
Variational Principle for Clasaical Particle ']).aj,~c~'ories in', 
I '_. • , " 

Spaces with Torsion 

P. Fiziev* and H.Kleinert 

Institut fur TheQret.sche' Physik, 
I r 

Freie Universitat Berlin 

Amimallee 14, D - 14195 Berlin 

(December 5, 1993) 

Abstract 1 
,To cOlnply with recent d,evelopments of'path"integra!s, in spaces with, cur­

vature' and torsion we find ~he correct variatiorial princip!e for the 'classical . 

trajectories. Although the action depends only on the length, the trajectories 

.ar.e ~utoparallelsra~herthan geodesics due ~o the effects of a new torsion 

force. 
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,1) Recently it was shown ·ll,2] that in order to o"btain a·, consistent [3] path integral for 

part'icles moving in spaces 'w!th curvature and torsion, the classical trajectories have to be 

autoparallels rather than geodesics. vVIH:~reasgeodesics are descJ;'ihed by 

, (1) 

" . 

with Christoffel symbols f' IlV A, the equations of motion of. autoparallels' are 

··II, +r' v·Ct· 12 0q - Ot{3 q qlJ = " (2) 

Awhere r IlV are the affine connections (related to the Christoffel yia r ILVA =f'llvA + SilVA ­

Sv).j.t + S).IlV where SilVA is the torsion tensor) .. 

his result agrees with Eins,tein's equivalence principle according to which the correct 

dynalnical equations in a noneuclidean space may be deriyed by transfQrming the f~ee­

partiCle equat~ons of motio~ in flat space xi(t) = 0 to arbitrary curvili,nearcoordinates qll(t) 

via SOlne local transfonhation 

(3) 

The transfornled equations are postulated to describe the motion also in spaces in .which 

the metric 

(4) 


belongs to a non-euclic\ean geometry. In the presence of torsion, the equations of rnotion(3), 

go' oyer into (2), not (1). 

It is relnarkable that Einstei~'s equiv~lence principle cannot be applied to the~ctioll ~f' 

the free particle 

\ (5) 


Under the transformation(3) it goes over into the curvil~near form 

(6) 


,),­
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If this is extremized in the standard way [4], one finds the euqations of motion (1), i.e., the 

the wrong trajectories in the presence of torsion. 

The purpose of this note is to resolve thisconfiict by exhibiting a new variational principle 

in spaces with torsion where action (6) yields autoparallels after all. 

2) The hnportant point to realize is that in order to obtain the correct trajectories from· 

the transfoflued action (6), the variations 8qJ.l.(t) have to be performed in accordance with 

. independent variations 8x'i(t) in the fiat space'which vanish at the endpoints (see Fig. la). 

The paths in the two spaces are related by the integral equation 

qJ.l.(t) = qJ.l.(ta) + it eiJ.l.(q(t')}xi(t')dt' (7) 
ta 

where eiJ.l.( q) is the inverse lnatrix ofei J.I.( q) in (3). It is easy to derive from this an explicit, 

albeit nonlocal, equation between 8xi(t) and 8qJ.l.(t). For this we introduce the auxiliary 

quantities 

(8) 

which are equivalent to the in,dependent variations 8xi(t) to be performed on the system. 

From (3) we find the relation 

oq"(t) = ! OhQ; + 21]" Sv~"onq~- M~r~v"qV (9) 

where. 

(10) 

Using (7) we see that 

(11) 

so that (9) can be rewritten as 

(12) 
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This differential equation can be integrated to 

8~(t) == It dt'Utt' u(t') 
ta 

where 

Uti' = Te~p [~l G(t")dt"] . 	 (14) 

We have used vector and matrix notation with, 

G	JI. "(t) = r Jl.V "(q~t) )qV(t) (15) 

uJl.,(t) = 2qv(t )Sv"JI. (q( t ))8hq" (t). (16) 

I 

If the space is free of t<lrsion, then u(t) =0 and hence8.6.(t) =O. In'this case the variations 
",I 

8qJl.(t) coincide with the independe~t ones8hqJl.(t). We shall therefore refer to 8hQJl.(t) as, the 

holonomic variations of the path qJl.(t). In the presence of torsion, on the other hand, the 

variations 8qJl.(t) differ from 8hqJl.(t). 

Let lis calculate the variation of the action which' is 

(17) 


The most direct way of deriving from 8A the equations of motion is 'by inserting an infinites­

illlal local "knock" variation 

(18) 


In the torsion-free case with 8qJl.(t) = ~hqJl.(t) we obtain 

(19) . 


Setting this equal to zero produces at once the equations of motion which are those of 

geodesics, i.e., the correct particle trajectories in the absence of torsion. 

In the presence of torsion, the holonomic "knock" variation (18) leads via (13) - (16) .to 

the total variation 
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8q(t) = €8(t - to) +8A(t) (20) 

with 

8A(t) = 9(t - to)Uttou(to) (21) 

Note that the term 8b.(t) is nonlocal. It has the important effect that while 8qll(ta) = 0, th~ 

variation at the endpoint 8qll(tb) = bll is nonzero. The vec~orbll corresponds to the Burgers, 

vector in the physics of dislocatio'ns [4].' The situation is illustrated in Fig.lc. 

The nonlocal term modifies the usual derivation of the equations of motion. The time 

,derivativeof 8q(t) is 

8q(t) = €S{t - to) +8(t - to)E(to)€ - G8A(t) , (22) 

w\lereEIl,\(t) - 2SIlIl ,\(q(t)qll(t). Inserting 8qll(t) and 8qll(t) into (17) we obtain 8A = 

t 8h A+ 8a A, with the allholonomic deviation baA of the action 

(23) 

originating from the second term in (22). The contribution of-G8A(t) in (22) cancels 

exac:t1y the contribution' of the term 8AIl!Ollga{3qaqf3 which o~iginates from the second term 

in 8A (17), because of (15) and the identity !Ollga{3 - r Il{ap} =0 which follows directly from 

the definitions ga{3 = eiaei{3 and r 1l1I'\ = ei,\ojJ.eill(it expresses the fact that the covariant 

del'~va~ive of the metric tensor vanishes,Dllga {3 == 0.). 

Hence the total variation of the action is 

8A = -M€Ilgllil '[qll +(fa{311 - 2S~f3) qaq{3] 

il ("II +r lI'a .{3)= - M € 9Iln qa{3 qq., (24) 

the second line following from the first via the identity l'apll = r {a{3} II '+ 2${a{3}' Setting 

8A.= 0 gives the autoparallels as the equations of motions which is what we wanted to 

demonstrate. 
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FIGURES 


.In the "usual holonomic case, the paths x(t) and x(t) + Sx(t) shown in (a) are 

, mapped into paths q(t) and q{t) + Sq(t) shown in (b). In the nonholonomic case with 

S~(3 ::j: 0, however, they.g-oover into q(t) and q(t) +8q(t) shown in (b) with a failure' 

,to close at tb which is a:rial~gous to the Burgers vector in a solid with dislocations. 

,f', x (t) +8x(t) 
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