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ABSTRACT: We develop and describe new approaches to the problem of interacting 

Department of Physics Fennions in spatial dimensions greater than one. These approaches are based on gener-

Box 1843 alizations of powerful tools previously applied to problems in one spatial dimension. We 
Brown University 

begin with a review of one-dimensional interacting Fermions. We then introduce a simpli-
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fied model in two spatial dimensions to study the role that spin and perfect nesting play 

and in destabilizing Fermion liquids. The complicated functional renormalization group equa

tions of the full problem are made tractable in our model by replacing the continuum of 
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points that make up the closed Fermi line with four Fermi points. Despite this drastic ap

proximation, the model exhibits physically reasonable behavior both at halI-filling (where 
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instabilities occur) and away from halI-filling (where a Luttinger liquid arises). Next we 
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implement the Bosonization of higher dimensional Fermi surfaces introduced by Luther 
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 and advocated most recently by Haldane. Bosonization incorporates the phase space and 

Box 1843 small-angle scattering processes neglected in our model (but does not, as yet, address 
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questions of stability). The charge sector is equivalent to an exactly solvable Gaussian 
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quantum field theory; the spin sector, however, must be solved semielassically. Using the 

Luther-Haldane approach we recover the collective mode equation of Fermi-liquid theory 

October 21, 1992 and in three dimensions reproduce the TJ In(T) contribution to the specific heat due to 

small angle scattering processes. We conclude with a discussion of our results and liome 
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I. INTRODUCTION AND REVIEW OF A I-D MODEL WITH 2-FOLD U(I) SYMMETRY 

Fermi liquid theory is now nearly forty years old. It is important to ascertain the range of 

its validity and determine whether more exotic generalizations, such as Luttinger liquids which 

exhibit spin-charge separation, exist. Shankar recently has emphasized the advantage of the 

renormalization-group (RG) approach over various types of mean-field approximations for answer

ing these questions l • In short, mean· field descriptions prejudice the outcome of the analysis by 

assuming that one, or at most a few, type of instability dominate the physics. RG analysis, on the 

other hand, treats all possible instabilities on an equal footing. Unfortunately, in spatial dimensions 

greater than one, the RG dows are described by nearly intractable functional equations. 

The approach we take in this paper is to slowly work up to the full problem by first reviewing 

rather weU known one dimensional physics2• We then study a simplified model in two dimensions 

that incorporates some of the new physics that arises in higher spatial dimensions while still retain

ing the simplicity of one dimensional systems. Of course the price we pay for this simplicity is the 

drastic approximation to physical reality that we must make in order to arrive at the model: we 

completely neglect small angle scattering processes. Nevertheless, the model suggests a way to com

pletely reformulate Fermi liquid theory. Following Haldane's suggestion3 we now view Fermi and 

Luttinger liquids as .zero temperature quantum critical fixed points characterized by infinite U(l) 

symmetry. The reformulation sheds light on how one might go beyond the drastic approximations 

of tbe model to include small angle scattering processes. 

Spin-charge separation occurs automatically in one spatial dimension, at least in the weak 

coupling limit and at long length scales. Consider the following low energy effective theory for 

excitations near the two Fermi points depicted in Figure The action in the non·interacting 

limit is given by: 

So = f dz dt {f/11acL tPLa +f/1j:8+f/1no} . (1.1) 

Here Land R refer to the left and right Fermi points; 8-1:. == 8,'Tiv/8;c where Vj is the Fermi velocity 

which we will set equal to one for now. The Lorentz symmetry of this action guarantees that the 
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left moving Fermi fields are purely functions of the combination (x +iv/i) whereas the right fields 

are functions of (x iv/t). The electron destruction fields ca(x, i), where 0 =1 or ! for up and 

down spins (with summation convention assumed), are related to the slowly varying continuum 

fields tPL.R by: 

1 'k 'kca(z,t) v'2 {e-' /% tPLa(X,t)+e' /% tPRa(x,i)}. (1.2) 

Upon substituting this form into any given microscopic Hamiltonian the many-body interactions 

take the form of quartic and higher powers of the continuum fields. Most of the interactions are 

irrelevant in the renormalization group sense (see below) and the most general maryinal interaction 

takes the form: 

Sin' =Jdx dt {i 6vc (JI + Jh) + i 6v. (JfaJLIJ + J:aJ~IJ) 
(1.3)

+~c hJR +~. JfoJM}. 

Here for instance the charge current at the left point is defined by JL ::: tP1°tPLo : where the normal 

ordering symbols ":" indicate that we have subtracted the constant background charge density from 

the current to make < h(x,t) >= O. The spin current is most conveniently expressed in matrix 

form: JL/1(z):: \I{a(z) tPL/1(Z) - i63 tPl1'(x)tPr,..,(x). The matrix form can always be converted into 

the more familiar vector form with the identity: Ji = i(O'a)~ JLIJ where a =x, y, or z. Note that 

the spin current has no charge current component because it is traceless. It also has zero vacuum 

expectation \-aIue because in 1+ 1 dimensions the vacuum cannot break the continuous SU(2) spin 

rotational im-ariance by a quantum generalization of the Mermin-Wagner theorem. In the Fermion 

action, spin-charge separation is apparent even before Bosonization. That is, the interaction term 

involves only products of either pure spin or pure charge currents. The Gaussian part of the action, 

So. also can be expressed purely in terms of separate products of the charge and spin currents (see 

below). 

Omitted from the action are terms that oscillate rapidly with wavevectors of order kIt interac

tions involving derivatives that arise from Taylor expansions of non-local interactions, and terms 

with more than four Fermion fields. Many of these terms break spin·charge separation; however, 
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each is irrelevant in the renormalization group sense and the coupling constants flow rapidly to 

zero in the low-energy limit. To show the irrelevance, consider the scale transformation x -+ 8X 

and t -+ 8t where s > 1. The Gaussian part of the action, So, remains invariant if we rescale 

the fields (tPt,tP) -+ s-1/2(tPt,tP). (Note that an)' non-linearities in the dispersion relation due to 

band structure are smoothed out as 8 -+ 00.) Similarly, Sin' remains invariant, showing that it is a 

marginal interaction. All other terms will, however, scale away at least as fast as an inverse power 

of 8 when 8 -+ 00. Thus, in one dimension, spin-charge separation occurs in the low-energy effective 

theory regardless of how the marginal interactions flow. Note that non-zero temperature acts as 

an infrared cutoff (since the time direction has a finite extent fJ == Iih-) that stops scaling towards 

the low-energy region beyond this scale. Irrelevant terms therefore persist at non-zero tempera

, ture so the phenomenon of spin-charge separation must be construed as a zero-temperature critical 

property of the theory. 

Apart from the observation of spin-charge separation, the low-energy theory can be classified 

in terms of the symmetries that it obeys. In addition to the global SU(2) spin rotational symmetry, 

there exist two separate U(I) symmetries: one for each Fermi point. This U(1)L ® U(l)R symmetry 

may be exhibited by considering the effect of separate left and right phase rotations by angles fL 

and fn on the Fermion variables: 

tPLa(X, t) -+ eirL tPL,a(X, t) 
(104) 

tPRa(X, t) -+ eirn tPR,a(X,t) • 

All of the currents are clearly invariant under this transformation, as the tPt fields transform with 

opposite phases.' The physical meaning of the invariance is clear: the action, as it stands, conserves 

separately the number of left and right particles. We shall see that this special property has 

a natural generalization to higher spatial dimensior.t:. Actually, one other marginal four-Fermi 

interaction can appear. The Umklapp term 

.\3 [(tP~atPLo)2 + H.c.) (1.5) 

is permitted at half-filling in a periodic one-dimensional solid and it breaks the U(I)L® U(l)R sym

metry down to the diagonal subgroup of ordinary U(I) transformations with fL = fR. It violates 
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the separate left and right U (1) symmetries because it transports two particles from one Fermi point 

to the other. Of course, total particle number remains conserved, and this conservation is reflected 

in the remaining diagonal U(l) symmetry. Like the other terms in the action, the Umklapp term 

preserves spin-charge separation because it transports charge, not spin, from one Fermi point to 

the other. To see this, note that it may be rewritten as: !.\3 ((Q,8"'~°tP1f)( tY6tPL-rtPLS) +H.c. where 

{op is the totally antisymmetric tensor with (12 = 1. Thus, only spin-singlet objects move from one 

Fermi point to the other. 

We now return to the problem without the Umklapp term and determine the RG flows and 

the nature of the fixed points. Bosonization of the Fermion fields is a powerful tool for addressing 

these questions. For now we use Abelian Bosonization" and choose the spin quantization axis in 

the z direction. The current algebra will provide the vital link between the Fermion and Boson 

representations. We start by defining the normal-ordering operation carefully: 

ho(x, t) == : tP!(x, t) "'o(x +(, t) : 
(1.6) 

== tP!(x, t) tPo(x +(, t)- < ",!(x, t) tPo(x +(, t) > 

Here we place the spin index as a subscript on the tPt field to emphasize that we are no longer 

summing over it, and we imagine taking the ( -+ 0 limit at the end of our calculations. This 

"poiut'splitting" procedure regularizes ultraviolet divergences in our calculation. We choose real-

space regularization because the connection between Bosons and Fermions occurs most naturally 

in real space. Momentum space regularization will be introduced later to permit the evaluation of 

momentum space integrals; differences between the two regularization procedures do not change the 

low-energy results. Currents for the right moving sector are obtained by making the replacement 

1: ~ R and a simple calculation shows that left currents commute with right currents, while tW-i 

left or two right currents at equal times obey the Kac-Moody algebra: 

[ho(x) , hp(y)] = - 2~ 6o /J 6'(x - y) . 

i 
[Jna(x) , JR,O(Y)] = +211" 6Q /J 6'(x - y) • (1.7) 
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(To derive these relations, use the equal-time propagators for the Fermions '<: tJlta-(x )tJlL(J (0) >= 

6; 2-;~ and < tJlj;(x)tPRIJ(O) >= 63 ~.) The coefficient oC the derivative oC the Dirac 6·Cunction 

is known as the quantum anomaly. Note that it has the opposite sign for the leCt versus the 

right movers. The charge current defined previously may now be expressed in terms oC these 

currents as: hex) =h1(x) +hl(x) and the z component ofthe spin current is simply: h..,(x) = 
ht(x) - hl(x). (However, the other two components oC the spin current hz and hf/ are not so 

simply related to hl and hl .) The charge and spin currents also obey the Kac-Moody algebra, 

but with twice the anomaly. 

