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fined and the deconfined phase of SU(3) pure gauge

The reduced tension g4 of the interf e between the
“ theory is determined from ical simulations of the first transfer matrix eigenval
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At T. = 1/L; we find
the deconfined-deconfined interfaces

ea = 0.139(4)T? for L, = 2. The interfaces show uni

" are completely wet by the confined phase. The critical exponents of complete wetting follow from the analytic

interface solutions of a Z(3)-symmetric $* model in three dimensions. We find numerical evidence that the

confined-deconfined interface is rough.

The tension of the interface between the low .

temperature hadron phase and the high temper-
ature quark-gluon plasma phase is an important
parameter of the QCD phase transition. In the
- early universe the interface tension determines
the nucleation rate of hadronic bubbles from the
high temperature plasma. Thus, it sets the scale
_for spatial inhomogeneities in the baryon density,
which may influence the primordial nucleosynthe-
sis of light elements. To obtain an estimate for the
interface tension in QCD we neglect the quarks
and we concentrate on an SU(3) pure glue theory.
Then the phase transition is first order, i.e. the
- confined and the deconfined phase coexist at the
critical temperature T, and the interface tension
is nonzero. It is convenient to define the reduced
interface tension
. F
VAcd = :{7’:' * (l)
where F is the free energy of the interface and A
i8 its area.
~ In the pure glue theory the deconfinement
phase transition is associated with the spon-
taneous breakdown of the Z(3) center symme-
try. Hence, as opposed to full QCD, there
are three distinct high temperature phases,
which coexist at temperatures T > T.. Two
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different deconfined phases are separated by
deconfined-deconfined interfaces with ‘a reduced
interface tension 044(T). At T, all four phases
(three deconfined and one confined) coexist with
each other. Thermodynamical stability requires
044(Te) < 20ca. Frei and Patkés (1] have sug-
gested that .

oad(T:) = 20cq. ()

Then a deconfined-deconfined interface consists of
two confined-deconfined interfaces with a macro-
scopic layer of confined phase in between. One
says that the deconfined-deconfined interfaces are
completely wet by the confined phase. Com-
plete wetting is a critical phenomenon of inter-
faces (hence T, is really a critical temperature
although the bulk transition is first order). As
one approaches the phase transition from above
the thickness of the confined wetting layer

o (T-T)¥ @)
diverges with a critical exponent v, while the or-
der parameter at the interface -
®,(0) x (T-T.Y @
vanishes with another critical exponent 8.

In our case the order parameter is the Polyakov
loop B

. Ly
#(2) = Tr{Pexp /u dtayE, 1), )
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where A,(Z,1) is the anti-hermitean SU(3) gauge
potential.  The Polyakov loop &(Z) = &() +
i"h(i’) is a complex scalar field in three dimen-
sions. To compute the values of the critical expo-

nents one may construct an effective Z(3) symg

metnc &4 theory wnth an action {2]

i) = f .zsz[ia‘va,@ +V(@)),

V(®) = a|®f + b3,(8] - 303) + ||, (6)

The bare interfaces are solutions of the corre-
sponding classical- equations of motion. Fig.1
shows the shapes ®;(z) and ®3(z) of a planar
deconfined-deconfined interface perpendicular to
the z-direction deep in the deconfined phase (a),
in a region where wetting sets in (b}, and very
close to the phase transition (c) where interface
splitting and hence complete wetting is clearly
visible. Close to the phase transition an ana-
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of the confined wmp!etcf wetting layer diverg,
only logarithmically., The corresponding critical
exponents are [2]

$= Oﬂ—— , m

Complete wetting is a peculranty of the pure
glue theory. In full QCD it does not occur be-
cause the quarks break the Z(3) symmetry ex-
plicitly, thus eliminating two of the three decon-
fined phases. In numerical simulations of the pure
glue theory wetting complicates the situation and

kes the determination of the reduced intérface
tension o4 more difficult. To avoid the compli-_
cations it is advantageous to impose C-periodic '
boundary conditions [3]. Just like quarks they
break the center symmetry and they reduce the
number of deconfined phases from three to one .
[4]. With C-periodic boundary conditions the
Polyakov loop is replaced by its charge conjugate
when it is shifted a distance L; in the direction of '
the spatial unit vector & .

B(F+ Li&t) = () = "(). ®)

Hence, the two deconfined phases with non-real
_expectation values of the Polyakov loop-are not
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Figure 1. The deconfined-deconfined interface.
The solid line is $; and the dashed line is ®3.

- lyticinterface solution yields zo o log(T—T.) and
®,(0) x T —T¢. In particular, the thickness zg

Of course, one must use periodic boundary con-

consistent with C-periodic boundary conditions.

ditions in the euclidean time ditection.

To extract the value of 0.4 we investigate the
system in a cylindrical spatial volume with two
short z- and y-directions of lengths L. and L,
and a much longer z-direction. Close to T, typi-
cal configurations then consist of several blocks of
confined and deconfined phases, aligned along the
z-direction, and separated by confined-deconfined

interfaces of area A = L, L, spanned in the short.
z- and y-directions. The interface shape ¥;(z)
(averaged over the short z-.and y-directions) ia
shown in fig.2 for a typical configuration on an
8 x 8 x 128 x 2 lattice with C-periodic boundary
conditions. The interfaces influence the spectrum
of the transfer matrix in the z-direction. In par--
ticular, the first two transfer matrix eigenvalues .
‘t9,1(z) = exp(—Fo,1z) can be obtained- from a.
2 % 2 matrix of trahsition amplitudes :

t | 18 .
= (14 ).
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f‘igui’e 2. A typical interface shape.

