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The first hlgh T, superconductor to be discovered was La;..,Ba,Cu(L with z &

' . ‘ : o ' 0.15 [1], which has a layered structure with 2-d copper-oxygen planés. The copper

‘ / jons ‘are located at the sites of a quadratic lattice with lattice spacing a = 3.79 A.

am : _The undoped material La;CuOy is an insulator, however, with strong a.ntnferromag—

A determlﬂatIOD Of the 1OW energy par eterS netic interactions within the copper-oxygen planes between electron spins localized
of the 2-d Helsenberg antlferromagnet _ at the copper ions. The couplings between different layers are extremely weak.

' : Experimentally one observes long range antiferromagnetic order, i.e. a spontaneous .-

: - staggered magnetization M, arises, which breaks the O(3) spin rotational symmetry

s el +' i 1,2 : « down to O(2). The low energy excitations of the system are spinwaves (the so-called

-J. Wiese's* and H.-P. Ying™ / ’ : : :

U-J. Wi d H-P. 8 ’ magnons) which are the Goldstone bosons of the spontaneously broken O(3) sym-
metry. The physical situation can be modeled by the 2 d Heisenberg quantum spin _

system with Hamiltonian

1 Instltut fiir Theoretlsche Physik, Universitat Bern, _ 4 , ’ , . H=JIYS.. 5:+m . a
Sldlerstra.sse 5, CH-3012 Bern, Switzerland ; ‘ T ‘ : :
‘ ' o where §; = 15, is a spin } operator (&; are Pauli matrices) located at the point z
- - of a 2-d quadratic lattice with lattice spacing a. The interaction is between nearest
2 Zhe_]la.ng Instltute of Modem Physms, Zhejiang University, : neighbors (4 is the unit vector in u-direction) and J > 0 is the antiferromagnetic
Ha.ngz,hou 310027 P.R. Chma o , o ‘ . exchange coupling. The question arises how well this model describes the physics of
: . the copper-oxygen planes in La;CuOy, in particular how it compares quantitatively
) thh expenmental results. '
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Here we concentrate on the calculation of the low energy parameters of the
model, which determine the dynamics of the Goldstone bosons. - These are the -
staggered magnetization M,, the spinwave velocity he and. the spin stiffness p,.

Based on symmetry considerations chiral perturbation theory makes very strong.
_predictions for the magnon dynamics, containing the low energy parameters as the
only unknown constants. Recently, Hasenfratz and Niedermayer have worked out
.the chiral perturbation theory for the antiferromagnet in great detail up to two-
loop order [2]. Lower order results had been obtained before by Fisher [3] and by
Neuberger and Zirnan [4]. Here we only quote.the results of ref.[2] that are essential
for our study. We consider the system at finite temperature T and in a finite spatial

Abstract

We perform numerical sxmulatxons of the 2-d antlferromagnetlc quantum

- Heisenberg model using an efficient cluster algorithm. Comparing the finite
size and finite temperature effects of various quantities with recent results from
chiral perturbation theory we are able to determine the low energy parameters
of the system very precisely. We find eg = —0.6693(1)J/a? for the ground
state energy density, M, = 0.3074(4)/a? for the staggered ‘'magnetization,

‘ . ke = 1.68(1)Jg for the spin wave velocity and p, = 0.186(4)J for the spin . , volume of size L x L with periodic boundary conditions, with 13 = kc/TL such that
/ stiffness. Our results agree with experimental data for the. undoped precursor : lis of order 1. For small enough temperatures T < 27p, and large enough volumes
insulators of hlgh T, superconductors. B B o - ) - Tfie/L € 27p, Hasenfratz and Nledermayer obtained the followmg results: for the

‘ ' internal energy density .

