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Abstract 

We examine in detail the Cauchy problem for a class of non-linear hyperbolic 
equations in two independent variables. This class is motivated by the analysis 
of the dynamics of a line of non-linearly coupled particles by -Fermi, Pasta 
and Ulam and extends the recent investigation of this problem by Gardner and 
Kamran. We find conditions for the existence of a I-stable Cartan characteristic 
of a Pfaffian exterior differential system whose integral curves provide a solution 
to the Cauchy problem. The same obstruction to involution is exposed in 
Darboux's method of integration and the two approaches are compared. A 
class of particular solutions to the obstruction is constructed. 
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Introduction 
In 1955 Fermi, Pasta and Ulam [1] investigated the dynamics in one dimension of a chain of 
non-linearly interacting particles [1] and were surprised at the non-ergodic behavior of the 
system. A continuum version of this model was considered by Kruskal who discovered that 
solutions of the partial differential equation developed a discontinuity in the first deriva­
tive of the longitudinal displacement after a finite time. This behavior was confirmed and 
clarified by Zabusky [2] and Lax [3] using classical techniques of analysis. The problem 
has recently been reconsidered using a modern approach by Gardner and Kamran [4]. The 
problem continues to be of interest for a number of reasons. Non-linear hyperbolic partial 
differential equations in two independent variables provide a viable means of testing new 
techniques of analytic integration. Such equations often exhibit interesting phenomena 
unique to non-linear systems, such as shock waves and solitons. Such behavior is of partic­
ular interest in physics where solitonic solutions are being considered as simplified models 
of elementary particles. The re-parameterisation invariant relativistic string and its gener­
alisations has been extensively studied in the context of a unified model of the basic forces 
of nature and its non-linear modifications may be relevant for further developments in this 
area. 

The analysis of the realistic behavior of a continuous material string is non-trivial [5]. 
To define the dynamical system one must specify the material stress tensor and a consti­
tutive relation to relate the tension to the material strain. The traditional approach [6] 
succeeds in decoupling the longitudinal and transverse equations of motion by assuming 
small vibrations for a medium obeying a Hooke's law. For non-linear viscoelastic strings 
undergoing large amplitude vibrations such assumptions are unwarranted. 

The Fermi-Pasta-Ulam longitudinal chain and its various continuum limits define a class 
of hyperbolic non-linear wave equations, characterised by a function /'i" of the form 

8;z - /'i,2(oxz )8;z = 0 (1) 

for the displacement z as a function of position x and time y. 

It is the purpose of this note to treat the Cauchy problem for this equation. We begin 
with the method of generalised characteristics pioneered by Cartan and developed by 
Gardner [7]. In particular we expand on the recent work by Gardner and Kamran who 
analyse the Cauchy problem in terms of I-stable vector fields on a locus of a bundle of 
2-jets. We show that for most functions /'i" this method meets an obstruction to the 
Cauchy evolution of initial data by a I-stable vector field. The same problem is analysed 
using Darboux's method of integration and the same obstruction is encountered albeit in 
a somewhat different setting. We comment on the relative merits of these two approaches 
for integrating equation (1). 
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The Cauchy Problem 

We recall briefly the formulation of the Cauchy problem for (1) in the language of exterior 
differential systems. 

Define S to be the exterior ideal generated by the Pfaffian system 

dz - pdx - qdy 

dp - rdx - sdy (2) 

dq - s dx - ",2 (p) r dy 

on the locus ~7 of J2( {x, y} 1-+ {z}) with coordinates {x, y, z, p, q, r, s}. The solutions of (1) 
may be regarded as 2-dimensional integral manifolds of S: immersions C : U C R x R ~ ~7 
such that C*S = 0 and C*(dx I\dy) f:: O. Define Cauchy data for C to be the I-dimensional 
integral manifold Co : Ie R ~ ~7 of S such that C(U) C Co(I) x R and CoS = O. 

The Cauchy problem for (1) is then to find a 2-dimensional integral manifold 

C: {O',T} 1-+ {x,y,z,p,q,r,s} (3) 

of S such that 
C(O',O) = CoCO') VO' E I. 

In some cases, such a map may be determined by the integral curves of a vector field X 
on ~7; each curve starting at CoCO') at T = 0: 

(4) 

If this holds, then the Cauchy problem is solved by the ODE system determining the 
integral curves of X. According to [7] the Cauchy problem for S with Cauchy data Co has 
this solution provided: 

(a) X is an I-stable vector field 

(b) X is transverse to the Cauchy data 

(c) Cov~(S) = O. 

