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Abstract

We start by computing the classical periods of motion 7(E) for a particle under the
influence of a potential well of the form U(z) = alz|*, with both v and a positive real
constants. Assuming the reflection convention at the origin, we can extend our results
to the cases where both v and o are negative real constants. We also analyse the scale
invariance exhibited by these potentials using dimensional arguments directly on the
classical equations of motion as well as the more powerful Lie method, appropriate for
studying one-parameter symmetry groups of differential equations. The action variables
J{E) are obtained from 7{ E) and we reobtain the Bohr-Wilson-Sommerfeld quantization
rule for the energy spectrum of all the above potentials. An interpretation of the results

is given in the light of semiclassical arguinents.
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1. Introduction

Since the advent of Quantum Mechanics in the nineteen twenties, a lot of exact
calculations have been made in the context of atomic and molecular physics in many
different approaches. A reason is that this is a way of checking whether a new approach
is correct or when an alternative approach may shed some light into the physical meaning
of some results, etc.

However, despite the great variety of mathematical methods supporting Quantum
Mechanics calculations, a considerable number of problems still reinain unsolved. To
deal with such cases, it is unavoidable to start with approximate solutions. The kind
of approximation one should try will strongly depend on what kind of calculation one
is interested in. Regarding energy spectra, semiclassical methods give in general very
good results!) (the same cannot always be said for the corresponding wave functions).
In particular, for those problems where the computation of action variables are not quite
involved, the Bohr-Wilson-Sommerfeld (BWS) quantization rule is extremely convenient
for computing atomic energy levels, yielding many times exact results, as in the Coulomb
case!?), or even non-spherical symmetrical potentials like the Hartinanu potential(®.

In this paper, essentially of a pedagogical nature, we shall study many aspects of
power law one-dimensional potential wells: we first consider a family of confining poten-
tials U(x) = a|z|¥, with both a and v real positive constants, and then we consider the
family of (singular) potentials U(z) = alz|™, x > 0, with v and o being a positive and
a negative real constant respectively. The latter is of a non-confining nature, since for
E > 0 non-bounded motions are allowed.

We will start by computing exactly the classical periods of wmotion r (a more precise
meaning for this concept will be given later on). We will also show two different methods
for obtaining the functional dependence of 7 in terms of the total energy E: one based
on dimensional arguments directly applied to the classical equation of motion and the
other, using the Lie method®)| well suited for obtaining one-parameter symmetry groups
of differential egnations.

Although for the above family of confining potentials the WKB spectra have already
been computed®, as well as some numerical comparison between WKB and the BWS
quantization has been made!®, we shall reobtain the BWS quantization rule using a

slightly different approach, based on the results for the classical periods of motion. We
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shall generalize our discussion to include the singular potentials U(z) F'T,-, v >0
(x > 0), but, as we shall see, the BWS quantization rule will work only for the cases
where v < 2 (which fortunately includes the “one-dimensional Coulomb problew™).

As far as we know, exact analytical results have already been found only for a very
few particular cases within the above families of potentials, including the usual harmonic
oscillator (v = 2 in the first family), the one-dimensional Coulomb potential (v = 1 in
the second family), and a few others. Even though there is a lack of analytical solutions
for an arbitrary v, the periods of motion can be computed exactly. Hence, the action
variables J(E) follow imediatly from the relation %%ﬂ = 7(£), making possible the
use of the BWS quantization rule for obtaining the corresponding semiclassical energy
spectra.

This paper is organized as follows: in section 2 we sketch briefly the evaluation of the
periods of motion in terms of E. In section 3 we show that had we been interested only
in the functional dependence of 7(E), we could have used only dimensional arguments
and asked for a scale invariance of the poblem. In this section we also discuss the scale
invariance from the point of view of the Lie method. In section 4 we compute the action
variables and proceed with the BWS quantization to get the associated energy spectra.
A connection between the classical results for the periods 7( E) and the quantum spectra

is also presented. Section 5 is left for the conclusions and final remarks.
2. Exact Evaluation of the Classical Periods of Motion

In this section, we shall compute exactly the periods of motion of a test particle of
mass m under the influence of the potential U(z) = ajz|” (in fact, U(x) is the potential
energy) for any v # 0. Of course, if v > 0 (¥ < 0), we must assume a > 0 (a < 0) in
order to get a potential well and to make sense to talk about periodic motion. In the
case of negative v and a, we shall also assume the reflection convention at the origin and
the motion must be considered only in the region 2 > 0.