We now introduce real-valued leCt and right moving free Boson fields ¢LQ and ¢no which satisfy 

the commutation relations: 

[¢Lo(X) , ¢LIJ(y)1 =-'4i £(x - y) , 

(1.8)(¢RQ(X) , ¢RIJ(Y)] =+'4i £(x - y) , 

and 

(1.9)(¢Ro(X) , ¢L(J(Y)] =i/4 , 

where £(x) = 1 for x > 0 and = -1 Cor x < O. We also define canonical Boson currents 

JLo(X,t) == _.-!.. 8¢LQ(X,t)
..ji 8x 

and 

JRo(X,t) == +.-!.. 8¢Ro(X,t) (1.10)
..ji 8x 

It is a remarkable Cact that these Boson currents obey the same Kat-Moody algebra as the Fermion 

C'!rfP!!t!: defined previously in Eq. [1.6}. To check the current commutation relation, take spatial 

derivatives of the Free Boson propagators: 

1 a 
< ¢Lo(X)¢Lo(O) - ¢io(O) >= 4", In a +ax 

<¢no(x)¢no(O) - ¢ha.(0) >= 1.. In a (l.ll)
4", (1
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(no sum over a in these expressions) to form the expectation value oC the commutator. Here we 

see the first indication of equivalence between the Fermion and Boson representations. A Curther 

connection is revealed by examining the spectra oC the Cree Fermion and Boson theories: both oC 

wruch are linear and are in fact identical. To go Curther, we rewrite the quadratic Boson Hamiltonian 

in terms of the Boson currents defined in Eq. [1.101: 

H ='" I: Jdx {Jl.a(x) + JkQ(x)} • (1.12) 
0=1.1 

The key point to be made here is that the currents appearing in this Hamiltonian could just as 

well be the Fermion currents Eq. [1.6] since the algebras are identical. Although in trus represen

tation the Hamiltonian is a quartic function oC the Fermion fields and as such would appear to be 

intractable, remarkably, as we have seen, it is eqnh-alent to a Cree Fermion theory. 

We now consider the effect oC the three types oC interactions appearing in the action Eq. [1.3]. 

First, the current bilinears proportional to 6ve and h, simply renormalize the coefficients of the 

quadratic Boson Hamiltonian. (Although all three spin components of the spin current appear in 

Eq. (1.3], SU(2) im'afiance means that JL(J(x)Jt.(x) can be replaced by 3JIll (x) so in this case it 

suffices to consider only the z·component of the spin current.] Using: 

JZl + JI1 = i{Jl + JIll} (1.13) 

we see that so far spin-charge separation is explicit as the renormalized Boson Hamiltonian may 

now be expressed as the sum of two pieces, H =He + H,. that separately describe charge and spin 

excitations propagating at different velocities: 

He = i Vc: Jdx {Jl(x) +Jk(x)} (1.14) 

and 

H, =i v, Jdx {JIAx) +Jk..,(x)} (1.15) 

where tie =1 +6vc and v, = 1 +6v,. It should be emphasized that the coefficients 6vc and h, 

do not Bow under RG transCormations but instead simply renormalize the bare velocities. It may 
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seem strange to have two different "velocities of light" - indeed. Lorentz invaria'nce is broken. But 

since the charge and spin sectors are separate, Lorentz invariance is now manifest separately in the 

two sectors. 

Similarly. the charge current coupling, Ac. in the action Eq. remains fixed as s - 00. To 

see this. note that it may be incorporated by adding another term quadratic in the Boson currents 

to the charge Hamiltonian: 

(1.16)Hc = Jdz {i [JI(z) + J~(z)] + Ac h(z) JR(Z)} . 

To determine the effect of Ac on the spectrum, we must diagonalize this Hamiltonian. Diagonal

ization is accomplished via a Bogoliubov transformation that respects the Kac-Moody algebra. 

Let: 


h(z) = cosh('l) JHz) +sinh('l) JR(z) 


and 

JR(Z) = sinh('l) JHz) +cosh('l) JR(z) . (1.17) 

Then the primed charge currents obey the same algebra as the original (unprimed) charge currents. 

Upon substituting these currents into the Hamiltonian Eq. [1.16] we find that the choice 

(1.18)tanh(2'l) = 11" 

eliminates cross terms of the form JHz) JR(z). We now introduce primed Boson fields </ILc(z) == 

7i (</ILl +</ILl) and </IRe associated with the primed charge currents. A factor of../2 is needed to 

reproduce the correct anomaly: JHz) == y'2fi a:r¢lLc(z) with a similar formula for the right sector. 

The Hamiltonian written in terms of these fields is simply: 

He =(1 A~)! JdZ {(8</1LC )2 +(8</1RC )2} . ( 1.19) 
%2 8z az 

Thus the Bosonic theory remains Gaussian, even for Ac :f O. 

It might be expected that the spin current coupling A. could be incorporated in a similar fashion. 

However. the spin interaction A, JLP(z) J~(z) differs in a fundamental way from the charge 
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interaction Ac h(z) JR(Z). Only the 1£11.1£11. part of the interaction has a quadratic representation 

in terms of the Boson field </I,. The other two components are rather more complicated. Note that 

SU(2) invariance may be employed only when both currents in the bilinear are of the left or right 

type; for example, when we replace Jlp(z)Jfa(z) -+ 3JI.r(z). The non-trivial nature of this term 

is apparent in the Fermion basis: A, is the only interaction coefficient in Sint that renormalizes. To 

second order in weak-coupling perturbation theory (see below) it flows as: 

dl, ()2 (1.20)d(ln(s» 211" A, 

Because no fixed points intervene at intermediate coupling in the original lattice Hubbard model 

(which was exactly solved by Lieb and Wu via the Bethe ansatz5) the flow for the continuum 

problem described by Eq. [1.20] is likely to be qualitatively correct at all A.. The A, = 0 fixed 

point of Eq. [1.20] (which is stable when approached from the A. < 0 side) exhibits an enlarged 

SU(2)L®SU(2)R symmetry because the left and right spin currents are decoupled. In other words, 

separate SU(2) rotations on the left and right currents leave the fixed point action invariant. The 

strong coupling fixed point, with A. - 00 shows no such symmetry; instead a spin gap opens and 

the electrons pair into singlets that require energy to break apart. 

To understand better the role of spin-charge separation in the one-dimensional problem. we 

examine the single-particle Green's function along the fixed line A, =O. Following Shankar4, we 

introduce momentum space regularization by including a convergence factor e-i 
1 o1pl dp along with 

the integration measure. and we take the a - 0 limit at the end. Now the (equal time) correlation 

functions for the </ILc 7i [</ILl +</IL1 1fields are given by: 

GLc(Z) ==< </ILc(Z)</ILc(O) - </IZc(O) > 

;..:: _1 l.'l a 
4% a + 

Gnc(z) ==< </IRAz)</IR.:(O) - </11(0) > 
1 a (1.21) 

= 411" In a - iz . 

The spin Bosons </I, exhibit identical correlations. It is easy to restore the time-dependence of these 

correlation functions by using Lorentz invariance (of course with different velocities in the charge 
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and spin sectors). The Bosonization procedure is completed with the observation that Fermion 

operators are equivalent to exponentials of the original unprimed Boson fields: 

"LCI = ~ exp[-iJ4i" 4>La] 
v 211'a (1.22) 

"10 = ~ exp[iJ4i" 4>10] .
v211'a 

One way to prove relations Eq. (1.22] is by constructing the Fermion currents with the point splitting 

procedure described above. Then spatial derivatives of the Boson fields appear, and the currents 

defined in Eq. [1.10] are obtained. Since 4>Le =coSh("1)4>Lc +sinh('1)4>Ju, and 4>Lt =~ (4)Le + 4>L,) 

etc. we can combine the Bosonization formulas to find the Fermion two-point functions. 

2< ,,1'*(x,t) "LO(O, O) > = 2 X _1_ exp{21r[cosh2('1) GLe(x,t) + sinh ("1) GRc:(X,t)]}
211'a 

X exP{211'GL,(X,t)} 

1=-; (x _ iv,t)-t /2(% _ iVc:t)-1/2(%2 +v:t2)-0 

and 

< ,,;r(x,t) "M(O.O) >= .! (x +iv.tt I/2(% +iVctrl/2(x2 +v:t
2
)-0 . ( 1.23) 

11' 

Here the anomalous exponent Q sinh2("1). The explicit separation of charge and spin reflects 

both the different velocities of the two types of excitations and the r~maining interaction Ac in the 

charge sector. 

The path integral picture yields the following free Lagrangian densities
6 

: 


Lc[4>c) =! (1- 2>"C)81J4>c81J4>c

11' (1.24) 

L,[4>,] = i 81J 4>,81J4>, 

where the spatial derivatives in these two expressions implicitly include the different velocities 

factors, Vc and v,. The Bosonization formulaS Eq. [1.221 imply that the U(l)L ® U(1)R symmetry 

operation is effected simply by shifting the left and right Bosons by, in general, different constants. 

Thus, 4>c is shifted ( 4>Lc: - 4>Lc +~ and 4>Rc: - 4>Rc: +-5f; ), but 4>. remains invariant, re8ecting 

the fad that the symmetry operation acts only on the charge sector. The Lagrangian density Eq. 

[1.24} remains invariant because 81J4>c is unaffected by the shift. The Umklapp term. as expected. 
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breaks the symmetry because it is equivalent to adding the term A3 cos( vrs;r 4>c) to Lc[4>c] and the 

cosine clearly changes under a shift of 4>c by a constant. 

At this point we might question whether the strange form of the propagator somehow eliminates 

the logarithmic divergences that give rise to the RG flow described by Eq. (1.20]. The answer, which 

is no, may be seen easily in the Boson basis where spin-charge decoupling is explicit. There the 

interaction appears as a term proportional to A, cos(vrs;r 4>.) added to L.[4>,] of Eq. [1.24] which 

drives the RG 80w. [Note that the SU(2)L®SU(2)R symmetry at A, =0 now manifests itself in the 

Boson basis as separate shifts by a constant in 4>L, and 4>RI. Actually. full SU(2) symmetry would 

exhibit invariance under three types of rotations corresponding to the three generators of SU(2). 

Abelian Bosonization, however, forces us to choose a spin quantization axis; consequently the 

theory only exhibits explicit symmetry under rotations about that axis. Invariance under rotations 

in the other two directions remains hidden.] In the Fermion basis, the problem is slightly more 

complicated. The logarithmic divergence that drives the flow described by Eq. [1.20] comes from 

a single loop diagram with four external fields that contains two propagators: one for left moving 

fields and one for right movers (see Figure [2]). (Diagrams with two left or two right propagators 

do not yit"ld logarithmic divergences.) The diagram is most easily evaluated in position space. The 

integral to be evaluated is: 

/(8) =()",)2 f'dx 1<» dt (x2+v:t2)-!-2C1(X2+ '1.1;12)-1/2. (1.25)11 1-<» . 
Since we are performing a perturbative expansion to order ()",)2 it is sufficient to set Q =(i;Y + 

O()"~) equal to zero and study whether the logarithmic singularity persists when Vc ::f v,. With 

Q = °the spatial integral yields a hypergeometric function which, when integrated over time, 

indeed produces the desired logarithm. 

