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forms. However, Dirichlet and Voronoi tessellations as applied to random point patterns appear 

to have arisen independently in various fields of science and technology (df. Meyering 1953; Miles 
1970; Stoyan, Kendall &. Mecke 1987). For example, in crystallography, one simple model of crystal 

growth starts with a fixed collection of sites in two- and three-dimensional space, and allows crystals 
to begin growing from each site, spreading out at a uniform rate in all directions, until all space is 

filled. The "crystals" then consist of all points nearest to a particular site, and consequently are just 

the Voronoi regions for the original set of points. Similarly, the statistical analysis of metereological 

data led to the formulation (around 1910) of Voronoi regions under the name "Thiessen polygons" 

(Thiessen, 1911). Applications of Voronoi tessellations can therefore be found in fields as diverse 

as agriculture and forestry (Fischer &. Miles 1973), astrophysics (Kiang 1966; Matsuda and Shima 

1984; IW; WI; Yoshioka &. Ikeuchi 1989; Coles 1990; Van de Weygaert 1991a,b; Ikeuchi &. Turner 

1991; SubbaRao &. Szalay 1992, Williams 1992; Williams, Peacock &. Heavens 1992), cell biology 
(Honda 1983), communication theory (Shannon 1949), crystal growth and aggregates (Meyering 

1953; Gilbert 1962), geography (Mardia, Edwards &. Puri 1977), geology (Crain 1976; Stoyan 

&. Stoyan 1980), metallography (Boots 1984), physics (Ogawa &. Tanemura 1974; Finney 1979) 

and zoology and ecology (Hamilton 1971). Voronoi tessellations are also used in data analysis of 

geometrical structures. Finney (1979) used the term 'polyhedral statistics'. Sibson (1980, 1981) 

described the use of Voronoi tessellations relative to given point patterns as a basis for 'natural 

neighbour interpolation': interpolating a smooth function for data located at irregularly distributed 

points. Thiessen (1911) had this in mind when he suggested this tessellation. Due to these diverse 

applications it has acquired a set of alternative names, such as Dirichlet regions (Dirichlet 1850), 
Wigner-Seitz cells, and Thiessen figures. 

Kiang (1966) was the first to apply Voronoi tessellations to astrophysics, in his study of the 

mass spectrum obtained in the fragmentation of interstellar clouds. Matsuda &. Shima (1984) were 

the first to propose the use of Voronoi tessellations in cosmology. They pointed out the similarity 

between two-dimensional Voronoi tessellations and the outcome of numerical clustering simulations 

in a neutrino-dominated universe by Melott (1983). Independently, Voronoi tessellations were 

introduced into cosmology by Icke &. Van de Weygaert (1987). In their paper (IW) they studied the 

statistical properties of two-dimensional Voronoi tessellations. After finishing a three-dimensional 

geometrical Voronoi algorithm, WI found that the Voronoi tessellations also possess some interesting 

clustering properties, as was confirmed in a Monte-Carlo study by Yoshioka &. Ikeuchi (1989). Since 

then, in particular the observation by Broadhurst et al. (1990) of a periodic redshift distribution in 

a deep, small solid angle, redshift survey (a "pencil beam survey") has caused an increased interest 

in the use of Voronoi tessellations as a useful description of the clustering of galaxies on large scales 

(Coles 1990; Van de Weygaert 1991a,b; Ikeuchi &. Turner 1991; SubbaRao &. Szalay 1992; Williams 
1992; Williams et al. 1992). 

We have constructed two- and three-dimensional Voronoi foams geometrically (IW, WI). In 
the study of galaxy clustering the advantage of this approach to N-body simulations is that one 

is not restricted by the resoilltion or number of particles. Assuming that galaxies populate the 

walls of the Voronoi cells, the Voronoi model qualitatively reproduces the observed pattern of cells 
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and sheets in the observed galaxy distribution. A cellular structure can therefore be generated 

over a part of space beyond the reach of any N-body experiment. This makes the Voronoi model 

particularly suited for studying the properties of galaxy clustering in cellular structures on very 

large scales. Although the model cannot say much about the pattern of the galaxy distribution 
on smaller scales, within the sheets, it can be considered as a useful prescription for the spatial 

distribution of the sheets themselves. In addition, by experimenting with the distribution of the 

galaxies within the sheets and the filaments considerable insight into the real galaxy distribution 

can be obtained. 

An alternative use of Voronoi tessellations is as statistical descriptors of the galaxy distribution 

(cf. the 'polyhedral statistics' of Finney, 1979). The sensitivity of the geometrical characteristics 

of the Voronoi tessellations to the underlying nucleus distribution (see sect. 4, 5 and 6) makes the 

Voronoi tessellation, and its dual the Delaunay tessellation, a potentially very useful instrument 

in the study of the clustering properties of a point process. Although we do not intend to pursue 

this idea in our work, this approach was taken by Ling (1987) in his thesis. He used the Voronoi 

tessellation as a tool in studying the higher-order clustering properties of the galaxy distribution. 

He illustrated the use of the Voronoi tessellation in two dimensions on artificial point processes, the 

CfA catalogue, and a CDM simulation. lie concluded that the statistic is very flexible, allowing a 

scale-dependent study of the distribution. However, the translation of this statistical information 

to more familiar statistical descriptors is not straightforward, and might prohibit an extensive use 

of the Voronoi distribution as a tool in galaxy distribution statistics. 

This paper follows the usual outline. In the next section we will present the analytically 

known characteristic properties of three-dimensional Voronoi tessellations as well as of planar and 

linear sections through them. Subsequently, section 3 will contain a description of the algorithm 

to construct geometrically three-dimensional Voronoi tessellations from a random distribution of 

nuclei. This is followed by a presentation of a Monte Carlo statistical analysis of such tessellations 

and its constituent cells in section 4. Section 5 contains a presentation of the statistical properties 

of planar sections through three-dimensional Voronoi tessellations, followed by a similar analysis of 

linear sections in section 6. Finally, section 7 contains a symmary and discussion of the results. 

2. Voronoi and Delaunay tessellations 

Formally a Voronoi tessellation can be defined as follows. Assume that we have a distribution of a 

countable set .. of nuclei {xt} in Rd. Let xt. X2, %3, •• be the coordinates of the nuclei. Then, the 

Voronoi region Ili of nucleus i is defined by the following set of points x of the space: 

Ilj = {xld(x, Xi) < d(x,xj) for all j f:. i}, (1) 

where d(x, y) is the Euclidian distance between x and y. In other words, Ili is the set of points 

which is nearer to Xi than to j f:. i. Note that each region lli is the intersection of the open 
half-spaces bounded by the perpendicular bisectors of the segments joining Xi with each of the other 
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X/So lienee, Voronoi regions are convex polyhedra (3-D) with finite size according to definition (1). 

Each lli is called a Voronoi polyhedron. The complete set of {lli} constitute a tessellation of~, 

the Varono; tessellation vet) relative to t. In two-dimensional space some authors refer to it as 

the Dirichlet or Thiessen tessellation. Known formulae for vet) are almost entirely confined to the 
case when • is a stationary Poisson process. 

A pair of nuclei i and j whose Voronoi polyhedra lli and lli have a face in common is called a 

contiguous pair and a member of the pair is said to be contiguous to the other member. By joining 

all of the contiguous pairs of nuclei, we obtain a network. In this network, a set of four nuclei (in 2-D 

it is a set of three nuclei, although the following discussion is three-dimensional the generalization 

to arbitrary d-dimensional space can be easily made) which are contiguous with one another forms 

a tetrahedron. The set of tetrahedra constructed in such a manner constitutes a new tessellation, 

which is called the De/aunay tessellation, Vet) (Delone 1934). These two tessellations, Voronoi 

and Delaunay, are dual to each other. The tetrahedron in the Delaunay tessellation is called the 

Delannay tetmhedron. The circumsphere (Le. its circumscribing sphere) of a Delaunay tetrahedron 
has two important properties. 

I. 	The circumcenter, Le. the center of the circumsphere, of a Delaunay tetrahedron is a vertex 

of the Voronoi tessellation. This immediately follows from the definition of the Voronoi tessel­

lation, wherein the four nuclei which form the Delaunay tetrahedron are equidistant from the 
vertex concerned (see fig. 3). 

II. (Contiguity Condition). The circumsphere of a Delaunay tetrahedron is empty, that is, there 

is no nucleus inside this sphere. This follows from the fact that if a fifth nucleus exists within 

the sphere, it is nearer to the circumcenter than the four nuclei on the surface of the sphere. 

Therefore, the center cannot be the common vertex of the Voronoi polyhedra of the four nuclei 
on the circumsphere surface. 

Thus, the Delaunay tessellation can be defined as the tessellation consisting of all the tetrahedra, 

defined by four nuclei, whose circumsphere does not contain any of the nuclei of the generating set 

of nudei. Figure 1 shows the two-dimensional Voronoi tessellation of a point distribution and its 
dual Delaunay triangulation. 

At a vertex of the Voronoi tessellation, generally, four polyhedra meet. If a vertex happens 

to have five or more polyhedra in common, the vertex is said to be degenemte. Degenerate cases 

occur if the nuclei form a crystalline lattice. An example of a degenerate Voronoi tessellation is the 

regular square tessellation, arising from a regular square grid of points. While in generic planar 

Voronoi tesellations only three cells meet at each node, in the regular square tessellation four cells 
meet at each vertex. 

The Voronoi tessellation can be generalized. Miles (1970) defined the genem/ized Vorono; 

tessellation vn , which uses for cells the sets of positions sharing the same n nearest neighbours of 

the generating point pattern (VI =V, the original Voronoi tessellation). Details are given in Miles 

(1970,1972) and Miles and Maillardet (1982). The latter paper gives pictures of Vn for n 4, 16, 
64, and 256 relative to a stationary Poisson process. 
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Another generalization is the Johnson-Mehl model (Johnson &: Mehl, 1939) which contains a 

dynamic element. Here 'nuclei' are generated by some birth process, and each nucleus grows so 
that at time t after its birth it occupies all the previously vacant region within the sphere of radius 

vi centred on its original point, with v the linear and isotropic velocity of growth (the same for all 

nuclei). Consequently, if a nucleus is born at a point in the current cell of another nudeus then 

it vanishes immediately; those that survive form cells that grow radially in each direction with 
velocity v, tiII cells of other nuclei are met. In the standard Johnson-Mebl model, the points in 

Rl x [0,(0) giving nucleus birth locations and times form a stationary Poisson process of constant 

intensity. If all nuclei are born at the same instant then the resulting tessellation is Voronoi. In the 

general model, however, the cells of the tessellations are not even convex. Formulae for the model 

are given in Meyering (1953), Gilbert (1962) and Miles (1972). 

Still another generalization of Voronoi tessellations, which is probably a better approximation 

to the cellular distribution of galaxies, a.re the weighted Vorono; tessellations (Boots 1980; Auren­

hammer &: Edelsbrunner 1984). Here, the distance measure between an arbitrary point in space 

and a nucleus depends on the nucleus, i.e. the distance is the Euclidian distance weighted by some 

nucleus-dependent weight function. This will happen when the growth velocity (which is isotropic) 

differs from nucleus to nucleus (unlike in the ~growth interpretation" of the conventional Voronoi 

tessellation). However, not much work has been done on this generalization, and no analytic results 

appear to be available. 

2.1 Statistical moments of 3-D Voronoi tessellations 

Present statistical knowledge about Voronoi tessellations stems from the pioneering works of Mey­

ering (1953), Gilbert (1962), Miles (1970) and Mlltller (1989). With the exception of some gen­

eral tessellation properties nearly all analytical work on Voronoi tessellations has concentrated on 

Voronoi tessellations generated by homogeneous Poissonian point distributions. Even of this case 

analytical results are quite rare, and are limited to a few distribution functions and statistical 

moments (expectation values, variances, correlation coefficients). The only completely known dis­

tribution function is that of the angles between adjacent edges in two dimensions (IW). To derive 

that distribution function analytical results on Delau nay triangles obtained by Miles (1970) were 

used. A few other distribution functions are known in the form of integral formulae, from which all 

characteristics can be derived by numerical integration. For example, Miles &: Maillardet (1982) 

derived integral formulae for the probabilities Pn of the polygon having exactly n vertices. However, 

these formulae are very complicated and hence it is very helpful to determine such characteristics 

by Monte Carlo methods (see sect. 4, 5 and 6). 

For the case of general 3-D tessellations (including Voronoi and Delaunay tessellations) Miles 

(1972) gives some general properties. If No is the number of vertices per polyhedron, NI the number 

of edges per polyhedron and N2 the number of walls per polyhedron, then Euler's formula tells us 

that 
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No - NI + N2 = 2. (2) 

In the case of simple polyhedra, i.e. polyhedra in which each vertex lies in three and only three 

walls (again, as in the case of Voronoi and Delaunay polyhedra), we then have 

3No 2N•. (3) 

Other interesting properties (characteristics) of a polyhedron are its volume V, its surface area Ac, 
and its perimeter Sc. Further characteristics of a tessellation include the area Aw of a wall, the 

perimeter Sw of a wall, and the length L of an edge. 

Following the work of Miles (1972, 1974, 1984), Mlolller (1989) derived analytical expressions 

for a large number of first-order moments of d-dimensional Poisson-Voronoi tessellations, as well as 

of s-dimensional sections through them. From their work an enumeration of analytically calculated 
first-order moments of a 3-D Poisson.Voronoi tessellation with a nucleus intensity (number density) 

p can be assembled easily. In table 1 we present such a listing of first-order moments, together with 

the second-order moment of the volumeofthe cell, as was determined numerically by Gilbert (1962). 

The second column contains analytical expressions, while the third column contains numerical 
expressions. We should remark here that the analytical estimates of MfIlller (1989) do not agree 

with the ou tcome of our Monte Carlo calculations presented in section 4 in the case of the first order 

moments of the the surface area of a cell, the perimeter of a wall and the length of an edge. These 
moments are marked by a star in table 1. In all three cases the correct values can be inferred from 

the results of Miles (1972). In the table also the quantity Ni is mentioned, which is the number 

of full neighbours. Two contiguous cells with a common polygonal face are neighbours. If the line 

joining their nuclei hits this common face, then they are full neighbours. A cell has N2 neighbours, 

Ni of which are full. 

Cosmologically important are the characteristics of lower-dimensional sections, both line ('pen­

cil beams') and plane ('slices') sections, through 2-D and 3-D tessellations (in the case of 2-D 

tessellations just the line sections), in other words, the stereological properties of tessellations. 

From the general formulae for ..-dimensional sections through d-dimensional Poisson-Voronoi tes­

sellations given by Miles (1984) and Mlolller (1989) the results on the one-dimensional (linear) and 

two-dimensional (planar) sections through 3-D tessellations can easily be inferred. For planar sec­
tions through a three-dimensional (d ~ 3) Poisson-Voronoi tessellation generated by Poissonian 

distributed nuclei with a number density p of nuclei, table 2 gives the moments which have been 

derived by Miles (1984) and MfIlller (1989), together with a numerically derived moment by Gilbert 

(1962). As in the case of table I, the second column gives the analytical expressions, while the third 

column gives the numerical expressions (with cell we here mean the 2-D section cut by the section 

plane through the 3-D cell). For linear sections through such ad-dimensional (d ~ 2) Voronoi 

tessellation the mean length (A) of an edge in the linear section is given by 
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dr(d-!)r(d;lr 
(4)(A) =E(L) = d 2-(I/d) 1 . 

(d-l)!pl/d 2r ('2+ 1) r(2- d) 

This result is obtained by using the general line section property of a tessellation that relates 

the mean edge length EI (L) in a linear section through an arbitrary tessellation with the average 

volume and average surface area of a cell (see Miles 1972; Mlolller 1989), 

E(V) 
(5)E.(L) = 4 E(A)' 

wherein E(V) is the mean cell volume and E(A) the mean cell surface area. Table 3 gives some 
moments for of the mean edge length (A) of a linear section through two-dimensional and three­

dimensional Poisson-Voronoi tessellations, which were obtained by using either equation (4) or by 
numerical integration (Gilbert 1962; Miles 1972; Mlolller 1989). These quantities are interesting in 

the context of the pencil beam redshift surveys (see e.g. Van de Weygaert 1991a). 

Although any homogeneous stochastic process in Rd gives rise to an associated Voronoi tessel­

lation, evidently the only analytically tractable one is the Poissonian case. However, since other, 

non-Poissonian, nuclei distributions may give rise to cosmologically interesting cell structures, sta­

tistical results of the corresponding Voronoi tessellations can be very useful. These can only be 

derived by using Monte Carlo calculations. 

3. Construction of three-dimensional Voronoi tessellations 

Although the need for efficient Voronoi tessellation construction algorithms has increased substan­

tially, not many algorithms have been published in detail. The first 2-D algorithm was the one 

by Green &. Sibson (1978). This is an O(N3/2) algorithm, which may be called rather inefficient 

compared to the theoretical limit of O(N). Indeed, Aggarwal et 01. (1987) succeeded in designing 

an O(N) algorithm for a planar Voronoi tessellation. Brown (1979) mentioned the possibility of 

computing tessellations in k dimensions using tranformations of convex hulls in k + 1 dimensions. 

However, since general convex hull algorithms are not available this idea has only been implemented 

for planar tessellations, giving an O(N log N) algorithm. Although efficient two-dimensional algo­

rithms seem to be generally available this is not the case for three-dimensional algorithms. Brostow, 

Dussault &. Fox (1978) and Finney (1979) published three-dimensional algorithms with a computa­

tional cost proportional to O(N 2 10g N) and O(N4) respectively. Bowyer (1981) and Watson (1981) 

presented algorithms for (k 2,3,4, ...) based on the computation of the Delaunay tessellation 

of the same point process. In fact, Boots (1974) was the first one to point out that the computa­

tion of a Voronoi tesselJation could be greatly simplified by working with its dual, which has the 

additional advantage of a cleaner separation between the topological (incidence relation between 

the vertices, edges, and faces) and geometrical aspects (coordinates, lengths, angles, etc.) of the 
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problem (Guibas & Stolfi, 1985). The algorithm we used for the computation of two-dimensional 

Voronoi tessellations (IW) employs the same principle. 

