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Introduction 

In a well-posed Cauchy problem for a partial differential equation (PDE) system, the 
solution is uniquely determined by the Cauchy data. Nevertheless, the construction of 
that solution generally involves further PDE systems. If these latter sytems cannot be 
solved, then the construction of the solution for the original Cauchy problem falters, even 
though that solution is known to exist and be unique. It is therefore interesting to ask 
under what conditions a Cauchy problem may be solved using ordinary differential equation 
(ODE) systems, since these are always formally integrable locally. 

Several approaches to the integration of partial differential equations by such methods 
are available. This paper focusses on two: the Darboux method [1] and the stability 
analysis of Gardner [2,3,4]. 

Darboux's method is a generalisation of techniques developed by Monge and Ampere 
which construct additional equations, called intermediate integrals, which are compatible 
with the original PDE. Taken together, the original PDE and the intermediate integral 
may be solved by ODE systems. 

Gardner's method takes a different approach that constructs a vector field, in a suitable 
space, which satisfies a certain stability property in relation to the PDE system. The 
integral curves of this vector field then develop the Cauchy data into a full solution. 

The main result of this paper is that for a hyperbolic second order PDE in one dependent 
and two independent variables, the Darboux and Gardner methods are equivalent. This 
result is presented in the context of solving the Cauchy problem. It is interesting to note 
that the equivalence of the two methods does not apply to exactly the same PDE system 
for the hyperbolic equation. Rather, the Gardner method for an arbitrary prolongation of 
a PDE system is equivalent to the Darboux method for its next prolongation. 

In this paper, the language of exterior differential systems [5] is used to present and 
derive the results. First, in section 1, the exterior systems formulation of the hyperbolic 
PDE is described, and some of the concepts and notation to be used in the remaining 
sections are introduced. Section 2 presents the Gardner method, essentially as described 
in [2]. A formulation of the Darboux method in the language of exterior systems is given in 
section 3, and applied specifically to the Cauchy problem to allow comparison with section 
2. The main results are presented in section 4, and illustrated by examples in section 5. 

Some of the definitions used in this paper have been adapted to the problem at hand. For 
more general definitions, see [5]. It has also been assumed throughout that no irregularities 
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or singularities arise, other than those specifically mentioned. Finally, no consideration has 
been given to global effects, the results are purely local. 

1. Exterior systems for hyperbolic equations 

A general second-order partial differential equation in one unknown function u of two 
independent variables x, y may be written 

(1.1) 

where U x = au/ax etc. This equation is said to be hyperbolic at points where 

(1.2) 

It will be assumed that equation (1.1) is hyperbolic at all points of interest. The aim of 
this section is to express such a hyperbolic partial differential equation, and its prolonga­
tions, as exterior differential systems in a notation which will be convenient for subsequent 
deve!opments. 

Equation (1.1) can be regarded as specifying a locus in the 8-dimensional jet bundle 
J2(R2, R), where {x, y, u, U x, U lI ' U xx , U Xll ' u lIlI } are viewed as coordinates. Under the as­
sumption that this locus is the image of a smooth map i:M7 ~ J2(R2,R) from some 
7-dimensional manifold M7 , equation (1.1) can be rewritten as 

i*F = O. (1.3) 

The exterior differential system 8 7 on M7 corresponding to the PDE (1.1) is 

87 = i*C, (1.4) 

where C is the contact system on J2(R2, R). In terms of the standard coordinates, the 
contact system is 

(}1 = du - uxdx - ulldy 

C = 0: = duz - uudx - uzydy (1.5) 
{ 

() = duy - uxydx uyydy. 

Unless explicitly mentioned, a set of forms or vectors and the ring which they generate 
will be synonymous. The closure 8 7 u d87 of the exterior system 8 7 will be denoted 57. 
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Local solutions of the PDE (1.1) are in one-to-one correspondence with integral man­
ifolds of S7: smooth maps h: U C R2 --+- M7 satisfying h*S7 = 0 as well as the indepen­
dence condition h*(dx " dy) i= O. The first step toward finding integral manifolds h is 
to find 2-planes which could be tangent to the image of h. The next step is to see whether 
a distribution of these 2-planes is integrable. Since h*S7 = 0 implies that h*dS7 0, it is 
necessary to require that the 2-planes annul the closure 87 • Accordingly, an involutive 
integral element of 87 is defined to be any 2-plane over M7 which annuls the 1- and 

2-forms in 87 but not the independence form n = dx "dy. 

Integral manifolds h of S7 on M7 give rise to immersions i 0 h: U C R2 --+- J2(R2, R) 
which are integral manifolds of the system S8 = e u {F}, since (i 0 h)* = h*i*. The closure 
88 of e u {F} may be expressed in a simple form by suitably adapting the coframe for the 
jet bundle, and this in turn will give rise to a simplified set of structure equations for S7. 

As is well known, the hyperbolic PDE (1.1) has two Monge characteristics: local curves 

on the space of independent variables along which the usual Cauchy data is insufficient 

to uniquely determine a solution. Such a curve in the space of independent variables will 

annul some I-form 

e= adx + fjdy. (1.6) 

Any lack of uniqueness in the solution determined by the usual Cauchy data on a curve 

specified by ewill reveal itself as some drop in rank of the closed system 88 modulo e. 

In particular, the 2-forms in de (mod e) are 

d6l ~ 0 

de = d62 ~ -duxx " dx ­ du xy " dy (mod e). (1.7) 
{ 

d63 ~ -duxy " dx ­ duyy " dy 

To examine the two non-vanishing 2-forms modulo e, it is convenient to calculate 

d62 
" e~ (- fjdu xx + aduxy ) " dx " dy 

d63 "e ~ (-fjdu xy +adu yy ) "dx "dy 

(mod e) 

(mod e). 

(1.8) 

(1.9) 

There is one other 3-form with a similar structure in the ideal generated by 88 , namely 

(1.10) 
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The 3-forms (1.8), (1.9) and (1.10) are linearly independent modulo S8 for most values of 
a and {3. However, they become linearly dependent if the I-forms 

{3duxx 	+aduxy 

- {3du xy + adu yy (1.11)
{ 

FU.z:.z:duxx + Fu.z:,duxy +Fu"du yy 

become linearly dependent. The matrix of coefficients in (1.11) has the determinant 

(1.12) 

which has 0,1, or 2 real roots for a (or (3) as (Fu.z:,)2 is less than, equal to, or greater than 
4Fu.z:.z:Fu" - the usual conditions for the Monge characteristics of the PDE (1.1). When the 
determinant (1.12) vanishes, the number of linearly independent I-forms in (1.11) reduces 
to two. 