We call periodic motions those solutions z(t) satisfying the condition 2(t + 7) = 2(t})
for any t and a finite 7. The minimal 7 is naturally called the period of motion, since
both the position and velocity of the particle repeat their respective values whenever a
time interval equal to 7 has passed.

Let us start then by considering a particle of mass m in a general potential U{x)

that allows only bounded motions for some range of the total energy E. It follows from
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the energy conservation theorem that

de /2

As a consequence, the expression for the period of motion may be written as

‘2 L
E)=2| ————, 2
/ VEE-U()

where z; and r; are the turning points determined by the algebraic equation E = U(z).
Let us remark that although the period of a one-dimensional mnotion is obviously a fune-
tion of the energy, this result is not so direct in three dimensions. However, it can be
shown that if a motion is actually a periodic motion, and assuming certain conditions of
differentiability, the associated period will be a function only of the encrgy!™.

K

Considering first the confining family potentials of the form U(x) = alr|”, with both

a and v positive, we can write

) A 72 “‘%
1'(A)=A“5"/%/0 (1-%) de, (3)

where A is the amplitude of the oscillations and we used that E = U(A) = a4¥. Obscrve
that, for a given potential, once we have fixed the amplitude 4, the encrgy E is auto-
matically fixed. Hence, there is no problem in working with A instead of E, and this is
what we shall do in the following calculations. Only when the energy is made explicitly
necessary, shall we rewrite our results in terms of E.

In order to make explicit the functional dependence of 7(A) we make in (3) the

following change of variables u = -f;:,-, from which

T(A) = 4% \/% %"—) (4)

where I(v) is just the numerical factor I{v} = f(: (1— 14)—%41‘-5"(141,

Interesting physical informations can actually be obtained dirvectly from the fune-
tional dependence r(A), so that for some purposes the computation of the numerical
factor I(v) can be avoided™® (we will come back to this point in the next section).

The computation of the periods of motion reguires the exact evaluation of I{v). Re-
calling the integral representation of the Euler gamma funcion®® T(z) = [ e *u*"" du,

1

we identify I(v) as the beta function B(:}, <)y where B{p,q) = 3,—‘{"—?:7(‘;‘;2
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Hence, the periods of motion are given by

_ A% [8min r(t)

where we used that T(3) = /7. Substituting A = ( E)} into (5), we get

o

T B (6)

l)é V8mm F(%) v
v T(i+3)

T(E):(

o

(10)

in agreement with Landau’s result!!®) if we identify o = A and v = n.

Observe that v = 2 is the only particular case for which the period of motion is

1
2

equation (6) leads to the familiar result r = 2—‘: Another well known example is given

independent of the energy!'"). Besides this, choosing as usual a = 2mw? (with v = 2),
by the falling of a body under an uniform gravitational field (neglecting the resistance
of the air). The time for a test mass, initially at rest at height h, is simply given by
Trall = }'r. Substituting into (5) @ = myg, v = 1 and A = h we readly get oy = \/%'-'-, a
result known since Galilei’s time.

Now, let us turn our attention to the non-confining potentials given by
U(r) = -rﬁ-,-, with # > 0, « < 0 and » > 0. There is then a singularity at the ori-
gin, and then we cannot say that the particle undergoes a periodic motion for a given
E < 0, because it would have necessarily to have crossed the origin.

However, despite this singularity at the origin, a particle which is initially at rest and
at a finite distance from the origin, reaches the origin after a finite time interval. This fact
naturally suggests that with a slight modification of our problem, a definition of period of
motion will be possible. Then, we shall assuine the usual reflection convention!'?) at the
origin, that is, that when the test particle reaches the origin it is instantaneously reflected
and then, we shall define the period of motion as twice the time interval necessary for a

particle, initially at rest at a finite distance from the origin, to get the origin, that is

A dr N v -4
rA)zgf et == —-/ xl(l—-—) dx, 7
W s VL UTw @

where, since for this family a < 0, weset a = ~K, K > 0 and E = -;{%—. Observe that,
due to the reflection convention, there is a difference of a factor 2 between definitions for

the periods expressed by (7) and (3) respectively.