Our three-dimensional Voronoi tessellation construction algorithm basically consists of three 

major steps. These are (1) the prescription of the distribution of nuclei, (2) the specification of 

the boundary conditions, and (3) the construction for each nucleus of the cover of its Voronoi tile, 

i.e. all the faces of its Voronoi polyhedron, which encompasses all points that lie closer to that 

nucleus than to any of the other nuclei. The first step, the specification of the underlying nuclei 
distribution, will be described in section 4. 

In the second step we take toroidal, periodic boundary conditions, so that the central field 

(box) is surrounded by 26 equivalent boxes. The central field is taken to be a cube in the present 

statistical study. This simplifies the analysis to some extent without giving up generality of the 

results. Because every "boundary" field has the same distribution of nuclei, the tessellation in 

those boundary fields is exactly equal to the tessellation in the central field. Another approach is 

to take the central field and surround it by empty space. In particular near the boundary of the 

central field this will yield Voronoi cells that can extend towards infinity since they contain that 

part of space closer to them than to any other nucleus. The statistical analysis of the geometrical 

properties would therefore be seriously complicated. Still another approach, which probably leads 

to the similar statistical results, is to embed the central field in a larger box wherein the nuclei are 

distributed according to the same statistical point process. In that case, the original box should be 

considered as a small part cut out of a far larger box. The point distribution outside the central 

field is therefore not an exact copy of the one in the central field. Since we are mainly interested 

in cosmological applications, where nearly all N-body simulations are carried out in a box with 

periodic boundary conditions, and because of the accompanying advantage of the interpretational 

simplification of the statistical results we decided to take the first possibility of toroidal boundary 
conditions. 

In the third step, the actual construction of the Voronoi tessellation from the specified distri­

bution of nuclei, two broad classes of methods can be distinguished. These are (1) Monte Carlo 

algorithms and (2) geometric algorithms. 

(1) The Monte Carlo methods start with a distribution of a large number of "test particles", 

e.g. Poissonian distributed points or points distributed on a regular grid, which are moved around 

in the field with the nuclei in such a way that they end up at, or very near, a facet (vertices, edges, 

faces, etc.) of the tessellation. If one plots their position one gets a clear idea of the structure of the 

underlying tessellation. One of the earliest examples was the method used by Kiang (1966), who 

determined the Voronoi tessellation of a random distribution of 80 nuclei by determining the nearest 

nucleus for each point out of a grid consisting of 6400 points. A comparable method is a recursive 

method. The original square is subdivided, e.g. in four quarters (although the actual number can 

be chosen freely for optimal convergence). Then the nearest nucleus is determined of each corner of 

a small square. If not all fotlr corners belong to the same centre, the same subdivision is applied to 

the small square. In this way one can delineate the tessellation structure rather fast and efficiently. 

Still another approach was used in the three-dimensional case by WI, Yoshioka & Ikeuchi (1989) 

and Weinberg (1989). The test particles are moved along the line pointing to the nearest nucleus, 

thereby constantly keeping track of the nearest nucleus. When there is a change of nearest nucleus 

one knows the test particle is situated (within resolution accuracy) in the face of the Voronoi cell 

surrounding the first nucleus. This game can be continued by moving the test particle around 

within the wall, until it hits a third nearest nucleus when it enters an edge, and subsequently by 

moving it along that edge until a fourth closest nucleus has been found when the particle hits a 

vertex. These Monte Carlo methods can be generalized without much effort to two dimensional 

space, and indeed to any d-dimensional space. An 3.dvantage of the Monte Carlo method is that it 

is generally applicable, making it the natural method in the case of more general tessellations, like 

the Johnson-Mehl subdivision ofspace (Johnson and Mehl, 1939), in which the nuclei start growing 

at different times, or weighted Voronoi foams (Boots, 1980), in which the growth velocities differ 

from nucleus to nucleus. An important disadvantage of the Monte Carlo algorithms is their finite 

resolution, which makes it difficult to trace all facets ofthe tessellation. One can e.g. never be sure 

one has found all vertices, because it is possible two vertices are located at a distance shorter than 

the resolution of the test particles. Another disadvantage is that one does not have the flexibility 

to play around with all the elements of the tessellation, e.g because one does not know the exact 

position of all vertices. This certainly is a disadvantage if one intends to study different point 

clustering schemes within the cell structure defined by the Voronoi tessellation. 

(2) The second class of methods is the one of the geometric methods. Their advantage is that 

they are exact and flexible, and economic in the case of Voronoi tessellations. However, in the 

case of more general tessellations this need not be true, even though now there is even a geometric 

method for the construction of two-dimensional weighted Voronoi tessellations, based on convex 

hulls in three dimensions (see Aurenhammer & Edelsbrunner 1984). Discussions in the literature 

have mainly concentrated on geometric algorit~ms (Green & Sibson 1978; Brostow et al. 1978; 

Finney 1979; Tanemura, Ogawa & Ogita 1983). 

3.1 The geometric construction theorems 

Our geometric algorithm for constructing three-dimensional Voronoi tessellations computes the 

Delaunay tetrahedra of the point process, followed by establishing the links between the detected 

Voronoi vertices. A substantial part of our algorithm is described by Tanemura et al. (1983). Our 

implementation of the algorithm deviates from theirs in several ways. Among other things, we used 

several programming "pearls" (Bentley 1986), such as multidimensional binary trees, to speed up 

essential parts of the algorithm. 

The main part of the algorithm consists of the procedure for constructing a single Voronoi 

polyhedron, ni. The tessellation is then obtained by the repeated use of this procedure for all of 

the nuclei i =1, ... , N. We denote the set of all Delaunay tetrahedra with nucleus i as a common 

vertex with Ti. Obtaining Ti is equivalent to obtaining ni. Note that Ti constitutes a polyhedron, 

not necessarily convex, whose vertices are nuclei. It will be referred to as a contiguity polyhedron of 

nucleus i. Let C j be a set of sllch vertex nuclei of that polyhedron. Each member of Ct corresponds 
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tt:? a face of n't the face being the perpendicular bisector of that member of Ci and nucleus i. 

The face of ni which corresponds to a certain nucleus, say j, can be determined by determining 
the Delaunay tetrahedrons of Ti which have the nuclei i and j as common vertices. Figure 2 is a 

two-dimensional representation of this three-dimensional structure. The solid black dot represents 

the Delaunay edge between the nuclei i and j. This edge is pointing out of the page, with the 

nucleus; above i. The solid polygon is the Voronoi face defined by the nucleus i and j, while the 

open dots are the other nuclei that together with i and j determine this face. Each dashed triangle 

represents a Delaunay tetrahedron that has the contiguous pair {i, io} as one of its 6 edges. The 

dashed lines between the solid dot and the open dots are faces of these Delaunay tetrahedra seen 

edge-on, while the dashed lines connecting open dots are true edges. The vertices of fi. are the 

circumcentres of the corresponding members of T;. As can be seen from figure 2, other geometries 

of ni, edges for instance, Can also be determined from the connectivity among the elements of 
Ti. Therefore, the efficiency of the algorithm depends on how quickly we can search Ti and the 

connections in T•. Determining the set Cj is greatly simplified if at the start of the calculation of 

P;, we have a.n already known set Sj of nuclei surrounding nucleus i that includes Ci, i.e. Ci C Sj 

(note that Sj does not include the nucleus i itself). The task is then to determine the contiguous 
set of nuclei Cj from the set Sj. 

The basis of the geometric construction algorithm is formed by the following four theorems. 

THEOREM I. 

tet a nucleus i 1 be the nearest to a nucleus i. Then i 1 and; are contiguous to each other. 

THEOREM n. 
Consider a set of triangles {i,i.,;},; E Sj and j =J i1 • Among them, suppose a triangle {i,i},i }

2

has the minimum drcumradius. Then, the triangle is a face of a certain Delaunay tetrahedron, 
that is, the three nuclei i, ii, and i2 are mutually contiguous. 

TJlEOREMIII. 

Consider a set of tetrahedra {i, i., i2,j}, where j E Sj and; =J ii, i 2• Among them, suppose a 

tetrahedron {i, itt i2, i3} has the minimum circumradius. Then, the tetrahedron is a Delaunay 
tetrahedron, that is, the four nuclei i, iI, ;2, and i3 are mutually contiguous. 

THEOREM IV. 

Let a Delaunay tetrahedron {i, ;0, ip, i..,} be an element of Tj. Consider a set of tetrahedra {i, io, 

ip,j} , where; E Si(OP!7). Among them, suppose the circumcentre of a tetrahedron {i, io, ip, i61 
has the minimum Z-coordinate value, where the coordinate Z of the circumcentre is defined as its 

distance to. the plane {i, io, ip} and the sign of the coordinate is chosen so that the coordinate of 

i.., is negative. Then, the tetrahedron is a Delaunay tetrahedron, that is, the four nuclei i, io, ip, 
and i6 are mutually contiguous. 
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The first one appears to be obvious, but is in fact not trivial. Most authors assume it to be 

valid without any proof. These theorems and their proofs were presented by Tanemura et al. (1983j 

also see Van de Weyga.ert 1OOtb). 

3.2 The geometric construction algorithm step-by-step 

Although finding the Delaunay tetrahedra is the basic principle of the construction procedure, it is 

as important to find the right links among them. Figure 3 illustrates how the geometrical elements 

of the tessellation, i.e. the cells, walls, edges and vertices, are linked with the generating nuclei. In 

our case the right links are mainly determined by computing all the walls in the tessellation, and 

keeping track of the cells to which these walls belong. Since the structure of each wall, a polygon, 

is completely determined by all the vertices that mark the wall, finding and ordering these vertices 

provides one with the desired knowledge of the links between the vertices. We order the vertices 

that delineate the wall in such a way that one can draw the wall by just connecting the vertices in 

the order given by the list. Therefore, the computation of new Delaunay tetrahedra always takes 

place within the context of the calculation of a new wall. In fact, the construction procedure works 

by computing the walls shared between the nucleus i and all the nuclei contiguous to it. One keeps 

track of all the contiguous nuclei which have been found up till now by putting them in the list Ci. 
The complete Voronoi polyhedron nj has been completed when for every nucleus; E Cj the wall 

between; and i has been determined. 

The prime difference between our implementation of the construction algorithm and the one 

outlined by Tanemura et al. (1983) is that we determine each Delaunay tetrahedron of the complete 

tessellation only once, instead of four times. This ocurs at the expense of a rather complicated 

bookkeeping procedure, since once a Delaunay tetrahedron has been found its information has to 

be passed on to all four nuclei that are its vertices. The same strategy is followed concerning the 

walls in the Voronoi tessellation. Each wall in the tessellation is shared by two nuclei. Since we do 

not wish to repeat this twice we calculate a wall between two nuclei i and j, with i < j, only for 

i. Later on, when we are computing the polyhedron nj, we just pass on the knowledge about the 

wall between; and i to nj without calculating it again. We therefore only need to tell that i is a 

nucleus contiguous to j and that the wall they share is the wall between; and ;, which is specified 

by some number. 

The tessellation algorithm starts by ordering the nuclei in the box in a multidimensional binary 

tree (Bentley 1975; Bentley &. Friedman 1978; Van de Weygaert 1987), a generalization of the simple 

binary tree used for sorting and searching. The multidimensional binary tree, also called k - d tree, 

is a binary tree in which each node represents a subset of the records in the set and a partitioning of 

that subset. In the k - d tree the nuclei are sorted in such a way that nuclei which lie close together 

in parameter space also have a nearby position in the tree. This leads to the great advantage that 

it allows multidimensional searching tasks, like searching for all nuclei within a specific spherical 
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re~ion or searching for all M -th nearest neighbours, to be solved in a time proportional to N log N, 
with N the number of records (nuclei) in the set. For a more detailed description see appendix F. 

A consequence of our implementation of the tree construction is that all nuclei will be renumbered 

since they are given a number i according to their position in the tree. 

A point of consideration concerning the multidimensional binary tree are the periodic extensions 

of the central field (26 "clones" surround the central field). We chose the strategy not to include the 

points of the periodic boundary fields in the tree. When we need to look for nuclei in the boundary 

fields we just translate the searching centre to the correct relative position and then search through 

the tree of the central field. 

After the multidimensional binary tree has been constructed we proceed by constructing for 

each of the nuclei i = 1, ... , N their surrounding Voronoi polyhedra, ni, starting with nucleus 

i = 1 and finishing with nucleus i = N. The construction procedure works such that as soon as the 

polyhedron lli has been computed the nucleus i can be discarded from any further considerations. 

Useful notions in the context of the following discussion are the half-space Hi(Q,Oh) and the subset 

Sj (Q,8h). The half-space IIi(a'oh) is the one determined by the plane through the points {i, io , ip} 
and which does not contain i'Y' The subset of Sj which is inside the half-space Hi( Q'oh) is then 

denoted by SiC Q'oh). 

Taking into account the previous considerations, the procedure for computing the complete 

Voronoi cell lli surrounding a nucleus i essentially consists of the following subroutines: 

1. 	 Determine Si, that is a set of nuclei that includes all nuclei contiguous to i. In order to 

make the amount of computations as low as possible, we try to make the set Si as small as 

possible. Since only afterwards one can determine with certainty whether all contiguous nuclei 

were in Sj or not, we build in an extra procedure for checking this after computing a new 

Delaunay tetrahedron (appendix C) or a triangle with minimum circumradius (appendix A). 

If there is the possibility that there are contiguous nuclei outside Sj we have to undertake a 

corrective procedure. Because the correction calculations are rather expensive the set Sj has to 

be reasonably large. We therefore have to reconcile the demands that Sj should not be too large 

in order to avoid an unnecessary computational effort, while at the same time Si should not be 

too small in order to avoid the expensive correction procedure. The most natural choice for Si 
is to take the set consisting of the N. nearest nuclei to i, with N. a number determining the 

efficiency of the implementation, taking into account the preceding remarks. We take N. 50, 

until there are fewer nuclei left to consider (Le. N - i < 50), in which case we take N. N - i. 

After we have found these N. nearest neighbours we sort them in order of increasing distance 

to nucleus i. The distance to the N!/l nearest neighbour, dei, iN.), is defined to be the radius 

Rj of the set Sj. Rj plays a role when checking whether it is sufficient to merely consider the 

nuclei in Sj when searching for a triangle with minimum drcumradius or for a new Delaunay 

tetrahedron. 

One consequence of our strategy to calculate each Ddaunay tetrahedron only once during the 

whole computation of the tessellation is that once we have finished the calculation of lli we 
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have found all the Delaunay tetrahedra which have i as one of the vertices. Consequently, we 

do not need to consider nucleus i again when searching for new Delaunay tetrahedra. This 

implies that nucleus i should not be included in the sets Sj for j > i. Because the nuclei are 

so neatly ordered in a multidimensional binary tree and because we determine the Voronoi 

polyhedra sequentially, this can be done in an efficient way by continually "pruning" the tree. 

The searching tasks therefore take less and less effort as a consequence of the tree losing its 

branches one by one. 

2. 	If none of the vertices of the Voronoi cell of nucleus i has been determined before one starts 

constructing the polyhedron ni, one starts by finding a first vertex of that cell. During the 

calculation of the first vertex the first three nuclei contiguous to i will be found. The construc­

tion of ni is subsequently continue by computing the wall between i and the first of the three 

contiguous nuclei that was found when computing the first Del aunay tetrahedron. During the 

computation of this wall, new contiguous nuclei will be found. They are added to the list Ci 
of contiguous nuclei. The computation of the first Delaunay tetrahedron involves the following 

three steps (keeping in mind theorem 1 through theorem 3): 

I. 	Find the nucleus io which is the nearest to the nucleus i. Theorem 1 tells us that ia is 

contiguous to i and is a member of Ci. 

II. Consider 	a set of triplets {i,ia,i}, where j E Sj and j 1-: io • Find the nucleus j = 
ip so that the triangle {i, i o , ip} has the minimum circumradius, Le. the radius of the 

circumscribing circle of the triangle, in the set of triangles considered above. According to 

theorem 2 the triangle {i, i o , ip} then constitutes one of the faces of a Delaunay tetrahedron. 

Subsequently, append ip to the set Ci, i.e. ip U Cj - Cj. See appendix A for a detailed 

description of this procedure. 

III. 	Define the normal ii to the triangular plane {i,ia,ip} such that the the system {(To ­
ri), (rp - ri), ii} has a right-handed orientation. Consider a set of quartets {i, io , ip,j} 

with j e Si(Q,'o; ii) and j 1-: io , ip, whereby Sj{Q,'o; ii) is the subset of Si situated on the 

positive side of the plane {i, io , ip} (positive means in the direction of ii). Find the nucleus 

j = i3 so that the tetrahedron {i,ia,ip,i'Y} has the minimum Z-coordinate value, where 

the coordinate Z of the circumcentre is defined as the distance to the plane {i, io , ip}, 

and a positive sign of the coordinate is taken along the direction of ii. According to 

theorem 4 the tetrahedron {i, io, ip, i'Y} is a Delaunay tetrahedron and a member of Ti. 

This tetrahedron is called the initial Delaunay tetrahedron. Append i'Y to the set Ci, 
Le. i'Y U Cj - Cj. Essentially this is the same procedure as detecting a new Delaunay 

tetrahedron starting from an earlier one except that now one does not determine the 

distance of the circumcentre Pj of the tetrahedron {i, io , ip, j} to the previous Voronoi 

vertex V, circumcentre of the Delaunay tetrahedron {i, i a , ip, i'Y}' but to the circumcentre 

:::: of the triangular plane {i, io , ip}. In appendix B one can find a description of how 

to calculate the coordinates of::::. The whole Delaunay tetrahedron detection procedure is 
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described in appendix C, whereby one should replace V by =:, and (V],V2,V3) by U.. e2,6). 