In the hyperbolic case (1.2), there are two distinct Monge characteristics, which will be 
labelled + and -. The corresponding I-forms will be denoted w+ and w_. With e = w+ 

the two 3-forms d92 Ae and d93 Ae of (1.8), (1.9) are linearly dependent modulo C u {dF}. 
It follows that there must be some linear combination 9+ of 92 and 93 such that 

d9+ AW+ ~ 0 (mod C u {dF}). 	 (1.13) 

This implies that 
d9 + ~ 1["+ t\ W+ (mod C u {dF}) (1.14) 

for some I-form 1["+, The same argument for the other characteristic gives another (inde­
pendent) linear combination 9_ of 92 and 93 such that 

(1.15) 

for some I-form 1["_ . 

Since the rank of the system (1.11) for e = W::I: is two, the I-forms 1["+ and 1["_ are 
independent linear combinations of du xx , du xy and du yy moduloC u {dF, dx, dy}. This 
completes the construction of a new coframe {w+, W _ , 91 , 9+, 9_, 1["+, 1["_, dF} for J2 (R2 

, R), 
in which the contact system is 

(1.16) 

and the structure equations of S8 are given by d91 0 (mod C) together with (1.14) I'V 

and (1.15). Since W+ and w_ are linearly independent combinations of dx and dy, the 
independence form n can be taken as n = W + A W _ • 
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Pulled back using the map i: M7 --+ J2(R2,R), the I-form dF vanishes by (1.3), but 
the remaining coframe elements survive to give a coframe for M7 (since i is assumed to be 
injective). The M7 I-forms i*w+, i*w_ and so on will be denoted with the same symbols 
as on J2(R2, R). 

In this coframe, the exterior system S7 (1.4) is 

(1.17) 

and the structure equations are 

d61 ~ 0 

(1.18)dS7 = d6+ ~ 7r+ 1\ w+ 
{ 

d6_ ~ 7r_ 1\ w_ 

Returning to the problem of finding integral elements, a 2-plane over M7 may be spec­
ified by giving a basis of two vectors, or alternatively by giving a basis of five I-forms for 
the annihilating subspace of the dual space. Any 2-plane over M7 which does not annul 
the independence form n = w+ 1\ w_ must have an annihilating space which is specified by 
the I-forms 

61 
- aw+ - bw_ 

6+ - cw+ - dw_ 

6_ - ew+ - fw- (1.19) 

7r+ - gw+ - hw_ 

for some values of the parameters a, b, ..., j. To determine whether such a 2-plane 
annuls the 1- and 2-forms in 87 , all possible contractions with the two basis vectors can be 
tested for vanishing. Equivalently, the forms in 87 can be evaluated modulo the five basis 
one-forms above, and again tested for vanishing. 

From the form of the system given in (1.17) and the structure equations (1.18) it can 
be seen that the 2-planes specified by (1.19) are integral elements of 87 if and only if 
a = b = c = d = e = f = h = i = O. The parameters 9 and j are unconstrained, and it 
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is convenient to re-label them as p+ and p_. Thus any involutive integral element of 57 is 
determined by a PfafIian system on M7 

(1.20) 


for some values of p+ and p_. The parameters p+ and p_ may therefore be used to 
coordinate the fibres of a 9-dimensional bundle Mg of involutive integral elements of 57 
over M7. Using the bundle projection, the coframe on M7 can be lifted to give a set of 7 
independent I-forms on Mg. These I-forms will be denoted by the same symbols on both 
spaces, and a similar practise will be followed in the rest of this paper. Adding the I-forms 
dp+, dp_ to this set completes a coframe for Mg. With these provisions, the system 8g in 
(1.20) can be re-interpreted as a system on M9 with p± as additional coordinates. 

Tl,le system 89 on M9 is called the first prolongation of 87 on M7 • Converting back 
to jet-bundle coordinates reveals that 89 is just the pull-back of the contact system of the 
third jet bundle J3(R2 ,R) using the original PDE (1.1) and its derivatives with respect 
to x and y the usual PDE notion of prolongation. 

For 89 , the structure equations can be calculated for the most part from those for 87 , 

since the pullback and exterior differentiation operations commute. Thus 

d8 l ~ 0 

d8+ ~ 0 

d8_ ~O 

(mod 89 ) (1.21) 

(of course, 89 is constructed just so that this is true). 

On M 7 , d1r+ is naturally expressed in terms of the M7 coframe alone. Since pullback 
and exterior derivative commute, it follows that d1r+ on M9 can be expressed in terms 
of the same I-forms: there are no terms containing dp± factors. All "M7 " I-forms are 
equivalent to combinations of w+ and w_ modulo S9, so 

(1.22) 


6 




for some function A on M9 • Similar remarks hold for the forms 7r_, W + and W _. Conse­
quently, there exist functions A± on M9 such that 

d(7r+ - p+w+) ~ (A+w_ - dp+) AW+ 
(mod S9). (1.23)

d(7r_ - p_w_) ~ (A_w+ - dp_) AW_ 

Comparing the structure equations (1.21), (1.23) for S9 with those (1.18) for S7, it 
is evident they follow the same pattern. If {Bl,B±} are denoted collectively by {Ba}, 
{7r± - P±w±} are re-labelled {B±}, and {A±WT - dp±} are re-labelled as {7r±}, then the 
structure equations for S9 will take on exactly the same form as (1.18), with Ba in place of 
B1. From this it follows that S9 on M9 may itself be prolonged to give a new system S11 
on on II-dimensional bundle M11 over M9 , with structure equations again following the 
same pattern. Clearly, this procedure may be repeated indefinitely. 

In order to treat all cases at once, the result of an arbitrary number (possibly zero) of 
prolongations of S7 on M7, will be written as a system S on a manifold M, where 

(1.24) 

(a = 1, ... , n - 6 where n = dim M) with structure equations 

dBa~o 

dS = dB+ ~ 7r+ A w+ (mod S). (1.25){ 
dB_ ~ 7r_ A W_ 

The first prolongation of S on M will be written as S(1) on a bundle M(l) ,....., MxR2 
over M, with 

B+ 

S(l) = B_ (1.26) 

B~) = 7r+ - p+w+ 

B~l) = 7r_ - p_w_. 
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The structure equations for S(1) are 

d9a ~ 0 

d9+ ~ 0 

dS(l) = d9_ ~ 0 (1.27) 

d9~) ~ 7r~1) "w+ 


d9~1) ~ 7r~) "w_ 


where there are functions A± on M(1) such that 

(1) A d
7r± = ±WT P±· (1.28) 

The systems S and S(1) on M and M(1) will be the setting for the main discussion in 

section 4. 

