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~To comply with rééent developments of ‘path integrals in spaces wit‘h,chr-{’

vatuie'an'd torsion we find the correct varia.tion'al 'principle for the lélassicalV o

" trajectorles Although the action depeuds only on the length the trajectories '

are autoparallels raﬂher than geodesics due to the eﬁ”ects of a new torsion -

force.’
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1) Recently it was showh [1,2] that in order'to‘ o'btairn ra- co‘nsist‘ent 3] path integral for

particles moving in spaces WIth curvature and torsmn the classical trajectorles have to be

autoparallels rather than geodesws Whereas geodesws are described by

6u+f‘aﬁu‘iqéﬂ'=b,~ : " C i V o (1)

with Christoffel symbols T',,,*, the equations ‘of motion of autoparallels are | |

6U+ I‘aﬂyq’aéﬁ = 01 ' . C - o ' (2)

Where I‘W)‘ are the affine connections (related to the ‘Chrvi_stoffel via Fuu); = f‘p,,; + Sun —
'_S,,;,, + Sapw where S ey is the torsion tensor)
his result agrees with Einstein’s equlvalence principle accordmg to whlch the correct

‘ dynamlcal equatlons in a noneuchdean space may be derlved by transformlng the free-

partlcle equations of motion in flat space # (t) =0to arbitrary curv1lmear coordma.tes q*(t) "

 via some local trallsforlnatlon S \ o - S

- The transformed equations are postulated to describe the motion also in spacee in which

the metric

w@=ddd) @

o belongs to a non- euchdea.n geometry In the presence of torsmn the equatlons of motion (3)

go over into (2) not (1).

It is remarkable tha,t Elnsteln s equivalence pr1nc1ple cannot be applied to the actlon of o

o th o I S
A= / dt%{iz(t)- )

the free pa,rtlcle '

Under the tra,nsfornia,tion (3) it goes over into the curvilin’ear form ..

A= [legeeoeore @
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If this is extremized in the standard way [4], one finds the euqations of motion (1), i.e., the

~ the wrong trajectories in the presence of torsion.

The purpdse of this note is to resolve this conflict by exhibiting a new variational principle:

in spaces with torsion where action (6) yields autoparallels after all. .

2) The important point to realize is that in order to obtain the correct trajectories from
the transformed action (6), the variations §¢#(t) have to be performed in accordance with
| independcnt variations §z(t) in the flat space which vanish at the endpoints (see Fig. 1a).

‘The paths in the; two spaces are related by the integral equation
’ | _
P =)+ [ ea@yioe ™)
ta ) ;

where e;#(q) is the inverse matrix of e',(¢) in (3). It is easy to derive from this an explicit,
albeit nonlocal, equation between §z'(t) and §¢*(t). For this we introduce the auxiliary

quantities

ong" = :2;-‘“(1;1)6.1'1i : : (8)

which are equivalent to the independent variations §z'(t) to be performed on the system.

Fram (3) we find the relation
. d . ‘v A A v :
8G#(t) = 2 8nq" + 24" Sun"6ag” — SA'TAH | (9)
where
SAF = 8g* — bpgh. | (10)

Using (7) we see that

s = e Can

so that (9) can be rewritten as

d | | N | | v
00 = —6A'T},¢" + 2" S 6’ (12)
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This differential equation can be integrated to

. y t ' ‘ L i )
O sA@) = / WU o) a3
ta . : S A

where

, ' t k o . i
U = T exp [- / G(t")dt”]. ' . (14)
. L " . ) E

We have used vector and matrix notation with.

G ) = T ()i (®) )

o' (t) = 24" (1)Sa" (a1 (1) B (16)

If the space is free of torsion, then ¢(t) = 0 and hence §A(t) = 0. In this case the variations

8g*(t) coincide with the independent ones §,¢*(t). We shall therefore refer to Sng(t) as. the |

holonomic variations of the path ¢#(t). In the presence of torsion, on the other hand, the

| variations §¢¥(t) differ from 6q#(t).

Let us calculate the variation of the action which is

ty a ‘ o o o o
§A =M / dt (g,u,q'"&j“ + -;-Jq“ ,Lgagé“(}"> (17)
. ta o . . ° )

The most direct way of deriving from 6 A the equations of motion is by inserting an infinites-

imal local “knock” variation
Shg"(t) = €*8(t — o). | (18)

In the torsion-free case with Sq*(t) = éhq”(i) we obtain -

A= 6, A=—€*Mg,,(§" +Tap"§"¢"). (19)

Setting this equal to zero produces at once the equations of motion which are those of
geodesics, i.e., the correct particle trajectories in the absence of torsion.
In the presence of torsion, the holonomic “knock” variation (18) leads via (13) - (16) to

the total variation

ey o
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(sq(t):es(t;t'o)‘HA(t). S o o ‘(20)

~with

' '

5A(t)=(“)(t‘—~to)’Unoa(tq) | | (@)

 Note that the term JA(t) is nonlocal. It has the important effect that while 6¢*(¢,) = 0, the

var‘iajtion‘ at the endpoint §¢*(ts) = b is nonzero. The vector 12 corresponds to the Burgers
vector in thé physics of dislocations [4]. The situation is illustréted inFig 1c.

* The nonlocal term modlﬁes the usual derivation of the equatlons of motion. The tlme

4der1va,t1ve of 6q(t) is

-~

8i(t) = b(t — to) + 6(t — to)S(to)e — GEA() : (22)

where £,X(t) = 25,,*(q(t)§*(t). Inserting 6g*(t) and 8¢4(t) into (17) we obtain 64 =

S A+ 6, A, with the anhOlonomic deviation 5;)4 of the action

A= —MSuslgl)E W) (@)

originating from the second term in (22). The contribution of —GSA(t) in (22) cancels

exactly the contribution of the term 6A“13,‘gagtj°‘c)’3 which originates from the_ second term

in 6A (17), because of (15) and the identity 28,,_9&5 Tyu{apy = 0 which follows dlrectly from

| the definitions ga,g = e'ep and 1",“, = e €, (It expresses the fact that the covariant

dex‘l_va.tlve of the metric tensor va,mshes, D,gap =0.).

’Henvce the total var‘iyatioh of the action is
- 6A=—Me'g,, [§ + (Tap” —2545) dl
= "M,fﬂgun (qu + Faﬂuq.a‘iﬁ) ) ’ ' (24)

the second line followmg from the first via the identity Faﬁ = Iiapy’ + 25' {ag)” Settlng,

§A = 0 gives the autoparallels as the equatlons of motions which is what we wanted to

~ demonstrate.
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FIGURES
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'_,,.Int'héidsjﬁal holonomic ’case, the paths z(¢) and z(t) + éz(t) shown i‘n’ (a) are

- mapped into paths ¢(t) and ¢{t) + 8¢(t) shown in (b). In the nonholonomic case with

S¢s # 0, howeve;, they‘g‘ojoirél.r into ¢(t) and ¢(t) + 8q(2) shown in (b) with a failur'e"-

" to close at t, which is a’x"ié;‘l(;goyds to the Burgers vector in a solid with dislocations.
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