Once the first Delaunay tetrahedron has been found, we can find all the others belonging to 

Ti using the information of the earlier determined members of Ti. This process is outJined in 

appendix C. 

3. 	If already some vertices of Voronoi polyhedron fli are known, then the procedure starts by 

processing that information in such a way that the calculation of the walls, edges and vertices 

of Di is facilitated. See appendix E for some details. 

4. 	 Construct sequentially the walls between nucleus i and all its contiguous nuclei, which are stored 

in the set Ci. The construction of the wall between the nucleus i and a contiguous nucleus ia 

consists of the sequential detection of all Delaunay tetrahedra which have the contiguous pair 

{i, ia} in common until they enclose the pair {i, ia} without any gap. One can distinguish two 

cases here. 

The first case is ia < i, which means the common wall has already been determined when 

constructing D,o' The only thing to do in this case is to specify where the data on that wall 

can be found, in other words specifying the number of the wall. The second case is ia > i, 

in which case the structure of the wall still needs to be determined, though a certain number 

of Delaunay tetrahedrons around the pair {i, ia} will already have been found (at least one, 

otherwise io could not be in the list Cd. 

In the second case, the wall construction consists of two tasks: it has to put the previously 

found Delaunay tetrahedra in the right order, in the meantime filling in the gaps with newly 

computed ones. Appendix D contains a more detailed description of the procedure of closing 

the set of Delaunay tetrahedra around a contiguous pair {it io }. 

The detection of a new Delau nay tetrahedron starts by noting that it shares any of its four 

triangular faces {i,io,ip} with another. Thus, we can obtain a new Delaunay tetrahedron 

{i, io, ip, ill from the knowledge of a previously determined one, {i, io, ip, i..,}, by finding a nu­

cleus i6, such that the triangular face {i, io" ip} together with i6 forms a Delaunay tetrahedron. 

The procedure for doing this is described in detail in appendix C. 

Initially the set Cj will be constantly growing, since new contiguous nuclei wilJ be found when 

new Delaunay tetrahedra are found. Towards the completion of fli, however, the number of 

newly found contiguous nuclei will be low. Finally the set Cj will be exhausted, for each 

of the contiguous nuclei one has determined the wall shared between them and i. Then the 

construction of the polyhedron fli has been completed. 

5. After the computation of all the walls that surround Di the contiguous nuclei io are sorted in 

ascending order of the number ill" together with the corresponding data on the structure of 

the corresponding walls. The data on Di are then written to files, so that they can be used for 
further analysis. 

4. 	Monte Carlo statistical study of 3-D Voronoi foams 

Only a few moments of geometrical properties of Voronoi tessellations are known analytically, 

almost without exception in the case of Poissonian distributed nuclei. Hence, the necessity to use. 

a Monte Carlo approach in assessing the statistical properties of Voronoi tessellations, especially 

in the case of non-Poissonian distributed nuclei. In this section we present the results of a Monte 

Carlo study of the statistics of the geometrical properties of 3-D Voronoi foams themselves and 

their constituents, the cells, walls and edges. 

Since a large systematic study, consisting of the calculation of more than ten realisations 

of each 1000 Voronoi cells for a large choice of underlying nuclei distributions, was not feasible 

in the available time and would probably not lead to a better qualitative understanding of the 

behaviour of the geometrical properties as a function of the underlying nuclei distribution it was 

decided to Jimit the study to three different distributions of nuclei: a Poissonian distribution, 

an anticorrelated (somewhat regular) distribution and a correlated distribution. Of these three 

distributions several realisations were calculated, followed by the determination of four moments of 

each of the geometrical properties. Accordingly, in this section the data on these four moments are 

presented in three tables, one for each different nucleus distribution. Additionally, since moments 

only contain a limited amount of information about the underlying distribution, histograms of the 

considered considered geometrical properties are presented, as well as some scatter plots in order 

to understand the correlation between some of the geometrical properties. As a consequence this 

section, as well as the next one, consists for a large part of the presentation of figures and tables, 

which should largely speak for themselves. 

Before discussing their statistical properties, we first give an impression of the structure of 3-D 

Voronoi cells by showing some examples. Unlike the two-dimensional case, it is impossible to show 

all cells of the tessellation together. Probably the best idea of the complete structure of the 3·D 

Voronoi tessellation can be obtained from two-dimensional planar sections (slices) through the 3·D 

Voronoi tessellations, as shown in figure 11 (see next section for a discussion). By showing six 

cells out of a tessellation of 1000 cells figure 4 gives an impression of the large diversity of shapes 

of the 3-D Voronoi polyhedrons (the sizes are rescaled by the plotting program, the relative sizes 

of the plots therefore do not bear out the actual size ratios of the cells). The Voronoi walls on 

the front of the Voronoi polyhedra are bounded by black lines, the walls on the back by dashed 

lines. The star in the each plot denotes the position of the generating nucleus. In addition, figure 5 

shows a stereoscopic pair of three Voronoi cells that share a common edge. As in figure 4 the stars 

denote the position of the nuclei. In a stereo viewer, the dashed lines will appear at the rear of the 

picture. When attempting stereo fusion with crossed eyes, the pictures must be reversed to obtain 

the correct depth perception. 

4.1 The spatial distribution of the nuclei 

The point distribution that the we explored in our Monte Carlo study consisted ofthree classes, (1) 
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correlated distributions, (2) Poisson (uncorrelated) distribution and (3) anticorrelated distributions. 

The correlated distributions are called Class C distributions, the Poisson distribution the Class P 
distribution, and the anticorrelated distributions the Class A distributions. 

Since there is an infinity of possible prescriptions for both correlated and anticorrelated distri­

butions, we have to make a specific choice. For both the correlated and anticorrelated distributed 

nuclei we took prescriptions that conform to the ones used in the literature of stochastic geome­

try. In all cases 1000 nuclei were distributed in a box of size 100 X 100 x 100. In the case of the 
anticorrelated nuclei the distribution was parametrized by one parameter: the minimum distance 

{, between any of the nuclei (including the nuclei in the periodic extensions of the central box). 
We expresss {, in units of the mean distance n- I / 3 between the nuclei, n being the number density 

of the nuclei. In the present study we take 6 0.8, so that every nucleus has a distance to its 
nearest neighbour of at least 0.8 x n- I / 3• In the case of the correlated nuclei an adapted version 

of the Neymann-Scott process is used. This point process is characterized by three parameters No, 
NI and A, and is constructed as follows. One starts with No Poissonian distributed parent points, 

around each of these parent points NI points are uniformly distributed within a sphere of radius 

A, whereby A is expressed in units of the mean distance between the parent points, n~I/3 (with 

no the number density of the parent points). The class of correlated distributions in the present 
study has No 200 and N) 5. Consequently, 1000 points are distributed within a box of size 

100 x 100 X 100. The third parameter, A, has a value of 0.4, so that the nuclei are distributed 
uniformly within a sphere of radius 0.4 x n~ 1/3. 

Since it is rather difficult to get a good idea of the distribution of points in a three-dimensional 

illustration, we show the two-dimensional equivalents of these three-dimensional point processes in 
figure 6. Instead of 1000 points in a box of size 100 x 100 x 100, 100 points are distributed in a 

square of size 100 x 100. The mean distance between the points in both the 2-D and the 3-D case is 

therefore equal to 10.0. In the case of the anticorrelated distribution the minimum distance between 

the points is also 0.8 times the mean distance between the points, as in the three-dimensional case. 

In the case of the correlated distribution, No = 33 parent points are taken. Around each parent 

point NI = 3 points are distributed uniformly within a circle of radius of 0.4 times the mean 
distance between the parent points, n~1/2 = 17.4. This parent point mean distance is about equal 

to one between 200 points in three dimensions. 

4.2 Statistical analysis 

The analysis of the 3-D foams was split into three parts: the analysis of the characteristic properties 

of the cells, of the walls, and of some general properties, including the properties of edges. For 

each of the Voronoi tessellations, each consisting of K = 1000 cells, a plethora of quantities was 
determined. 

Of the Voronoi cells the following properties were determined: 

a. number of vertices per cell, No, 
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b. number of edges per cell, N., 

c. number of walls per cell, N2, 

d. volume of the cell, Vee'" 

e. surface area of cell, Aeell, 

r. perimeter of cell, Seet" 

g. form factor of the cell, Feell. 

The surface area Acell of the cell is the sum of the areas of the walls that form the boundary of the 

cell, while the perimeter of the cell is the sum of the lengths of the edges that define the polyhedral 

surface. The form factor Fcell is a dimensionless quantity that tries to describe, partially, the shape 

of the cell. One has to realize, though, that for a complete description of the shape of a polyhedron 
more is needed than just one number. In fact, a picture of the polyhedron probably conveys the 

most information on the shape. We are in particular interested in the question whether the cell 

looks regular or more needle-shaped. By "regular" we mean an as good as possible approach to the 
shape of a sphere. Note that a sphere can be considered as a polyhedron whose surface consists of 

an infinite number of walls of infinitesimal size. We therefore took a form factor that measures the 

ratio between the volume and the surface area of the polyhedron 

V2 
Feell == 3611' .-£!ll.. (6)

A~ell' 

with Veell the volume of the polyhedron, and Acell the surface area of the polyhedron. In the case 

of a sphere the form factor F.ph. = 3611' V'~h./A~ph. has the value 1, which is an absolute upper limit 
to this parameter. Although one should be careful with assigning too much significance to the 

form factor defined here, it is certainly a useful measuree. Notice that due to the definition of the 

form factor the size of the cell drops out, so that the form factor is in principle a size-independent 

quantity. The correlation between the shape and the size of a cen in a tessellation, however, is an 

interesting issue that will be addressed in the subsequent statistical analysis. 

Of the Voronoi walls the following quantities of were determined: 

a. number of vertices per wall, NO', 
b. area of wall, Awallt 

c. perimeter of wall, Swall' 

d. form factor of wall, Fwall. 

e. distance nucleus-wall, Dnw' 

f. volume nucleus-wall, Vnw. 

The perimeter Swall of a wall is the sum of the lengths of the edges that define the wall, a polygon. 

As in the case of a 3-D polyhedron the form factor Fwall of a wall is an indicator for the shape of 
the wall, following the same philosophy. In this case the form factor is the ratio between the area 

of the wall and its perimeter, defined in a dimensionless way, 
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A_II ( ) FlUo/l == 411' -2-' 7 
SIUO" 

with AlUoll the surface area of the wall. The upper limit to FlUo" is the form factor Fare of a circle, 

Fcirc 411' Adrc/S:irc = 1. The quantity "Distance nucleus-wall" is the distance of the nucleus of 
the cell to which the wall belongs and the perpendicular projection of this nucleus on this wall. It is 

therefore half the distance between the nucleus and the neighbour nucleus which share this Voronoi 

wall (see e.g. Fig. 3b). The measure "Volume nucleus-wall" is the volume of the "pyramid" with 

the nucleus as top and the wall as base, which is the product of the area of the wall and the distance 

of the nucleus to the wall ("Distance nucleus-wall"). We consider this quantity because it can be 

considered as the volume of the "influence region" of the wall in the case of the naive picture of 

matter flowing radially away from the nucleus towards the wall, so that all matter in this pyramid 

will end up in this wall. This quantity is therefore a measure for the amount of matter ending up 

in this wall. Likewise, the "Distance nucleus-wall" is a measure of the surface density of the wall. 

In addition to the geometrical properties of the cells and the walls some more properties of the 

Voronoi foam were considered. Since they concern a wide range of characteristics of the foam, we 
list them together 

a. number density of vertices, Jo, 

b. number density of edges, J), 

c. number density of walls, J2 , 

d. length of edge, L, 

e. angle between edges that cross, 0ee, 

f. angle between walls that cross, 01U1U' 

The number density of vertices is defined as the number of vertices per unit volume. Since the unit 

of volume is chosen in such a way that one unit volume contains exactly one nucleus the number 

density is the ratio of the number of vertices in the tessellation to the number of nuclei generating 

the tessellation. The number density of edges and the number density of walls are defined in a 

similar way. Also considered are the length of every edge and the angle between any two edges 

that have a common vertex. The latter qunatity is the angle subtended by two edges as they cross 

at the vertex. Remember that four edges meet at a vertex so that each vertex corresponds to six 

angles. In addition, the the angle between any two walls that have a common edge is determined. 
Since three walls meet at one edge each edge corresponds to three such angles. 

Each quanti ty mentioned above produces a set {Ai}, i = 1, ... , L. Hereby the total number of points 

L in the set is proportional to the number K of cells in the tessellation, while it also depends on the 

specific property under consideration. From the resulting sets {Ai} four statistical characteristics 
of the distribution functions of corresponding quantity A are estimated, namely 

i. the mean of each set {Ai}, A, 
ii. the standard deviation, 0'( A), 
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iii. the skewness, '11(A), 

iv. the kurtosis, '12 (A). 


As usual the last three quantities are defined by 


0'2 == E[(X - p)2], '11 == P3/0'3, '12 == (p4/0'4) - 3. (8) 

Hereby P is the expectation value (mean) of the variate X, and Pic its kth centrol moment, 

Pic = E[(X - p)Ic]. (9) 

For a normal distribution '11 '12 O. From its definition we can see that the skewness provides 

information on the asymmetry of the distribution function around the mean p, '11 > 0 implying a 

slower decrease of the curve on the positive side. The kurtosis is a measure of the "peakedness" 

of the distribution function. If '12 > 0 a distribution is implied that is more peaked than the 

normal distribution. However, since most distributions differ a lot from the shape of the normal 

distribution, the significance of the kurtosis should not be taken too literally. 

Estimates of the average and the standard deviation are obtained from the sets {Ail (i = 
1, ... , L) by 

L Ai O'(A) = {(Ai - A)2}1/2 (10)A=LL' (L - 1) ,
i=l 

while the skewness and kurtosis are estimated from 

'11(A) = _1_ ~ (Ai - 71)3 '12(A) _1_ ~ (Ai - .:;1)4 (11)0'(A)3 ~ r , 0'(A)4 ~--
1=1 1=1 

The values of the mean, standard deviation, skewness and kurtosis of the various quantities are 

presented in several tables. In addition to the determination of these four characteristics of the 

distribution functions also histograms are plotted. In this way a good qUalitative idea of the 

underlying distribution functions can be obtained. These histograms are presented in several figures. 

They contain the data on one complete foam of 1000 cells. Except for the histograms concerning 

integer and discrete quantities the plots are constructed by binning the data such that each interval 

contains the same number of points. The bin width is equal to the difference between the largest 

and the smallest value of any point contained in it. The height of the histogram at each bin is 

equal to the relative frequency and is determined from 

ni 
(12)Ii Lbi ' 

with nj the number of points in the itk bin, L the total number of points contained in thee set, and 

bi the width of the itk bin. If the number of points per bin is chosen carefully this procedure gives 

proper resolution and a constant scatter per bin. In the case of the histograms concerning integer 
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and discrete quantities, like the number of vertices per cell and number of walls per cell, each bin 

just represents the normalized count of points with that (discrete and integer) value. Normalized 

in this sense means that the area of the histogram is 1.0. 

Two final notes concern the uncertainty in the estimated quantities and the units in which 

the quantities are expressed. Estimates of the uncertainties in the various statistical quantities are 

obtained by generating M = 4 different realizations of nuclei distributions. This is done for the 

correlated and the anticorrelated nucleus distribution, as well as for the Poisson nucleus distribution. 

Since the only relevant distance in the tessellations is the mean distance between the generating 

nuclei, A n-I / 3 (n the number density of nuclei), all the quantities involving a dimension are 

expressed in units of the mean distance. All lengths are therefore divided by a factor A, all areas 

by a factor A2, and all volumes by a factor A3. 

4.3 Qualitative behaviour of the derived quantities 

Defore we start with the properties of the cells, walls, and edges we wish to discuss briefly the 

number density of these objects as well as of vertices. As stated before we mean with number 

density the ratio of the number of objects in the tessellation to the number of nuclei generating 

that tessellation. In the first four rows of table 4a, 4b and 4c one finds the number density of 

vertices, edges, walls, and cells (which by definition is always one since a cell is generated by 

exactly one nucleus). Although there are some differences between these number densities in the 

case of anticorrelated, Poissonian, and correlated nuclei distributions respectively, these differences 

are relatively small. Consequently, number densities are not very indicative of the underlying 

nucleus distribution. 

In figure 7 through figure 10 histograms of the distribution functions of the various tessellation 

properties are shown. Each figure consists of three parts, (a), (b) and (c). The (a) figures contain the 

distribution functions of the properties of a Voronoi tessellation generated by Poissonian distributed 

nuclei, while (b) contains the corresponding distribution functions for anticorrelated nuclei, and (c) 

for correlated nuclei. One should keep in mind that while the abscissa axis has always the same 

scale, the ordinate axis automatically scales with the height of the distribution function. 

Figures 7a, b, and c contain the histograms of the 1) volume of a Voronoi cell, 2) surface 

area of a Voronoi cell, 3) perimeter of a cell, 4) form factor of a cell, 5) number of walls per cell, 

and 6) number of vertices per cell. Since the corresponding histograms in (a), (b) and (c) differ 

considerably in shape these general Voronoi cell properties are relatively sensitive to the underlying 

nucleus distribution. One clearly sees the broadening in comparison to the Poissonian case of the 

histograms in the correlated case, and the narrowing of the histograms in the anticorrelated case. 

This behaviour is to be expected since a more correlated nucleus distribution will lead to a larger 

diversity of cells (in both shape and size). On the other side, an anticorrelated distribution will 

lead to a more crystalline cell structure so that the cells will more and more resemble each other in 

both size and shape. A very striking histogram is the one on the number of vertices per cell, where 

one dearly sees that only even values of that (integer) quantity occur. This can be explained by 
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invoking the Euler relation, equation (2). Since a Voronoi polyhedron has three edges emerging 

from every vertex on its surface, and each edge is bounded by two vertices, the relation between the 

number of edges of the polyhderon, Nit and the number of vertices per polyhedron, No, is given 

by NI = iNo. Inserting this relation into the Euler relation (eq. 8) we infer that 

No = 2(N2 ­ 2). (13) 

Since the integer N2 1 is multiplied by 2, No will always be an even integer. This is what is 

observed in figure 7. 