As mentioned earlier, there are characteristics associated with hyperbolic PDE's. These 
are nut Cauchy characteristics, but Monge characteristics. For the exterior system S there 
are corresponding notions. The associated vector space of any exterior system E (not 
necessarily closed) is the set of vectors V satisfying ivE ~ 0 (mod E). The space of 
I-forms annihilating these vectors, called the associated Pfaftlan system, is denoted 
A(E). The associated vector space is denoted A(E).L. A Cauchy characteristic of E is 
a vector in A(E).L, the associated vector space of the closure of E. 

As expected, S has no Cauchy characteristics: A(S).L is empty. The Monge character­
istics of the PDE correspond to I-forms eE {w+,w_} such that the system S u {e} has a 
non-empty associated vector space A(S u {e}).L. The coframe used here has been designed 
precisely so that these Monge characteristics are easy to write down. From the structure 
equations (1.25) it can be seen that they correspond to the forms e= w+ and e= w_. The 
associated vector spaces are seen to be 

(1.29) 


where the vectors denoted {8oo., 8o± , 87r± , 8w±} comprise the moving frame dual to 
{8a ,8±,1f±,w±}. The associated Pfaff systems, here called the Monge characteristic 
systems, will be denoted S±, and are seen to be 

(1.30) 
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Similar considerations show the Monge characteristic systems of S(1) to be 

(1.31) 

For the remainder of this paper, "characteristic" will be taken to mean "Monge character­
istic" unless explicitly stated otherwise. By themselves, the Monge characteristics do not 
allow the integration of the original PDE, but they can be used to augment the exterior 
system in such a way that the resulting system does have a Cauchy characteristic, and so 
may be integrated more easily. This is the purpose of the Gardner and Darboux methods. 

2. Gardner method 

As mentioned in the introduction, the solution of the Cauchy problem for a PDE such 
as (1.1), although uniquely determined by the Cauchy data, generally still requires the 
solution of PDE systems for its construction. It is therefore interesting to ask under what 
circumstances the solution to the Cauchy problem may be determined by the easier method 
of solving an ODE system. 

One approach to this question is the stability analysis of Gardner [2,3,4]. This method 
is not restricted to the hyperbolic PDE in the plane described in the previous section, or 
any PDE system at all, but applies to general Pfaffian exterior differential systems. The 
following definitions form the basis of the method. 

Definition. Let S be a Pfaffian exterior differential system on a manifold M, and let X 
be a vector field over M such that X E Sl... Define the stability systems D'x(S) for 
1= 0,1,2, ... by the recursion relations 

D~(S) = S 
(2.1) 

D'x(S) = D';"l(S) u LxD';"l(S) 1~ 1. 

The vector X is said to be k-stable for some k ~ 0 if 

(2.2) 


It is useful to re-formulate the recursion relations (2.1). From the definition, X E Sl.., 
so ixD~(S) = O. Using LX = ixd + dix , it follows that 

D\(S) = S u ixdS. (2.3) 
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Furthermore, since (i x)2 = 0, (2.3) yields i xDi(S) = 0. By induction, the recursion 
relations (2.1) can then be re-written with the Lie derivative replaced by a differentiation 
and a contraction: 

D~(S) = S 
(2.4) 

D'x(S) = D'xl(S) U i x dD'x1(S) I ~ 1. 

It is worth noting that 

S C D'x(S) 1= 0,1,2, .. . (2.5) 

ixD'x(S) = 0,1,2, .. . (2.6)° I = 

From the re-written recursion relations (2.4) and the identity (2.6), it can be seen that 
a k-stable vector field X is a Cauchy vector for the Pfaffian system D~(S), that is, 

ixD~(S) = 0 
(2.7)

ixdD~(S) C D~(S). 

The standard theorem on Cauchy characteristics then applies [5], so that an integral man­
ifold of D~ (S) can be extended along the integral curves of the Cauchy vector. However, 
from (2.5), any integral manifold of D~(S) is automatically an integral manifold of S. So 
an integral manifold of S which is also an integral manifold of D~(S) can be extended 
by the same Cauchy vector. These considerations give rise to the following theorem (the 
detailed proof may be found in [3,4]). 

Theorem. Let X be a k-stable vector field for S, C: E C R m --+ M an m-dimensional 
integral manifold of S, and assume that D~ (S) has constant rank in a neighbourhood of 
the image of C. Then the integral curves of X determine an (m + 1)-dimensional integral 
manifold h: ExR --+ M of S by 

h: (0", T) ~ exPC(O')(TX) (2.8) 

if and only if X is transversal to the image of C and 

C*D~(S) = o. (2.9) 

Remark. "Transversal" usually means that X should be nowhere tangent to the image 
of C, but, in the presence of an independence condition, it means that the projection of 
X onto the base manifold of the independent variables should be nowhere tangent to the 
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same projection of the image of C. In terms of the independence form 0, the requirement 
is C*(ixO) # o. 

This is the desired result. The solution h of the Cauchy problem is constructed by 
solving the ODE system determining the integral curves of X, using the Cauchy data 
specified by the integral manifold C. 

The drawback of this method is that to find a k-stable vector field X, it is necessary to 
solve a quasi-linear PDE system implicit in the stability relation (2.2), subject to boundary 
conditions given by (2.9). In general, this is a non-trivial problem, but for a hyperbolic 
PDE in the plane, it may be circumvented using the results to be presented in section 4. 

It should be emphasised that the concepts of a characteristic vector field and a k-stable 
vector field are independent, although characteristic vector fields may be useful candidates 
for k-stability analysis. For example, the I-dimensional heat equation Ut = U xx may be 
solved for Cauchy data along x = 0 using a I-stable characteristic vector, and for Cauchy 
data along t = 0 using a I-stable non-characteristic vector. For Cauchy data on t = 0 this 
equation gives an example where a I-stable characteristic vector X is nowhere tangent to 
the image of C, yet doesn't solve the Cauchy problem because it fails the independence 
condition. 

3. Darboux method 

Another approach to the integration of a hyperbolic PDE in the plane is offered by the 
method of Darboux. Actually, there are several different methods which go by this title, 
although they all have in common the search for Riemann invariants and intermediate 
integrals. The variant of Darboux integration described here is one of the weaker ones, 
leading to the integration of the PDE, but not necessarily in closed form. For descriptions 
of other "Darboux methods" see, for example [1]. 