Fermi liquid behavior arises only in the special case Vc =v, and a =0 as the two-point function 

Eq. [1.23] must have a single simple pole. However. the discontinuity at the Fermi surface remains 

even when Vc ::f v. so long as Q =O. To see this, note that the momentum space occupancy is found 

by taking the Fourier transform of the equal time propagator (which we define to be the average 
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, 
of the correlation function evaluated at times t = 0+ and t = 0- in order to specify definite time 

orderings which also cancel out the imaginary component). Use of the Fermion anticommutation 

relations then shows: 

2nL(k) -1 =! Jdx i(k+k/)z {< tfoi,P(x,t = O+)tfoLP(O,O) > + < tfoi,P(x,t = O-)tfoLP(O,O) >} . 

(1.26) 

But as t _ o± the two velocities disappear from the correlation function, which equals Izr:o and 

yields a step function in momentum space only for a = O. Apparently spin-charge separation and 

the destruction of the Fermi discontinuity are separate issues.7 Both are characteristic properties of 

Luttinger liquidss . In the following we continue to speak of Fermi points and Fermi surfaces. Clearly 

these points or surfaces should now be defined more generally as manifolds of points in momentum 

space at which the zero-temperature occupancy shows non-analytic behavior characterized by an 

exponent a instead of a discontinuity. In particular t near the Fermi momentum the occupancy 

varies as: n(k) ~ n(k/)+ Clk - k/IQsgn(k - k/) where C is a non-universal constant that sets the 

momentum scale. It depends on the the momentum-energy cutoff in the interaction Ac· 

The outline for the rest of the paper is as follows. In section (II) we introduce a model with four 

Fermi points in two spatial dimensions that incorporates some key features of the higher dimension 

interacting Fermion problem. A renormalization group solution of the model away from half-filling 

finds a stable fixed line with four-fold U(I) symmetry that naturally generalizes the one-dimensional 

U(l)L ® U(l)R fixed point symmetry. Bosonization of the Fermions at these points suggests a new 

way to look at Fermions in higher dimension' and in section (III) we follow this line of thought to 

arrive at full Fermi surface fixed point manifolds with infinite U(I) symmetry. In section (IV) we 

dChllJ£lr.trate that this way of looking at things yields concrete results by calculating non-analytic 

contributions to the specific heat. And in section (V) we rederive the collective mode equation in 

the new framework. Finally, section (VI) contains some discussion and speculations. 
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II. A 2-D FIXED POINT WITH 4-FOLD U(I) SYMMETRY 

We turn now to a simple model for two-dimensional interacting Fermions that illustrates how 

possibly spin-charge separation might occur in spatial dimensions greater than one. The Fermi 

surface of a nearest neighbor tight-binding model on a square lattice serves as inspiration for the 

model. Instead of treating the entire continuum of Fermi points that make up the Fermi line endos

ing the occupied states, we make our problem tractable with the following drastic approximation: 

we treat each of the four sides of the Fermi surface as a single point labeled by ±1 or ±2 (see 

Figure [3]). At half-filling. these points lie respectively at momenta ±(.../2, .../2) and ±(.../2, - .../2) 

but away from half-filling the momentum is generally incommensurate with the reciprocal lattice 

vectors. With this simplification, the infinite set of renormalization group equations is reduced to 

a manageable finite set. 

Note that this model differs from models studied earlier by Schulz9 and Dzyaloshinskii1o that 

focused on the Van Hove singularities at the four corners (O,±r) and (±.... O) of the half-filled tight 

binding spectrum. Our model also is not equivalent to t\\'o coupled parallel Hubbard chains - a 

system studied by Andersonll • Finkel'steinl2 , and others. It differs in that excitations at points 

±2 propagate at right angles in momentum space with respect to excitations at points ±l whereas 

excitations in the two-chain system always propagate in parallel (or anti-parallel) directions. Con

sequently, different marginal interactions and renormalization group equations appear in our model. 

Anderson's analysisll of the two-chain problem led him to conclude that weak interchain coupling 

does not change the one-dimensional physics significantly but recent work by Finkel'stein12 and 

Castellani, Di Castro and Metzner13 suggests that interchain coupling is relevant and destabilizes 

the Luttinger liquid. 

We choose the model in part because it emphasizes the role that perfect nesting plays in 

destabilizing various fixed points (we elaborate on the nature of these fixed points below). Thus for 

example processes that transfer an electron across the Fermi surface from. say. point 1 to point -1 

receive the same weight as processes that move an electron from point 1 to 2 because the density 
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of states is non-zero only at the four points. Note that the density of states at each point must 

be held constant regardless of the system size. One might be tempted to give each point the same 

weight as the entire line it replaces, but this choice proves uninteresting as quantum 8uctuations 

would be suppressed in the thermodynamic limit. Photoemission experiments on the cuprate 

superconductors14 provide another justification for our model15• These experiments show that 

hole pockets form around the momentum points ±(1f/2,1f/2) and ±(1f/2, -1f /2) as the compounds 

are doped away from the insulating limit. Low-energy excitations near these points may play an 

important role in the normal and superconducting phases. 

Obviously van Hove singularities are ignored in our model. They break scale invariance in the 

Gaussian part of the action and therefore cannot be incorporated into the renormalization group 

scheme because the dispersion relation is not linear at those points. While the singularities may 

or may not be important at half-filling, the Umklapp terms drive various instabilities which the 

singularities are unlikely to prevent. In any case, here it is the problem away from half·filling 

that is of most concern to us. The other major limitation of our model - no small angle scattering 

processes is a severe approximation to physical reality. Small angle scattering is clearly important 

for example in the formation of momentum-space Cooper pairs. We therefore expect, and indeed 

find, unphysical behavior in certain limits (see below). Nevertheless, our calculation suggests that 

stable fixed points describing whole Fermi surfaces, not just points, exist. 

The electron operators Cxa may be written in terms of the continuum fields at the four points. 

We now allow Q to take on values 1, .•. , n for the SU(n) case. We consider the general problem 

because it enables us to check our calculations more thoroughly for combinatorial errors. It also 

permits us to study the spinless case n =1. Let U == % + 11 and v == % - 11 where % and 11 are integers 

labeling the coordinates of a point on a lattice with unit lattice constant and place the system in 

periodic box so that 1 ~ U, 1:1 ~ L. Then at half-filling the lattice electron annihilation operator 

can be rewritten in terms of the continuum fields at the four points as: 

(xo = Hein/2 tPlo(u)+e-ilfU/2 tP_lo(u)+e'W'I1/2 tP2a(v)+e-'·v/2 tP-2a(V)}. (2.1) 
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Away from half-filling we simply replace 1f/2 -+ kJ in this formula. With the replacement Eq. [2.1J 

we see that excitations are constrained to move in directions perpendicular to the Fermi "edges". 

In other words, the Fermions cannot move in arbitrary directions, just forward and backwards 

along the lines depicted in Figure [3]. With this definition we can now break up any four F~rmi 

interaction into two types of terms: marginal terms that vary smoothly in space and irrelevant 

terms that oscillate rapidly or contain derivatives. Keeping track of just the marginal terms a little 

algebra shows, for example, that at half-filling the Hubbard interaction *' (ctacxa - n/2)2 generates 

the following four Fermi terms: 

(tP!~tP-2a + tP!~tP-la + tPIa tPla + tP1atP20):I 

+ (tPl°tP-:la + tPlatP_la + tP!~tPJa + tP!~~orl 
(2.2) 

+ (tP!~tP-lo + tP!~tP-2a + tP1°tPla + tP1atP2a)2 

+ (tP1
a

tP-2a + tP!~tP'o + tP~atP_IO + tP!~tPla)'. 


More generally, we can write down all possible four Fermi interactions consistent with the symme. 


tries of the SU(n) spin group and the symmetry of the square Fermi surface. Thus the perturbation 


is: 

=±/ du dlJ {Ale (JIJ_l + J:lL,) + At. (JfpJ~lo + J2pJ~20)Hird 

+ A2e (Jl + Ld(J, + L,) + A:ls (Jip + J~lP)(J:o + J~:lo) 

+ A3 [(tPtatP-la):I + (tPl°tP_:lo)2 + H.c.] 

+ A4 (tPl°tP-2a¢lPtP-IP + tP:;tP-lotP1P1,7,3 + H.c.) (2.3) 

+ As (tPlatP_:lotP~ tP:lP + tP!~tP-lotPlP¢13 + H.c.) 

+ As (tPl°tP-JotP~tP:lP + tPl°tP-lotP1PtP-:l8 + H.c.) 

+ AT [(tPl°tt'1!!:)2 + (tP!~tP-Io):I + (tPl°tP-Io):I + (tP!~tPlo):I + H.c.]}. 

Here·we have again introduced the charge and spin currents, now for each of the four points. Note 

that J±l = J±l(u). J±2 = J±2(v), and likewise for the spin currents. We rescale the interactions 

by a factor of ! to keep the density of states constant. Not included in the above expression are 

terms like l he (Jl)2 and i 6v. JfoJfp which simply renormalize the charge and spin velocities. 
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For the above on-site Hubbard interaction, the coupling constants take the following'values: 

Ale =Ale = (U/n)(2 - 2/n) 

Ala = A2.t:; -2U/n 

A3 =U/n 

A4 = 2U/n (2.4) 

AS = 2U/n 

A6 = 2U/n 

A7 = U/n 

but other bare interactions (ie. nearest-neighbor CouJomb or spin exchange) yield other values (see 

below). 

Each of the nine coupling constants in Eq. (2.3] corresponds to a particular process drawn 

in Figure [4). Unlike the one dimensional case, we see that a number of these marginal processes 

break spin-charge separation. The current-current terms Ale, Ale, Ala, and A2. respect it, and 

so do the Umklapp terms A3 and A7 (at least for the physical SU(2) problem), but the other 

terms (As and two of the Umklapp terms A4 and AS) are "mixed" processes that scatter both spin 

and charge. Away from half· filling, the term AS survives and it is this interaction that will draw 

our attention in the following renormalization group analysis. As in one dimension, the model 

possesses global SU(2) spin symmetry. However, it exhibits the four separate U(I)'symmetries only 

if A3 = A4 = AS = AS = A7 =O. In other words, only current·current type interactions preserve 

U(I)l ® U(lh® U(I)_1 0 U{l)-l symmetry. This behavior dearly differs from the one dimensional 

model, which automatically exhibits U(I)L 0, U(I)R symmetry away from half-filling. Again A:; is 

the sale offending terw away from half-filling. 