An interesting issue is the correlation between the various properties whose histograms are 

shown in figure 7. Probably the most informative way of doing this is by means of scatter plots, 

in which for each cell one property of the cell is plotted against the other. Hereby it is useful to 

look at the relationship between quantities whose possible dependence cannot be due to a common 

dependence on the size of the cell, as is the case with e.g. the volume and the surface are of a cell. 

At least one of the quantities to be compared should therefore be independent of the size of the 

cell. Figure 8 shows four scatter plots of quantities whose correlation is not a priori clear, namely 

1. volume "cell against form factor Fee'" 

2. volume Veell against the number of walls N2, 

3. volume Veell against the number of vertices No, 

4. form factor Fee" against number of walls N2 • 

The difference in scatter between the different nuclei distributions is quite clear. In the anticorre­

lated case the points in all four scatter plots are concentrated in a relatively small area. This area 

increases in size as the underlying nucleus distribution becomes more correlated. Especially the 

plot of the volume against the form factor is interesting. It shows that the volumes and the shapes 

of the cells in the tessellation in the anticorrelated case occupy a small range of values. On the other 

hand, the correlated case shows an enormous diversity with a relatively weak correlation between 

the volume of the cell and the the shape of the cell. In the case of the Poissonian and anticorrelated 

nuclei distributions larger cells evidently tend to have a higher form factor. Larger cells therefore 

tend to have a more spherical shape. Similar conclusions can be drawn from the scatter plots of 

the volume against the number of walls and the volume against the number of vertices. In all these 

cases a systematic trend of more vertices and walls as the cells get larger can easily be discerned. 

On the other hand, the correlation between the shape and the number of walls is not that strong. 

There is a slight tendency of more regular cells to have a higher number of walls. This tendency is 

quite strong in the correlated case, but in the Poissonian and in the anticorrelated case it is weak. 

In Tables 4a through 4c, the fourth till the tenth row contains the average, standard deviation, 

skewness and kurtosis of seven cell properties together with an error estimate determined from four 

different realisations. From these tables it is evident that the expectation values of the various 

cell properties are not very sensitive to the underlying nucleus distribution. On the other hand, 

the standard deviation varies considerably as a function of the nucleus distribution. Likewise, the 

skewness and the kurtosis show considerable variation, although less strong. 
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Continuing with the properties of the walls we turn to figure 9. This figure presents the 

hi~tograms of 1) the area of a Voronoi wall, 2) the perimeter of a Voronoi wall, 3) the distance 

nucleus-wall, 4) the volume nucleus-wall, 5) the form factor of the wall, and 6) the number ofvertices 

per wall. It is quite remarkable that the difference between the histograms of the Poissonian (a), 
anticorrelated (b) and correlated (c) case is not that large. This implies that the properties of 

Voronoi walls are less sensitive to the underlying nucleus distribution than the properties of the 

complete Voronoi cells that were discussed above. The largest difference is the one between the 
anticorrelated case on the one hand, and the Poissonian and correlated case on the other. Especially 

noticeable is the relatively strong resemblance between the distributions of the area of the walls. 
The most sensitive quantities are the Ildistance nucleus-wall" and the Ilvolume nucleus-wall". Notice 

the conspicuous bimodal distribution of the "volume nucleus-wall" in the anticorrelated case, as well 

as the cutoff in the distribution of the distance nucleus-wall. The latter is due to the fact that no 

two nuclei are closer than 0.8 times the mean distance between two nuclei. The difference in shape 

between the walls of the anticorrelated case on the one hand and the correlated and Poissonian 
case on the other, is also quite conspicuous. However, it is striking that the shape distribution in 

the correlated and the Poissonian case are nearly the same. 

Also remarkable is that both the distribution function of the area of a wall as we)) as that 

of the volume nucleus-wall in all three cases diverges when that quantity approaches zero. This 

behaviour is partially reflected in the non-zero value of the perimeter distribution function when 

the perimeter approaches zero. This is true for all three nuclei distributions. This is totally unlike 

the behaviour of the distribution functions of the cell properties as shown in the histograms in Fig. 

7a, b, and c. The implication of this behaviour is that the tessellation contains a lot of very small 
walls (small area, small perimeter and small volume nucleus-wall), while it does not contain a lot 

of small cells. 

In table 4a through 4c the 12th till the 17th row tabulate the average, standard deviation, the 

skewness and the kurtosis of the six wall quantities. Interesting is that in this case not only the mean 

is rather insensitive to the nucleus distribution, but that also the standard deviation is relatively 

insensitive. Exceptions are the standard deviation of the "distance nucleus-wall" and the Ilvolume 

nucleus-wall". This could already be concluded by looking at the histograms of these quantities. 

On the other hand, it is interesting to notice that the skewness of the correspondi~g quantities 
does show far more variation. It may therefore be concluded that the distribution functions of wall 

properties start to show reasonable differences in the third-order moment. This is ~nHke the cell 

properties, which already show considerable differences in the second-order moment. 

Finally, we turn towards some other important properties of the Voronoi tessellation, namely 

the length of the edges in the tessellation, and the angle between any two wans that share an edge, 

as well as the angle between any two edges that share a vertex. In the case of the histogram on 

the length of the edges in Fig. lOa, lOb and IOc a significant difference between the anticorrelated 
case and the correlated and Poissonian case can easily be discerned. As in the case of the walls 

the histograms of the length of the edges are biased towards small edge lengths. Interesting is 

that the distribution function in the anticorrelated case is nearly flat for small edges. Studying the 
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corresponding row in table 4a through 4b one sees that just as in the case of the wall properties 

one needs to look at the skewness of the distributions to see large differences between the different 
cases. Larger differences can be seen in the case of the angles, both between walls and edges. 

This is in agreement with the conclusion of IW (1987) that angles between edges in a 2-D Voronoi 
tessellation are the most sensitive quantity to the underlying nucleus distribution. Fig. lOa through 

10c clearly show the large difference between the histograms of the angle between edges. The 
distribution function in the anticorrelated case is evidently narrower than the Poissonian case, 
while the correlated case has a broader distribution function. This behaviour should be reflected 

clearly in the kurtosis, as is confirmed by the corresponding row of table 4a through 4c. Although 

not as clear this behaviour can also be seen in the case of the angles between the walls. The last 

two rows in table 4a through 4c also show that the standard deviation of both the angle between 

the edges and the angle between the walls is very sensitive to the underlying nucleus distribution. 
They therefore form an ideal instrument for determining the nucleus distribution, in particular 

because they are dimensionless quantities. 

The general conclusion from this subsection is that the properties of the cells in a Voronoi 

tessellation, as well as the angles between edges and between walls, are quite good indicators of 
the distribution of the generating nuclei. On the other hand, the properties of the walls are far less 

sensitive. Although perhaps a dangerous extrapolation, these results may imply that in general for 

cell structures the walls are not very good indicators of the underlying generating process, while 

the cells themselves are. Thus, if the galaxy distribution resembles a cellular structure - of which 

a Voronoi tessellation is just a specific model - this means that the walls (or pancakes) in the 

galaxy distribution are not as useful in studying the underlying spectrum offl.uctuations as e.g. the 

voids in the galaxy distribution. 

S. Planar sections through 3-D Voronoi tessellations 

One of the most interesting fields in stochastic geometry is stereology. The objective of stereology 
is to infer information about the geometrical properties of multi-dimensional structure when infor­

mation is only available in some lower-dimensional form via planar sections, such as slices through 

mineral material, projections of thick slices, foils or sheets studied by light or electron microscopy, 

or linear probes, such as might arise in biopsy. The step from spatial structures to their sections 

involves a great loss of information and so stereological methods commonly yield only 'global' in­

formation of a statistical character. A further consequence of this loss of information is that many 

of the applications require the solution of ill-posed mathematical problems: numerical problems 

in which small deviations due to measurement error can lead to large discrepancies in the final 

solution. 

Applications of stereology arise in the study of geometrical structure of inclusions or pores in 
opaque bodies such as metals, minerals, synthetic materials, or biological tissues; in these cases 

the available information must come from linear probes or planar sections. Projection methods are 
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applied in X-ray analysis and in computerized tomography. In a cosmological context stereology 

also promises to be an important instrument since the deepest galaxy redshift surveys, from which 

we hope to learn more about the largest structures in the Universe, are confined either to two 

dimensions ("slices") or to one dimension ("pencil beam surveys"). From these surveys we hope to 

infer information about the actual three-dimensional structure of the galaxy distribution. 

The first question for statistical work in stereology is how randomness enters the problem, or, 

stated in another way, what is meant with random. This question was systematically discussed in 

the now classic paper by Miles (1978). Principally, there are two main answers which are related 

to the notions of "design approach" and "model approach". In the design approach it is assumed 

that the structure under study is deterministic while the sampling is random. In the case of planar 

sections, for example, a usual assumption is that the section planes behave like members of a 

Poisson plane process. By using independent and uniform objects the design approach is very close 

to classical ideas of geometrical probability; its main tool is integral geometry. The design approach 

is the one often taken for biological and medical problems: the objects, such as human organs, are 

typically unique and inhomogeneous. In the model approach the structure studied is random. Often 

it is assumed that it is a sample of a stationary and isotropic process. Typically, the section plane 

is assumed to be the (x,y)-plane. This approach is natural for many situations in materials science. 

Important mathematical tools of the model approach are marked point processes, random measures 

and random sets. The resulting formulae are generally similar for both approaches, differing only 

in the statistical theory and underlying interpretation. 

llistorically Delesse (1841) and Rosiwal (1898) were probably the first to work in the spirit of 

stereology. They recognized that under certain assumptions the volume fraction of a component in 

a body equals the area or linear fraction in a planar or linear section. Wicksell (1925,1926) solved 

the problem of inferring the size distribution for systems of spheres given planar sections, leading 

to an Abel integral equation. However, because of its nature of an ill-posed problem it causes 

great numerical difficulties. The great importance of the subject has been reflected in a vast and 

flourishing literature. A good, but compact, overview of the subject is given in the book by Stoyan, 

Kendall and Mecke (1987). The random section approach is described in detail in the papers of 

Miles and Davy (1971), Miles (1978), and Jensen (1984). The two main textbooks in the field are 

the one by Weibel (1980) and the one by Serra (1982). 

In this section we are naturally interested in the stereology of "dense random packings" of 

objects, specifically tessellations of polyhedra. While the case of the stereology of spheres is still 

somewhat analytically tractable, the case of polyhedral objects is very complicated. This will be 

appreciated immediately if one considers that the shape of an intersection figure varies considerably 

depending on the plane of intersection. For example for a cube the intersection profiles can be 

polygons with three, four, five, or six sides. A general stereological theory for tessellations does 

not exist. However, for the specific case of the Voronoi tessellation there is a stereological theory, 

i.e. stereological mean value formulae exist in the case of a stationary Poisson process, that make 

it possible to estimate the spatial cell centre density from planar sections. Analytically known 

stereological formulae of sections through both 2·D and 3-D Poisson Voronoi tessellations were 
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already presented in section 2, with table 2 containing some known moments oflinear sections and 

table 3 containing known moments of planar sections. In this respect it may be interesting to realize 

that a planar section through a 3- D Voronoi tessellation is itself not a 2-D Voronoi tessellation. This 

observation was realized and proved by Van de Weygaert (1991b). For further knowledge about the 

stereology of Voronoi tessellations one has to resort to Monte Carlo methods, both for most of the 

stereological properties of Poisson-Voronoi tessellations as wen as for nearly all the properties of 
sections through Voronoi tessellations generated by non-Poissonian nuclei distributions. We studied 

the stereological properties of Voronoi tessellations using the Monte Carlo simulations described in 

section 4. 

5.1 The determination or planar sections 

Planar sections are studied in this section, linear ones in the next one. In particular interesting 

is the relationship between either the planar section or the linear section on one side and the 

"parent" 3-D Voronoi tessellation on the other side. These results may give some insight in what 

the "slice" and "pencil beam" galaxy redshift surveys can tell about the spatial galaxy distribution 

if it is indeed cellular, as implied by the observations carried out during the past decade. 

Planar sections that are calculated as follows. The 3-D tessellation of 1000 cells is taken as 

the starting point. Since we are following the "model approach", the section planes are taken 

parallel to the (x, y) plane. The section planes can therefore be characterized by one parameter: 

its z-value. Given the section plane, we determine of every polyhedral cell in the 3-D tessellation 

whether the section plane cuts through it. This can be done relatively easily, by checking the list 

of the vertices belonging to that cell. If any of these vertices is on the other side of the plane than 

the nucleus of the cell we know that the cell has been cut in two parts by the section plane. If the 

cell is not cut we can proceed with checking the following cell. If it is, we have to determine the 

resulting two-dimensional polygon. This is done by applying the following procedure to every wall 

of the Voronoi polyhedron. During the Voronoi tessellation construction procedure (section 3) the 

vertices characterizing each Voronoi wall are sorted in geometrical order. Each pair of consecutive 

vertices defines an edge, each edge forming a part of the wall boundary_ Of each edge we determine 

whether it has a crossing point with the section plane. This is the case when the two vertices at its 

tips are on opposite sides of the section plane. The crossing point of such an edge with the section 

plane is one of the vertices of the section polygon that forms the section of the 3-D Voronoi cell 

with the section plane. Notice that when a 3-D Voronoi wall is cut by the section plane it will have 

two edges that cross the section plane, so that it will give two section vertices. Repeating this for 

all the walls of the Voronoi polyhedron results in a list of section vertices. After ordering them 

these define the structure of the section polygon. Carrying out this process for all the cells in the 

3-D Voronoi foam will then lead to the complete structure of the planar section. Because the 3-D 

Voronoi foam in our calculation is periodic, every planar section of that foam is also periodic. 

Figure lla, b, and c each show 6 section planes through each of the studied Voronoi foams. 

The number below each square is the z·value of the section plane. The 6 section planes are taken 
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at steps of Az 5. Since the mean distance between the nuclei in the 3·D foam is 10.0, this means 

that the same cells can appear in several section planes. The section tessellations are therefore not 

independent. The "regularity" of the sectional tessellation is evidently related to the correlation of 

the underlying nucleus distribution. The most regular tessellation corresponds to the anticorrelated 
case, the most irregular tessellation to the correlated case. These planar sections also give a good 

idea of the corresponding 3·D Voronoi tessellation of 1000 cells, in particular when one shows several 

different section planes through the same 3·D tessellation. 

5.2 Quantities derived from the Monte Carlo simulations 

For both the correlated, the Poissonian and anticorrelated nuclei distributions 20 planar sections 

are calculated through the corresponding Voronoi foams of 1000 cells. The data on these 20 planar 
sections are further analyzed statistically. Since the 20 planar sections are taken from just one 

realization, no objective errorestimates based on different realisations of the same statistical process 

can be made. 

In the case of these two-dimensional tessellations there are two entities whose geometrical 

properties can be analyzed statistically: the cells and the edges. Accordingly, the analysis of the 

2-D foams was splitted into two parts, the analysis of the characteristic properties of the cells and 

of some general properties, including the properties of the edges. 

The following properties of the sectional 2-D cells were determined: 

a. the area of the cell, A~ell' 

b. the perimeter of the cell, S:ell' 

c. the form factor of the cell, F:dl • 

d. the number of vertices per cell, NJ. 
The perimeter of the cell is just the sum of the lengths of the edges surrounding the polygon, while 

the form factor F ofthe sectional cell is defined as for the 3·D Voronoi wall in equation (6). 

In addition to the geometrical properties of the cells some more properties of the sectional tessel­

lation were considered. Since they concern a wide range of characteristics of the 2-D tessellation, 

we list them together: 

a. number density of cells, Jl , 
b. number density of vertices, J~, 

c. number density of edges, Jt, 
d. length of edge, P, 

e. angle between edges that cross, o!e, 

f. angle between walls-section plane, 0:U",. 
The number density of 2-D cells is defined as the number of 2-D sectional cells per unit area. Since 

the dimensions are normalized sl\ch that one has exactly one nucleus per unit volume, so that the 
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total volume of the box with K nudei is K, the section plane has size K'l/3 in the case the K nudei 

are distributed in a box. Consequently, the number density of 2-D cells is simply the ratio of the 
number of 2-D cells in the section plane to the number of nudei in the tessellation to the power 

2/3. The definitions of the number density of the vertices and the number density of the edges are 
similar. The "angle between edges" of the 2-D sectional tessellation is the angle between any two 

edges that have a common vertex. In a planar tessellation three edges meet at one vertex, so that 

one vertex gives three angles. The "angle between walls·section plane" is the angle that the section 

plane makes with any of the walls of the tessellation that are cut by the section plane. 

The subsequent statistical analysis of all the quantities is exactly similar as the one described in 

the former section. 

5.3 Qualitative behaviour of the derived quantities 

We first briefly discuss the number density of the cells, edges and vertices in the planar section. In 

the first three rows of table 5a, 5b, and 5c. From the 20 different section planes through each foam 

estimates of the standard deviation, skewness and kurtosis of the number densities are obtained. 

Evidently, the expectation values of these quantities do not vary a lot as function of the underlying 

distribution of nuclei. On the other hand, the standard deviation appears to be very sensitive, 

whereby the difference between the correlated case on the one hand, and the anticorrelated and 

the Poissonian case on the other is quite significant. This is quite striking because in most other 
properties the Poissonian case resembles the correlated one more than it does the anticorrelated 

case. Also the skewness of the correlated case is rather dissimilar from the other two cases, while 

on the other side the kurtosis is more different for the anticorrelated case. 