The core of this method is to find a pair of functions which are constant on one of the 
characteristics for the PDE. From these, an intermediate integral can be constructed such 
that for any given Cauchy data, the original PDE taken together with the intermediate 
integral has a Cauchy vector. The Cauchy problem then reduces to the ODE system for 
finding integral curves of the Cauchy vector, just as in the previous section. Before giving 
the details of the Darboux approach, a few standard definitions are required. 
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Definition. An invariant I of a Pfaffian system 8 is a function I: M -4 R such that 

ivdI a VV E 81... (3.1) 

It follows immediately from the definition that I is an invariant of 8 if and only if 
dI E 8. So the task of finding invariants of a system 8 is the same as that of finding exact 
I-forms in 8. This is accomplished by calculating the derived flag. 

Definition. Given a Pfaffian system 8, the derived flag {8(o) - 8,8(1),8(2),"'} 1S 

defined by the recursion relation 

(3.2) 

Since 8(k+l) ~ 8(k), this flag must eventually stabilise at some value of k, possibly 
with 8(k) empty. The final system 8(k) is completely integrable, as can be seen from the 
recursion relation (3.2), and will be the largest completely integrable subsystem of 8. If 
non-empty, this 8(k) may be integrated locally by means of an ODE system to give an 
algebraically equivalent set of exact I-forms. Since this is the largest completely integrable 
subsystem of 8, this procedure determines a complete set of independent invariants of 8. 

Returning to the discussion of Darboux integrability, let 8 be the exterior differential 
system (1.24) corresponding to an arbitrary prolongation of the hyperbolic PDE (1.1), and 
8± be the corresponding characteristic systems (1.30). 

Definition. A Riemann invariant I of 8 is an invariant of one of the characteristic 
systems 8±. 

The aim of the Darboux method is to find a Riemann invariant I of 8 such that the 
augmented system 8 u {dI} has a Cauchy vector solving the Cauchy problem for 8. 
Without loss of generality, the discussion can be restricted to just one of the characteristic 
systems. 

LeDlDla. There is a one-to-one correspondence between the vectors in the characteristic 

vector space 8~ and equivalence classes in 8+ modulo 8, given by 

(3.3) 
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Proof. Let V == aow++{301r+ be a general element of S-!-. Since ivS = 0, it follows from the 
structure equations (1.25) of S that ivdS ~ {i v d8+} (mod S). But ivd8+ ~ {3w+ - a7r+ 

(mod S), which is the general form of an element of S+ modulo S. 

Consider the characteristic system S+. By calculating its derived flag, it is possible to 
establish a complete set of independent Riemann invariants. But this may not be sufficient 
to integrate the PDE. There may not be any invariants at all, and even if they do exist, 
they may not be suitable, as will be seen shortly. 

Lemma. Let I be an invariant of S+. The augmented system S u {dI} has a Cauchy 
vector X defined by 

ixdS ~ {dI} (mod S). (3.4) 

Proof. By the last lemma, there will be a vector X E S-!- satisfying (3.4). Consequently, 
i x dI = 0 and i x S = 0, since (ix? = 0 and S -!- c S.l.. Finally, dI is closed, so it follows 
from (3.4) that 

ixd(S u {dI}) = ixdS ~ 0 (mod S u {dI}). (3.5) 

Hence X is a Cauchy vector for S u {dI}. o 

Suppose that an of S+ can be found, so that S u {dI} has a Cauchy vector X. Then 
the standard theorem on Cauchy characteristics can be applied again. As in the Gardner 
method, any integral manifold of S u {dI} is automatically an integral manifold of S, but 
in order that an integral manifold of S be an integral manifold of S u {dI}, it is also 
necessary that dI vanish under pullback to the integral manifold of S. The discussion 
so far can be summarised in the following theorem, which should be compared with the 
similar theorem for the Gardner method. 

Theorem. Let I be an invariant of S+, X E S-!- the corresponding vector defined by 
(3.4), C: ~ C R ~ Mal-dimensional integral manifold of S, and assume that S u {dI} 
has constant rank in a neighbourhood of the image of C. Then the integral curves of X 
determine a 2-dimensional integral manifold h: ~xR ~ M of S by 

(3.6) 

if and only if X is transversal to the image of C, and 

C*dI = o. (3.7) 
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Remark. The comments about transversality made in the previous section apply equally 
well here. 

The condition (3.7) and the transversality requirement can be analysed further to see 
what constraints they place on the invariant I. If the surface C is characteristic, that is, if 

the tangent vector to the image of C is in Sf, then C* S± = O. If C* S_ = 0, then X E S:­
cannot be transversal to the image of C, and so no solution using an invariant of S+ is 

possible. If, on the other hand, C* S+ = 0, then condition (3.7) is satisfied immediately, 
as is the transversality condition. Normally, however, C is not characteristic, and (3.7) 

imposes a real constraint upon I which will not be satisfied in general for a given I and a 

given C. 

The Darboux method overcomes this difficulty by requiring some flexibility in I. If II 
and 12 are two independent Riemann invariants in S+, then C* II and C*12 are functions 

on E. If one of them, say, 12 has C*dI2 i= 0, then by the inverse function theorem 

there exists locally a function g such that C*II = -g 0 C*12. Taking the combination 
I = II + g(I2) gives a new Riemann invariant, since dI = dI1 + g'dI2 E S+. Furthermore, 
this new invariant satisfies C*I = 0 and hence C*dI = O. Such an invariant is called an 

intermediate integral. The necessity of finding two independent Riemann invariants of 

course restricts the class of problems which can be treated by this method. 

The transversality requirement further constrains the intermediate integral I. Recall 

that the vector X· defined by (3.4) is of the form X = a8w+ + f387r+, and the corresponding 

Riemann invariant is dI ~ f3w+ - a1r+ (mod S). The transversality requirement expressed 
in terms of the independence form n, C*( ixn) i= 0 demands that a i= O. For the Riemann 

invariant I, this means that dI ¢ S u {w+}. 

