinian one and a purely NGT one), they consider 

an expansion in both. (In particular, if all orders of the expansion in gGR(",II) are kept, the theory 

has to reduce to GR in the zeroth NGT order.) If we take the weak NGT field approximation: 

(12) 

then, to the first order in hlPlI] and all orders in gGR(,w), one gets from (6): 

Il"" (9GR) = 0, (13a) 

jjllhlPlI] = 0, (13b) 

- - {3 4 
DOt F","Ot - 4ROt", lI(gGR)h[Ot{3] = 3W[II,,,,] , (13c) 

with F""Ot being the cyclic curl of hlPlI] and jjOt the background covariant derivative. 

AB was the case for equations (6), the above set of equations can be solved for hlPlI] without 

specifying the Lagrange multiplier W"'O This, in fact, is the way to solve a set offield equations that 

includes an auxiliary field (which has no physical boundary conditions of its own): to eliminate 

that field from the equations. 

However, in the gauge aawOt =0, DDM proceed to take the divergence of (13c) which gives 

the wave equation: 

(14) 

They argue that this is an inhomogeneous wave equation for W"" so W", has l/r fall offin the wave 

zone. They then go on to argue that inserting this information back into (13c) drives hlPlI] to have 

bad asymptotic behaviour. 
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DDM claim, in addition, that NGT has a negative energy ftux of gravitational radiation in the 

wave zone. The rate of energy loss due to gravitational radiation is given by 

dE 	 dnR2f 01 ...-;Ii" = - t ni u, 	 (15) 

where the integration is over a sphere of radius R in the wave zone, ni is an outward pointing unit 

vector, and t lW is the stress-energy tensor given in [1] (with some notational differences): 

t"V 	= (~p""pFVOP - 1~9GR"vF2 ) 

+ 	 (~h[,.a]r 0 + ~h[VO]I" 0 - ~9GR"vh[oiJl /oP) 

+ 	(3R(~..,aph[JI)alhhPl - 9GR~JI iiya6phh61h[aP1 ) 

DpDa (h[a(~]h[JI)P]) , (16) 

where flW == a~wJl - aJlw~. 

Now DDM argue that only the first term in the above expression leads to positive energy. 

They notice that the third term vanishes at infinity like 1/r3, while the fourth (being a total 

divergence) cannot contribute to the integral (15) and has no bearing on the energy-momentum 

flux. However, they maintain that the positivity of the second term cannot be established and state: 

"thus the proof of positivity of energy for normal fields fails here". This (as yet mild) statement 

gets somewhat strengthened in the conclusions of [1], where it reads that NGT necessarily contains 

negative radiative energy modes and is physically untenable. 

Let us stress here that the failure to prove the positivity of gravitational energy, and DDM 

did fail to do this, is by no means equivalent to proving that the energy is negative. DDM's 

arguments cannot be used to prove that h~] always has bad asymptotic behaviour and that this 

guarantees negative gravitational energy modes. (A detailed discussion of the inconsistencies of 

DDM's analysis can be found in [3].) 

Let us also note that if the analysis of the problem is conducted in a physicaJly consistent 

way, taking into account the boundary conditions, DDM's way of arguing can be used to prove the 

positivity of gravitational energy in N GT. 

The counter-claim and the proof 

Any physical theory can be seen as consisting of its mathematical structure (Le. symmetries and 

differential equations) and its boundary conditions, which establish its physical content. The former 
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allow solutions with both good and bad asymptotic behaviour. It is the role of the latter to decide 

which of those solutions are physica.lly acceptable. 

A trivial (but educational) example is the dissipation equation in the heat conduction problem 

that, on its own, a.llows for both damped and growing solutions. Here, as always, it is the boundary 

conditions that establish which solutions belong in the physical theory. 

For the isolated radiating body the physical boundary condition is 

(17) 

at future null infinity. Imposing the boundary condition on the future null infinity (the past null 

infinity) corresponds to ensuring that the field contains only outgoing radiation (only incoming 

radiation). A physica.lly viable model could contain either of the two, but not both at the same 

time. 

The discussion of gravitational radiation only makes sense for such spacetimes [5]. 

It is clear from the previous work [4, 6] that imposing the boundary condition (17) on the 

axisymmetric radiating system leads to solutions with good asymptotic behaviour. As we will see 

shortly, the same condition of asymptotic flatness ensures that DDM's analysis necessa.rily leads to 

the conclusion that the flux of gravitational radiation in NGT is finite and positive. 

Let us prove our counter-claim in the weak GR field approximation, since at future null infinity 

the spacetime has the same characteristics as Minkowskian spacetime. 

As follows from the discussion in the preceding section, the question of the finiteness and 

positivity of the energy flux critica.lly hinges on the finiteness and positivity of the second term on 

the right-hand side of the equation (16). 

In other words: if W[v,p] (Ipv) does not contribute in the wave zone, then the flux is positive 

definite. 

In a weak field approximation obtained from expanding gpv about the Minkowski spacetime 

metric, f'/pv: 

(18) 

where £ < 1, the field equations take the form to lowest order: 

Dh(pv) - h(vtT),pp' - h(ptr),v,tT +h,p,v = 0, (19) 

h[pp]'P =0, (20) 

Dh[pv] = '3
4 

W[v,p] , (21) 
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where 0 = lJ~lJ~ and h = "a{Jha{J. 

Let us now define the longitudinal and transverse projection operators: 

PL 	 _ lJ~lJJI 
(22)~JI - 0 ' 

and make the general decomposition: 

where Q~'~ =o. Now 

hTT pTapT{Jh _ {JIC,>..
u,.JI] = ~ JI [a{J] - E:~JlIC>" , (23) 

hLL
u,.JI] = P;:O p~{Jh[a{J] =0, (24) 

h£T La T{Jh
u,.JI] = Pu,. PJI] [a{J] =Qu,.,JI]. (25) 

Also, using the gauge condition wa,a =0, one obtains 

TZTTT _ TZT LL - 0 TZTLT - Wi ,.,. u,.,JI] - ,.,. u,.,JI] - , ,.,. u,.,JI] - u,.,JI]. 	 (26) 

Thus, the field equations to linear order are: 

h{;J;] ,{J = 0, (27) 

Dh?Z] = 0, (28) 
4 

Dhf;!] = 3'W[JI,p.]. (29) 

Equation (27) then tells us that OQ~ = 0, and inserting this into (29) we find 

Wu,.,JI] =° 
to lowest order. 

Thus, curl of W does not contribute in the wave zone if physical boundary conditions are 

applied. The flux of gravitational radiation in the wave zone is finite and positive. There are no 

negative gravitational radiation modes. 
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