The histograms of the area of a sectional cell, perimeter of a sectional cell, form factor of a 

sectional cell, and number of vertices per cell are shown in figure 12. Striking is the behaviour of 

the area of the sectional cells. Its distribution function seems to diverge for very small areas in 

the case of the correlated, Poissonian, and anticorrelated case. This is unlike the distribution of 

volumes of the 3-D Voronoi cells, and implies that planar sections have a relatively high percentage 

of very small cells. In addition the area distribution function shows a bimodal behaviour in the case 

of Poissonian and anticorrelated nuclei. This bimodal character consists of a peak at small areas 

and a far broader peak at larger values of the cell area. Finally it falls gradually off to zero towards 

very large areas. In the correlated case this bimodality is absent, and the area distribution function 

consists merely of a monotonous decline towards large areas. The small cells clearly dominate in 

that case. The planar sections in figure 11 clearly illustrate this behaviour. Also the perimeter of 

the cells shows a clearly different behaviour in the correlated, Poissonian, and anticorrelated case. 

While the perimeter distribution function is fairly broad in the correlated case, it is rather narrow 

in the anticorrelated case. The Poissonian case is more or less an intermediate case. Interesting 

is that the distribution function does not drop off towards zero when the perimeter approaches 

zero. The effect is smaller though than in the case of the 3-D Voronoi walls in the 3·D "parent" 
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t~ssellation (compare with fig. 9). There appears to be a reasonable qualitative resemblance of 

the distribution functions of the section cells to those of the 3-D Voronoi walls (not cells). In 
particular the distribution of the form factor and the number of vertices, and in a weaker sense 

of the perimeter are good examples. The exception is the distribution function of the area of the 
cells, which shows a bimodal behaviour in the case of the section cells that is totally absent in the 

distribution of the 3-D walls. Since this is totally unlike the distribution function of the volume 
of the Voronoi cells in figure 7 (see former section), we can already conclude that it is not trivial 

to extract information on the 3-D volume distribution from the area distribution of the planar 

section cells. Table 5a through 5c show that the mean and standard deviation of the number of 

vertices per wall, the area of a cell, the perimeter of a cell, and the form factor of a cell are rather 

insensitive to the underlying distribution of nuclei. Significant differences show up in the skewness 
and the kurtosis of these quantities. The section cells have a systematically higher form factor than 

the Voronoi walls in the corresponding Voronoi foams. This implies that the section cells have a 
somewhat more regular shape than the Voronoi walls. 

Figure 13 shows histograms of three other properties, the lengths of the edges, the angle between 

edges and the angle between the section plane and the sectioned Voronoi walls. The distribution 
function of the section edge lengths shows the same qualitative behaviour as the distribution func­

tion of the lengths of the edges in the corresponding 3-D Voronoi foam (see fig. 10). A detailed 

comparison shows that there are some minor differences. The foam edge distribution, for example, 

has a larger fraction of smaller edges, while the decline of the distribution function towards larger 

edge lenghts is slower than in the case of the section edges. In the anticorrelated case the section 

edge length distribution function displays a plateau at small edges. This could also be observed in 

the distribution function of the 3-D edge lengths in the corresponding Voronoi foam. The plateau 

for the section edges is even flatter and extends over a larger range than for the 3-D foam edges. 

As in the case of the cell properties the average and the standard deviation do not vary much as 

a function of the underlying nucleus distribution, while the skewness and the kurtosis do. This is 
clearly born out by the corresponding row in table 5. 

The angle between any two crossing section edges shows a behaviour that is remarkably similar 
to the one ofthe angle distribution function in the case oftwo-dimensional Voronoi tessellations (see 

IW). As expected the distribution function for the correlated case is broader than in the Poissonian 
case, while it is sharper in the anticorrelated case. This is reflected in the estimates of the kurtosis 

in the 5th column, 9th row of Table 5a, 5b and 5c respectively. From the same tables it can also be 

inferred that the standard deviation is reasonably sensitive to the nucleus distribution. Remarkable 

behaviour is displayed by the distribution function of the angles between the walls and the section 

planes. The distribution functions In the correlated, Poisson ian and anticorrelated cases are all 
approximately the same, as can be seen from both the histograms and the last row of tables 5a, 5b, 

and 5c. Average, standard deviation, skewness and kurtosis agree with each other. This behaviour 
can be understood from the fact that the Voronoi walls apparently have an isotropic distribution 

in 3- D space. By this we mean that the normal vectors of these walls display an isotropic angular 

distribution, independent of the nucleus distribution. From this we can also explain the shape of 
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the distribution function of the angle between the walls and the section plane. Walls that are nearly 
perpendicular to the slice plane have a far higher chance of being hit than walls that hit at a very 
small angle. The frequency of the perpendicularly crossing planes amongst the sectioned planes is 

therefore also very high. The detailed behaviour, however, is not yet explained by this. Naively 
a "sin a" behaviour would be expected, whereby a is the angle between the wall and the section 

plane. Clearly, the frequency of lower angles is much less than that. Presumably a more detailed 

explanation involving geometrical factors is needed to explain the complete behaviour. 

To investigate more extensively the point which was made earlier that it is not trivial to extract 

the 3-D volume distribution from the area distribution of the 2-D section cells, figure 13 also shows 
scatter plots of the area of the 2-D section cells against the volume of the parent cell. In both 

the correlated and the Poissonian case a lot of scatter is seen, although there are some systematic 

trends. Such a systematic trend is the fact that larger areas correspond to larger cells. On the 

other hand, small areas can correspond to both large and small volumes. In the anticorrelated case 
this is even more apparent. In that case all the points in the scatter diagram are concentrated in a 

narrow band nearly parallel to the area-axis. Only for large areas it starts to bend towards larger 

volumes. It would therefore be nearly impossible in this case to infer anything about the 3-D cell 

volume distribution, with the possible exception of the largest volumes. 

6. Linear sections through 3-D Voronoi tessellations 

The linear section through the 3-D tessellation is made by a 'chord' (line), characterized by some 

starting point and direction. The starting point of the chord can have any position inside the sim­
ulation box. The results presented in this section are based on calculations with random positions 

of the starting point and an isotropically distributed direction. The lenght of the chord is equal to 

the length of the edge of the box in all cases. 

The "linear section procedure" starts with the determination of the nucleus which is closest to 

the starting point of the chord. By definition, the starting point will be situated in the Voronoi 

cell of that nucleus. Subsequently, the wall through which the chord pierces before entering the 

next Voronoi cell is determined. This procedure is repeated by calculating through which wall on 

the other side of the new Voronoi cell the chord pierces. At first one divides the set of neighbour 

nuclei, i.e. the ones with whom the present cell shares a wall, into two subsets. This division is 

based on the intersection of the bisecting plane defined by the current nucleus and the neighbouring 
nucleus with the Jine along the chord. If this intersection point lies in the direction opposite to the 

chord's the neighbour belongs to the subset which is discarded from further consideration. This is 

the case when the the angle of the chord direction with the connecting line between the neighbour 

and the current nucleus is larger than 90°. The other subset consists of the neighbours that give 

intersection points in the direction of the chord. Of the latter subset the intersection point with the 
smallest distance to the starting point of the chord is selected. The corresponding bisecting plane 

is the first plane to be crossed by the section chord. In fact, the intersection point is situated in the 
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cQrresponding Voronoi wall. The Voronoi wall is the part of the bisecting plane that is part of the 

boundary of the Voronoi cell. This is obvious, since the crossing point cannot be closer to any other 

nucleus unless it would have hit another bisecting plane first. The Voronoi cell of the neighbour 

nucleus with whom the present nucleus shares this bisecting plane is the next cell that is entered 

by the chord. This procedure is repeated until a crossing point is found that is at a larger distance 

from the starting point of the chord than the specified length of the chord. The information on 

the linear section is stored in the form of an ordered list of distances to the starting point of the 

chord, a list of the angles between the walls which are crossed by the chord and the chord itself, 

and finally a list of angles between walls on opposite sides of each edge of the linear section. 

6.1 Quantities determined in the Monte Carlo simulations 

The quantities which are determined for the linear sections are, 

a. the section edge length, A, 

b. the section edge length dispersion, o(A>, 

c. the angle wall - line of sight, Q~" 

d. the angle between adjacent walls that cross, Q~w' 

The section edge length is the length of any edge in the linear section. This is the distance between 

two consecutive crossing points on the section chord. The "angle wall-line of sight" is the angle 

between any of the walls that is crossed by the section chord and the chord itself. The "angle 

between adjacent walls" is the angle between two walls corresponding to two consecutive crossing 

points. In other words, this is the angle between two walls on opposite sides of a section edge. These 

quantities are all determined with a view towards the practical application to narrow-angle deep 

galaxy redshift surveys ("pencil beam surveys") and their possible significance for the existence of 

cellular structures. The first quantity one is interested in in that case is the distribution of the 

distances between two crossings through cell walls, i.e. section edge lengths. Nearly as interesting, 

however, are the angles under which the Voronoi cell walls are hit ("angle wall-line of sight"). In 

addition, the correlation with the edge length is potentially interesting because of the question 

whether large edge lengths correspond to other angles than small edges. Likewise, the angles 

between walls on opposite sides of the edges are interesting because they provide information on 

how often two walls are aligned. All these quantities have been determined by taking 2500 different, 

randomly chosen, chords or "lines of sight" through a Voronoi foam of 1000 cells and calculating 

the corresponding linear sections. 

The remaining quantity, the edge length dispersion, has been determined with the recent claims 

of quasi-periodicity in deep redshift surveys in mind. Periodicity implies that along a line of sight 

the spacing between all two crossings on that line of sight is approximately equal. Accordingly, of 

10000 lines of sight the sections have been determined. Each of these lines give some 12-18 section 

edges. For each line of sight the standard deviation is determined from that resulting sample of 

some 12-18 edge lengths. This produces 10000 "edge length dispersions". This number is sufficient 
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for a good statistical analysis in the form of e.g. a histogram. The probability of having a very 

small edge length dispersion can be easily inferred from the 10000 data. This is essentially the 

probability of "periodicity" along a line of sight. We should keep in mind, however, that this is a 

purely geometrical approach, and that the details of the problem might also depend on the small 

scale clustering involved. 

6.2 Qualitative behaviour of the derived quantities 

Quantitative results of the linear section Monte Carlo study are presented in table 6 (a, band 

c). This table presents the average, standard deviation, skewness and kurtosis of the considered 

quantities. Figure 14 (a,b and c) contains histograms of the same quantities while figure 15 presents 

scatter diagrams between some of the considered quantities. As usual (a) corresponds to the Pois­

sonian nucleus distribution, (b) to the anticorrelated nucleus distribution and (c) to the correlated 

nucleus distribution. 

The histogram of the edge length distribution in figure 14a, b, and c show that the distribution 

function varies considerably as a function of the underlying nucleus distribution. The histogram 

in the Poissonian case agrees very well with the curve that Ikeuchi and Turner (1991) derived by 

numerical integration of an analytically derived differential equation. Such an equation can only 

be derived for the Poissonian case. It is striking that the distribution function peaks at some finite, 

relatively large edge length in both the Poissonian and anticorrelated case. The peak is far broader 

and has a lower amplitude in the correlated case. This seems to point to a systematic behaviour of 

a peak getting sharper from correlated towards anticorrelated nuclei distributions. In addition, the 

edge length corresponding to the peak shifts towards higher value when the nucleus distribution 

becomes more anticorrelated. The decline towards zero towards large edge lengths is also steeper 

for more anticorrelated nucleus distributions. Interesting is alos that the distribution function is 

non-zero for small edge lengths. Consequently, there will be a lot of short edges that seriously 

decrease the chance on periodicity. That the probability of true periodicity in all three cases is 

truly small is evident from the histograms of the edge length dispersion. The dispersion distribution 

function peaks at a finite edge length value while it is zero for the small values that correspond 

to periodicity. The conclusion that periodicity is intrinsically absent in the 3-D Voronoi foams, 

i.e. in a geometric sense, seems to be inescapable. Table 6 shows that the distribution function of 

the edge length dispersion differs mainly in the skewness and the kurtosis, while the mean and the 

standard deviation are quite similar. The same behaviour is displayed by the general edge length 

distribution. The angle between the wall and the line of sight has practically the same distribution 

in the case of correlated, Poissonian and anticorrelated nuclei distributions, as can be seen from 

the histograms and table 6. The fact that the distribution function at 90° is virtually zero implies 

that the chance of a face-on hit by the line of sight is rather small. Clear differences between the 

different cases of nuclei distributions, however, show up in the alignment of the walls at opposite 

ends of the edge, quantified by the angle between adjacent walls. All three histograms peak in 

the neighbourhood of 75°. However, the peak-angle is shifting towards smaller values as the nuclei 
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distribution gets more correlated. This also leads to a change in the nature of the asymmetry from 

more small angles to more large angles as one goes from the anticorrelated to the correlated nucleus 

distribution. This is clearly quantified by the corresponding kurtosis in table 6. 

In Fig. 15a. band c four scatter plots are shown, containing the following quantities: 

a. section edge-length against next section edge-length. 

b. section edge-length against volume of cell that is being sectioned. 

c. section edge-length against the angle wall-line of sight. 

d. section edge-length against angle between adjacent walls, 

The first scatter plot. edge length against next edge length tells whether two adjacent edge lengths 

are correlated, Le. whether the presence of a large edge length says anything about the next edge 

length. This is an important property to check since the statistical analysis of for example the 

probability of periodicity through a Voronoi foam is considerably simplified if such a correlation 

does not exist. In that case the standard deviation of the edge length distribution is enough to 
make reliable estimates of the chance of a regular behaviour along a linear section consisting of 

M edges. This was done by Coles (1990). although he did not check whether there were actually 

correlations between adjacent edge lengths. The corresponding scatter diagrams in Fig. 15a, band 
c seem to confirm that there are indeed no correlations. In itself this may be considered rather 

surprising, since it implies that if one has a large edge length in a linear section this does not yield 
information on the length of the next edge. 

As in the case of the planar sections it is interesting and important to know what information 

the linear section edge length distribution contains about the distribution of the volumes of the 

complete 3-D cells. The second scatter plot of section edge length against volume of the parent cell 

shows the same qualitative behaviour as in the case of the planar sections. The scatter is even larger 

than in that case. It will therefore be very hard to infer a reasonable amount of information on the 

volume distribution of the 3-D cells from the distribution of the edge lengths. In the case of the 

correlated and Poissonian nuclei distribution more systematic behaviour can be discerned. Large 

edge lengths are only produced by large cells, as the scatter plot bends away towards larger volumes 

for large edge lengths. Only a very weak indication for such behaviour is seen in the anticorrelated 

case. Most points are concentrated in a thick horizontal band that shows some signs of a systematic 

bending towards large volumes when the edge lengths become large. It will therefore be even more 

difficult in the anticorrelated case to infer the 3-D cell volume distribution. 

Real systematic behaviour is displayed by the two scatter plots of the angles against the section 
edge length. In the case of the angle between the wall and the line of sight against the section edge 

length all three cases show that larger edge lengths imply a more face-on hit by the line of sight. 

This effect gets stronger when the nuclei get more anticorrelated. This may not be so surprising 

beca.use large edge lengths will nearly always be the consequence of the line of sight passing through 
the center of a cell. In that case the line of sight is expected to hit a wall more or less face-on 

upon entering a cell. Really striking is the scatter plot of the section edge length against the angle 

between adjacent walls. A clear band runs form large angles to sJllall angles as we go from small 
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edgees towards large edges. This effect gets clearly stronger when the nuclei distribution is more 

anticorrelated. This implies that the walls at the ends of large edges are almost aligned. This must 
be due to the same effect as described above, namely that the line of sight hits these walls face-on 
when it passes through the centre of the cell. The walls at the opposite side of the cell are then 

aligned with each other. On the other hand, the small edges result for a substantial part from the 

line of sight passing through the outer parts of a Voronoi cell. In these outer parts the ingoing and 
outgoing wall have a high probability of touching each other. From the section 4 we know that the 
angle between the walls in a 3-D foam has an average value of 1200 and is highly biased towards 

large angles. These large angles are therefore expected to occur at small section edge lengths. 

6.3 Planar and linear sections: some conclusions 

From the above results we conclude that a good and efficient way to study some properties of 
the underlying distribution is to study sections. However, one has to be very careful in the in­

terpretation of the results of these sections when trying to infer quantitative information on the 

corresponding three-dimensional structure. Some of the results and conclusions in the discussions 

in this section are therefore of importance in the interpretation of the "slice" and "pencil- beam" 

galaxy redshift surveys and in answering the question of the possible existence of a cellular struc­

ture in the distribution of galaxies. The general contention should be that qualitative conclusions 

may be okay but that one should be very careful with quantitative conclusions. For instance, infer­

ring the distribution function of the volumes of voids in the galaxy distribution from slice redshift 
surveys is not feasible. 

We emphasize that the Voronoi foams are cell structures. Therefore thye represent some order­

ing in 3-D space. However, they do not show any sign of regularity. as was seen in the histogram 

of the linear section dispersion. It is important to keep this in mind when we use a Monte Carlo 

model within the context of the Voronoi tessellation for explaining the observed quasi-periodicity 

in pencil beam redshift surveys (Broadhurst et al. 1990; Van de Weyga.ert 1991a.b). It is certainly 
not 'what you put in you get out'. 