The intermediate integral, when written out in canonical coordinates from the jet bun­

dle, is a PDE in its own right. In terms of partial derivatives, the constraint dI ¢ S U {w+} 
states that the intermediate integral is a PDE of the same order in the derivatives as the 

(prolonged) hyperbolic PDE system. This is, strictly speaking, just the case to which the 

Darboux method applies [1]. If an intermediate integral of lower order can be found, then 
the Monge-Ampere method can be used. More importantly, an intermediate integral of 
lower order will still be an intermediate integral of the system when it is prolonged one less 
time. In other words, if a problem is in this Monge-Ampere class, then it would have been 
in the Darboux class on a lower-order jet bundle. The focus of this paper is the Darboux 

method, so the previous theorem can be refined to give a practical method for solving the 
Cauchy problem for arbitrary Cauchy data, as follows. 
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Theorem. Let II, 12 be a pair ofindependent Riemann invariants ofS, with dI1 ,dI2 E S+, 
and dII or dI2 ¢ S U {w+}. Let C: E c R -+ M be a l-dimensional integral manifold 
of S which is non-characteristic, and suppose that S u {dIt, dI2 } has constant rank in a 

neighbourhood of the image ofC. Then there exists an intermediate integral I = II + g(12 ) 

such that C*dI = 0, and a corresponding vector X E S~ defined by (3.4) whose integral 
curves determine a 2-dimensional integral manifold h: ExR -+ M of S by 

h: (0', T) 1-+ eXPC(a)(TX). (3.8) 

Once again, the desired result is achieved. The solution h of the Cauchy problem is 
constructed by solving an ODE system for the integral curves of X, using the Cauchy data 
provided by C. 

The advantage of the Darboux method is that all steps in the construction of the solution 
can be made (locally) by solving nothing worse than ODE systems. The calculation of a 
complete set of invariants and the final solution of the Cauchy problem are all accomplished 
by ODE systems. One disadvantage of the version of the method presented here is that the 
solutjon may involve implicit functions. Other means of exploiting intermediate integrals 
may overcome this problem at the expense of more stringent requirements on the invariants 
of the characteristics of S. As will be seen in the next section, another disadvantage is 
that calculations may have to be done on a higher-dimensional manifold than is the case 
with the Gardner method, making calculations less tractable. 
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4. Equivalence of Gardner and Darboux methods 

Having presented both Gardner and Darboux methods, the main result of this paper 
is to show their equivalence for systems corresponding to hyperbolic partial differential 
equations in the plane. However, this equivalence does not hold within the same system; 
rather it holds between the Gardner method using I-stable characteristic vectors for a 
system 8 and the Darboux method for its first prolongation 8(1). 

To establish this equivalence, the I-stability criterion (2.2) will first be re-formulated for 
characteristic vectors entirely in terms of differential forms. This will enable the I-stability 
criterion to be written as an exterior system. The integrability of this exterior system will 

then be shown to be equivalent to the conditions for the existence of a Riemann invariant. 
As before, only one set of characteristics will be used in the discussion, the results for the 
other set following by the same arguments. 

Recall that the system 8 is 
(4.1) 

with structure equations 

d8a ~ 0 

d8 = d8+ ~ 7r+ A W + (mod 8). (4.2) 
{ 

d8_ ~ 7r_ AW_ 

The I-forms {8a , 8+, 8_ , 7r+, 7r_ , W +, W _} form a coframe for M, and the characteristic sys­
tems are 

(4.3) 

The I-stability criterion can be expressed as an exterior system by use of the following 
lemma, which formulates the criterion in terms of differential forms. 

Lemma. The system 8 possesses a l-stable vector X = ow+ + AO'Tf'+ E 8:- (where A is 
some function on M) if and only if there exists a l-form 

¢J ~ 7r+ - AW+ (mod 8) (4.4) 

such that 
de/> ~ 0 (mod 8 u {e/>}). (4.5) 
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Proof Recall that S.:- = {81.AJ+' 81r+ }. A general vector XES:- will be a combination 
of these two vectors, but the coefficient of 81.AJ+ may be chosen to be 1 without loss of 
generality in view of the independence condition. Take, then 

The first stability system for X is D\(S) = S u ixdS = S u {7r+ AW+}, using the 
structure equations (4.2). The I-stability condition is then 

Modulo S, any 2-form must lie in the exterior algebra of {7r±,w±}, so d(7r+ - AW+) can be 
written 

d(7r+ - AW+) ~ A7r+ "7r_ + B7r+ "W+ + C7r+ "W_ 

+ D7r_ "W+ + E7r_ "W_ + Fw+" w_ (mod S) 

~ (D - AA)7r_ "W+ + (F + AC)W+" w_ 

+ E 7r_ "w_ (mod S u {7r+ - AW+}) (4.8) 

where the coefficients B, D and F may contain first derivatives of the function A. Using 

ixS = 0 = ix(7r+ - AW+), this gives 

So X is I-stable if and only if 

(F + AC) = (D - "xA) = O. ( 4.10) 

Substituting these conditions back into the expression (4.8), X is I-stable if and only if 

(4.11 ) 

But from the structure equations (4.2) for S, d9_ ~ 7r_ "W_ (mod S) so setting 

(4.12) 


and noting that S u {7r+ - AW+} = S u {4>}, (4.11) yields the result (4.5). o 

Remark. Owing to the contraction, there is and can be no w+ term on the right-hand 
side of (4.9). Thus condition (4.9) still yields (4.10) if the calculation is done modulo 
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S U {71"+ - Aw+, w+}, that is, modulo S+. This leads to the formulation of the I-stability 
condition 

(4.13) 

given in [4]. 

It is apparent from (4.10) that the I-stability condition is a system of two first-order 
partial differential equations for A as a function on M. This system can be written as an 

exterior system on the trivial bundle MxR over M with A as the fibre coordinate. 

The aim is to find an immersion j: M -t M x R such that the function j* A on M is a 
solution of the I-stability condition. Without loss of generality, it may be assumed that 
Q 0 j = id, where Q is the projection MxR -t M. With this assumption, the I-stability 
condition for j is 

j*d¢ ~ 0 (mod S u {j*¢}) (4.14) 

where ¢ ~ 71"+ - Aw+ (mod S) is a I-form on MxR (and j*¢ is the I-form on M denoted 
¢ up to this point). The exterior system to be satisfied by j consists then of a single form 
of degree n - 1 (where n = dimM), 

(4.15) 

and the independence form is the volume form (}11\ • • •1\(}n-6 1\(}+1\(}_1\7I"+ 1\71"_I\W+I\W_ on M. 
Before discussing this exterior system further, it is necessary to calculate d¢ (mod S u {¢}). 

Lemma. On MxR, it is possible to choose a i-form ¢ ~ 71"+ -Aw+ (mod S) which satisfies 

d¢ ~ 1jJ 1\ W + (mod S u {¢}) ( 4.16) 

where 1jJ is a non-vanishing i-form on MxR with 1jJ ¢ S+. 