It is a straightforward, though lengthy, exercise to work out the RG flows to second order 

in the coupling strengths by evaluating one loop diagrams with four external Fermi field lines. 

The diagrams are essentia.lly no different from the one we evaluated in one spatial dimension 

(Figure (2]). This is because at the one loop level only diagrams that contain both a 1 propagator 
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(ie. < "to( u, t) "10(0,0) » and a -1 propagator (or 2 and -2 propagators) yield logarithmically 

divergent contributions. It follows that Ale, A2n and A7 do not Bow at this order because these 

interactions contain Fermions at points 1 and 2 (or -1 and 2, etc.) so the requisite propagators do 

not appear. Inspection of the diagrams in Figure [4] reveals the physical origin for this decoupling. 

The three interactions Ale, Al., and A7 differ from the other terms in that exchange of momentum 

between the two points is forbidden because the two directions are perpendicuJar. For example, 

consider the momentum-space version of interactions Ale and Ale. Let p denote momentum in the 

u-direction and q be momentum in the v-direction. Then the interactions take the form: 

Ale { J~: Jl(p) L 1(-p) +J~: J2(q) Ll(-q)} 

and 

A2e L [JI(P = 0) +L1(p =0)}[J2(q =:= 0) +L 2(q =0») . (2.5) 

In contrast to Ale (and Ah), only the zero-momentum component of the currents couple in the Ale 

(and A2.. ) terms. 

The remaining six couplings flow as follows [the prime denotes a derivative with respect to 

dn(s) ): 

A~e = 8(1- l/n)(A3)2 +2(A4)2 - (2/n)A4AS +2(I/n - 1)(A:;)2 +2(A6)2 

A~.t =n(Ah)2 +4(n - 2)(A3)2 - 2A4As +2(A:;)2 +2n(AS)2 

A~ =4AleA3 +2(n - 1 2/n)Ah A3 +(A4)2 +2A4A6 - n(A6)l 

(2.6)
A~ =(2Alc - (2/n)Ah + 4A3]A4 

A~ == (-2Alc +2(1 + l/n)Ah]As 

A~ =(2Ale +2(n - l/n)Ah +4(1- n)A3]A6 +(4A3 2Ah]A4' 

We can perform several checks on these equations. 'First, the equations close: we ha\'e not fOl:~.'tlpn 

any marginal operators. Second, if we consider only the pair of points 1 and -1, the equations must 

reduce to the known ones in one spatial dimension. By setting A4 = AS = AS = 0 one can easily 

check that the remaining equations (Al is now the Umklapp term mentioned in the previous section) 

do agree with the known resuJts in one dimension. As another test, note that two terms vanish in 
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the physical case n = 2. In particular, ~a no longer couples to ~h because the Umklapp term is a 

SU(n) singlet operator only for the special SU(2) case. Finally, what happens when n = 1, the case 

of spinless Fermions? Many terms vanish because they do not exist for spinless Fermions. Thus, 

the spin singlet U mklapp terms ~a =~7 =0 by the Pauli exclusion principle and of course the spin 

current terms ~.. =~2. =0 because there is no spin. Also, ~6 = -A4 because ~4 processes can no 

longer be distinguished from ~ ones and ~5 = 0 due to internal cancellations present in Eq. [2.3J 

when the spin label is removed. Equations Eq. [2.61 respect this limit. 

The RG flows described by Eq. [2.61 generically flow to large values. The flows are physically 

sensible: at half-filling Umklapp processes generate various instabilities and the system becomes 

gapped in the charge sector when the interactions are repulsive. Attractive interactions, on the 

other hand can lead to superconducting instabilities. The restricted phase space of our model 

obscures the interpretation of these instabilities. For example, the Goldstone mechanism tells us 

that phases of broken SU(n) symmetry exhibit gapless spin excitations. On the other hand, the 

Higgs mechanism suppresses gapless excitations in the charge sector if the U(l) symmetry breaks. 

But our model retains the character of 1+1 dimensional phase space which is not large enough to 

foster broken continuous symmetries. In any case, our failure to treat the van Hove singularities 

and small angle scattering processes is not as important as it might first seem: these processes are 

unlikely to inhibit the formation of instabilities. 

The spinless case n =1 is an exception. As noted above, we can take A.. =~3 =~5 =0 and 

~4 = -~6 in this case. The flows are described by the Kosterlitz - Thouless equations: 

~~e = 6(~6)2 
(2.7) 

~~ = 2~le~6 • 

Here the fixed line ~ =0 is stable for ~lc S O. We may interpret the instability at positive Ale as a 

tendency to form a charge-density wave. To see this, note that the next-nearest-neighbor Hubbard 

repulsion !{f(nx+t +nx+t) nx, where nx == clorcxa is the electron occupancy at site x, leads to the 
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following bare continuum couplings at half-filling: 

~le = ~2e = (Ut/n)(2 +2/n) 

A.. = ~2.. = 2Ut!n 

~3 = -UJ/n 

~4 = 0 (2.8) 

~5 = 0 

~6 = -2Ut/n 

~7 =O. 

(For the case n 1, Aa should be set equal to zero by the Pauli exclusion principle.) So repulsive 

nearest-neighbor interactions grow, a tendency towards the formation of a charge-density-wave 

sets in and sites on the even sublattice exhibit different charge density than those on the odd 

sublattice. This behavior is consistent with that found by Shankar l in his functional RG calculation 

for spinless Fermions and therefore lends credibility to our model. On the other hand, Shankar 

finds a supercollducting instability for attractive interactions which contrasts with the stability 

shown by our model. We reconcile this difference by noting that the Cooper instability is driven 

by small angle scattering processes that scatter pairs of Fermions of opposite momentum around 

the Fermi surface. Again the phase space for such processes in our model is severely restricted by 

existence of only four Fermi points, and we should therefore not expect momentum-space Cooper 

pairs. Real-space Cooper pairs can arise, however, as we show below. Nevertheless, negative ~le 

corresponds to an attractive interaction and is indicative of a tendency towards the formation of 

superconducting pairs. 

The problem of spinning Fermions away from half· filling is rather more interesting. Setting the 

Umklapp terms ~a = ~4 = A6 = ~7 = 0 we obtain the reduced set of flow equations: 

~~e = 2(l/n 1)(As)2 

~~. =n(~h)2 +2(~s)2 (2.9) 

~~ 2(1 + I/n)Ah - ~lcJ ~s . 
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Here we find a stable fixed line defined by Ab =As =0 and Ale?: O. fu fact numerical integration 

shows that it attracts Bows starting from the repulsive Hubbard couplings given by Eq. [2.4) (see 

Figure (5)). Again, Ale and Al4 do not renormalize at second order. Like Ale, these couplings can 

be non-zero along the fixed line. The instability at negative Ale can be interpreted as a tendency to 

form real-space Cooper pairs something like those proposed in the original resonating-valence-bond 

(RYB) theory of Anderson16 and collaborators. Thus the Fermion spin permits the formation of 

singlet pairs. 

What is the nature of the stable region of the fixed line? First note that it exhibits both 

spin-charge separation and four-fold U(I) symmetry because only current-current type interactions 

remain. The fixed line thus represents a natural generalization of the one-dimensional Luttinger 

liquid and as such motivates the approach to the continuum Fermi surface problem we describe in 

the next section. Let us first look more closely at our solution by transforming to Boson variables. 

At first it seems strange to contemplate Bosonization in spacetime dimensions greater than two. 

But the problem remains essentially one-dimensional; the Fermions at each of the four points are 

restricted to move along lines. In fact it is convenient to introduce complex space-time coordinates 

analogous to those in 1 + 1 dimensions. Let u± == u±it and v± == v±it where we remember that the 

velocities, here .set equal to one, are in general different in the spin and charge sectors of the theory. 

Obviously the group of conformal transformations in 2 + 1 dimensions is finite. Consequently, 

the model does not possess the infinite symmetries of a true 1 + 1 dimensional conformal field 

theory. But it is the current algebra that concerns us most here. It is the essential ingredient that 

permits us to map Fermions onto Bosons and vice versa at each of the Fermi points. Again either 

Abelian or non-Abelian Bosoruzation works. In this case we choose non-Abelian Bosonization17 

for the spin sector by introducing the Wess-Zumina-Witten (WZW) field 9~ (the charge sector is 

still described by an Abelian Boson ,). Non-Abelian Bosonization is superior in the sense that 

it explicitly exhibits global SU(n) invariance. With it we can readily classify all SU{n) invariant 

operators. (Abelian Bosonization hides SU(n) invariance because an explicit choice for the spin 
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quantization direction must be made.) 

The Bosonization dictionary again translates currents defined in terms of the Fermi fields into 

Bosonic operators. For example at point 1 we have: 

JI(u) jg au '1(1£) 
(2.10) 

J:o(U) = 4~ [au 9~..,(U»)[9iQ(U») • 
Here the free fixed point theory with all the A'S equal to zero has its charge sector described by a 

free Lagrangian density: 

Lc = 2~ {(aV+<pl)2 +(Ov_tP_I)2 +(l;tt/.tP2f' +(a"_'_2)2} • (2.11a) 

The spin sector consists of a k = 1 WZW action given by S,[9.,92,9-h9-2) == S1[91 +g-.) +S2[92 + 
9-2) where: 

SI(9) = 8
1 f du dt Tr {aug Ou9t +a,9 aegf } 
'If Jav 

(2.11b) 
+-2

1 f du dt dz (/W>'Tr(yfaIS9 9ta"y 9ta>.9).
1 'f( Jv 

Here the second integral, the topological Wess-Zumino term, is defined by extending the domain of 

the g-field from physical two-dimensional (u, t) space-time to a three dimensional volume Y with 

space-time coordinates x IS = (u, t, z). The boundary av of V is taken to be the (u, t) space-time. 

Of course S2(9) is similar in form to SI[Y) but the spatial variable v replaces u. The spin sector 

of tbe free theory displays SU(n). ® SU(nh ® SU(n)_1 ® SU(n)_2 invariance because the spin 

currents at the four points are decoupled. 