7. Summary and Discussion 

Observations over a period of more than a decade have shown that the galaxy distribution on 

large scales resembles a cellular structure, with voids playing a prominent role. A lot of work 

has been invested already in trying to understand the formation of this kind of structures by the 

growth of small density fluctuations in an almost homogeneous Universe under the influence of 

gravity. Models based on a hierarchical buildup of structure in the Universe seem to be particulary 
succesfull in explaining the structure from galaxy scales up to scales of groups and clusters. A lot 

is known about clustering in these hierarchical scenarios, since it involves tractable mathematical 
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p.roblems. They seem to fail, however, to explain cell-like or foam-like arrangement of matter, 

consisting of voids, filaments and walls. Not yet a lot of effort has been invested into a theoretical 

understanding of clustering within cell structures. The main problem is that a solid mathematical 

background on this subject is lacking. This is the reason for studying in detail the mathematical 

and computational foundations of a statistical geometrical model that can be considered as one 

of the best defined paradigms for a non-regular (non-crystalline) cellular structure, the Voronoi 

tessellation. Although one can expect it to have many useful applications in astrophysics, until 

recently this mathematical concept was not widely known. The beauty of the Voronoi tessellation 

is that although it is based on a simple definition it leads to a structure of great richness that as 

yet is still largely unexplored. 

In its cosmological context the Voronoi tessellation can be considered as the skeleton of a galaxy 

distribution. Such a skeleton would result from an idealized model of structure formation in the 

Universe dominated by the expansion of underdense regions in the matter distribution. Because 

there are no other disturbing effects involved such an idealization provides a lot of insight into the 

statistical properties of a cellular distribution of galaxies. In this way a better understanding of the 

systematics of cellular clustering can be obtained. This will be very useful when interpreting more 

complicated and realistic models of clustering. Since the observations teach us that such models 

should always contain a cellular galaxy distribution on large scales we know that this is important. 

The details, though, will certainly differ from the simple Voronoi model. 

The mai n emphasis of this paper has been on a systematic Monte Carlo study of the geometrical 

properties of Voronoi tessellations as a function of the generating nucleus distribution. In addition 

to providing us with insight into the information on the underlying physical processes contained in 

a cellular galaxy distribution, a further reason for this work was the fact that in the relevant math­

ematics literature not much is known about general Voronoi tessellations. The statistical results 

presented here can therefore also be considered as a relevant contribution to their understanding. 

Directly interesting in the cosmological context is the stereological study of the Voronoi tes­

sellations. This stereological study teaches us what we can learn about three-dimensional cellular 

structures from lower dimensional observations, such as planar and linear sections. Since the galaxy 

distribution is often studied by means of redshift surveys confined to "slices" or "pencil beams" this 

has immediate practical consequences. We found that once can indeed infer interesting qualitative 

results on the real 3-D distribution from lower-dimensional sections, but that one should be very 

skeptical about any quantitative results. 

Acknowledgements. 

During the finishing stage of this paper I received the sad news of the passing of Prof. JJI. Oort. 

Here I would like to express my gratitude for the many discussions and his constant interest and 

enthusiasm, in particular the early stages of this work; a greater support and encouragement 

is hardly imaginable. 

36 

I am most indebted to Vincent Icke, this work being the product of our year-long very instruc­

tive collaboration. I am grateful to him and to P.T. de Zeeuw for their assistance, comments and 

suggestions which were so essential in making this paper readable. It is also a pleasure to thank 

B. Jones for his encouragement, enthusiasm, advice and useful ideas. Very encouraging were the 

discussions with and remarks of Eleni Chatzichristou. Finally, I would like to thank D. Kendall for 

his interest in and advice about stochastic geometry, and J.D. Barrow for making available a copy 

of N. Ling's thesis. 

Appendix A. Finding a triangle with minimum circumradius 

Given a nucleus i and its closest neighbour, the nucleus i,)) a third nucleus ilJ has to be found 

such that the radius of the circumscribing circle of the triangle {i, io , ilJ} is minimal. The most 

straightforward way is to determine for each nucleus j E Si the centre of the circumscribing circle, 

followed by the determination of the radius of the circle. The point leading to the smallest radius 

is then the third nucleus ilJ. 1I0wever, we followed a less direct, but computationally advantageous, 

method. 

In ijgure At we have drawn a triangle {i, io , ilJ} with its circumscribing circle. The positions 

of i, io, and ilJ are Fi, Fa and FIJ respectively. The problem has three relevant parameters. The 

first one is d, the distance between i and io , which is fixed. The other two are 9, the angle between 

(ro - FIJ) and (Fi - rlJ) and T, the distance between the centre of the circumscribing circle and i. 

The relation between these 3 parameters is given by 

d 
T -- (At)

2 sin9' 

so that the minimum of T corresponds to a maximum of sin 9. That the angle 9 has to be as large 

as possible is already apparent from figure A 1. Notice that 9 has an upper limit of 1f /3, 

d =d(i,io) is minimal => d(i,ilJ) ~ d => 9 < ~ (A2)- 3' 

In the range of 9, 0 ~ 9 ~ 1f/3, cos 9 is a monotonically decreasing function. Finding ilJ therefore 

means finding the nucleus which minimizes cos 9. In practice, cos 9 is determined from the vectors 

Fi, Fa, and rlJ, 

9 (Pi FIJ)' (Po - FIJ) 
cos '- _ 11_ ::z.. (Al) 

i TIJ To llJ 

The nucleus j E Sj that yields the smallest cos 9, using equation (A3), is therefore the nucleus ilJ 

which together with i and io forms a triangle with minimum radius Tmin. 

After having determined the nuclei j E S. for the smallest cos 9, it has to be checked whether 

there might be nuclei outside of Si that could give a lower circumradius. The condition for this not 

being the case is that 2 Tmin ~ Hi, with Hi the radius of the set Si. When this condition is indeed 
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met there cannot be any nucleus outside Si yielding a lower circumradius. When this is not the 

case the search has to be continued ourside Si. This is done by checking all nuclei around i within 
a radius rmin from i. This search is speeded up considerably by the use of the multidimensional 

binary tree data structure (Appendix F). 

Appendix B. Determining the cireumeentre of a triangle 

Given a triangle defined by the three nuclei {i, ia , ip}, the centre 2 of the circumscribing circle is 
determined as follows (see fig. AI). 

The positions of the nuclei i, ia , and ip are fi' fa and fp, while {is the position of the centre 2. 

If the angle between the vectors (fi - fp) and (fa fp) is 6, the angle between the vectors (fi () 
and (fa - () is equal to 26. Because {i, 2, ia} is an isosceles triangle one can easily infer that { is 
given by 

- fj + fa +r cos 6 fie, (BI){= 2 

with r the radius of the circumscribing circle, and fie the unity vector perpendicular to the vector 

(Ta fi). This vector is directed such that {(fa - fi), fie} forms a right-handed system. It can be 

written as fie = mel sin6, where me and sin6 are given by 

me == Rai x (RPa x Rpi)i sin6 = IRPa x Rpi/, (B2) 

with the vectors Rai, Rpi, and RPa defined by 

Fa - fi .Rp' = Fp - Fi fp - Ta 
~ - --I' (B3)
Itai = ITa ri 1- IFp- Td' Rpa == ITp - Tal 

Inserting me = sin 6 fie and equations (A 1 ) into equation (B I) leads to the following expression for 

.=0, 

-; _ Ti +Ta d cos 6 ~ 
(B4).. - + "'e·2 2(1 cos2 6) 

Since d, cos 6, Ti and Ta are already known from the determination of the triangle {i, ia , ip} with 

minimum circumradius r (appendix A) we only need to evaluate me to obtain the coordinates 

(6,{:z,{3) of2. Computationally this is done most efficient from the expression 

me Rai x x Rpi) = R/la(Rai' Rpt} Rpi(Rai' Rpa). (B5) 

Appendix C. Detecting a new Delaunay Tetrahedron 
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Given a Delaunay tetrahedron {i, i(u ip, i..,} a new Delaunay tetrahedron {i, icu ip, id is obtained 

as follows. 

Note that the nuclei i.., and is are located on opposite sides of the plane {i,ia,ip}. If that 
were not the case is would either have been located within the circumsphere of {i, ia, ip, i..,} or 

i.., within the circumsphere of {i,icr,ip, is}. The first case is impossible since {i,ia,ip,i..,} is a 

Delaunay tetrahedron, while the second case would imply that {i. ia • ip. is} cannot be a Delaunay 

tetrahedron. Therefore is is located in the set SiC aPh). 
For each nucleus j E SiCaPh) we determine the sphere circumscribing j and the triplet 

{i. i a, ip}. Define the Z-axis to be the axis passing through the circumcentre of the triangle 

{i. i a, ip}, perpendicular to its plane and with the positive direction on the side of Hi(aPh). 
Notice that since all tetrahedra {i,ia,ip,j} as well as the tetrahedron {i,ia,ip,i..,} share the tri­

angular face {i, ia•ip} their circumcentres lie on the Z-axis. According to Theorem IV, the fourth 
vertex nucleus is yields the smallest Z coordinate value of the sphere centre (not of the nucleus j 

itself!) among the nuclei of SiCaPh). Figure C2 illustrates this circumstance. The coordinates 

(Ph 1'2, Pa) of the circumcentre P of the new Delaunay tetrahedron {i, ia, ip, is} are given by the 

vector equation 

d(P, V) = d(P, V), (CI)
Z lfilP=(:)+z·Gl 

as both P and V are situated on the Z-axis. Note that V, with coordinates (VI, V2, V3), is the Voronoi 

vertex defined by the tetrahedron {i, ia , ip, i..,}. In fact, the circumcentres P and V are the Voronoi 

vertices defining the edge P V, one of the edges surrounding the polygon wall defined by the 

contiguous pair {i, ia }. The vector fi is the normal to the plane {i, ill" ip}, with a counterclockwise 

direction, 

_ (Ta - Ti) x (Tp - Ti) 
n (C2)

I(Ta - Ti) x (Tp - fi)1 ' 

where Ti, Ta, and Tp are the positions of the nuclei i, ia and ip. For reasons of computational 

efficiency we defined V to have Z = O. The coordinates of P can be found from the Voronoi vertex 

requirement, 

d(P, is) = d(P, i) ( = d(P, ill') = d(P,ip». (C3) 

After some algebraic manipulation this leads to the following expression 

1 {(Xi 2vd +XS) (Xi - X6) +{(Yi - 2V2) +ys} (Yi - YS) + {(Z; - 2V3) + ZS} (Zi ZS)Z ­
2 nl(Xj XS) + n2(Yi - Y6) + n3(Zi - zs) 

(C4) 

where (Xi, Yi, Zi) and (X6, Ys, zs) are the coordinates ofthe nuclei i and is respectively. The procedure 

of detecting a new Delaunay tetrahedron therefore consists of determining Z for each point j E 
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Si(OPI1) from equation (C4), inserting the coordinates (Xjt1}j,Zj) of j for (X6,Y6,Z6), and taking 

the one with the lowest value. That j is the nucleus i6 which together with i, i", and ip forms a 
Delaunay tetrahedron. 

Before calculating Z for a nucleus j E S. it is determined whether it belongs to Si( aPI1). The 

condition for a nucleus rj to belong to S.( oPI1) is that 

;r . (rj - r.) > O. (C5) 

Since the inner product is the denominator of expression (C4) it is first checked whether (C5) 

holds, after which the calculation of Z according to (C4) is continued. If 2 rD > Bit with rD the 

circumradius of the tetrahedron {i, ia, ip, is} and Bi the radius of the set Si, there might be nuclei 

outside Si that Jie within the circumsphere of {i,ia,ip,id. In that case Z is determined for all 

nuclei not belonging to Si and situated within the sphere around i and radius rD. Before doing 

so, however, by means of (C5) it is checked whether such a nucleus j belongs to Hi(aPI1). After 

having followed this procedure the detection of the new Delaunay tetrahedron has been completed. 

Appendix D. Completion of a wall around a Contiguous Pair {i, ia} 

An essential part of the Voronoi cen construction is the computation of the wall shared by the 

contiguous pair {i, io }. The structure of the polygonal Voronoi walls is completely specified by the 

geometrically ordered list of vertices that delineate the wall. Geometrical order in this context is 

the sequence of vertices as they are connected when drawing the boundary of the polygon. An 

important task is therefore to establish these links between the vertices. 

The vertices in the Voronoi wall defined by the nuclei i and ia are the drcumcentres of all 

the Delaunay tetrahedra that have the edge {i, ia} as one of their 6 edges. Figure 01 is a tw().o 

dimensional representation of this three-dimensional arrangement of Oelaunay tetrahedra. The 

edge {i, io} is represented by a black dot. It points out of the page, with nucleus ia situated on 

top of nucleus i. Each triangle represents a Delaunay tetrahedron with the pair {it i",} as common 

edge. The identity of each of these Delaunay tetrahedra is therefore determined by the other two 

nucIei, e.g. ip and ;..,. While the lines that connect to the black central dot represent a Voronoi wall 

seen edge-on, the lines connecting the outer nuclei are true Voronoi edges. Figure 01 represents 

a typical situation at the start of the determination of the structure of the Voronoi wall defined 

by the pair {i, i",}. Only a fraction of the relevant Delaunay tetrahedra have been determined, 

so that the pair {i, io} is not yet completely enclosed. The Delaunay tetrahedra that are already 

known were determined either during the construction of another Voronoi polyhedron or during 

the construction of any of the other Voronoi walls of Ilj. 

When starting the construction of the polyhedron Ili the information on the previously de­

termined Delaunay tetrahedra that have the nucleus i as one of their vertices is processed. The 

information on such a Delaunay tetrahedron is passed on to the lists Wj of the Voronoi walls shared 
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by i and any of the other three contiguous nuclei j that are its vertices. Specifically, when a De­

launay tetrahedron has as vertices the nuclei i, i"" ip and i'l' the relevant data on this Delaunay 

tetrahedron are passed on to the list W'o for the wall between i and i"" Wilt for the wall between i 
and ip and Wi.., for the wan between i and i'l' The information that W... gets consists of three data. 

These are its circumcentre V, which is a vertex of ni, and the two other nuclei besides i and ia , ip 

and i'l' The same, with the obvious adjustments, is done for Wilt and Wi.,. The order of ip and i'l 
in Wi.. is an essential ingredient, that is further specified in Appendix E. During the construction 

of Ili the wall lists Wj of any of the contiguous nuclei j for which the structure of the corresponding 

wall has yet to be determined are updated when a newly calculated Delaunay tetrahedron has j as 

one of its vertices. Completed walls will not receive any new data. By definition all their vertices 

are known, so that the corresponding Delaunay tetrahedra will not be calculated again. 

At the beginning of the determination of the structure of the wall between the nuclei i and ;0 the 

position of the Delaunay tetrahedra in the list Wi.. is rather arbitrary. This position is determined 

by the chronological order in which the tetrahedra were calculated, not by their geometrical sequence 

inside the wall. Consequently, the wall construction procedure consists of a geometrical ordering 

of the tetrahedra in Wio and the filling in of the gaps between them (see fig. D1), Le. the 

calculation of new Delaunay tetrahedra following the description in appendix C. The first step is 

to take the first Delaunay tetrahedron in Wio ' whose circumcentre is the first vertex of the wall. 

Subsequently, we move around the edge {i, io} until we return at this first Delaunay tetrahedron. 

For example, when the first Oelaunay tetrahedron is {i, i a , ip, i'l}' the second step consists of the 

search for the tetrahedron that shares the triangular face {i, i o , ip} with the first tetrahedron. 

First, we look for such a tetrahedron in Wio' When it indeed contains such a Delaunay tetrahedron 

its circumcentre is the second vertex of the wall. When such a tetrahedron does not yet exist 

a new Delaunay tetrahedron is determined. Information on such a newly computed Delaunay 

tetrahedron {i, i"" ip, id is passed on to the lists Witt and Wi, as well as to the nuclei ia , ip and 

i6. This information will therefore be used during the determination of Ili, when constructing the 

walls shared between i and ip and between i and i6, and during the determination of the Voronoi 

cells Ili.. , ni, and ni,. This process is repeated until we have to find a Delaunay tetrahedron with 

a triangular face {i, i a , i'l}' Because that is the first Delaunay tetrahedron, the construction of the 

wall shared by the nuclei i and io has been completed. 

Appendix E. The permutation ordering of the vertices of a Delaunay tetrahedron 

In order to let the program run efficiently it is necessary to order the four vertices of every Delaunay 

tetrahedron in a fixed way. Specifically we this means than when one takes any of the six edges 

of the tetrahedron, defined by two of the four vertices, one always knows which of the other two 

nuclei will come first when turning counterclockwise around the edge (see fig. E1). 

The solution to this problem is rather easy. Assume that the Delaunay tetrahedron was com­

puted during the construction of the Voronoi polyhedron around i o , during the determination of 
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the wall shared with nucleus ifj. In addition, assume that the third and fourth nucleus of the 

Delaunay tetrahedron are i'l and i" respectively. When rotating counterclockwise around the edge 

{i"" ifj} the nucleus i'l is met before the nucleus i6. The vertices of this Delaunay tetrahedron are 

therefore ordered as {i"" ifj, i'l' I,,}. Every positive permutation of this list yields a correct geomet­

rical ordering. Table EI shows how these permutations work out. The number in the vertical list 

is the one of the first nucleus, the one of which we are constructing its Voronoi cell. The number 

in the horizontal list is the one of the second nucleus, the one that together with the first nucleus 

defines the wall being constructed. The table then gives, between brackets, the third and, after 

the comma, the fourth nucleus. For example, if 6 and i are first and second nucleus respectively, 

the table tells that (J and a are third and fourth nucleus respectively. This permutation order is 

implemented as a look-up table in the construction program. 

Appendix F. The multidimensional binary tree 

An important issue in the Voronoi tessellation construction is the efficient search for points in 

three-dimensional space. One of the main problems in this multidimensional searching is the need 

for a data structure in which points that lie closely together in multidimensional space are also 

situated at a nearby position in the data structure. We achieve this by means of the optimized 

mll11idimensional binary tree of Friedmann, Bentley and Finkel (1977). 

In this datastructure the databaseis stored in a binary tree in which each node represents a 

subset of the records in the complete set and a geometric partitioning of that subset. The root of 

the tree represents the entire set. Each nonterminal node has two successor nodes. Those sucessor 

nodes represent the two subsets defined by the partitioning. The terminal nodes represent mutually 

exclusi ve small su bsets of the data records, which collectively form a partition of the record space. 