Proof A similar argument to that used in the proof of the preceding lemma applies, with 
the following precautions. The function A on M becomes an independent coorqinate on 
MxR, so there is an extra term dA I\W+ in the expression for d¢. The I-forms 71"+ and W+ 

on MxR are the trivial pullbacks of the same forms on M, so their exterior derivatives 
have the same expressions on both spaces. Thus 

for some functions A, C, D, E and F on M x R. Again the term E7I"_ I\W _ may be a:bsorbed 
into ¢ (since it is only defined modulo S), leaving 

(4.18) 
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where 
1jJ '::!. (D - )"A)1r_ - (F + )"C)w_ d)" (mod S u {¢}). ( 4.19) 

The presence of the d)" term in 1jJ ensures that it is non-vanishing, and also that 1jJ ¢ S+. D 

The exterior system of (4.15) may not be sufficient by itself to allow f to be determined. 

There may well be further first-order equations for f to be found among the integrability 
conditions from (4.15), and still further equations which arise from these. Nevertheless, if 
there is ultimately a solution, it must satisfy the following property. 

Lemma. Suppose that ¢ '::!. 1r+ - )..W+ (mod S) on M x R has been chosen such that 
d¢ '::!. 1jJ A w+ (mod S u {¢}) for some 1-form 1jJ on MxR. Then the 1-stability condition 
(4.14) has a solution if and only if 

(4.20) 


Proof Suppose that there exists an immersion J: M ---+ MxR satisfying (4.14). Then 
SInce 

f* d¢ '::!. f* 1jJ A W + (mod S u {f* ¢ } ), (4.21) 

it follows that 

J*1jJ '::!. 0 (mod S u {J* ¢,w+}). (4.22) 

But S u {f*¢,w+} = S u {1r+,w+} = S+, leading to (4.20). 

On the other hand, if (4.20) is satisfied, then so is (4.22), and thus 

f* 1jJ A W + '::!. 0 (mod S u {f* ¢ } ), ( 4.23) 

from which (4.14) follows using (4.21). D 

Since the immersion f: M ---+ MxR defines a hypersurface, it is natural to expect that 
the I-form 1jJ should be equivalent modulo S+ to a completely integrable I-form, which 
vanishes under f*. However this is so if, and only if, there is not just one solution to (4.20), 
but a local foliation of MxR by such solutions. The assumption that there is such a local 
foliation must therefore be made in passing from a I-stable vector to a completely integrable 
I-form on MxR. This assumption is entirely justified in a wide range of cases. For 
example, in the analytic case, the Cartan-Kuranishi and Cartan-Kahler theorems ensure 
that if there is a solution f whose image passes through some point in M x R, then there 
will be a solution passing through each point in a neighbourhood of the first. 
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With this assumption made, it follows immediately from the Frobenius theorem that if 
there is a solution J to (4.20) if and only if there is a local coordinate function I: MxR ---+ R 
with 

J*dI = o. (4.24) 

Equivalently, dI ex: t/J (mod S+), or 

(4.25) 

Now consider the prolongation S( 1) on M( 1) of S. Recall that 

(4.26) 


and M(1) M xR 2 , while the structure equations arerv 

(4.27) 


revealing characteristic Pfaffian systems 

(4.28) 

Given an exact form dI in S+ u {t/J}, it is possible to lift it to give an exact form in 

S~l). Define a projection 7r: M(l) ~MxR2 ---+ MxR by 

(4.29) 

Then 4> on MxR lifts to 7r*4> ~ 7r+ - p+w+ (mod S) so that the generator f)~) in S(1) can 
be chosen as 

f)~l) = 7r* 4> ( 4.30) 

without affecting the structure equations (4.27). Following this, and using (4.16), 

(4.31) 
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Comparing (4.31) with the structure equations (4.27) shows that the coframe for M(I) 

may be chosen so that 

(4.32) 

Lemma. Suppose that ¢> I'V 7r+ - AW+ (mod S) on MxR has been chosen so that d¢> ~ 
"p 1\ W+ (mod S u {¢>}). Then there is a function I on MxR such that dI E S+ u {"p} but 

dI ¢ S+ if and only if there is a corresponding function 1(1) on M(I) such that dI(I) E S~) 
but dI(1) ¢ S(1) u {w+}. 

Proof. Suppose that there is some function I on M x R with dI E S+ u {"p}. By the 

definitions of S+ and ¢>, S+ u {"p} == S u {7r+,w+,,,p} == S u {¢>,w+,,,p}. So the lifted 
function 1(1) == 7r*I on M(l) satisfies dI(I) == 7r*dI E S u {7r*¢>,w+,7r*"p}. But again, using 

S(4.30) and ) U { *} == U 
{n(u+ 

1),w+,7r+ C S 
U 
{(8+

1),8_ ,W+,7r+(1) } ==(4.32, S 7r* ¢>,w+,7r"p (1) } (1) 

S~I). That is, dI(I) E S~I). 

Conversely, if 1(1) is a function on M(I), then there exists some function I on MxR 
such that 1(1) == 7r* I if and only if £vI(1) 0 for all vertical vectors V. The set of 
vertical vectors is ker7r*: those vectors V satisfying 7r*V == O. Since 1(1) is a function, 
£vI(1) == ivdI(1), so the lift condition becomes dI(1) E (ker 7r*)1.. By definition, i(1r. V)( == 
iv(7r*() pointwise for any vector V and I-form (, so (ker7r*)1. == im7r* at each point in 

M(1). However, S~) C im 7r* at each point in M(I), since there are no dp_ terms in S~). 
Consequently, any invariant 1(1) of S~I) is the lift 1(1) == 7r* I of some function I on MxR. 

From this it follows that the differential I-form dI(I) == 7r*dI. Considered differentially, 

and not pointwise, the image of 7r* is slightly different. All of the I-forms in S~I) are 

lifts of differential I-forms on MxR, except for 8~1), which has a p_ coefficient. So if 

dI(1) E S~I), it cannot have a 8~1) term. Hence any invariant 1(1) of S~) satisfies dI(1) E 

S U {8~1) ,W+, 7r~I)}. It follows that dI E S u {¢>, w+,,,p} == S+ u {"p }. 

Following the same argument, but leaving out the "p and 7r~)' elements, shows that 

dI(I) ¢ S(I) u {w+} if and only if dI(I) ¢ S u {8~l) ,w+}, which is satisfied if and only if 
dI ¢ S+. 0 

Remark. The condition dI(1) ¢ S(I) u {w+} means that 1(1) is a Riemann invariant of 

highest order, as discussed in section 3. 