To lowest order of the dilute interface approxi-
mation the amplitude for transitions between the
confined and the deconfined phase is given by the
one-interface contribution

teals) = / dzo
exp(—zzo)Jexp(-aedA) exp(z(z - 29)). (10)

One integrates over the position zp of the in-
terface. The Boltzmann factors exp(—zzp) and
exp(z(z — 20)) represent a block of confined phase
of thickness zo and ‘a block of decanfined phase
of thickness z — 29, where z = f(f, - fa)A/T
depends on the free energy densities f. and
fa of the confined and the deconfined phase.
The interface contribution § exp(—oc4A4) is sup-
pressed by the interface free energy F/T = ¢'.4A,
and it also contains a factor § which describes
capillary wave fluctuations of the interface. A
rigid interface without capillary wave fluctua-
tions has é§ = 1. Using similar expressions for
the amplitudes #44(z) and t..(z) and working
to all orders of the dilute interface approxima-
tion one finds an energy difference E; — Ep =
2\/z5+_37exp2-2a“A§, which is minimal for
z = 0 [5]. Putting Eq = 0 one obtains at the
minimum : ’

Ey = 28 exp(~0ccqA). (11)

In the numerical simulations the energy difference
is determined from the exponential decay of a cor-
relation function of Polyakov loops separated in
the z-direction. We have used lattices 4 x 4 x 64,
4x6x64,6x6x64,6x8x96and8x8x128

always with L; = 2 lattice points in the eu-

clidean time direction, and with several values of

the Wilson coupling very close to 8. = 5.0933(7).
Fig.3a shows the energy E; for simulations on a
4x8x64x2lattice with C-periodic boundary con-
ditions. As expected the minimum of E; occurs
‘close to B, where f, = fz and hence z = 0. Fig.4
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Figure 3. The spectra of the lowest energies.

shows a fit of log E| as a function of the interface
area A = L Ly. According to eq.(11) the slope
of the curve determines the value of the reduced
interface tension ¢.4 = 0.035(1) = 0.140(4)T2.
The fluctuation factor &§ = 0.196(5) # 1 indicates
that the confined-deconfined interface is rough as
it should be in the continuum limit. Note that
rigid interfaces are lattice artifacts.

When periodic boundary conditions are used
the situation becomes more complicated, because
then three deconfined phases are present and wet-
ting may arise. In particular, there are four
energies Ey, Ey, Ey and Ey which become de-
generate at T, in the infinite volume limit. In
case of complete wetting (putting again Ep = 0)
we find By = /2% 4 382 exp(—20.4A) — = and

E3 = 2\/z% 4 36% exp(—20.44) [3]. The energies
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Figure 4. The dependence of the energies on the
interface area A.
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E, and E; are degenerate because of Z(3) sym-
metry and charge conjugation invariance. The
energy E3 has its minimum at 2 = 0 where

Es = 2V36exp(—0.4A) = 2E; 2. (12)

On the other hand, if wetting is incomplete (i.e.
if 044(T:) < 20.4) the minimum of E3 occurs at
z = ~yexp(~0q44A) < 0, while the point where
E3 = 2E, 3 is shifted to z = 2yexp(—oad) > 0
[5]. The transfer matrix spectrum is then quali-
tatively different. Fig.3b shows the spectrum on
2.6 x 6 x 64 x 2 lattice with periodic boundary
conditions. The minimum of E3 and the point
where E3 = 2E) 3 are only slightly shifted away
from each other. In case of incomplete wetting
one would expect a shift, but it would go exactly
in the opposite direction. Therefore, our data are
consistent with complete and not with incomplete
wetting. In fact, using eq.(12) for an indepen-
dent fit which is also shown in fig.4, we obtain
o4 = 0.034(2) = 0.136(8)T? and § = 0.202(6) in
agreement with the C-periodic results.

To summarize we have found evidence that the
deconfined-deconfined interfaces are completely
wet by the confined phase. Combining the C-
periodic with the periodic results we obtain

Feq = 0.139(4)T3 (13)

 for the reduced confined-deconfined interface ten-

sion, Our result is consistent with the one of the
Bos‘on group oeg = 0.12(2)T7 [6] and larger than
the one of the Helsinki group 0.4 = 0. 08(2)T2 7).
As opposed to these methods we use the necessar--
ily present finite size effects to extract the value
of 0.4, instead of trying tq\wold finite size ef-
fects by going to larger latt.i‘qn In particular, a
reliable extrapolation to the infinite volume limit
is then possible, because we ﬁngl agreement with
our analytic finite size formulae. The fluctuation
factor § = 0.199(4) indicates that the confined-
deconfired interface is rough, as it should be in
the continuum limit. Of course, our results are
obtained with L, = 2 and it would be interest-
‘ing to get closer to the continuum limit, e.g. to
L = 4. This is clearly feasible using our finite
size technology, but it requires larger lattices like
e.g. 16 x 16 x 256 x 4 because the phase tran-
sition is then more weakly first order. Also high
statistics is needed to be able to determine reli-
ably the spectrum of the transfer matrix. The
existing data already indicate that the interface
tension is small at least in the pure glue theory. If
this remains true in full QCD, only small spatial
inhomogeneities are produced at the QCD phase
transition and primordial nucleosynthesis is likely
to take place under spatially homogeneous condi-
tions.
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