A= {1+zdlﬁo£z) L,[ﬁ,(d Z60) 4.}, .

where ¢ is the ground : state energy densnty, for the sta.ggered susceptxbxhty

o M L?
+Su§ported by the Schweizer Nationalfond (T L= ‘{1 +2 ‘B’(l) + ( ) [ﬂ'(l )+ 3ﬁ2(1)} } (3)



and for thé uniform susceptibility

X(T.) = 3("’,{");{ % L,ﬂ:()+ ( ){ﬂ,u)'— —m(z)*—w(:i]h},‘

(4)

vThe functmns B0, ﬁ.(!) and 1/)(1) are sha.pe coefﬁcxents wh)ch depend only on 7 and

which are described in detail in ref.[2]. We will use these results of chiral perturbation -
theory to-determine the unknown low energy parameters eq, M, A¢ and p, from a
* fit of e(T, L), x,(T; L) and x(7, L) to numerical Monte Carlo data. This method has

,[51 ‘ ‘ : , )
‘ Flrst we decompose the Hamiltonian into H = II-. + Hy + H:, + H. w:th

-
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e=ame) e=(man) s |
Hs =7 ¥ &- ,+i- H=J Y 555 0
:—(2m+l,n) © z=(m,2n41) . )

and we use the Suzukl»Trotter formu]a for i.he partmon function -

Z = Trexp( -BH) = lnm Tr[exp( eBHx)exp(—eﬁHg) exp(—cﬁH;)ve)\(p(——eﬂH‘)]”
: - (8)
. where B =1/Tis the inverse temperature and € = 1/N determines the lattice.
spacing in the euclidean time direction. By inserting complete sets of cigenstates
[1) and |-1) of o2 between the factors exp(—¢SH;) we map the 2-d quantum spin.
system to a 3-d mduced classical system of Ismg-hkc variables s(z ty=4£1(t labe]s
the euclxdean time sllce)

2=11 5 onl-5) S m

R Et a(xt)==1
' with an action R
S = ¥ Sls(zt),slz+1,0),s(zt+1),sz+1,t+1)]

w=(Imn)t=dp

b T Szt bt + )5 4 B4 1]
z=(m,2n),t=4p+1
+ .Y 'S[é‘(:t, ) s(z+1, t),s(:t i+1),s(z+1 t+1)}

s=(2m+1 ;n),t;ﬂ;w?

+ Y s z,t),s(::+2 t) s(:c H—l) s(a:+2 t+l)] ’(8)"

z=(m,2n+1},t=4p+3

The classical spms mtera.ct with each other via four-spm couphngs S[.s(z,t),s(:c +
i), s(z,t+ 1),3(::: + i, t + 1)] associated with time-like plaquettes Up to a trivial
additive constant one has S[1,1,1,1] = §[-1,~1,~1,-1] = 0, S[1,-1,1,=1] =

S5[-1,1,-1,1] = —log[ (exp(eﬂl)+ l)] and S[l -1, -1 1] S[——l l 1,-1] =

3

been used before for classxcal spin models and ior relahvxstxc quantum ﬁeld theories .

'

- ]og[,(exp(eﬁ.l ) - 1)] All other action va.lues are mﬁmte This causes problems
in numerical simulations because many spin conﬁgurat:ons are forbidden and the

updating must respect several constraints. In a previous paper we have introduced -
blockspins [6] to resolve the constraints. For the 1-d antiférromagnetic spin chain

“the blockspin model is not frustrated and the use of a blockspin cluster algorithm
~ eliminates critical slowing down. In two dimensions, however, frustration causes:
-~ severe problems. Recently, Evertz, Lana and Marcu [7] have developed loop cluster

algorithms for vertex models, which can‘also be applied to quantum spin systems:

* The algorithm constructs closed loops of spins and flips them simultaneously. The

loop cluster algorithm does not suffer from frustration but it may suffer from so-
called freezing. Freezing occurs when a loop branches out many times and fills a

. large fraction of the whole volume. We find that freezing does not arise for the
Heisenberg anttferromagnet Thxs 1s essentla.l for the success of our numerxcal study

The algonthm constructs loops by first selectmg a sta:tmg pomt (z,t) at raudom

‘The spin s(z,t) participates in two plaquette interactions, one at euclidean tirnes
.before and one at euclidean times after t. When s(z,t) = 1 we consider the plaquette
_ interaction at the-later time, and for s(z,t) = —1 we consider the interaction at the
-earlier time. The corresponding plaquette configuration is characterized by the spin.