The main result of this paper follows from the last two lemmas and the discussion 
in-between. 
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Theorem. Let S be a PfafIian exterior differential system on as manifold M representing 
an arbitrary prolongation of a hyperbolic PDE in one dependent and two independent 
variables, and let S± be the Monge characteristic systems of S. Let S(1) be the first 

prolongation of S, and S~l) be the corresponding Monge characteristic systems. Suppose 
that any solution of the l-stability conditions provides a local foliation of MxR. Then S 
possesses a l-stable vector X E st if and only if S(1) possesses a Riemann invariant 1(1) 

in S~l) ofhighest order. 

Remark. Since the I-stability solution f: M --+ MxR and the Riemann invariant 1(1) = 
7r*1 are related according to (4.24) by f*d1 = 0, there is a one-to-one correspondence 
between I-stability solutions (up to a constant) and Riemann invariants (up to functional 
dependence). So the number of independent Riemann invariants is one more than the 
number of degrees of freedom in the I-stable vector field. 

To apply this theorem to the Cauchy problem solutions offered by the two methods, 
it is necessary first to set the Cauchy problem up on both spaces in a consistent way. 
Let C(1): L: c R --+ M(1) be a I-dimensional integral manifold of S(1) which is non-

characteristic, and let P: M(1) --+ M be the bundle projection. Then C: L: --+ R defined 
by C = P 0 C(1) is a I-dimensional integral manifold of S, since C*S C(1)* P*S and 
P* S C S(1). C is also non-characteristic. C(1) and C defined in this way specify the same 
Cauchy problem on the two spaces. 

This gives rise to two different maps 7r 0 C(1) and f 0 C from L: to MxR, using the 
projection 7r: M(l) --+ MxR of (4.29) and the immersion f: M --+ MxR of the I-stability 
condition (4.14). The map 7r 0 C(1) is fixed once the Cauchy data are specified, while the 

map f 0 C depends further on the immersion f. So there are, in general, two different 
images of L: in MxR. For a given immersion f, the requirement (2.9) that the first stability 
system satisfy the Cauchy data is exactly the same as the condition that the two maps 
from L: to M xR coincide, as shown by the following lemma. 

Lemma. The first stability system Dl- (S) = S u { ¢>} satisfies the Cauchy data, 
C* Dl-(S) = 0, if and only if the immersion f: M --+ MxR is such that f 0 C = 7r 0 C(1). 

Proof. Firstly, recall that it was assumed that Q 0 f id where Q is the projection 
MxR --+ M. Any function von M lifts to give a function w = Q*v on MxR which will be 
independent of A. The pullback with f returns the original function: f* w = f* Q* v = v. 
Noting that Q 0 7r = P, it follows that 7r*w = 7r*Q*v = P*v = P*f*w. Using this 
information, the pullbacks of w to L: via the two routes are C(1)*7r*w = C(1)* P* f*w = 
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C*f*w. That is, C(1)*1r* = C*f* for all functions on MxR which are independent of A. 
The only question left is whether they coincide for functions involving A, and to answer 
this it is sufficient to test a single representative, say A itself. 

Secondly, since C*S = 0 is already assumed, C*D"5c(S) = 0 is equivalent to C*,p = 0, or 

(4.33) 


Finally, C(l)*1r*(1r+ - AW+) = C{1)*(1r+ - p+w+) = C(1)*()~) = 0, since ()~1) E S{1) and 
C{1)* S{1) = O. So (4.33) is equivalent to 

(4.34) 


But since C* f* = C{1)*1r* for functions lifted from M, it follows that they also 'coincide 

for I-forms lifted from M. So, since C and C(1) are non-characteristic, (4.34) is satisfied 

if and only if 

(4.35) 

which proves the lemma. o 

In view of the main theorem above, the Gardner and Darboux methods for solving 
the Cauchy problem are shown to be equivalent if the conditions C{1)*dI(l) = 0 and 

C*D"5c(S) = 0 are equivalent once a I-stability solution or Riemann invariant has been 

found. If no I-stability solution or no Riemann invariant exists, then the theorem shows 

that both methods will fail. It is also not necessary to ask about the existence of two 

Riemann invariants here. In principle only one is required so long as it happens to fit 

the Cauchy data. Of course, to be able to solve the PDE for arbitrary Cauchy data, two 
invariants are required. But the question here is whether the two methods are equivalent 
for any given Cauchy data. The answer is provided in the following theorem. 

Theorem. Let S be a PfafB.an exterior differential system on a manifold M representing 
an .arbitrary prolongation of a hyperbolic PDE in one dependent and two independent 
variables, and let S{1) be the first prolongation of S. Suppose that any solution of the 
l-stability conditions provides a local foliation of M xR. The Cauchy problem for S may 
be solved by Gardner's method using l-stable Monge characteristic vectors if and only if 
the corresponding Cauchy problem for S(l) may be solved by Darboux's method. 

Proof. Take C(1): E -+ M(1), C: E -+ M and 1r: M(l) -+ MxR as before. Suppose that 
f: M -+ MxR is a solution of the I-stability condition (4.14) and that [(1) = 1r* [ is a 
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corresponding Riemann invariant, so that f*dI = o. Without loss of generality, 1(1) may 
be chosen such that f* I = o. 

By the last lemma, the boundary condition C*Dk(S) = 0 for the first stability system 
is satisfied if and only if f 0 C = 1r 0 C(l). In the proof of the last lemma, if was shown 
that this last condition is achieved of and only if C* f* and C(1)*1r* coincide for some 
coordinate on the fibres of MxR. From equations (4.19) and (4.25) in the derivation of I, 
it is apparent that I can be used in place of Aas a local coordinate for the fibres of MxR. 
So f 0 C = 1r 0 C(1) if and only if C(1)*1r* I = C* f* I. But 1r* I = 1(1) and f* I = 0, so this 
is just C(1)*1(1) = 0, and the result follows immediately. 0 

5. Examples 

A simple example is provided by the Euler-Poisson-Darboux equation 

(5.1)u xy = 

For any positive integer n, this equation first becomes Darboux-integrable on the n-th jet 
bundle In(R2,R). For example, take n = 3. The initial system on M = M7 C J2(R2,R) 
IS 

01 = du - uxdx - uydy 

U x +uy
0+ = dux - uxxdx +3 dy (5.2)S= x+y 

U x +uy
0_ = du y + 3 dx - uyydy

x+y 

with structure equations 

dOl ~ 0 


dO (-d
Uxx _ 3uxx(x + y) - 4(u x +u y)d) d 


+-
I'V 

(x+y)2 y 1\ x (mod S). (5.3)dS= 

dO I'V (-d 
U yy _ 3Uyy(x + y) - 4(ux + u y)d) d 

- - (x + y)2 X 1\ Y 
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The system is seen to be already in the required form, with the remaining coframe 
elements being 

W+ =dx 

w_ = dy 

_ -d _ 3U xx( x + y) - 4(U x +u y)d (5.4)
Uxx71'"+ -	 (x+y)2 Y 


_ -d 
U yy 

_ 3Uyy(x + y) - 4(ux + u y)d 

71'"_ - (x + y)2 x. 