5

Making the same change of variables as before (v = -E—L- ), we get after some manip-

AS Pr DL+ 1)
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202
generalizes Landau’s result for the singular potentials U{x) “Ttll—” (x>0)and v > 0.

ulations

where for this case we ideutified the integral representation of B(-'.; + ). This formula
We first remark that a kind of one-dimensional Kepler’s third law can be obtained
from (8). Substituting K = GMm and v =1 into (8) it is easy to show that

2 3\ an?

i (z) [ars ®
which exhibits the same property as Kepler's third law in three dimensions, that is,
.

Secondly, looking at equation (8), we readily conclude that, in contrast with the
confining potentials discussed previously, there is no possibility for a period to be inde-
pendent of A, since 1+ % is always positive for v > 0. This result, in fact, could have
been foreseen by the following reasons: all these potentials allow non-bounded motions
for E > 0. Hence, as E — 0_, one should already expect the period to increase and tend
to oo. This must happen for all these non-confining potentials.

It is also interesting to note that the power v determines qualitatively the behaviour
of r(A). For instance, for v > 2, as A increases 7 decreases. For 0 < v < 2, although
the potentials are still of a confining nature, the period increases as A increases. In fact,
r — o0 as A — oo. And finally, for v = 2, (harmonic oscillator), the period always
remains the same no matter how large 4 is. We shall sce in section 4 the quantmn

mechanical analog of these behaviours.
3. Scale Invariance and the Lie Method

If we were only interested in finding out the functional dependence of r(A), it would
not be really necessary to compute the numerical factor I(r). This fact suggests that this
functional dependence may also be obtained through more general arguments. In fact,
the functional depeudence of 7(A) will be related to a scale invariance exhibited by the
corresponding classical equations of motion. Usiug Lagrangian Mechanics, this functional
dependence is obtained in the book by Loomis and Sternberg!', and reobtained by

Gordon"*) through the use of theorems of differential geometry.
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Here, we shall present two alternative derivations: the first one will be a more
intuitive method where dimensional analysis is used directly in the classical equations of
motion, and the second one, the mentioned Lie method. We remark that we shall work
with classical equations of motion, and we will never go out from Newtonian Mechanics.

To show this explicitly, let us cousider the classical equations of motion for the family
of confining potentials

#Ht)+vaz*" ' =0 ; for z>0. (10)

By a scale transformation in the variables ¢ and & we understand

z— Az t— P, (11)
where both A and j ave real positive constants.

Now, we search for a scale invariance of equation (10). This amounts to ask what
relation between A and # must exist in order that the substitution of (11) into (10) leads
to the same equation, that is, to f(A,8;v)(# + vaz*~}) = 0.

This means that, if g(x,¢) = 0 is a solution of (10}, g(Ar, #t) will be also a solution.
Let us then find out the relation between A and j that verifies this assertion.

Substituting the scale transformations (11) into (10) we get
A »—1 v~1
= &+ A" vae*™ =0 (12)

B

In order to be able to factorize the same constant factor from both terms on the Lh.s.
of (12), A and 8 must be related as g = A%, This means that the equation of motion

(10) is actually invariant under the scale transformations
r— Az t— A TE (13)

As a consequence, whenever a physical gquantity with the dimension of distance is
scaled with A, all physical quantities posessing the dimension of time must scale with
A'~%5. Siuce the period of motion and the amplitude have the dimensions of time and
distance respectively, the only way this happens is if 7(A4) x A'~%, as in equation (5).

It is worth noting that t in (13) does not change for v = 2. Then, the period of
motion is independent of the amplitude, which is equivalent to the scale invariance of

(10) where the time does not scale at all. In other words, if 2(t) is a solution, Az(t) is
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also a solution. This corresponds to the fact that the classical equation for the harmonic
oscillator is linear.

A complete analogous analysis for the non-confining potentials U(z) = — :‘b, , with
x>0, K >0and v <0, leads to r{4) & A'%. It is interesting to observe that this
result (and the same can be said to the family of confining potentials) can be used to con-
struct physical quantities Z(7, 4) that are actually invariant under scale transformation

using well known results of dimensional analysis*®).

For instance, for the non-confining
(singular) potentials these invariants must depend on the period and amplitude in the
very special combination Z(r,4) = 1(7‘5-;7). The “one-dimensional” Kepler problem
corresponds to the choice v = 1, and hence, we see that Kepler's third law, % « A3, is
nothing but a manifestation of this scale invariance. One could then thiuk of the rela-
tion 12 & A?*¥ as the “generalization” of Kepler’s third law for these one-dimensional
potentials(*®),

We finish this section by showing that the above scale invariance could also have
been analysed with the powerful Lie method*}, appropriate for searching uue—piu’amet(:-r
symmetry groups of differential equations.

