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The reduced teuioll tid of the interla.ce betwec!1l the confined ad the deconfined phue oC SU(3) pure gauge 
U!eory ia determined from .umerical aimul..tio•• oC the first. tr....Cer matrix eigenvalues. At. Tc = 1/L. we find 
.t1u. = 0.139(4)71· tor L. =2. The inter£acea show uiversal behavior because the cleconfined-deconliDed interCacea 
. are complet.el,. wet b,. the coafined phase. The critical ~pone.ts oC complete. wetting CoDow Crom the analytic: 
mter£a.ce lOlutiolt. oC a Z(3)-.ymmet.ric .' model in three ~ellli.on•• We find Ilumericalevidence thai the 
tonfined-deconfined int.erlace ia rouah. 

The tension of the interface between the low 
temperature hadron phase and the high temper­
ature qUlU'k-gluonplasma phase is an important 
plU'ameter of the QCD phase· transition. In the 
elU'ly universe the interface tension determines 
the nucleation rate of hadronic bubbles from the 
high temperature plasma. Thus, it sets the scale 
for spatial inhomogeneiti. in the baryon density, 
which may influence tbe primordial nucleosynthe­
sis of light elements. To obtain an eStimate Cor the 
hiterface tension in QeD we neglect the quarks 
and we concentrate on an SU(3) pure glue theory. 
Then the phase transition is first order, i.e. the 

, confined and the deconfined phase coexist at the 
critical temperature Tc, and the interCace tension 
is nonzero. It is convenient to define the reduced 
interface tension 

F 
(1)(fe4: ATc' 

where F is the free energy of the interface and A 
is its lU'ea. 

In the pure glue theory the deconfinement 
phase transition is assoc:iated with the spon­
taneous breakdown of the Z(3) center symme­
try. Henee, 88 opposed to Cull QCD, there 
are three distinct high temperature phases, 
which coexist at· temperatures T > .Te:. Two 
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different deconfined phases are separated by 
deconflned-deconfined interfaces with 'a reduced 
interface tension 0'44(T). At Tc all four phases 
(three deconfined and one eonfined) coexist wit.h 
each other. Thermodynamical stability requires 
0'44(Te) S 2(1'e4. Frei and Patk6s [1] have sug­
gested that 

(I'.u(Tc) : 2(1'e4. (2) 

Then a deconfined-deconfined interrace consists of 
two confined-deconfined interfaces with a macro­
scopic layer of confined phase in between. One 
says that the deconfined-deconfined interfaces are 
completely wet by the confined phase. Com­
plete wetting is a critical phenomenon of inter­
faces (hence Til is really a crit.ical temperature 
although the bulk transition is first order). As 
one approaches the phase transition Crom above 
the thickn~ of the confined wetting layer 

%0 oc (T - Te:)-· (3) 

diverges with a critical exponent .p. while the or­
der parameter at the interface 

+1(0) oc (T - T.J' (4) 

vanishes with another critical exponent {l. 
In our case the order parameter is the Polyakov 

loop 

/L.
+(£) = Tr[Pexp 10 dtA4(£,')]. (5) 
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where A,,(£,t) is the anti-hermitean SU(3) gauge 
potential The Polyakov loop +(i') = +1 (i') + 
i.2(i') is a complex aar field in three 9imen­
lions. To compute the values of the critical expo­
nents one may construct an effective ~(3) sym­
metric +4 theory with an aCtion [21 . 

sr+1: J~2:[~8i+·8i+ +V(+»), 

V(+) =411+12 + Hh(+f - 3+n + c(+14
, (6) 

The bare interfaces are solutions of the corre­
sponding classical equations of ~tion. Fig.1 
shows the shapes +1(%) and.2(%) of a planar 
deconfined-deconfined interface perpendicUlar to 
the .I-direction deep in the deconfined phase (a), 
in a region where wetting sets in (b). and very 
close to the phase transition (c) where interface 
splitting and hence complete wetting is clearly 
visible. Close to the phase transition an an.... 
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Figure 1. The deconfined-deconfined interface. 
The solid line is +1 and the dashed line is +,. 

lytic interface solution yields Zo oc log(T- Te:) and 
+. (0) oc ~. In particular, tlie thickness Zo 

2 

exponents are [2] 

.": 0, fJ = 

gl~ 'theory; 

boundary conditions [3). 
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the spatial unit vector ej­

+(i'+ Ltll) = 

interfaces of area A = 
2:- and y-directions. 
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of the cOnfined complete wetting layer di 
only logarithmically. The corresponding 