In this theorem the Pfaffian systems vi (S), k 2:: 0 are defined recursively by 

V~(S) = S, (5) 
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in terms of the Lie derivative. The vector field X is said to be l-stable for S if it lies in 
the annihilator S1. of S, each system vi (S) has constant rank and there exists an 1 ~ 0 
such that 

(6) 

where 

S.l. ={XlixS = OJ. 

These conditions imply that X is a Cauchy vector field for 1)~(S): 

X E Char{1)~(S)} = {XIX E 1)~(S)1., ixdV~(S) C 1)~(S)} (7) 

I-Stability 

In this section we exploit the above theorem to derive a quasilinear system of pde's that 
determine a solution to the Cauchy problem for (1). A basis for the space S.l. is 

so we seek a Cauchy vector of the form 

4 

X = LhiXi 
;=1 

in terms of functions hi on E 7 • Then 

(9) 

where 

d1 =ixdS mod S 


= {hI dr + h2 ds - h3 dx - h4 dy, 


hI ds + h2 ".2 dr + 2h2r 2 ",()pKdx - h4 dx - 2K8pKr 2 h1 dy - h3,,? dy} 


Thus 1)1-(S) has maximal rank 5. One could proceed with a stability analysis of X keeping 
1)1-(S) with maximal rank. However following Gardner a simplification is expected if we 
seek stability of a vector field X satisfying the property 

(10) 
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for some subsystem :J of S. Gardner and I{amran [4] define a subsystem in terms of a 
particular 2-dimensional maximal isotropic subspace of a tensor on :E7 , constructed from 
the elements in S. Such a vector X then defines an irregular integral element [8] of the 
differential system obtained by closing S. Thus we look for a drop in rank of V1(S) from 
5 to 4. This can be achieved by choosing: 

(11 ) 

where we have normalised X to agree with the :J-vector of [4]. The space d1 is now 1 
dimensional and not contained in S so X is not O-stable. We next compute V.k(S). For 
an arbitrary function Athe space d2 = iXdl mod V1:-(S) is 1 dimensional. However if, and 
only if, A satisfies the quasilinear system: 

2K(OrA + KOsA) + 5KropK - SOpK = 0 

2K(KOxA + OyA) + 2K(Kp + q)OzA + 2K(Kr + S)(OpA + KOqA) (12) 

+4K2opKr2osA + (5KopKr OpKS)A + 4Kr3(KOppK + OpK2) = 0 

then d2 = {O} and X is a I-stable vector field. 

If such a vector exists, its integral curves offer a solution to the Cauchy problem in 
terms of the Cauchy maps generated by the functions {<p((7), w((7)}: 

Condition (c) of the theorem in the last section then provides the initial conditions for 
C;A: 

C; A = (C; K )Otrtrtr <P - Otrtr W . (14) 

It is to the problem of the integrability of the system (12) that we now turn. 
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Integrability Condition 

To investigate the integrability of the first order system (12), it is convenient to express 
it as an exterior system. Since there are two first-order equations in one unknown function 
of 7 independent variables, the system will be expressed as a locus ~13 of Jl(R7 

-+ R). 
It also makes the calculations more tractable if a coordinate transformation is performed. 

Let 
u=q-K(p) 

v = (8 + K,r)/2 (15) 

w = (8 - K,r)/2 

where K(p) is such that ]('(p) = K,(p). After the transformation (15), the equations (12) 
can be expressed as an exterior system on the locus ~13 of J 1( { x, y, z, p, u, v, w} 1-+ {,\}), 

by pulling back the contact system 

with the map, : ~13 -+ Jl(R7 -+ R) defined by the equations 

'\v = 8pK,(3w - 2v)/",2 

'\w = (2( K,OppK, - 8pK(2)( V - w? + 8pK, 2VW 
2 + K, 2 8pK,(2v - 3w)'\ (17) 

+ K,3(K,,\z +'\,1 + (K,p + K + u),\z + 2v'\p))/K,2 8pKW(V - w). 