The problem is symmetrical in x and y, so the results for both Monge characteristics 
will be similar. The Monge characteristic system S+ = S u {71'"+, W +} is 

du - uydy 


3ux+uYd
dU x + y
x+y 

S+ = du y - uyydy (5.5) 

d 3U x x( x + y) - 4(U x +Uy) d 
xx +U	 (x + y)2 Y 

dx 

The derived flag for S+ stabilises at the fourth derived system {dx}, so the only Riemann 
invariant is x. This is not suitable for integrating the PDE since an intermediate integral 
I = x would violate the independence condition. So the PDE (5.1) with n = 3 is not 
Darboux integrable on the second jet bundle. 

However, the stability analysis is a different story. The first stability system is S u {4>} 
where 

4> 	 = 71'"+ AW+ 

_ -d - 3uxx(x + y) - 4(ux + uY)d - \d 
- U xx ()2 Y A X 	 (5.6)

x+y 

with exterior derivative 
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So the I-stability conditions are 

Ux +Uy (uxx Ux +Uy )Ay + uyAu 3 Au:.: + UyyAu, - 3-- - 12( )2 Au:.::.: 
x+y x+y x+y 

A= -15 Uxx + 60 Ux + Uy _ 3__ (5.8) 
(x + y)2 (x + y)3 X + y 

These two equations generate a series of first-order integrability conditions 

Au, = 0 

A _ _ 3_ 12 A _ 60
A z zz u x + y + (x + y)2 U - (X + y)3U 

8 60 (5.9) 
Auz - x + y Au:.::.: = - (x + y)2 

15 

Auzz = x + y' 


wher,e each equation in (5.9) is the integrability condition for the preceding one with the 
first equation in (5.8). 

Once (5.8) has been simplified using (5.9), the general solution is easily found to be 

A = 15 U x x +60 U x +60 U + k( x ) , (5.10)
x+y (x+y)2 (X+y)3 (X+y)3 

with an arbitrary function k( x). This solution may be used to construct a Cauchy vector 
for S u {if>}, and the function k may be determined from the Cauchy data. Thus the Euler­
Poisson-Darboux equation (5.1) with n = 3 can be integrated on the second jet bundle 
using the Gardner method. 

Prolonging to the third jet bundle, the system S in (5.2) becomes 

f)l du - uxdx - uydy 

U x +uy
8+ = dux - uxxdx +3 dy

x+y 
U x +uy

8_ = du y + 3 dx - uyydy
8(1) = x+y (5.11) 

8(1) d d 3Uxx(x+y)-4(Ux+UY)d 
+ = uxx+p+ x+ (x+y)2 y 

8(1) - d 3UYY (x + y) - 4(ux +UY)d d 
- - Uyy + (X+y)2 x+p_ y 
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with structure equations 

dIP ~ 0 

d9+ ~ 0 

d9_ ~ 0 

d9(1) I'V (d 3P+(x + y)2 + 5uxx(x + y) - 20(ux + uy)d) d (5.12)
+ - P+ + (x + y)3 y A x 

d9(1) I'V (d 3P-(X + y)2 + 5U yy (x + y) - 20(ux + Uy)d) d 
- - P- + (x + y)3 X A Y 

(mod 8(1»). 

Once again, the system is already in the required form. The derived flag of the Monge 

characteristic system 8~1) = 8(1) u {1l'~1), w+} stabilises at the fifth derived system, which 
IS 

(5.13) 


dx. 

There are now two Riemann invariants, 

II = p+(x + y)3 15uxx (x + y)2 - 60ux (x + y) - 60u 
(5.14)

12 = X 

for 8~1), and II contains P+, which is a third derivative coordinate, so it has the same 
order of derivatives as the PDE system represented by 8(1). So Darboux integration on 
the third jet bundle succeeds. Comparison of the intermediate integral II +g(I2) with the 
I-stability solution (5.10) shows the close connection between the two, and illustrates the 
relation between independent Riemann invariants and degrees of freedom in the i-stability 
solution. 

A more complicated example is provided by the Fermi-Pasta-Ulam equation 

(5.15) 
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where", is a prescribed function of U X ' This equation was analysed in [6], where it was 
found to be Darboux integrable on the second jet bundle provided the function '" satisfies 
the constraint 

o= E4 = 16",4","",iv _ 24",,2",3",iv _ 16",4",,,,2 +32",3",' ","",III +48",2 ",,3 ",III 
(5.16) 

_ 104",3",,,3 +372",2",,2 ",,,2 _ 630",,,,,4"," +315",,6 

where ",' =d",jdu x etc. However, it was found that equation (5.15) is integrable on the 
second jet bundle using a I-stable characteristic vector in more general cases where '" 
satisfies the weaker constraint 

(5.17) 

where E2 = 2",,,," - 3",,2. On prolonging to the third jet bundle, it was found that (5.15) 
is Darboux integrable there under the same weaker constraint (5.17). 

28 




Acknowledgements 

The authors are grateful to E Fackerell for early discussions on this work. 

References 

[1] 	A R Forsyth, Theory of Differential Equations Cambridge University Press (1906) Vol 
V,VI. 

[2] R B Gardner, Comma Pure and Applied Math. 22 (1969) 587-596. 

[3] R B Gardner, Comma Pure and Applied Math. 22 (1969) 597-626. 

[4] 	R B Gardner, N Kamran, Characteristics and the Geometry of Hyperbolic Equations in 
the Plane J. Diff. Equations (1992) To Appear. 

[5] 	 It. L Bryant, S S Chern, R B Gardner, H L Golddschmidt, P A Griffiths, Exterior 
Differential Systems (Springer Verlag New York Inc. 1991). 

[6] 	E Fackerell, D Hartley, R W Tucker, An Obstruction to the Integrability of a Class of 

Non-Linear Wave Equations by i-Stable Cartan Characteristics J. Diff. Equations 
(1993) To Appear. 

29 