Now the residual fixed line interactions Ale. A2e and A2, can be included by using the Bosoniza

tion rules of Eq. [2.10). In the Boson language, the 4-fold U(l) symmetry operation amounts to a 

shift in each of the charged Boson fields by a constant: tPt(u, t) -I> tPt(u,t) +r.. e\<.. Since vu.iy 

deri vatives of the Boson field appear in the action, it continues to manifest four-fold U (1) invariance 

as expected. On the other hand, local SU(n)t ® SU{nh ® SU(n)_1 ® SU(n)_2 invariance is at 

least partly broken by non-zero A2, which couples together the zera-momentum components of the 

spin currents at the four points. 
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Two issues remain to be investigated in our model: First, how are Fermi statistics maintained in 

the Bosonization scheme, now that there are two spatial directions? And second, how do the residual 

fixed point interactions change the character of the Fermi points? We answer these questions by 

constructing a more general framework in the next section. 
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III. LUTHER-HALDANE BOSONIZATION: INFINITE U(l) SYMMETRY 

Encouraged by the renormalization group flows in our model, we now take a leap of faith, 

advocated most. recently by Haldane3 , and postulate the existence of a similar fixed point, not just 

for the four Fermi points, but rather for a continuum of Fermi points, in other words, a Fermi 

surface. We outline the construction of the currents and the Hamiltonian first and later [in sections 

(IV) and (V)] demonstrate that the framework reproduces well known results. 

To be definite, we study the case of three spatial dimensionsj generalizations to other dimen

sions are straightforward. We begin with the charge sector and study a smooth Fermi surface 

parameterized by radial vectors Sand T that label a fine, locally flat (and rectangular) mesh of 

grid points on the Fermi surface with spacing A « Ie, between the points. We also place the 

system in a cubic box with sides of length L and use periodic boundary conditions so that the 

momenta are quantized as Pm = ¥ m where m is a vector with integer components. The most 

general charge Hamiltonian possessing infinite U(1) symmetry may then be written as: 

He =~ L L Ve(S, T; q) J(S; q) J(T; -q). (3.1) 
S,T q 

The prefactor of! compensates for over-counting due to the symmetry of the summand under 

q -+ -q with 5 +-+ T. The function Vc(S, Tj q) encapsulates not only the Fermi velocity VI of 

the non-interacting systemtbut also the residual Fermi-liquid type interactions V: between quasi-

particles. The current at each point J(5; q) is now defined in momentum space as: 

J(5; q) E L 9(5; k + q) 9(5; k) {tPi~q tPak - 6~.o nk} • (3.2) 
k 

The subtraction of the vacuum charge expectation value nit =< tPil:!¢Ok > in Eq. [3.21 amounts 

to normal o~dering. Our geometric construction of the currCJlts involves tiling the Fermi surface 

with squat rectangular pill boxes at each grid point 5. The boxes have dimensions A X A along the 

surface and extend in height ±)./2 above and below the Fermi surface (see Figure [6]). The function 

9(5;k) =1 if k lies inside the box; otherwise it is zero. Thus VI). functions as an ultraviolet energy 

cutoff. 
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The current commutation relations may now be found by direct computation with the use of the 

canonical anticommutation relation { '¢401 
, '¢{Jp } =~p ~~,p. First note that currents in different 

patches commute because the Fermion operators that make up the currents are also located in 

different patches. So: 

[J(Sjq) , J(Tjp») =~~.T {LO(Sjk +q + p)O(Sjk)[O(Sjk +q) - O(Sjk +p)]~:+p,Onlt 
Ir. 

+L O(S; k +q +p)O(Sj k)[O(Sj k +q) - O(Sj k + p») (3.3) 
It 

x ('¢t~q+p¢kOl - ~:+p,Onlt)} . 

In one dimension, the index S just labels the left and right Fermi points and the first sum in Eq. 

(3.3] is the usual quantum anomaly. The second sum vanishes in the limit of infinite bandwidth 

(). ..... (0) because in that case O(q) = 1 except very deep inside or outside the Fermi sea. In this 

limit, matrix elements of the operator ('¢l:,+p'¢kCll ~,+p.Onk) vanish and we recover the usual 

one-dimensional Kac-Moodyalgebra. Thus, for the right movers, 

qL
(J(Rjq) , J(RiP)] =2 2i' ~f+P'O (3.4) 

where the prefactor of 2 comes from the two spins. We recognize this algebra as the momentum 

space version of Eq. (1.7]. 

One might expect that the natural generalization of the currents to two or three spatial di

mensions would take the fields to be organized along narrow rays of vanishing thickness radiating 

outward from the center of the Fermi sea. In fact this approach was adopted by Luther in his 

pioneering work on the Bosonization of free FermiPns in higher dimension l8 since it reduces the 

higher dimensional problem to a set of simple decoupled 1 + 1 dimensional systems. However it 

is clear that the procedure breaks down when interacliulIll of the Fermi liquid type are included. 

The charge Hamiltonian, Eq. (3.1], couples charge currents in different boxes at positions Sand 

T. As the Fermi surface must have non-zero curvature, any wavevector q that lies inside a tube 

at position S, no matter how small, will be accompanied by a wavevector -q that in general does 

no' fit inside the tube at a different point T. 
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The problem is avoided with the use of the squat boxes. The price we pay for this new 

geometrical construction is the introduction of several limits which must be carefully taken in order 

to arrive at the correct commutation relations. This delicate series of limits in fact correspond to 

the Fermi liquid theory limits of w ..... 0 and Iql ..... 0 such that ~ ..... 0, the so-called w.limit 

which pertains to collective modes rather than quasi-particle scatteringUJ• First we require the 

wavevectors q and pin Eq. [3.3] to be small: Iql < Ii and Ipi < tt where we take N ..... 00. Thus 

we may think of q as lying within a small sphere inside the squat box .. see Figure [6]. The Jjmit 

insures that only the component of q normal to the surface appears in the quantum anomaly. As 

we shall see, it is the normal component that is needed to reproduce the spectrum of low·lying 

excitations in the free Fermion problem. This geometrical result may be obtained by using the fact 

that nit =2 for momenta k lying deep inside the Fermi sea and zero far outside. With the limits 

Iql < It and Ipi < tt we have O(S; k +q +p) :::::: O(Sj k). The sum in the first term of Eq. [3.3] can 

be done and we have: 

[J(S; q) , J(T; p)] = 2 6S,T [ 6:tp•o A2 (2~)3 q. ils + error term ]. (3.5a) 

Here ils is the normal vector pointing outward at point S on the Fermi surface and the error term 

is the second sum in Eq. [3.3) which ruins the Kac-Moody algebra because it is not a c-number 

but rather an operator involving the Fermi fields '¢t and '¢. Note that with the aboye limit on the 

size of q the magnitude of the quantum anomaly is of order *' (/; )3. 

Let us estimate now the size of the error term in the commutation relations. It may be estimated 

by replacing the operator (¥'L~q+p~:b - ~:+p.onlt) by 1 - 6:+p,o and computing the volume of the 

geometrical complement of the intersection of two 0 functions [O(S; k +q)-O(S; k + p») appearing in 

the second sum. Note that the tops and bottoms of the boxes do not contribute because the matrix 

elements are assumed to be zero deep inside or outside the Fermi sea. Only the sides of the piU boxes 

matter. A simple computation then shows that this term is off order Max{lql,lpl} x A), (/;)3 < 

~ (/;)3. Therefore, the choice of a squat pill box with A = v'N). makes the error term small (of 

order 7N) in comparison to the quantum anomaly. This second limit is equivalent to the "w-limitn 

26 



of Fermi liquid theory as ;; corresponds to A which is now of oider .fN times larger than the 

momentum q. It is satisfying to have this simple geometrical interpretation of the w-limit of Fermi 

liquid theory. 

The current algebra Eq. [3.5a1 can be put into a more familiar form with a Fourier transform 

over the two components of the momentum perpendicular to the Fermi surface normal vector. ql. 

and Pl.. Then we obtain: 

2 2
[J(S;qu,Xl.) , J(T;PiI'Yl.)] = 2 8S.T ~I: 8'1+1'1.0 L 8 (xl. - Y1.) • (3.56) 

Here the current algebra is identical to the usual one-dimensional one, Eq. [3.4], except with 

additional labels S, T, XII and YII that "come along for the ride." Thus the well-developed theory 

of one-dimensional Kac-Moody algebra representations20 applies equally well to our generalized 

algebra and we can use this machinery to find the spectrum of states. Of course state coun~ing is 

simple in the abelian case but null states appear in representations of the non-abelian Kac-Moody 

algebra. 

What choice of parameters VI: yield the correct spectrum for the charge sector? The non

interacting limit is recovered by making the following choice: v,,(S, T;q) =iVJ(S) 0-1 8i.T' Here 

the factor of 0 == A2(t. )3 cancels the fadors of volume appearing in the current algebra Eq. [3.5} 

and the factor of i compensates for the 2 due to up and down spins. With the algebra Eq. [3.51 we 

then recover the free dispersion relation w(Sj q) = vJ(S) q. Os == Vs . q. To scale the interaction 

coefficients properly, we appeal to Fermi liquid theory and note that the current evaluated at zero 

momentum is equal to the occupancy fluctuation operator summed over the interior of the pill box: 

J(S; q = O} = L 9(S; k) 8nk 	 (3.6) 
k 

where 8nk ==' ",:a"'ak- < ",:a"'ak >. Therefore, the Fermi liquid interaction is identical to the 

zero-momentum piece of our bitera.ction term: 

2L3 	L f(k,p) 6nk 8np = 2~3 L V:(S,T;q = 0) J(S;O) J(T;O) (3.7) 
k,p 8,T 
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if we identify I(ks, PT) = V:(S, T; 0) by assuming that the Fermi liquid interactions depend only 

on the momenta ks and Ps at points Sand T of the Fermi surface, not the component of the 

momentum perpendicular to the surface. Evidently, a factor of inverse volume (is) should be 

included in the interaction term, 

Ve(S, T;q) = iVJ(S) 0-18~.T + ;3 V;(S, T;q) . (3.S) 

Note that while our theory contains the same Fermi surface interactions as traditional Landau 

Fermi liquids, the form of the interaction is more general than Fermi liquid theory as it depends 

on q, the momentum of the collective excitation. In Fermi liquid theory, the parameters I(k, p) 

do not depend on q and the momenta k and P appearing in I(k,p) are constrained to lie on the 

Fermi surface. A different extension of Fermi liquid theory which relaxes this constraint on k and 

p is described in the next section. Our calculation of non-analytic contTibutions to the specific heat 

will highlight the difference between these two types of generalizations. 