orientations at the four corners. One of the corners will be the next pomt on the loop.
For configurations C; = [1,1,1,1] or [=1,—1,—1,—1] the next point is the time-like:
nearest neighbor of (z,1) on the plaquette. For conﬁguratlons C=[1,-1,1,-1) or

'[-1,1,~1,1] the next. point on the loop is with probability p =>2/(exp(eﬂ.]) +1) .
- the time-like nearest neighbor, and with probability 1 — p the space-like nearest

neighbor of (z,t). Finally, for configurations Cs = [1,~1,+-1,1] or [~1,1,1,~1] the

. mext point on the loop is the space-like nearest ‘neighbor of (z,t). Once the next
* 'point on the loop is'determined the process is repeated until the loop closes. Then all

spins on the loop are flipped simultaneously. The algorithm obeys detailed balance,
p(C.-)w(C- — Cj) = p(Cj)w(C; — Ci), where p(C1) = 1, p(C3) = ¥(exp(eBJ) +1),
p(Cs) = (exp(e.@]) - 1) and w(C; — C;) is the transition proba.bahty to go froma

' plaquette conﬁguratmn Ci to Cj. Indeed one has

HC)u(C = C) =1 = 1p= P(Cz)w(cz"cl):

P(Cz)w(Cz - C'a) = -(1 -p)= -(exP(fﬁJ )-' 1) = P(Cs)W(Ca - C,) (9) o

In our construction a loop cannot branch out and bence freezmg does not arise.. -

~ Cluster algorithms offer the possibility to use improved estimators which reduce the

variance of different observables. For example, the uniform susceptlbjllty can be ex-
pressed-as ya*J = "" S (M2/ICl), where 4N is the number of pomts in the euclidean

. time direction, [C] = E(, r)ecl is the sizé of the: loop C and M¢ = 1 8 (=nec s(z,t)is

the-loop magnetization. It is interesting to note that clusters thh nonzero magneti-
zation must wrap around the lattice in the euclidean time’ direction. Small clusters -
which do not wrap around the lattice have Mc 0. Similarly, one can define im-



http:constraints~.In
http:z=('m+1,n),t::io.tp

_Table 1: Numencal data for e ix. and y.

BJ | Lja 4N | ed®]J XaaJ xa’J |

5 | 6 | 256 |-0.678(1) | 9.67(3) | 0.0482(3)
5[ 8 256 |-0.673(1) | 16.08(5) | 0.0514(3

5 10 {256 | -0.672(1) | 23.73(7) | 0.0527(3)

5 | 12 | 256 | -0.671(1) | 32.3(1) | 0.0530(3

5 14 1256 |-0.671(1) | 41.7(1) |0.0519(3)

5 | 16 | 256 | -0.669(1) | 52.6(2) | 0.0531(3)

5 | 18 | 256 | -0.672(1) | 64.3(2) | 0.0528(3)

5 | 20 | 256 | -0.670(1) | 76.3(3) | 0.0535(3)
10| 6 |512 |-0.679(1) | 14.64(5) | 0.0268(3)
10 | 8 | 512 |-0.675(1) | 27.5(1) | 0.0406(3)
10 | 10 | 512 | -0.673(1) | 42.9(2) | 0.0442(3)
10 | 12 | 512 | -0.673(1) | 60.6(2) | 0.0460(3) |
{10 [ 14 | 512 [-0.670(1) | 81.2(3) | 0.0469(3)

10 | 16 | 512 | -0.673(1) | 103.1(4) | 0.0476(3)
10 | 18 | 512 | -0.672(1) | 129.0(4) | 0.0480(3)
10 | 20 | 512 | -0.671(1) | 156.2(5) | 0.0477(3)
15 | 6 |768 | -0.681(1) | 16.71(6) | 0.0111(3)
15 | 8 | 768 |-0.675(1) | 34.8(1) | 0.0287(3)
- 15 | 10 | 768 [-0.674(1) | 57.9(2) | 0.0385(3)
\ 15 | 12 | 768 | -0.674(1) | 83.8(3) | 0.0420(3)
: 15 | 14 | 768 | -0.672(1) | 113.6(4) | 0.0439(3)
15 | 16 | 768 | -0.671(1) | 148.0(5) | 0.0451(3)
15 | 18 | 768 | -0.670(1) | 187.0(6) | 0.0457(3)
15 | 20 | 768 | -0.671(1) | 227.6(8) | 0.0457(3)

" proved estimators for the staggered susceptibility x. ‘and for the mternal energy

density -e.