1 
2' 

Complete wetting is a peculiarity o( the pure 
In full QeD ,it does not occur be­

cause the 'quarks break the Z(3) symmetry ex­
plicitly, thus eliminating two of tlie three· decon­
fined phases. In numerical simulations of the pure 
glue theory wetting complicates the situation 8J.ld 
makes the determination of the reduc~d interlace 
t.eusion (1'4;4 more difficult. To avoid the compli", 
cations it is advantageous to impose C-periodie 

Just like quarks they 
break the center symmetry and they reduce the 
number of deconfined phases from three to one 

With C-periodie boundary conditions the 
Polyakov loop is replaced by i~ charge conjugate 
when it is shifted a distance Li in the direction of ' 

c+(£) = +.(i'). 

Hence, the two deconfined phases with non-real 
. expeCtation values oC the PolyakQV loop· a.re not 
consistent with C-periodic boundary CQnditions. 
Of course, one must usepedodic boundary con­
ditions in the euclidean time direction. 

To extract the value of (l'c4 we investigate the 
system in a cylindrical spatiaivolume with two 
short z- and y-directions of lengths L~ and L" 
and a much longer z.dir.ection.Close to Te typi. 
cal configurations then consist ofseveral blocks of 
confined and deconfined phases, aligned along the 
.r-direetion. and separated by confined-deconfined 

L~L" spanned in the short., 
The interface shape +1 (z) 

(averaged over the short z-and .y-directions)is 
shown in fig.2 for a typical. configuration on an 
8 x 8 x 128 x 2 lattice with C-periodic bounda.ry 
conditions. The interfaces inftuence the spectrum 
of the transfer matrix in the z-direCt~on. In par­
ticular, the first two transfer matrix ~geiwatues 

= exp(-EO.1Z) can be obtained;frct~ 
2)( 2 matrix of trahsition amplitudes 

t~4(Z») . 
tc4(Z) 'ee(z) . 

http:ellli.on
http:mter�a.ce
http:complet.el
http:interla.ce


,.-"-' 

o 25 50 75 100 125 
z 

Figure 2. A typical interface shape. 

To lowest order of the dilute interface approxi­
mation the amplitude for transitions between the 
confined and the deconfined phase is given by the 
one-interface contribution 

tecl(Z) = 10rdzo . 
exp(-.:z:zo)6 exp(-O'eclA) exp(Z(Z - .1'0». (10) 

One integrates over the position .1'0 of the in·· 
terface. The Boltzmann factors exp( -no) and 
exp(.:z:(z-%o» represent a block of confined phase 
of thickness .1'0 and a block of deconfined phaSe 
of thickness % - %0, where z = lUe - /d)"AIT 
depends on the free energy densities Ie and 
Id of the confined and the deconfined phase. 
The interface contribution -6 exp(-O'eclA) is sup­
pressed by the interface free energy FIT = VedA, 
and it also contains a factor 6 which describes 
capillary wave fluctuations of the interface. A 
rigid interface without capillary wave fluctua­
tions has 6 = 1. Using similaJ' expressions for 
the amplitudes tclcl(%) and tete,:) and working 
to all orders of the dilute interface approxima­
tion one finds an ener,y difference El - Eo = 
2.j'.:z:2 +62exp{-20'edA, which is minimal for 
z = 0 [5]. Putting Eo = 0 one obtains at the 
minimum 

El = 26exp(-d'edA). 	 (11) 

In the numerical simulations the energy differ:ence 
is determined from the exponential decay of a cor­
relation function of Polyakov loops separated in 
the %-direction. We have used lattices 4 x 4 x 64, 
4. x 6 x 64, 6 x 6 x 64, 6 x 8 x 96 and 8 x 8 x 128 

, :" """:"~-:~ ~<4:~'f~1~':l0a)~ 

.always with L, = 2 lattice points i~ the eu­
clidean time direction; and with several values of 
the Wilson coupling very dose to Pc = 5.0933(7). 
Fig.3ashows the energy El for .simulations on a 
4X 6 x 64 x2 lattice with C-periodic boundary con­
ditions. As expected the minimum of El occurs 
close to Pc, where Ie = Ici and hence z =O. FigA 
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Figure 3. The spectra of the lowest energies. 

shows a fit of log El as a function of the interface 
area A = L~L,I' According to eq.(ll) the slope 
of the curve determines the value of the reduced 
interface tension (feci = 0.035(1) = 0.140(4)T;. 
The fluctuation factor 6 = 0.196(5) ¢ 1 indicates 
that the confined-deconfined interface is rough as 
it should be in the continuum limit. Note that 
rigid interfaces are lattice artifacts. 