The integrability of equations (12) is then equivalent to the involution of the system ,*Q 
with respect to dx 1\ dy 1\ dz 1\ dp 1\ du 1\ dv 1\ dw. To check the involutivity, the exterior 
system can be prolonged to the Grassmann bundle G(~13) of 7-planes over ~13. The set 
of 7-planes in G(~13) which annul the 1- and 2-forms in {,*Q,,*dQ} forms a subvariety 
of G(~13). If this subvariety does not project surjectively onto ~13, then there are further 
equations relating the variables in ~13 implicit in the system (17). In that case, if there 
are m new equations, they must be appended to (17), defining a new locus ~13-m and a 
map, : ~13-m -+ Jl(R7 

-+ R), and the process repeated. 

Of course the manipulations involved in the procedure outlined above very rapidly 
exceed the scope of hand calculations. A computer algebra programme called AMEND 
has been developed at Lancaster [9] for the REDUCE computer algebra system to perform 
the prolongation calculation and check the surjectivity of the projection. If the projection 
is not surjective, then AMEND returns the new equations to be satisfied. 
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Using AMEND, the system ,,*Q is readily seen not to be involutive, but to require the 
additional equation 

2Ap = ((2KOppK - 50pK2)( -v w + 3vw2 - 2w3) + K20pKWA 
(18) 

- K3(KAx + Ay + (Kp + I{ + U)Az)) /2 K3w . 

The new system defined by equations (16), (17) and (18) can also be treated by AMEND, 
and gives an extra equation which can be solved for Ax. Further repetitions of the process 
yield equations for Ay and Az. 

Incorporating these extra equations into the map " gives a new exterior system ,,*Q 

on a locus :E9 of Jl(R7 -+ R). One further calculation with AMEND shows that the 
involutivity of this system also requires the vanishing of an extra equation which can be 
written 

(19) 

Here E4 and E2 are defined by 

E4 =16K4Kit Kiv - 24K,2 K3 Kiv - 16K4KIII2 + 32K3K' K" Kill + 48K2 K,3 Kill 

-104K3K,,3 + 372K2K,2 K,,2 - 630KK,4 K" + 315K,6 (20) 

(21) 

The division by E2 is necessary to prevent a spurious factor being introduced into the sixth 
order equation (19). This time, the new equation does not involve either of the remaining 
dependent variables {A, Au}. It is therefore a compatibility condition on the function K. 

Unless this condition is satisfied, the 1-stability conditions (12) cannot be satisfied either. 
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Darboux Integration 

Another possibility for the integration of hyperbolic partial differential equations in two 
independent variables by means of a Cauchy characteristic vector is given by Darboux's 
method of integration, although the connection with Cauchy characteristics is not usually 
brought out. In the older classical literature on Darboux's method, emphasis is laid on 
finding a so-called "intermediate integral" [10] which is in "involution" with the original 
partial differential equation, so that the solution space of the simultaneous equations made 
up by the original equation and the intermediate integral is identical to that of the original 
equation. For example, Liouville's equation, regarded as the locus 

(22) 

of J 2({x,y} -. {z}) with local coordinates {x,y,z,p,q,r,s,t} has two intermediate in­
tegrals derived from the invariants {x, r - !p2} on one of the Monge characteristics and 
{y, t - !q2} on the other, namely, 

1 2 r--p =f(x) (23)
2 

and 
1

t _ _ q2 = g(y), (24)
2 

where f and 9 are any suitably smooth functions of their indicated arguments. The usual 
treatment then notes that the Pfaffian system 

dz - pdx - qdy 

dp - (f(x) +!p2)dx - eZdy (25) 

dq - eZ dx - (g(y) +tq2 )dy 

is a completely integrable system that has the general solution 

2F'(x)G'(y) 
(26)

[F(x) + G(y»)2 

where f and F are related by 

F"'(x) ~ (FII(X))2
f(x) = F'(x) 2 F'(x) 
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and similarly 9 and G are related by 

_ GIII(y) _ ~ (G II (y»)2 
g(y) - G'(y) 2 G'(y) . 

The connection with Cauchy characteristics is brought out by the fact that if we search 
for irregular integral elements of the exterior differential system obtained by pulling back 
the contact system of J2 ( { x, y} -+ {z}) using the equations 

{s = r - ~p2 = f (x)} (27)e% , 

we find that there exists a Cauchy vector given by 

(28) 

This result is general, i.e., in every case of equations that are Darboux integrable there 
will always exist a Cauchy vector for the exterior differential system that corresponds 
to the original equation and an intermediate integral. The only problem then is how to 
find intermediate integrals. Probably the most convenient way to do this is to utilise the 
dual language of vector field systems that was first introduced by Vessiot [11]. Indeed, 
in two little-known papers [12] and [13] Vessiot gave a complete account of Darboux 
integrability for hyperbolic partial differential equations for a single unknown depending 
on two independent, variables and showed how such integrability ~ras tied up with the 
structure of 2 and 3-parameter Lie groups. Vessiot's work has been extended by Vassiliou 
[14] to the case of simultaneous hyperbolic partial differential equations for more than one 
unknown function of two independent variables provided all of the equations have the same 
Monge characteristics. More recently Vassiliou [15] and Grundland and Vassiliou [16] have 
discussed Darboux integrability in terms of vector field systems. 