In order to study the syinmetries of a classical equation of motion of order n under
infinitesimal coordinate transformations of the form t — t4:€(2,t) ; @ — r+ey(e,t),
which contain of course the scale transformations as a very particular case, one considers
the vector field in R?, X = §(z,t)8/0t + y(z,t)d/ 0z, whose local flow gives the above
mentioned infinitesimal transformations. In order to determine the symmetries of a
differential equation of order n we need to know how velocities, and accelerations u!*) of
any order k, transform. This is carried out by introducing the rn-prolongation X ) which
is a vector field in R x T"R projecting on X and preserving the contact distribution'¥,
In the case at hand, since the differential equations are always of second order, we will
need only the second prolongation X2 of X.

The n-prolongation X™ is given by (see e.g. H. Stephanit?)

d g 2 )
(n) __ o 7 v () (n)
X —E(‘)t +’)01~ +9 ———ou(” + ..+ ———a"‘",’ (14)

where ul?) is the velocity, u'® the acceleration, and so on, u!*! the higher order acceler-

ations, and the 5*) are defined by the recurrence rule

(&) ')
ey - @7 e 9€
" a YA (15)
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with (% = 0. Since we are looking for a scale irivariance, for which t — et & (1 + ¢)t
and r — €Y« &~ (1 + y¢)r, we shall put £(z, ) =1t ; g(z,t) = 7z.

A simple calculation shows that in our case,
1= - = (-1 5 0P = -2u® = (1 -2, (16)

where v = ! and a = u(?, so that the second prolongation of X is simply given by

a 7] 0 i)
(@99 1l L —2e
A= tat + 7l01‘ =1 Jv o ?)aaa (17

The differential equation (10) is represented by the three-dimensional surface
¥ in R x T?R defined by the equation a = avz*~' and the condition for X to gen-
erate an infinitesimal symmetry of (10) is that the flow of X preserves I, i.e., the

tangency condition

{Xm(a - avx"")} =0, (18)

a=avr*-!
an identity which leads, after simple calculations, to v = 3%;. This means, for an in-

finitesimal ¢, that the equations of motion are invariant under
t—r (l+et=met 5 2 — (1+ye)zr e, (19)

which correspond to the flow of X = t2 + yz£&. Of course a function f(z,t) invariant

under X is a solution of X f = 0, which is solved by looking for first integrals of the

o dx
= &

As indicated before, the connection with our previous results, is based on the iden-

characteristic system # i.e., f(x,t)is a function of zt™7.
tification A = ¢7¢. Then, equations (19) are rewritten as x — Ax ; t — ATt = Al-%¢,

which are precisely transformations (13).
4. Bohr-Wilson-Sommerfeld Quantization

We will start by obtaining the action variables J(E) from the expressions for the
periods 7(E) and then we proceed with the BWS quantization rule for the above one-
dimensional potentials. We shall also compare classical and quantum mechanical results
and give a semiclassical interpretation for the connection between them.

Just to introduce notation and basic ideas, let us make a very brief review of the

formalism to be used. There are many books which may provide the interested reader with
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more details in the Hamilton-Jacobi formalism(7='?}, In particular, for one-dimensional
miotions see Percival and Richards(*®, Let us consider one-dimensional systems described

by a Hamiltonian H(q,p). The Hamilton-Jacobi equation is given by
25,  as
—)+ —(q, Pt} =0. 2
H(”’aq”ot(‘? }=0 (20)

A solution S(q, P,t) of this equation is the generating function of a canonical transfor-
mation from the canonical variables (¢, p) to the new ones (@, P) in such a way that the
transformed Hamiltonian is identically zero.

Since the Hamiltonian is assumed to be time independent, we can write S(q, P, t) =
Wi¢, P) — Et, where W(q, P,t) is called Hamilton principal function. With such a de-
composition, the Hamilton-Jacobi equation becomes H(g, %) =E.

For physical systems describing periodic motions (either a rotation or a libration),
it is extremely convenient to make a canonical transformation into a new set of canonical
variables, called action-angle variables. In particular, using these variables we can obtain
the frequencies of the system without solving the problem at all.