We see therefore that in higher dimension, as in one dimension, the Bosonization procedure 

puts the free and interacting components of the Hamiltonian on an equal footing, despite the fact 

that the free piece is quadratic in the Fermion operators while the interaction is quartic. This 

simplicity is a result of the current algebra Eq. [3.5} which permits us to express both terms as 

billnears in the currents. It is however somewhat deceptive because more general quartic terms, for 

instance the ..\5 interaction in our simplified model of the preceding section, cannot be expressed as 

bilinears in the current operators. Nevertheless, these interactions have a Bosonic representation, 

albeit a more complicated one. We show how to Bosonize general interactions below. 

First we focus on the spin sector. The total Hamiltonian is a given by the sum of the charge 

and'llpin Hamiltonians. To form the spin Hamiltonian, we define spin currents. In the general 

SU(n) case we have: 

J3(S;q) == L9(S;k+ q) 9(S;k) {",t:q "'11k 1. 83 tP:~q"''Yk}' (3.9)
k 	 n 
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Like the charge currents, spin currents at different grid points commute, but the non-Abelian 

Kac-Moody algebra governs currents at the same point in the N -+ 00 limit: 

[J9(S; q) , Jj(S;'p») =(666J - ~ 6p6])6~+p.o 0 q. ns 
(3.10) 

+ 6JJ,(S;q + p) - 65PP(S;q + p) 

The physical 5U(2) Kac-Moody algebra can be expressed more succinctly as: 

[res; q) , JII(S; p)] =16Gbo q ns + i€Gk JC(S; q + p) . (3.11) 

The spin Hamiltonian may then be written: 

H, =i l:l:'V.(S,T;q) l(S;q)· l(T;-q) (3.12) 

S.T q 

where 'V. incorporates the Fermi velocity of spin excitations and spin-spin interactions at different 

points on the Fermi surface: 

V,(S, T;q) =~ V/(S) 0-1 6~.T + ~3 V:(S, T;q) . (3.13) 

In general it is not possible to exactly diagonalize the Hamiltonian; the non-Abelian nature of the 

algebra precludes this. We encountered this problem in a simpler form in section (II) where All, 

the parameter that couples together spin currents on opposing Fermi points, flows by itself (see Eq. 

[2.9)). 

Both the charge and spin currents are invariant under the local U(l) operation which changes 

the phase of all the Fermions inside a given pill box by the same (time-independent) amount r. If 

k lies inside the box centered at grid point S then 

tPa(k) .... eir(S) tPa(k) [onlywhen 8(S; k) = 1) (3.14) 

leaves the currents invariant because the tPt fields, which transform with the opposite phase factor, 

cancel the overall phase change. Thus the Hamiltonian is automatically invariant under the infinite 

U(1) symmetry. The physical meaning ofthe invariance is clear: the Fermi liquid type interactions 

preserve the Fermion occupancy at each point in momentum space because quasi-particle scattering 
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is suppressed in the N -+ 00 w-limit. The U(l) symmetry just reflects the local conservation of 

particle number. 

Indeed, it is the existence of an infinite number of conservation laws that makes the charge 

sector of the problem solvable. On the other hand, the free Fermion system also exhibits local SU(2) 

symmetry. 50 it is rather surprising to discover that the spin current interactions in general break 

the infinite local 5U(2) invariances down to a single global SU(2) symmetry. The local invariance is 

broken because spin currents at different points on the Fermi surface must rotate together to keep 

the spin Hamiltonian Eq. [3.12) invariant. The special case of purely local current-current coupling, 

V,(S, T; q) = j IIl(S) 0-1 6~.T' is an exception which restores the full local SU(2) invariance. As 

expected, the Hamiltonian is now exactly solvable: the Hamiltonian describes free spin excitations 

propagating at the Fermi velocity. For this special case only the quantum anomaly in Eq. [3.111, 

~6rJbOq . ns, not the i€rJk JC(Si q + p) term, is important because of the symmetry q .... -q. The 

factor j compensates for the three spin components. The spectrum of states may now be found 

either by simply choosing a spin-quantization axis, or in an 5U(2) invariant manner with the use 

of Kac-Moody representation theory.20 

Actually, we can find the excitation spectrum when the interactions described by V: are non-

singular. In this case, we may treat the spin currents as semi-classical objects: the right-hand side 

of the commutator Eq. [3.11} can be set to zero by rescaling the currents to be of order one. The 

problem resembles the large-spin limit of a quantum magnet since the currents incorporate a sum 

over ~O » 1 points in momentum space. H we rescale JrJ(S;q) -+ (AntI r(S;q) then the 

rescaled currents obey: 

[JG(S;q) • J6(SiP)J =\A:W {*6rJ60 q. iis + i€rJbc JC(Sjq+ p)} 
(3.15) 

-+0 

as L -+ 00 with A held fixed. The emergence of the classical limit should not be surprisingj 

alter all, Landau Fermi Liquid Theory is essentially classical in nature. The free dispersion is still 

determined by the quantum anomaly; only the interactions are treated classically by replacing the 
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current operators with their expectation values JII(Sj q) -+ (JII(Sj q» evaluated in the excited st~te 

of interest. This procedure trivially reproduces the excitation spectrum of Fermi Liquid Theory. 

Note, however, that the dassicallimit breaks down in the case ofsingular interactions. For example, 

the first term in Eq. [3.131, j lIJ(S) a-I cS~.T' is singular because the factor n-1diverges as the 

number of mesh points increases. In trus case the quantum anomaly cannot be neglected and in fact 

is needed to reproduce the free dispersion relation. Likewise, any singular spin current interactions 

that couple different patches on the Fermi surface destroy the classical limit: the small anomaly 

cannot be neglected because of the large interaction. In fact this is the generic situation in one 

spatial dimension, where interactions that couple the left and right points are generally of the same 

order as current-current terms that involve only one point. In other words, there is no sense in 

which the Fermi-Liquid type interactions can be smooth when there are just two Fermi points. We 

return to this point in the discussion of section (VI). 

By introducing Boson fields conjugate to the currents, the Fermi fields and interaction terms 

can be Bosonized l 8.3. We proceed by analogy to our construction in one-dimension [section (1)1 

and concentrate on spinless Fermionsj it is straightforward to include spin via either Abelian or 

non·Abelian Bosonization. We introduce the coarse-grained Boson field q,(Sjx) and the associated 

Boson current in the direction normal to the Fermi surface: 

J(S; x) = .f4i os .VcP(Sj x) • (3.16) 

The Boson field is related to the microscopic fields cP(p) by coarse graining over the pill box: . 

4>(S: x) =..;n L 8(S; p) {eiP'l[q,(p) +e-ip'l[q,( -p)} . (3.17) 
211' p,p.6s>O 2Jlp' itsI 

The microscopic Boson fields satisfy equal-time commutation relations: 

[4>(p) , q,(q)] = cS:+q,o . (3.18a) 

Note that the reality of the microscopic fields 4>(x) means that cP( -k) = q,t(k) and with trus in 

mind the commutation relations Eq. [3.18a] take on the more familiar form: 

[4>(p), I/>t( q)] =cS:.q • (3.18b) 
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Consequently, the coarse-grained fields obey a natural three-dimensional generalization of the one-

dimensional equal-time commutation relations Eq. (1.81: 

[cP(Sjx) , q,(T;Y)]::i¥ ;: cS~.Tf(OS·(x_y])cS2(Xi-Y.d (3.19a) 

where again f(Z) = 1 for Z > OJ otherwise it equals -1. Here Xi denotes the two components of x 

that are perpendicular to the surface normal os. Note that 152(0) =(!.r)2 wruch is the area of the 

base of the pill box. Thus, when Xi Yi we have: 

[q,(S; x) , q,(T; y)1 = i~2 cS§,T f(OS . [x - yJ) i (3.19b) 

otherwise the q,(Sj x) fields commute. Furthermore, the Boson currents Eq. [3.16] satisfy the same 

U(l) Kac-Moody algebra Eq. [3.5] as the Fermion charge currents Eq. [3.2J (with half the anomaly 

because we have removed the spin index): 

[J(S; q) , J(T; p)1 =a cSs,T cS!+p,o q . Os (3.20a) 

or in real space, 

(J(S; x) , J(Tj y)] = -i n cSS,T L3 0S . Vl[ cS3(x - y) . (3.20b) 

Here the Fourier transform of the currents is given by: 

J(Sj x) == L eiq'l[ J(S; q) • (3.21 ) 
q 

The Hamiltonian Eq. [3.1] then becomes (for spinless Fermions): 

3 3
H = 211' Jd y L Vc(S, Tj x - y) [its' V~(S; x)1 [OT . V cP(T; y)]z d (3.22) 

. S,T 

and Fermi fields are expressed in terms of the Boson fields as: 

! 
,,(Sjx) = ~ eii's'l[ ex {.J4;V'2if(i p IT q,(S; x)} (3.23) 

where ks is the Fermi momentum at grid point S. 
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The N-point Fermion correlation functions are reproduced with the use of the Bosonization 

formula Eq_ {3.23]. If, for example, we use the operator identity: 

MBeA eB =: e : exp(AB +!CA:I +B:I») 	 (3.24) 

then we find that the Fermion two-point function is given by: 

(t/Jt(SiX) t/J(TiO» 2!a b~.T elks '
x exp{~~ (4)(S;x)4>(SiO)-4>:I(S;O))}. (3.25) 

The Boson correlation function can be computed using the relation Eq. [3.17] and the result is: 

Gc(S;z) (4)(S;x) 4>(S;O) 4>:I(S;O» 

0:1 ns' x + ia (3.26)= - 4l1' In( ia ) j IXJ.AI < < 1 

-+ -00 ; IXJ.AI» 1 . 

Consequently we obtain the correct Fermion correlation function, coarse-grained over the pill box: 

t in:l eiks -x 2l1':I:I (3.27)<t/J (SiX) t/J(Ti D») = -2 bST k . (-A) b (xJ.).
lI' • s·x+aa 

It should be emphasized that it is the average over the pill box that results in the b:l(xJ.) term. 