These terminal nodes are called buckets. Figure Fl illustrates the multidimensional binary tree by 

means two-dimensional subdivisions and the corresponding tree representation. 

The structure and efficiency of the tree is determined by three factors. The first one is the 

choice of the discriminating key at each level in the tree, which can range from 1 to k as in k 

dimensions each record is represented by k keys. The second one is the partition value of the 

discriminating key. All records in the subset with key values less than or equal to the partition 

value belong to the left successor node, while those with a larger value belong to the right successor 

node. Given the domain of a node, the partition determines the geometric boundaries of the subsets 

corresponding to its successor nodes. Note that the geometric boundaries of a node define a cell in 

multidimensional space, and that the volume of such a cell is smaller for subsets defined by nodes 

deeper in the tree. The third factor is the size of a bucket, i.e. the maximum number of records in 

each terminal node. We followed the choice that Friedmann et al. (1977) used for their optimized 

k-d tree: 

1. 	 The partition value. The partition is located at the median of the marginal distribution of (the 

key values, irrespective of which key is chosen for the discriminator. 
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2. The 	discriminating key value. Choose at every nonterminal node the key with the largest 

spread in values as the discriminator. The spread S is defined as, 

1 M 
S = M L IZA:(l) - XA:I, 

'=1 
with M the number of points in the subsample, zA:(/) the k key value of point i in the subsample, 

and XA: the mean k value of the M points in the subsample. 

3. The bucket size is chosen to be 2, based on an efficiency study by Van de Weyga.ert 

In this way the multidimensional binary tree is as symmetrical as possible, and consequently its 

efficiency for searching tasks optimal. The construction process can be summarized as the recursive 

partitioning of a subset according to the prescriptions given above till you have a subset with less 

records than the bucket size. In our Voronoi construction algorithm we use a modified version of 

this k - d tree. While starting with a complete tree, it is systematicaUy pruned during the Voronoi 

tessellation construction. Whenever the Voronoi cell around a nucleus has been determined the 

nucleus is taken out of the tree. Since the Voronoi tessellation construction procedure is sequential, 

and because every node in the tree represents a certain range of points (e.g. i = M, ... , N) this 

can be done rather efficiently. As soon as the Voronoi cell of nucleus N has been constructed, the 

branches at all levels of the tree that represent nuclei with a number lower than N can be pruned. 

The searching algorithm using the multidimensional binary tree is most easily described as a 

recursive procedure. The following description is for nearest neighbour searching. Adjustments for 

other searching tasks can be made relatively easy. An illustration of searching within a certain 

range is provided in figure Fl. A first step is the definition of a query record. In the case of the 

search for the nearest neighbours to some point the query record consists of the coordinates of that 

point, while in the case of the search for all the points within a sphere it is the centre of the sphere. 

The argument to the recursive procedure is the node under investigation. The first call passes 

the root of the tree as this argument. If the node under investigation is terminal (bucket), all the 

records in the bucket should be examined. If the node under investigation is not terminal, the 

recursive procedure is called for the node representing the same side of the partition as the query 

record. In the case of closest neighbour searching a list of the M (M = 1,2,3, ...) closest records 

so far encountered and their distance to the query record is maintained as a priority queue during 

the search. Whenever a record is examined and found to be closer than the most distant member 

of this list, the list is updated. 

When control returns to a specific node after having descended the tree, a test is made to 

determine if it is necessary to consider the records on the other side of the partition, the one 

opposite to the query record. It is necessary to consider the corresponding subset only if the 

geometric boundaries delimiting those records overlap the ball (sphere in 3·D) centered at the 

query record with radius equal to the distance to the MtA closest record so far encountered. This 

is referred to as the "bounds-overlap-bait' test. If the bounds-overlap.ball test fails, none of the 

records on the opposite side of the partition can be among the M records closest to the query 
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TABLE 1. Moments of 3-D Poisson-Voronoi tessellation 

record. If the bounds do overlap the ball, then the records of that subtree must be considered and 

the procedure is called recursively for the node representing that subset. A "'ball-wilhin-bounds" 

test is made before ascending the tree to a higher level, in order to determine if it is necessary to 

continue the search. This test determines whether the ball is entirely within the geometric domain 

of the node. If so, the current list of M nearest neighbours is correct for the entire file and no more 

records need be examined. 

In the case of ball searching, Le. searching for all points in the sample that lie within a ball 

(sphere) around a point, the algorithm used is nearly the same as the one just described, with the 

centre of the ball serving as query record. There are two differences. The first one is that instead 

of maintaining a list of the M closest neighbours found sofar a list is maintained of all the points 

inside the ball found sofar. Because no priority queue is needed the distances ofthese points to the 

query record need not be kept. Secondly, there is a difference concerning the "'bounds-overlap-ball" 

test. Because the radius of the search ball remains constant during the search, instead of gradually 

decreasing as in the nearest neighbour searches, we only need to apply this test once for each 

considered node. Once we know that there is an overlap, we know that the points in the subfile of 

the node have to be examined, possibly partly if it is a nonterminal node. Because in the case of 

nearest neighbour searching the search ball decreases in size during the search through the subset, 

the ball may not be overlapping the domain of the node anymore upon return at the node. 

,ltj 

Number density of vertices Jo 
24 2 
35. P Jo =6.168p 

Number density of edges J) 
48 2 
35. P J 1 == 13.535p 

Number density of walls J2 ( 
24 2 )
35. +1 P J2 7.168p 

Number density of cells J3 P 

Number of vertices per cell (E No) 
96 2 
351r E(No) ::::: 21.01 

Number of edges per cell E(N
1

) = 1441r2 
35 

E(Nd = 40.61 

Number of walls per cell 
48 

E(N2) = 35.
2 +2 E(N2 ) =15.54 

E(N;) =8 

Number of vertices per wall E2(No) == 1441r2 
241r2 +: E2(No) = 5.228 

Number of edges per wall E
2
(N.) 14~,..2 E2(No) = 5.228 

Volume of cell E(V) = 1 
P 

E(V2) 1.180 
p2 

Surface area of cell } 
1/3 

_ {2561r f(5/3)"E(Ac) - 3p2 E(Ac) 5.821p-2/3 

Perimeter of cell E(Sc) 
(41r )5/3 f( 1/3) 

5(9p)I/3 E(Sc) =11.496p-I/3 

Area of wall E(Aw) == 
35 X '/1/3 1r1/3 f(2/3) 
(9p)'l/3(241r2 +35) .. 

E(Aw) 0.3147 p-2/3 

Perimeter of wall 
1 X 210/31r5/3 f( 1/3) 

E(Sw) = (9p)1/3(24,..2 +35) 
E(Sw) = 2.252p-I/3 

Length of edge E( L) 
1f(I/3) .. 

9(361r P)1/3 
E(L) 0.4309p-I/3 

Itnp.... "I,. agrees with Miles, 1912; disagrees with MfillIer, 1989) 

NOTES TO TABLE 1: Moments of characteristics of 3-D Voronoi tessellations generated by 

Poissonian distributed nuclei with number density p. The 2nd column contains the analytically 

known moments, all first-order moments. The 3rd column contains numerical values, including 
the second-order moment of the volume V of a Voronoi cell. From M01ler (1989), Miles (1972), 

and Gilbert (1962). 
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TABLE 2. Moments of 2-D sections through 3·1) Poisson-Voronoi tessellation 

Number density of vertices 

Numher density of edges 

Number density of cells 

.l _ 2f(I/3)(1611'6p2/9)1/3 
0­ .­

3 
J 1 '2Jo 

1 
J2 = '2Jo 

Jo = 2.9159 p2/3 

J. = 4.3739 p2/3 

J2 =1.4580 p2/3 

Number of vertices per cell 
N umber of edges per ceU 

E(No) = 6 
E(N.) 6 

Area of cen E(A) = E(A) =O.6859p-2/3 

Perimeter of cell E(S) = 30f(2/3) 
(367fp)I/3f' 

E(A') = O.698p-4/3 

E(S) = 3.1356p-l/3 

Length of edge E(L) = .. 5~_{:/3) E(L) 0.5226p-l/3 

NOTES TO TABLE 2: Moments of characteristics of the two-dimensional section, which is a 2-D 

tessellation of convex polygons, through a three-dimensional Voronoi tessellation generated by 

J>oissonian distributed nuclei with spatial number density p. The 2nd column contains analytical 

expressions, the 3rd column numerical ones. From M011er (1989) and Miles (1972). 

TABLE 3. Moments of the edge length of a linear section through a Poisson-Voronoi tessellation 

d=2 length of edge 
11' 

(A) = 4y'P (A) 0.7854p-I/2 

d=3 length of edge (A) (A) 0.6872p-l/3 

(Xl) = 0.632p-2/3 

(A3 ) = 0.668p-l 
(Xf) 0.774p-4/3 

NOTES TO TABLE 3: Moments of the length A of an edge in a linear section through a Voronoi 

tesseUation generated hy Poissonian distributed nuclei with number density p. The top row con­

tains the expression for a two- dimensional Voronoi tessellation, while the lower rows correspond to 

three-dimensional Voronoi tessellations. The 2nd column contains analytically known expressions, 

the 3rd column gives the numerical values, including several numerically calculated higher order 

moments. From M01ler (1989) and Miles (1972). 
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Poissonian distributed nuclei TABLE 4b. 3-D Voronoi Tessellation properties; Anticorrelated nucleifABLE 4a. 3-D Voronoi Tessellation properties; 

Quantity z i u(z) 1'1 (z) 1'l(Z) 

Number density of vertices 6.747 ± 0.014 

Number density of edges 13.493 ± 0.028 

Number density of walls 7.747 ± 0.014 

Number density of cells 1.000 ± 0.000 

Number of vertices per cell 26.986 ± 0.055 6.61 ± 0.18 0.346 ± 0.029 -0.029 ± 0.030 

Number of edges per cell 40.479 ± 0.083 9.92± 0.27 0.346 ± 0.029 -0.029 ± 0.030 

Number of walls per cell 15.493 ± 0.028 3.305 ± 0.091 0.346 ± 0.029 -0.029 ± 0.030 

Volume of cell 1.000 ± 0.000 0.418 ± 0.009 0.73 ± 0.11 0.70± 0.39 

Surface area of cell 5.801 ± 0.018 1.461 ± 0.043 0.28 ± 0.11 -0.01 ±0.17 

Perimeter of cell 17.443 ± 0.054 3.655 ± 0.094 0.305 ± 0.035 0.00 ± 0.13 

Form factor of cell 0.540 ± 0.006 0.082 ± 0.003 -0.565 ± 0.032 0.36 ± 0.11 

Number of vertices per wall 5.2255 ± 0.0014 1.564 ± 0.016 0.582± 0.016 0.058 ± 0.024 

Area of wall 0.3744 ± 0.0015 0.3722 ± 0.0037 1.266 ± 0.047 1.40 ± 0.19 

Perimeter of wall 2.2518 ± 0.0092 1.2009 ± 0.0050 0.089 ± 0.022 -0.796 ± 0.029 

Form factor of wall 0.6389 ± 0.0005 0.1635± 0.0011 -0.855 ± 0.035 . 0.40 ± 0.13 

Distance nucleus-wall 0.6402 ± 0.0017 0.2092 ± 0.0051 -0.024 ± 0.022 -0.333 ± 0.074 

Volume nucleus-wall 0.0645± 0.0001 0.0579 ± 0.0009 1.177 ± 0.097 1.52 ± 0.47 

Length of edge 0.4309 ± 0.0018 0.3216 ± 0.0023 0.829 ± 0.020 0.209 ± 0.044 

Angle between edges 111~107 ± 0.018 35':'310 ± 0.078 -0.499 ± 0.012 -0.276 ± 0.039 

Angle between walls 120':'0 ±O.O 23~53 ± 0.30 -0.296 ± 0.014 -0.255 ± 0.038 

NOTES TO TABLE 4a: Four moments of characteristics of a 3-D Voronoi tessellation generated 

by Poissonian distributed nuclei. Each number in the table is based on four different realization of 

each 1000 Voronoi cells, the error estimates are based on the differences between these realizations. 

The second column contains the mean of the quantity, the third column contains the standard 

deviation, the fourth column the skewness and the fifth column the kurtosis of the characteristic 

involved. The dimensional quantities, such as volume, area and length, are normalized such that 

there is exactly one Voronoi cell, or nucleus, per unit volume. 

Quantity z i u(z) 1'1 (z) 1'l(Z) 

Number density of vertices 6.548 ± 0.009 

Number density of edges 13.096 ± 0.018 

Number density of walls 7.548 ± 0.009 

Number density of cells 1.000 ± 0.000 

Number of vertices per cell 26.191 ±0.037 3.801 ± 0.039 0.128± 0.073 -0.04 ± 0.12 

Number of edges per cell 39.287 ± 0.055 5.701 ± 0.059 0.128 ± 0.073 -0.04 ± 0.12 

Number of walls per cell 15.096 ± 0.018 1.900 ± 0.020 0.128 ± 0.073 -0.04 ± 0.12 

Volume of cell 1.000 ± 0.000 0.144 ± 0.005 0.492 ± 0.061 0.34 ± 0.19 

Surface area of cell 5.593 ± 0.002 0.492 ± 0.018 0.237 ± 0.034 -0.015 ± 0.083 

Perimeter of cell 16.884 ± 0.008 1.560 ± 0.031 0.255 ± 0.099 0.08 ± 0.14 

Form factor of cell 0.642 ± 0.001 0.036 ± 0.001 -0.127 ± 0.066 -0.028 ± 0.082 

Number of vertices per wall 5.2051 ± 0.0010 1.385 ± 0.011 0.372 ± 0.034 -0.17 ± 0.12 

Area of wall 0.3705 ± 0.0005 0.2943 ± 0.0007 0.523 ± 0.006 -0.714 ± 0.017 

Perimeter of wall 2.2370 ± 0.0024 1.0281 ± 0.0028 -0.352 ± 0.010 -0.865 ± 0.019 

Form factor of wall 0.6944 ± 0.0001 0.1497 ± 0.0011 -1.166 ± 0.029 1.19 ± 0.11 

Distance nucleus-wall 0.6204 ± 0.0003 0.1250 ± 0.0007 0.090 ± 0.029 -0.878 ± 0.037 

Volume nucleus-wall 0.0662 ± 0.0001 0.0457 ± 0.0002 0.213 ± 0.013 -0.961 ± 0.020 

Length of edge 0.4298 ± 0.0005 0.2803 ± 0.0005 0.434 ± 0.015 -0.612 ± 0.021 

Angle between edges 110':'837 ± 0.013 29~52 ± 0.14 -0.667 ± 0.002 0.398 ± 0.046 

Angle between walls 120':'0 ±O.O 17':'159 ± 0.078 -0.491 ± 0.007 -0.326 ± 0.014 

NOTES TO TABLE 4b: Four moments of characteristics of a 3-D Voronoi tessellation generated 

by anticorrelated distributed nuclei. Each number in the table is based on four different realiza­

tion of each 1000 Voronoi cells, the error estimates are based on the differences between these 

realizations. The second column contains the mean of the quantity, the third column contains the 

standard deviation, the fourth column the skewness and the fifth column the kurtosis of the char­

acteristic involved. The dimensional quantities, such as volume, area and length, are normalized 

such that there is exactly one Voronoi cell, or nucleus, per unit yolume. 
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'ABLE 4c. 3-D Voronoi Tessellation propertiesj Correlated nuclei TABLE 5a. 3-D Voronoi Tessellation Planar section (Slice) properties; Poissonian nuclei 

Quantity z Ii O'(z) 'n(z) I'~(z) Quantity z Ii O'(Z) 1'1 (z) I'2(Z) 

Number density of vertices 

Number density of edges 

Number density of walls 

Number density of cells 

Number of vertices per cell 

N umber of edges per cell 

N umber of walls per cell 

Volume of cell 

Surface area of cell 

6.712 ± 0.027 

13.423 ± 0.054 

7.712 ± 0.027 

1.000 ± 0.000 

26.85± 0.11 

40.27 ± 0.14 

15,423 ± 0.054 

1.000 ± 0.000 

5.826 ± 0.024 

8.45 ± 0.11 

12.67±0.16 

4.222 ± 0.055 

0.684 ± 0.034 

2.48±0.10 

0,485 ± 0.031 

0,485 ± 0.031 

0,485 ± 0.031 

1.31 ± 0.22 

0.61 ± 0.12 

0.19 ±0.28 

0.19±0.28 

0.19± 0.28 

2.34 ± 1.16 

0.26 ±0.37 

Number density of cells 

Number density of vertices 

N umber density of edges 

Number of vertices per cell 

Area of cell 

Perimeter of cell 

Form factor of cell 

Length of edge 

1.4530 

2.9060 

4.3590 

6.0000 

0.6882 

3.1418 

0.7050 

0.5221 

0.0592 

0.1184 

0.1776 

1.6895 

0.4141 

1.2212 

0.1433 

0.3631 

0.2871 

0.2871 

0.2871 

0.3311 

0.4513 

-0.5819 

-1.3425 

0.6223 

-1.0099 

-1.0099 

-1.0099 

-0.1142 

-0.3902 

-0.2819 

2.0815 

-0.2321 

Perimeter of cell 

Form factor of cell 

Number of vertices per wall 

Area of wall 

17.54 ± 0.10 

0.477 ± 0.003 

5.2219 ± 0.0027 

0.3783 ± 0.0015 

5.56± 0.11 

0.097 ± 0.001 

1.6196 ± 0.0074 

0.4190 ± 0.0049 

0.478 ± 0.069 

-0.457 ± 0.076 

0.690 ± 0.027 

1.74 ± 0.11 

0.11 ±0.23 

0.03± 0.15 

0.297 ± 0.075 

3.76 ± 0.72 

Angle between edges 

Angle between walls-
section plane 

120~0000 

63~1812 

31<;>6039 

18~5232 

-0.6351 

-0.6351 

0.1321 

-0.3520 

Perimeter of wall 2.275 ± 0.010 1.295 ± 0.011 0.318 ± 0.031 -0.507 ± 0.083 

Form factor of wall 

Distance nucleus-wall 

0.6145 ± 0.0039 

0.6407 ± 0.0035 

0.1627 ± 0.0016 

0.3143 ± 0.0020 

-0.7374 ± O.ot8 

0.508 ± 0.035 

0.175 ± 0.069 

-0.32 ±0.13 TABLE 5b. 3-D Voronoi Tessellation Planar section (Slice) properties; Anticorrelated nuclei 

Volume nucleus-wall 0.0648 ± 0.0002 0.0749 ± 0.0022 2.40 ± 0.24 9.0 ± 2.4 

Length of edge 0.4357 ± 0.0019 0.3430 ± 0.0043 1.022 ± 0.030 0.81 ± 0.11 
Quantity z Ii O'(z) I'I(Z) I'2(Z) 

Angle between edges 

Angle between walls 

III~060 ± 0.036 

120~0 ±O.O 

37~94 ± 0.28 

27~82± 0.13 

-0,417 ± 0.005 

-0.260 ± 0.008 

-0.533 ± 0.009 

-0.485 ± 0.008 

N umber density of cells 

Number density of vertices 

Number density of edges 

1.3925 

2.7850 

4.1715 

0.0468 

0.0936 

0.1403 

0.1355 

0.1355 

0.1355 

0.0024 

0.0024 

0.0024 

NOTES TO TABLE 4c: Four moments of characteristics of a 3-D Voronoi tessellation generated 

by correlated distributed nuclei. Each number in the table is based on four different realization of 

each 1000 Voronoi cells, the errorestimates are based on the differences between these realizations. 