In the present case of the Fermi-Pasta-Ulam equation (1), a basis for the appropriate 
vector field system is given by (8). However, as pointed out by Vessiot, it is important to 
utilise the equivalent basis made up of two pairs of singular vector fields which in our case 
are given by 

(29) 

with 
Ao = -K (ax + paz + rap + SOq) + Oy + qoz + sap + K2raq + 2KK'r2a s , 

Al Or - K08 

and 
(30) 
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with 
Bo = '" (ox + pOz + rop + SOq) + Oy + qaz + sop + ",2rOq + 2",,,,'r20s , 

Bl = Or + ",os 

because these correspond to the Monge characteristics. In order for an intermediate integral 
to exist there must be at least 2 independent invariants of either A or B. For purposes 
of comparison with the main results of this paper, it is sufficient to deal only with the B 
system. Furthermore, it is again useful to use the coordinate transformation (15), after 
which a suitable basis for B may be taken as 

- ",' 

Bo = "'ox + Oy + (u + P'" + K)oz + 2vop - -w(v - w)ow (31) 

'" 
and 

(32) 

It is obvious that B always has the invariant u. For Darboux integrability, B must have a 
second invariant. This will happen trivially if ",' = 0, in which case we have the elementary 
wave equation. Excluding this case, i.e., assuming ",' =1= 0, we examine the derived flag of 
B to find how many invariants B has. We readily find that if 

°" 3,22",,,, - '" = (33) 

the derived flag stabilizes at degree 4, showing that B has 3 independent invariants. It 
is straightforward to show that in this case A also has 3 independent invariants. By a 
theorem of Vessiot, [12] this means that in this case the Fermi-Pasta-Ulam equation may 
be reduced to the elementary wave equation. Otherwise we find that for B to have 2 

independent invariants and thereby to be Darboux integrable, '" must satisfy the equation 
E4 = 0, i.e., 

16K4","",iv _ 241£,2 K3",iv _ 16K4K",2 + 32K3",' "," ",III + 48",2 ",,3 ",III 

-1041\.31£,,3 + 3721\.21£,21£,,2 - 6301£1£,4 K" + 315",,6 = O. (34) 

However, this does not exhaust the possibilities for Darboux integration, since we may 
prolong B to B' on the third order jet bundle and find the condition that B' have 2 
independent invariants. This was done with the aid of REDUCE, and we found that 
provided neither E2 = 0 nor E4 = 0, 8' has two independent invariants and so is Darboux 
integrable provided the sixth order equation (19) is satisfied. 

The interesting point to emerge is that the method of seeking I-stable vector fields on 
the bundle of 2-jets is more effective than the method of Darboux integration, which can 
only achieve the same result after a prolongation to the third order jet bundle. 
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Comments 

It is of interest to enquire about the solutions of (19). Physically motivated functions K 

take the form 
(35) 

for constant a and v. Such an ansatz satisfies 

(36) 

where i = (v - 1)/v. In order to solve the Cauchy problem for (1) with such a "', using a 
I-stable vector field given by ;\ satisfying (12), it is necessary that 

(37) 

which is obtained by substituting (36) into (19). However (19) admits a much larger class 
of solutions. Further solutions, for example, may be generated from (36) with the aid of 
the symmetries of the equation: 

Yt = 8p 

Y2 = ",8" 
(38)

Y3 =p8p 

14 = p28p - 2p",8" 

For such solutions, the Fermi-Pasta-Ulam system admits a I-stable vector field that pro­
vides a solution to the Cauchy problem. 

It would appear that (for this system) the involutivity analysis of the I-stability con­
dition is more straightforward in principle than the method of Darboux integration. In 
practice both approaches are computationally intensive and resort to automated algo­
rithmic techniques appears essential The results of this paper, however, show that the 
geometrical approach can lead to effective and powerful practical methods for analysing 
such non-linear problems. 
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