To close the circle (Bosons -+ Fermion! -+ Bosons) we form the Fermion current Eq. [3.2]. In 

real space we utilize the point-splitting procedure: 

J(S; x) =: t/Jt(S; x)t/J(S; x) : 
(3.28) 

= n limt-Q : exp[-i ~ 4>(S;x + nSf)] exp[i ~ 4>(S;x)]: 

then using the operator identity Eq. 	[3.24] again we obtain: 


J(S;x) = 2~a limt_o exp[-i~ {4>(S;x+ nSf) - 4>(Sjx)}J exp[~~ Gc(Si X)] 

(3.29) 

= J,r ns' V4>(Si X) 

which i.:; identical to Eq. [3.16]. A similar calculation shows that the free Fermion Hamiltonian is 

of the same form as the Boson Hamiltonian Eq. [3.22]: 

HO L vJ(S) J,pz ",t(S;x)(ns' V)t/J(S;x) 
s (3.30) 

= 2l1'L VJ~S) Jd'3z {(ns' V)4>(S;x)}:I . 
s 
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As it stands, t/J fields located in the same patch and at the same perpendicular coordinates anti

commute. For example, the Fermion two-point function Eq. [3.27] is odd under the transformation 

x -+ -x foUowed by complex conjugation which is equivalent to interchanging the creation and 

a.nnihilation operators in a translationa1ly in\'CU'iant system. However, fields in different patches, 

and fields in the same patch with XJ. I- YJ.. commute: 

{t/J(S;x) , ",(S;y)} = 0 ; XJ. =YJ. 

[t/J(SiX) , y,(S;y)] = 0 i xJ.I- yJ. (3.31) 

[t/J(S;x) I tjJ(T;y)] = OJ S I- T . 

The commutation relations can be transformed into the correct anticommutation relations by in

troducing an ordering operator analogous to a. Jordan-Wigner transformation18• Let O(S) be the 

ordering operator defined by: 

S-1 
O(S) exp{i i L J(Tjq = O)} (3.32) 

T=1 

where the mesh points T have been arranged in consecutive order. To be definite, we could foUow 

Luther's prescription a.nd choose the mesh points to begin at some point (the "north pole") on 

the Fermi surface, spiral outwards, and converge at the antipode ("south pole"). It is straightfor

ward to check that the combination t/J(S;x)O(S) anticommutes with t/J(T;y)O(T) when S :f. T. 

Commuting statistics are still obeyed when the fields are in the same pill box, but this discrepancy 

can be neglected in the continuum limit A -- O. Alternatively, a second ordering operator may be 

introduced to implement anticommuting statistics within the pill box. 

Thus we see that charge sector of the semi-classical Landau theory has been replaced by a 

quantum mechanical theory. The Fermi liquid should be thought of as a zero-temperature quantum 

critical Gaussian fixed point with infinite U(l) symmetry and parameters Vc(S, T; q). No longer do 

semi-classical entities like bn" appear: these have been replaced by charge current operators that are 

quantized with the Kac-Moody algebras. On the other hand, we have to resort to a semi-classical 

description of the spin sector because the quantum version appears to be intractable. A geometrical 

meaning has been given to the w·limit and a direct connection between the quasiparticle operators 
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and the Boson fields is made via the Bosonization formulas. To exercise the new framework, we 

rederive some well known results in the next two sections. We concentrate on the charge sector to 

illustrate how the quantum tbeory reproduces these results. 
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IV. T 31n(T) CONTRlBUTION TO THE SPECIFIC HEAT 

As a concrete application of the proceeding formalism, we calculate the specific heat of an 

interacting Fermi liquid in three spatial dimensions. We obtain a non-analytic T 31n(T) contribution 

to the specific heat. The existence of such a term is consistent with careful measurements21 'of the 

specific beat in Helium-3. 

We turn off the spin-spin interactions in the following and for simplicity eliminate the spin index. 

As tbe nonanalytic behavior arises from small momentum processes, it is permissible to treat the 

Fermi surface in a locally flat approximation. Let the surface normal point in the zdirection. Then 

the U(l) Kac-Moody algebra can be written as: [J(S; q), J(Tj p)] =2fi q" 6~.T 6:+q ,o' These 

commutation relations are equivalent to those obeyed by Bosonic harmonic oscillator creation and 

annihilation operators once we rescale by a factor of the square root of the momentum perpendicular 

to the surface: 
J(S;q) = J-2fi qz af(Sj -q); q" $ 0 

(4.1) 

=J2fi q" a(S;q) i q. > 0 

where [a(Sjq), af(T;p)] =6i.T 6~.q. Thus we can find the spectrum by direct diagonalization of 

the Bosonic harmonic oscillator Hamiltonian: 

He L L Vc(S, T;q)(2fi)q" at(Sjq) a(T;q). (4.2) 
S.T q,q.>o 

We again place the system in a box of dimensions L3 and use periodic boundary conditions so 

the momenta are quantized as qm = ¥ m. Tbe Fermi velocity is given in terms of the Fermi 

energy f.1 by VI = J2f.I/m and the number of states at the Fermi surface, A, is given by A == 

Es Eq 8(Sjq) 6iis 'q'O =~ L2 =~ 
2 

L2. Because tbe pill boxes completely tile the surface we 

have the sum rule: 

" 'ALL...J L 8(Sjq) =A -2 • (4.3) 
s q 11' 

Tbe specific heat is computed by using the standard formula for Bosons: 

1 E2(Sjq) 
(4.4)Cv =4k T'l L L 8(S; q) sinh2(~)

B S q.,.>o 2 B 
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where €(S; q) is an eigenvalue of the Hamiltonian Eq. [4.2] which depends on the momentum q as 

well as the index S that labels the vector space of the patches covering the Fermi surface. Let us 

first consider the case of non-interacting Fermions. The eigenenergies of the Bosonized Hamiltonian 

are simply: 

€(Sjq) = vI q' ns . (4.5) 

The sum over the patch index S and the components of q parallel to the surface just yields the 

number of states at the Fermi surface, A. The sum over the component of q perpendicular to 

the surface can be converted to an integral. Assuming that the temperature is small (so that the 

thermally excited particle-hole pairs lie within the pill box, in other words kaT < < vl.\) we then 

find: 

1 l l 
A L 

00 
vlqll d 

- -- - 11 q. q",Cv - 4kaTl 2lf 0 sinh2(i/iT) 

__A_ (2kaT )3 .!:... (1rl/6) (4.6) 
- 4kaTl VI 2lf 

mPI lfl 3-klT(-)-L.- a 2lf2 3 

This result is the correct answer for spinless Fermions and of course it should be multiplied by a 

factor of two to account for the spin. It is remarkable that the Boson formula, Eq. [4.4], yields the 

full specific heat. We take it as further evidence that even for spatial dimensions greater than one 

'Bosonization reproduces the entire Fermion Hilbert space. 

We now follow Pethick and Carneir022 and focus on quasi. particles separated only by a small 

momentum W ks kT (ie. \WI < < kI) since a consideration of these processes is sufficient 

to demonstrate the existence of non-analytic contributions to the specific heat. Define two vectors 

u :: ks +q and u + p :: kT - q. The quantity ii-p then functions as a small, rotationally-invariant. 

dimensionless expansion parameter. Here the normalized momenta are defined by p :: pip where 

p:: Ipl. Figure [7] exhibits the geometry of the interaction. The interaction coefficient V: may be 

expanded in our cylindrical coordinate system. Note that odd powers of ii . Pdo not appear in the 
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expansion because the sum over grid points and momentum eliminates terms odd in p. 

V:(S, Tjq) = a+ b (ii· pfl +... 
4ql (4.7)=a +b 4 l "'W2 + ... 

q~ + 
The expansion parameter is controlled in the low-temperature limit which keeps qll, the particle-

hole momentum perpendicular to the Fermi surface, small. (Recall that squat pill-boxes force 

IWI » Iql ~ Iq",1 in the N -t 00 limit.) 

Actually. the interaction differs from the one that Peth.ick and Carneiro studied: it couples 

particle-hole pairs at points S and T whereas the Peth.ick-Carneiro interaction couples the occu

pancies nu and n u+p ' To be precise, the Peth.ick-Carneiro interaction has the form: 

L 6 (ii· p)l 6nu 6nu+p • (4.8) 
U,p 

This interaction cannot be directly expressed in terms of the currents since it involves products of 

distinct occupancies above and below the Fermi surface whereas the current operator evaluated at 

zero momentum, J(Sj 0), averages the occupancy operator over the interior of the pill box. There

fore a direct connection with the earlier calculation cannot be made. Nevertheless, our purpose 

here is to show how non-analytic contributions to the specific heat arise in the new framework. 

Other terms may make non-analytic contributionsj the interaction Eq. [4.7] is the simplest such 

term within our framework. 

To proceed we diagonalize the Hamiltonian with the aid of a Fourier transform from Fermi 

surface patch index S space to X-space. Let 

at(S;q) = ' S_A_j 2V } d X e-'X' at(Xi q) (4.9)
4lfP 

".JII'where f ~X 1 = ~ =(number of patches) then 

d2 j Ail dq jAil dq11 1" dq
H L3 X -2:Z: -2 -2'" f(Xjq) at(Xjq) a(Xjq). (4.10)f -All 11' -A/2 If 0 If 

Using Eq. [3.8) and Eq. [4.1] we then obtain the eigenenergies: 

86A2,rz e-iX,W/A 
€(Xjq) =vlq", + (21r)3 ~ . ~ . ___A, (4.11) 
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The sum can be converted to a lliemann integral with the substitution A' Ew JdlW and-to 

we find: 

£(X;q) =V/9, - (~~3 'II" In(4q~ Xl) . ( 4.12) 

In this equation we discard uninteresting terms proportional to b that make additional analytic 

contributions to the specific heat and keep only the logarithmic piece. We treat this term as a 

perturbation and calculate the specific heat to O(b); then the change in the specific heat lJCy due 

to the perturbation is: 

A 32v/'II" L foo d 9: In(q.J) 
lJCy ~ -64k8T2 (2'11")3 211' 10 9.J sinh2(~) 

(4.13) 
004

16ALk 1 x" d ~ -b~ rln(T) sinb'(x) x. 
1: v/ 0 

In the second line we retain only the term containing the T3ln(T) temperature dependence; analytic 

contributions also appear but again these are not interesting. The integral in the second line equals 

.,4 4 
11'4/30 so the final result is: ~ ~ -fs 6 ~T3ln(T) • Not surprisingly, this result has the same 

L~ PJ 

form as that found by Pethick and Carneiro'2 as dimensional analysis guarantees this. A direct 

comparison of the coefficient is meaningless however since our interaction is not the same. 
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V. COLLECTIVE MODES 

The curvature of the Fermi surface did not play an important role in the calculation of the 

specific heat. In fact we took the Fermi surface to be fiat; consequently the Hamiltonian could be 

rewritten as the sum of products of a single creation and a single annihilation operator (see Eq. 

[4.2]). Collective excitations of the Fermi surface, on the other hand, arise from the curvature. It 

is therefore interesting to derive the spectrum of collective modes within the new framework. For a 

curved Fermi surface the Hamiltonian can contain products, for example, of two creation operators, 

so the more general Bogoliubov transformation is required to diagonalize it. 