The second column contains the mean of the quantity, the third column contains the standard. 

N umber of vertices per cell 

Area of cell 

Perimeter of cell 

Form factor of cell 

6.0000 

0.7181 

3.1392 

0.1615 

1.5599 

0.4181 

1.0946 

0.1351 

0.0682 

-0.1884 

-0.9631 

-1.6614 

-0.2408 

-1.0937 

0.0183 

2.1221 

deviation, the fourth column the skewness and the fifth column the kurtosis of the characteristic 

involved. The dimensional quantities, such as volume, area and length, are normalized such that 

there is exactly one Voronoi cell, or nucleus, per unit volume. 

Length of edge 

Angle between edges 

Angle between walls-
section plane 

0.5293 

120~0000 

63~4154 

0.3101 

26~5652 

18C;>3314 

0.1988 

-0.8056 

-0.6136 

-0.8105 

1.1018 

-0.3666 
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TABLE 5c. 3-D Voronoi Tessellation Planar section (Slice) properties; Correlated nuclei 

Quantity z i O'(z) 'n(z) 12(Z) 

Number density of cells 1.4770 0.1925 0.5294 -0.8974 
Number density of vertices 2.9540 0.3850 0.5294 -0.8974 
Number density of edges 4.4310 0.5116 0.5294 -0.8974 

Number of vertices per cell 6.0000 1.7607 0.3939 -0.0951 
Area of cell 0.6770 0.5712 1.1890 2.1076 
Perimeter of cell 3.1025 1.3964 -0.0701 -0.4989 
Form factor of cell 0.6773 0.1508 -1.1117 1.2120 

Length of edge 0.5170 0.3838 0.8957 0.5170 

Angle between edges 120~0000 34~6159 -0.5893 -0.1774 
Angle between walls­ 63~0346 18~6088 -0.6074 -0.3715 

section plane 

NOTES TO TABLE 5: Moments of characteristics of the planar sections of 3-D Voronoi tessel­

lations. The dimensional quantities, as length, area and volume, are normalized in such a way 

that the number density of Voronoi cells, and nuclei, is exactly equal to one per unit volume. 

The second column is the mean of the quantity. the third column the standard deviation, the 

fourth column the skewness, and the fifth column the kurtosis. The numbers in this table were 

determined from 20 planar sections through 1 realization of a Voronoi tessellation of 1000 cells. 

Table 5a corresponds to planar sections through a 3-D Voronoi tessellation generated by Poisso­

nian distributed nuclei, Table 5b to a tessellation generated by anticorrelated distributed nuclei, 

and Table 5c to a tessellation generated by correlated distributed nuclei. 
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TABLE 6a. 3·D Voronoi Tessellation Linear section properties; Poissonian nuclei 

Quantity z i O'(z) 11(Z) 12(Z) 

Length of edge 0.6703 0.3942 0.2600 -0.6923 

Dispersion length of edge 0.6123 0.1159 0.0643 0.0204 

Angle between wall-line of sight 44~6988 19~5325 0.0067 -0.8080 

Angle between opposite walls 75~4123 30~9389 -0.0185 -0.5829 

TABLE 6b. 3-D Voronoi Tessellation Linear section properties; Anticorrelated nuclei 

Quantity Z i O'(z) 11(Z) ')"2(z) 

Length of edge 0.7003 0.3725 -0.1100 -1.0168 

Dispersion length of edge 0.5551 0.1117 -0.0433 -0.0088 

Angle between wall-line of sight 44~6436 19~6246 0.0194 -0.8090 

Angle between opposite walls 19~9995 31~4211 ·0.2500 -0.7114 

TABLE 6c. 3-D Voronoi Tessellation Linear section properties; Correlated nuclei 

Quantity Z i O'(z) 1.(Z) 12(Z) 

Length of edge 0.6641 0.4314 0.5946 -0.0896 

Dispersion length of edge 0.6677 0.1210 0.1341 0.0492 

Angle between wall-line of sight 44~8522 19~7981 0.0070 -0.8235 

Angle between opposite walls 12~2277 31~0546 0.1714 -0.5057 
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NOTES TO TABLE 6: Moments of characteristics of the linear sections of 3-D Voronoi tessel­
lations. The dimensional quantities, as length, area and volume, are normalized in such a way 

that the number density of Voronoi cells, and nuclei, is exactly equal to one per unit volume. 

The second column is the mean of the quantity, the third column the standard deviation, the 
fourth column the skewness, and the fifth column the kurtosis. The numbers in this table were 

determined from 2500 linear sections through 1 realization of a Voronoi tessellation of 1000 cells, 

except for the dispersion of a linear section, which is based on 10000 linear sections. Table 6a cor· 
responds to linear sections through a 3-D Voronoi tessellation generated by Poisson ian distributed 

nuclei, Table 6b to a tessellation generated by anticorrelated distributed nuclei, and Table 6c to a 

tessellation generated by correlated distributed nuclei. 

TABLE E1. Ordering of the vertices in a Delaunay tetrahedron 

0' (J 1 6 

0' b,6) (6, (J) ({J,1) 

(J (6,1) (0',6) b,O') 

1 ((J,6) (6,0') (Q,{J) 

6 b,{J) (Q,1) ({J,O') 
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Figure Captions 

FIGURE 1. An illustration of a distribution of nuclei (stars) in a square (centre) and its corre­
sponding Delaunay triangulation and Voronoi tessellation assuming periodic bound­

ary conditions. 

FIGURE 2. Topological illustration of a portion of Hi. The nucleus j which is contiguous to the 

central nucleus i is represented by a filled circle. The circle also represents the contiguous pair 

{i,j}. The polygon in the central part indicates the face which is produced by the pair {i,j}. 
Open circles are the nuclei which are contiguous to both nuclei i and j. Dotted triangles reperesent 

De)aunay Tetrahedrons. (After Tanemura, Ogawa, and Ogita, 1983). See text for details. 

FIGURE 3. Dlustration of how the geometrical elements of a tessellation are linked with the 

generating nuclei. A nucleus defines a complete Voronoi cell (top left); two nuclei define one wall 

(top right), their bisecting plane, which is one of the faces of their cells; three nuclei define an 

edge, which forms a part of the boundary of the three walls which intersect at that edge; four 

nuclei define one vertex, the centre of their circumscribing sphere, which is one of the two vertices 

between which the edge is stretched. The four nuclei form a Delaunay tetrahedron. 

FIGURE 4. Six examples of Voronoi cells, taken from a 3-D Voronoi tessellation generated by 

1000 anticorrelated nuclei distributed in a box. 

FIGURE 5. Stereoscopic pair of three Voronoi cells sharing a common edge. The nuclei are 

indicated by stars. In a stereo viewer, the dashed lines will appear at the rear of the picture. 

When attempting stereo fusion with crossed eyes, the pictures must be reversed to obtain the 

correct perception. 

FIGURE 6. Two-dimensional point distributions equivalent in clustering properties to the three­

dimensional nuclei distributions used in the presented statistical analysis. Instead of 1000 points 

in a box of size 100 x 100 x 100 here 100 points are distributed in a square of size 100 x 100 in 

such a way that the relative distances of the points are the same in the 3-D point process as in 

the 2-D point process. One should therefore consider these pictures as projections of a slice taken 

out of the 3-D box with a width of l/lOth of the boxsize. In this way we hope to give a better 

idea of the point process than with a full 3-D ilJustration. Left: correlated distribution, A=0.4; 

Middle: Poissonian distribution, " =0.0; Right: anticorrelated distribution, " 0.8. 

FIGURE 7. Histograms of six Voronoi cell properties. Top left: volume of cell; top right: surface 

area of celli middle left: perimeter of cell; middle right: form factor of celli bottom left: number 
of walls of celli bottom right: number of vertices of cell. All dimensional properties (volume, 
area, length) are normalized such that the number density of Voronoi cells (or, equivalently, 

nuclei) is 1 per unit volume. (a) The six histograms for a Voronoi tessellation generated by 1000 
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I}oissonian distributed nuclei, (b) for a tessellation generated by 1000 anticorrelated distributed 

nuclei (6 0.8), (c) for a tessellation generated by 1000 correlated distributed nuclei (l = 0.4). 

FIGURE 8. Four scatter plots illustrating the correlations between some cell properties. Top 

left: volume of cell against its form factor; top right: volume of cell against number of walls 
of that cell; bottom left: volume of cell against number of vertices of that cell; bottom right: 

form factor of cell against number of walls of that cell. All dimensional properties (volume, area, 

length) are normalized such that the number density of Voronoi cells (or, equivalently, nuclei) 

is 1 per unit volume. (a) The four scatter plots for a Voronoi tessellation generated by 1000 

Poissonian distribu ted nuclei, (b) for a tessellation generated by 1000 anticorrelated distributed 

nuclei (6 == 0.8), (c) for a tessellation generated by 1000 correlated distributed nuclei (l =0.4). 

FIGURE 9. Histograms of six Voronoi wall properties. Top left: area of wall; top right: perimeter 

of wall; middle left: distance between nucleus and wall; middle right: volume of pyramid with 

nllcleus as tip and wall as base; bottom left: form factor of wall; bottom right: number of vertices 

of wall. All dimensional properties (volume, area, length) are normalized such that the number 

density of Voronoi cells (or, equivalently, nuclei) is 1 per unit volume. (a) The six histograms 

for a Voronoi tessellation generated by 1000 Poissonian distributed nuclei, (b) for a tessellation 

generated by 1000 anticorrelated distributed nuclei (6 = 0.8), (c) for a tessellation generated by 

1000 correlated distributed nuclei (l == 0.4). 

FIGURE 10. Histograms of three Voronoi tessellation properties. Top left: length of Voronoi 

edge, bottom left: angle between two edges in tessellation; bottom right: angle between two walls 

in tessellation. All dimensional properties (volume, area, length) are normalized such that the 

number density of Voronoi cells (or, equivalently, nuclei) is 1 per unit volume. (a) The three 

histograms for a Voronoi tessellation generated by 1000 Poissonian distributed nuclei, (b) for a 

tessellation generated by 1000 anticorrelated distributed nuclei (6 = 0.8), (c) for a tessellation 

generated by 1000 correlated distributed nuclei (l == 0.4). 

FIGURE 11. Planar sections through 3-D Voronoi tessellations. (a) Six planar sections through 

a Voronoi tessellation of 1000 cells in a box of size 100 x 100 x 100 (i.e. in unnormalized units), 

generated by 1000 Poissonian distributed nuclei. The section planes are taken parallel to the :I! 'II 

plane, the number below each square denotes the z-coordinate of the section plane: 25.0,30.0, 35.0, 

40.0, 45.0, and 50.0. (b) The same, but then for a tessellation generated by 1000 anticorrelated 

distributed nuclei (6 =0.8), while the section planes have z·coordinate 30.0,35.0,40.0,45.0,50.0, 

and 55.0. (c) The same, but then for a tessellation generated by 1000 correlated distributed nuclei 

(l 0.4), while the section planes have z-coordinate 60.0, 65.0, 70.0, 75.0,80.0, and 85.0. 

FIGURE 12. Histograms of four properties of cells of the planar section through a Voronoi 
tessellation Top left: area of cell; top right: perimeter of cell; bottom left: form factor of cell; 

bottom right: number of vertices of cell. All dimensional properties (volume, area, length) are 

normalized sl1<'h that the number density of the 3-0 Voronoi cells (or, equivalently, nuclei) is 1 
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per unit volume. (a) The four histograms for a Voronoi tessellation generated by 1000 Poissonian 

distributed nuclei, (b) for a tessellation generated by 1000 anticorrelated distributed nuclei (6 = 
0.8), (c) for a tessellation generated by 1000 correlated distributed nuclei (l 0.4). 

FIGURE 13. Histograms of three planar section tessellation properties plus scatter plot of planar 
section cell properties. Top left: histogram of length of edges in planar section; bottom left: his­

togram of angle that each 3-D wall cut by section plane (producing a section edge) makes with 
section plane; bottom right: histogram of angle between section edges. Top right: scatter plot of 

area of sectioned cell against the volume of its 'parent' 3-D Voronoi cell. All dimensional prop­

erties (volume, area, length) are normalized such that the number density of Voronoi cells (or, 

equivalently, nuclei) is 1 per unit volume. (a) The four diagrams for a Voronoi tessellation gener­

ated by 1000 Poissonian distributed nuclei, (b) for a tessellation generated by 1000 anticorrelated 

distributed nuclei (6 0.8), (c) for a tessellation generated by 1000 correlated distributed nuclei 

(l = 0.4). 

FIGURE 14. lIistograms of four properties of edges of the linear section through a Voronoi 

tessellation. Top left: length of section edge; top right: dispersion of edge lengths in a linear section 
of length equal to the box edge length in which a tessellation of 1000 cells is situated; bottom left: 

angle that wall crossed by linear section makes with wall; bottom right: angle between two walls 

on opposite side of a linear section edge. All dimensional properties (volume, area, length) are 

normalized such that the number density of the 3-0 Voronoi cells is one per unit volume. (a) The 
four histograms for a Voronoi tessellation generated by 1000 Poissonian distributed nuclei, (b) for 

a tessellation generated by 1000 anticorrelated distributed nuclei (6 = 0.8), (c) for a tessellation 

generated by 1000 correlated distributed nuclei (l 0.4). 

FIGURE 15. Four scatter plots illustrating the correlations between some linear section properties. 

Top left: section edge length against length of next section edge; top right: section edge length 

against volume of 'parent' 3-0 Voronoi cell; bottom left: section edge length against angle that 

wall on one side of edge makes with the line of sight (section line); bottom right: section edge 

length against angle that walls on both sides of the edge make with each other. All dimensional 

properties (volume, area, length) are normalized such that the number density of Voronoi cells 

is one per unit volume. (a) The four scatter plots for a Voronoi tessellation generated by 1000 

Poissonian distributed nuclei, (b) for a tessellation generated by 1000 anticorrelated distributed 

nuclei (6 = 0.8), (c) for a tessellation generated by 1000 correlated distributed nuclei (l 0.4). 

FIGURE At. Dlustration of the detection of a triangle with a minimum circumradius. 

FIGURE Cl. Two Oelaunay tetrahedra {i, io, i.e. i-y} and {i, io, i.e. i5} that have the triangular 
face {i,io,i.e} in common. 

FIGURE C2. Schematic diagram to show the elementary process of detecting a new Oelaunay 

tetrahedron. The horizontal line in the figure represents the XY plane. Two black dots on the 
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line represents nuclei ia and ifJ. One of them should be thought to indicate the nucleus i itself. 

The black dot below the horizontal line is the nucleus i-y. The dashed circle corresponds to the 

circumsphere of Oelaunay tetrahedron {i, ia , ifJ, i-y}. The open half-plane above the horizontal 

line corresponds to Hi(a,o!1). The open dots are the nuclei belonging to 5i(a,oI1). Solid circles 

correspond to spheres which are attached to these nuclei. In the figure, nucleus i6 is a vertex of 

the new Delaunay tetrahedron (after Tanemura, Ogawa, and Ogita, 1983). 

FIGURE 01. Schematic diagram of successive construction of Oelaunay tetrahedrons. The black 

dot represents the contiguous pair {i, ia }. This figure represents the intermediate stage of closing 

Delaunay tetrahedrons around the pair {i, ia }. For details, see text (after Tanemura, Ogawa, and 

Ogita, 1983). 

FIGURE El. Ordering of the vertices in a Oe)aunay tetrahedron. Figure corresponding to Table 

El. 

FIGUJU~ Fl. Dlustration of the structure of a k-d tree. The top 6 frames show the division of 

two-dimensional space according to the rules discussed in appendix F. The first frame shows the 

32 randomly distributed particles in the square, the four consecutive frames are k-d tree divisions 

at the 2nd until 4th level of the tree, with the 4th one corresponding to 2 particles per cell. The 

corresponding tree is shown below the 6 frames. The letters at the nodes correspond to the cells 

with the corresponding letters in the frames. The 6th frame contains a dashed rectangle, defining 

a search region. The black boxes in the tree correspond to the cells overlapped by this region. 

Links in the tree with a bar through them need not be investigated for the search. 

ruen van de Weygaert 

Canadian Institute for Theoretical Astrophysics 
McLennan Labs, 

University of Toronto, 
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