Some results of our numerical simulations are collected in table 1. We have per-
- formed mea.surements for three inverse temperatures 8.J = 5,10,15 and for different -
spatial sizes L/e = 6,8,...,20. We have always performed 10000 loop updates for-
- equilibration followed by 100000 measurements using the improved estimators. The
autocorrelation times of the loop cluster algorithm are at most.a few sweeps, and
~ we see no indication of critical slowing down. ‘With standard local algorithms it

would be impossible to reach temperatures as low as the ones we use here, because

" of severe problems with slowing down. In table 1 the lattice spacing has’ been fixed

to €BJ = . We have also performed runs on coarser lattices with ¢fJ = 3 and

“ This allows us to extrapolate our data to the euclidean time continuum limit

"€ — 0. After the extrapolation we fit the results to the above expressions from chiral

perturbation theory. The data for e, x, and x are all fitted simultaneously. Our

" best fit with x?/dof = 1.4 is-shown in fig 1. The finite size and finite temperature

effects of the-internal energy density depicted in fig.1a are very small (of the order
of our statistical errors), while the effects on the susceptibilities are much larger.
For low temperature and small volume some data have been excluded from the fit:
because for them [ is not of order 1. The fit gives the following valyes for the low

. energy parameters

eo = —0.6693(1)J/a?, M, = 0.3074(4)/a?, hc = 1.68(1)Ja, p, = 0.186(4).J. (10)

- To our knowledge this is the most accurate determination of these zero ‘temper-

ature and infinite volume properties from a simulation of the partition function
at finite temperature and finite volume. The result for the ground state energy
density agrees with different zero temperature Monte Carlo calculations [8] which
yield ep = —0.6692(1)J/a?. Our results are consistent with an analytic expansions
around the Ising limit [9] which gives e = 0.6693(1)J/a® and M, = 0.307(1)/a?,

‘but not consistent with a recent large scale numerical study using a standard lo-
~ cal algorithm [10] which obtained p, = 0.199(2}J. Finally, we compare our results .

with experimental data. Using inelastic neutron scattering the spin wave velocity
fhc'= 0.85(3)eVA has been measured {11], while an analysis of Raman scattering
data [12] yields J = 0.128(6)eV = 1480(70)K. Using this together with a = 3.79A

. the experiments on La;CuO, obtain ke = 1.75(9)Ja. This is consistent with our

result for the Heisenberg antiferromagnet. Using the experimental values for the
spinwave velocity and for the lattice spacing we obtain an xndependent est)ma.te of
the exchange couplmg in LagCu04

T =10.133(5)eV — 1540(60)K. : )

The agreement between our numerical results and the pfedictions of chiral pertur-

- bation theory confirms that the Heisenberg model has long range antiferromagnetic

order, and that its low energy dynamics is dominated by magnons. A precise de-
termination of the low energy parameters that determine the magnon physics was

~* possible only because the loop cluster algorithm is very. efficient also at low temper-

atures. Recently, a loop cluster algorithm has been cosistructed for lattice fermion
systems [13]. - This raises hopes that numerical mvestlgat)ons of similar accuracy -
become feasible for the Hubbard model, and hence for high- T superconductors like

‘Lag_,B&,Cu 04

‘We are indebted to P. Hasenfratz and F. Niedermayer for making thelr results,
available to us prior to publication. We also like to thank them for many mterestmg
d:scussxons about- quantum antiferromagnets. : .
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) o i | - Fig.la =~
'ig.1: The fit of the Monte-Carlo data for. the internal energy ea®/J (a), the stag- :
gered susceptibility x,a*J/L? (b), and the uniform susceptibility xa*J (c). The S
- dots, squares and- triangles are the Monte-Carlo dafa for BJ =5, 10 and 15 re-
" . spectively. The correspondmg fit functxons are represented by the solid, dashed amd :
dotted curves. . o
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