Again we concentrate on the charged excitations to illustrate the quantum theory. We diago

nalize the Hamiltonian Eq. [3.1) by first taking the matrix square root of Vc 

1 ! 
Ve(S,Tjq) = I: Vc2 (S,Ujq) V/?(U,T;q), (5.1 ) 

u 

then we rewrite the Hamiltonian as: 

1 1 

H =I I: I: (I: Ve'(U,Sjq) J(Sjq)J[I: Vc2(U,Tjq) J(Ti-q») 
q U S T (5.2) 

=1 I: I: i(Ujq) i(U;-q). 
U q 

lIere we have introduced new charge currents: 

1 

i(U;q) == I: Ve2(U,Sjq) J(Sjq) (5.3) 
s 

and also use the fact the Vc is a real symmetric matrix lie. Vc(S, T; q) =Vc(T, Sj q» so therefore 
! . 

Vel is also symmetric. These new currents obey modified Kac-Moody commutation relations: 

(i(s; q) , jeT; p)} = 2Sl lJ:.q(Vc~ DVel](S, T; q) (5.4) 

where the diagonal matrix 

D(S, T; q) == lJi,T q . ns (5.5) 

appears natura.Uy in the implicit matrix product on the right hand side of the equation. (The sum 

over the internal indices in Eq. [5.4) has been suppressed for clarity.) We obtain the spectrum by 
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"
diagonalizing this modified anomaly. Let the eigenvectors uA(S; q) and eigenvalues wACq) of the 

spectrum carry the label A. Suppressing again internal matrix indices and the momentum q we 

have: 

1 1
2n L [Ve? DVe?)(S, T) uA(T) = wAuA(S) . (5.6) 

T 

1
? and defining new eigenvectors uA(S) ==Upon matrix multiplying both sides ofthis equation by Ve

ET Vc
1 
2 (S, T) uA(T) we arrive at the collective mode equation (with an implicit sum over repeated 

indices): 

2n Vc(U, Si q)D(S, T; q)uA(Ti q) = wACq)uA(U i q) . (5.7) 

This equation can be rephrased in a more familiar form by writing Yc explkitely as ! vJ n-l 6~.T + 
is V:(S, Ti q) and taking the interaction V: to be independent of q. Dropping the label A and 

the tilde we find the dispersion relation: 

2n ~ 
(q. Vs -w) u(S) + L3 ~ V:(S, T)(q· VT) u(T) =O. (5.8) 

T 

(Recall that Vs == vJDS is the Fermi velocity at grid point S.) Now we mUltiply each term in Eq. 

[5.8) by q. Vs and make another change of variable by redefining u(T) - q. VT u(T) (with no sum 

over T). The result is: 

(q. vs - w) u(S) +q. Vs ~~ L V:(S, T) u(T) =0 . (5.9) 
T 

Recognizing that the sum is just a coarse-grained version of the sum over momenta k lying on the 

Fermi surface (FS): 

nL~~ L (5.10) 
T 211' k€FS 

we see that we have arrived at the collective mode equation. 

Since zero sound excitations involve global distortions of the Fermi surface that slosh Fermions 

back and forth, the curvature of the Fermi surface plays an important role. For example, solving this 

equation for a perfectly spherical Fermi surface with V:(S, T) assumed to be a constant independent 
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of the angle between S and T we find the zero-sound mode: 

cos(lJ)
u(IJ,</I) 0( 8 _ c:os(lJ) (5.11 ) 

where (IJ, </I) a.re polar coordinates with the polar axis in the qdirection and s == ~. Also implicit 

in Eq. [5.9) is the renormalization of the Fermion mass. Again assuming a spherical Fermi surface, 

we may use Galilean invariance19 to find the well-known result: 

11k
-=-+-.Lfc 

(5.12)m m- 311'2 1 

if we identify V:(IJ) = E~o H P,(coslJ). Finally, collective excitations in the spin sector of our 

theory are given by the corresponding Fermi liquid formula. Apparently our new formulation of 

the Fermion liquid reproduces well known Fermi liquid theory results. 
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VI. DISCUSSION 

In the precewng sections we showed that a simple model of interacting Fermions in two spatial 

dimensions can lead to a fixed point with local U(I) symmetry despite the fact that the bare 

Hamiltonian is only invariant under global U(I) transformations. We also presented a framework 

for the Bosonization of Fermion liquids in higher wmension. We enlarge upon the connection 

between the simplified model of section (II) and the general problem of Bosonization here. First 

it is clear that the model is pathological in the sense that the residual fixed point current·current 

interactions that couple the four Fermi points are singular; for example, ).le (which couples currents 

at opposite points) is typically of the same order as Ve (which couples currents at the same point). 

In the physical case of a continuous Fermi surface in spatial wmensions of two or higher, interactions 

of this type would be equivalent to a current-current coupling of the form: 

Ve(S, T; q) = iVeO-1 6j.T + Ale: o-l~i._T (6.1) 

where -T denotes a mesh point wrectly opposite point T. In the A -+ 0 limit of a finer and finer 

mesh, 0-1 oc: A-2 -+ 00. Thus the second term in Eq. [6.1] amounts to a singular interaction that 

might be expected to destroy Fermi-liquid type behavior23. 

For singular interactions, however, the connection between the multidimensional Bosonizaton 

and one-dimensional behavior begins to break down for at least two reasons. First, as we noted 

in section (I), Luttinger liquids in one spatial wmension are characterized by the elimination of 

the discontinuity in the Fermion occupancy at the Fermi surface. Consequently, the Fermion 

distribution is smeared out over some energy scale (set by the energy cut-off in the interaction). 

As long as this cut-off is small compared to lattice energy scales, the continuum analysis of section 

(I) holds. In higher wmensions, however, a second energy scale VIA has to be introduced since the 

Kac-Moody algebra is obtained in our construction only in the w-limit of A » A » Iql where 

A -+ O. This limit apparently precludes the incorporation of interactions which eliminate the Fermi 

wscoritinuity. 
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We alluded to a second problem with singular spin-spin interactions earlier: the semi-classical 

limit breaks down because the terms on the right-hand side of the spin current commutation 

relations Eq. [3.11] cannot be neglected when interactions diverge in the A -+ 0 limit. A return to 

the original Luther Bosonization prescription using narrow tubes instead of squat pill boxes appears 

to offer a way out of both wfficulties. In this case the energy scale vI). need not be introduced; 

we can think of the higher-wmensional problem as a collection of purely one-wmensional theories. 

However, now only singular "'tomographic24t1 type interactions are permitted: the current in any 

given tube can couple only to itself or to the current in a tube emerging from a point wrectly 

opposite on the Fermi surface. Actually, the simplified model of section (II) illustrates this problem. 

Interactions ).2e and ).2. only couple the zero-momentum components of the currents and therefore 

cannot change the excitation spectrum. Nevertheless the special c;ase of tomographic Bosonization 

may exhibit features of interest. 

A separate, but related, problem of interest arises when the velocity of charge excitations differs 

from that of spin excitations. Fermi liquid theory breaks down in this case because the Fermion 

propagator no longer exhibits a simple pole; instead there is a branch cut. Thus the quasi-particle 

weight Z 0 even though, as mentioned in section (I), a w5continuity in the Fermion occupancy 

remains at the Fermi surface. Since the two velocities are just parameters appearing in Vc(S, Tj q) 

and V.(S, T; q) of our theory, we need not restrict ourselves to setting both velocities equal to a 

Fermi velocity VI as we wd in section (III). Anderson has argued that a wfference in velocities 

between the two sectors, rather than singular interactions at the antipode, might account for the 

anomolous normal state properties of the copper oxide superconductors24 • It might be interesting 

to explore the consequences of spin-charge separation within the Bosonization framework presented 

here: Other open problems include the incorporation of van Hove singularities and energy gaps 

within the Bosonization framework. It may also be possible to include fluctuations in the Fermi 

surface shape or topology within a renormalization group approach. 

Finally, the Bosonization procedure outlined in this paper may permit the application of semi
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classical approximations to the interacting Fermion problem. Semiclassical approximations cannot 

be directly applied to Fermions because the Pauli exclusion principle guarantees that occupation 

numbers are of order one and thus far from the classical limit. Bosonization bypasses this problem 

by replacing the Fermion variables with Bosonic ones. Indeed, semiclassical approximations to 

Bosonized versions of certain one--dimensional problems have been remarkably useful in the past. 

For example, an analysis of quantum spin chains that begins with the weak-coupling Hubbard 

model describing interacting electrons ends up mapping the low-enp.rgy theory onto the non-lin€ar 

WZW sigma model. The behavior of this model in the semi-classical limit explains many oC the 

known properties of quantum antiCerromagnets2S• 
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FIGURE CAPTIONS 

(1) Typical band structure and the left and right Fermi points of the one-dimensional problem. 

The dashed lines denote filled states. 

(2) A one-loop diagram that gives a second order contribution to the renormaJjzation of ~•. All 

diagrams that contribute at this order have a left and a right moving propagator which connect 

the point (x, t) with the point (0, 0). 

(3) 	The four Fermi points kept in the model with linear dispersion along the lines. The dotted line 

delineates the Fermi surface of the half-filled nearest-neighbor tight binding model. The inset 

shows the (u, v) coordinate system. 

(4) 	The nine types of marginal interactions: (a) The four current-current interactions that respect 

spin-charge separation. (b) The one non-Umklapp mixed process. (c) The two Umklapp 

processes that transport charge-2 spin singlets and therefore respect spin-charge separation. 

(d) The two other "mixed" Umklapp processes that transport both spin and charge and thus 

break spin-charge separation. (The Umklapp processes only occur at half.filling.) Note that 

these diagrams only depict representative process - the missing diagrams are generated by 

performing the various symmetry operations on the square lattice (reflections that exchange 

points 1 and -1 or 2 and -2 and rotations through 90 degrees). 

(5) RenormaJjzation group 	flow of the model away from half-fillin~. The initial coupling is a 

repulsive Hubbard interaction with U/f = 1. The couplings flow toward the fixed line ~b = 

~$ =0 and ~lc > O. 

(6) <;:urrents at' each grid point 5 on the Fermi surface are constructed with the use' of squat pill 

boxes that tile the surface. The box has dimensions A x A along the surface, height ~ =-iN 
(where N -+ 00) and is bisected through the mid-plane by the Fermi Surface. The function 

8(5; k) =1 inside the box; otherwise it is zero. The momentum q must be small: Iql ~ It. 
Thus, Iql« ~« A. 
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(7) Geometry of the Fermi liquid interactions tha.t lead to non-analytic contributions to the specific 

heat. Two squat boxes lie on the locally flat Fermi surface a.t grid points S and T (see text). 
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