When periodic boundary; conditions are uSed 
the situation becomes more compliclI.ted, because 
then three deconfined phases are present and wet­
ting may arise. In particular, there are four 
energies Eo, E l • E2 and Ea which become de­
generate at Tc in the infinite volume limit. In 
case of complete wetting (putting again Eo = 0) 
we find E1;2 = .j'.:z:2 + 362exp(-20'e4A) - z and 
E3 = 2)11:2+362exp(-20'e4A) [5}. The energies 
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Figure 4. The dependence of the energies on the 
interface area A. 

El and E, are degenerate because of Z(3) sym­
metry and charge conjugation invariance. The 
energy E3 has its minimum at z = 0 where 

Es =2v'36exp(-O'edA) = 2El,2. (12) 

On the other hand, if wetting is incomplete (Le. 
if O'cld(Tc) < 20'ecl) the minimum of E3 occurs at 
11: = ';"rexp(-O'ciclA) < 0, while the point where 
Es = 2E1,2 is shifted. to z =2rexp(-O'ddA) > 0 
[5]. The transfer matrix spectrum is then quali­
tatively different. Fig.3b shows the spectrum on 
a. 6 x 6 x 64 X 2 lattice with periodic boundary 
conditions. The minimum of E3 and the point 
where E3 = 2E1,2 are only slightly shifted away 
from each other•. In case of incomplete wetting 
one would expect· a shift, but it would go exactly 
in the opposite direction. Therefore, our data are 
consistent with complete and not with incomplete 
wetting. In fact, using eq.(12) for an indepen­
dent fit which is also shown in fig.4, we obtain 
O'ecl = 0.034(2) = 0.136(8)7-:1' and 6 = 0.202(6) in 
agreement with the C-periodic results. 

To summarize we have found evidence that the 
deconfined-deconfined interfaces are completely 
wet by the confined phase. Combining the C­
periodic with the periodic results we obtain 

O'ed =0.139(4)T; 	 (13) 
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for the reduced confined-deconfined interface ten­
sion. Our result is consistent with the one of th'e 
~~!~ group O'ecl == 0.12(2)T; [6} and larger than 
the one oft~e Helsinki group O'ecl =0.08(2)~ (7}. 
As opposed t() these methods we use the necessar-· 
ily pr'esent finite size effects to extract t.he value 
of O'ecl, inst.ead of trying ta".~i<l finite size ef­
fecta by going to larger l~tt~" In particular. a 
reliable extrapolation to the infinite volume limit 
is then possible, because we fiJid agreement with 
OUf analytic finite size formti~. The fluctua.tion 
fact.or 6 = 0.199(4) indicates that tbe confined­
decon'fin,ed interface is rough. as it should be in 
the continuum limit. Of course, our results are 
obtained with La = 2 and it would be interest­

'ing to get. closer to the continuum limit, e.g. to 
L, == 4.. This is dearly feasible using our finite 
size technology, but it requires larger latticeS like 
e.g. 16 x 16 x 256 X 4 because the phase tran­
sition is then more weakly first order. Also high 
statistics is needed to be able to determine reli· 
ably the spectrum of the transfer matrix. The 
existing data already indicate that the interface 
t.ension is small at least. in the pure glue theory. If 
this remains true in full QeD, only small spatial 
inhomogeneities are produced at the QCD phase 
transition and primordial nucleosyntheSis is likely 
to take place under spatially homogeneous condi­
tions. 

REFERENCES 

Z. Frei and A. PatkOs, Phys. Lett. B229 
(1989) 102. 

2 T. Trappenberg and U.-J. Wiese, Nucl. Ph),s. 
B372 (1992) 703. 

3 A. S. Kronfeld and U.-J. Wiese, Nud. Ph),s. 
B357 (1991) 521. 

4 U.-J. Wiese, Nud. Phys. B375 (199.2) 45. 
5 B. Grossmann, M. L. Laursen, T. Trappen­

berg and U.-J. Wiese, HLRZ Jiilich preprint 
92-47, Bern preprint BUTP-92/34 (1992). 

6 S. Huang, J. Potvin, C. Rebbi and S. Saniele­
vici, Phys. Rev.D42 (1990) 2864. 

7 	 K. Kajantie, L. Kirkkiinen and R. Rum­
mukainen, Nuel. Phys. B333 (1990) 100; Nud. 
Phys. B357 (1991) 693. . 

3 4 