The action variable for a one-dimensional periodic motion is defined as J = § pdq,
while the associated angle variable is w = %‘}(q, J), where we have written the Hamilton

principal function in terms of J. Hamilton’s equations take the form

jz%m:o : ‘;,:‘;—I;W)E/J(J). (21)

From the above equations of motion, we can see that J is actually a constant, and then a
direct integration yields w(t) = gt +6. It can be shown that f# is the frequency associated

to the periodic motion of the variable ¢(¢)(*"), which can he found without solving the

an
a5
However, since we have already computed the periods of motion (remember that

problem. We just define J, write the Hamiltonian as H(J) and then compute 3 =

T = %), we shall use this relation in the opposite way, that is, instead of evaluating the

integral J = § pdg, we shall obtain J(E) by a direct integration of

dJ(E
%) = 7(E). (22)

Hence, for the confining potentials, after substituting (G) into (22) and integrating,

we obtain

Iy
1\* ML +1) 2y
Ey=1|-—- —r _ __ET, 2
J(E) (a) Sazcxr(%+%)E2 (23)
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where we used that zT(z) = T'(z + 1) and the integration constant was chosen such that
J(E)=0for E =0.
Solving (23) for E(J) we obtain

n'}l'(l'fg)J ki
=¥ 27 b
By = {\/Sn—urf‘(%+1)} ' (24)

Using now the BWS quantization rule, that is, substituting J by nh (n = 1,2,...},

we get

E, = C(v,a)n%, (25)

with an obvious definition for C(v,a). According to the Correspondence Principle, this
formula is supposed to be a good approximation only for large quantum numbers. The
energy levels given by (25) will coincide with those obtained by the WKB method if n is
replaced by n + } (see ref. [5]; for a comparison one must use that I'(}) = 3;—; and to
identify ¢ = v).

In order to avoid the constant C'(v,a) in the final results, we can use the ratio of

two successive energy levels. Hence, we can summarize our results by writing

Ensi (n+1)#"

n

(20)

E,

Once just one energy level is fixed, all the others are automatically determined by (26).

The harmonic oscillator corresponds to v = 2, and a = %mwz. Substituting these
values into (25) and computing C(v,a), we get the well known result E,, = nhw, which
is corvect for large n (that is, in the domain of the correspondence limit).

. Looking at (25), we also see that AE, = E, 4+, — E, actually increases (decreases)
with n for v > 2 (0 < v < 2), so that, the harmonic oscillator is the limiting case (within
the family of potentials U(x) o |z|*, with v > 0) between those for which AE,, increases
with n and those for which AE, decreases with n. Although not obvious, this fact is
closely related to the functional dependence of the classical period of motion 7{E). In
what follows we shall establish this connection based on semiclassical arguments.

Having in mind that ‘_(—’E-i = ’;—f, we assume that the Correspondence Principle is
valid (large quantwn numbers n), and write

1 . dE,
T(E)  dn’
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where we substituted J by nh and we are considering in this limit n roughly as a continous
variable. The meaning of % is such that if %,‘L increases (decreases) with increasing
n, it means that the spacing between two successive energy levels, AE, = E, 4 — E,
becomes larger (smaller) and larger {(smaller) as n increases.

Hence, looking at equation (27) we see that those potentials for which 7( E) decreases
(increases) as E increases will have energy spacing AE, that increases (decreases) as n
increases. When 7(E) is independent of E the potentials will exhibit an equal spacing
energy levels.

Let us now pass to analyse the case of the non-confining (singular) potentials. For

this case, the total energy is given by £ = —;l’l;-, so that 4 = (_’—‘b) ", Substituting this
expression into (8) we get
aVomr (2 41 N
r(E):]d_l'___Lz._?)(,.E)'%*r, (28)

ra+ 1)
Then, putting (28) into (22) and integrating we get the action variables

aVBmr, e D(24+4) | _e-a

JE) = KISR0 pa e (29)
Solving for E(J) we have
i e
_ e |1 " (v=2r (2 +1)

Using (naively) the BWS quantization rule (J = nh, n = 1,2, ...), we finally obtain
En=C'(v, K3, (31)

with an obvious definition for C'(v, ).

However, we see from (31) that E, diverges as n — oo for ¥ > 2 (in contrast with
the expected non-confining behaviowr E, — 0 as n — oc). This displays alveady in a
semiclassical approach, that in these cases the corresponding Hamiltonian operator is not
bounded from below, leading to problems in the quantization procedure.

Fortunately, the “one-dimensional Coulomb” problem correspouds to v = 1. In
this case, after a straightforward evaluation of C'(v, k') we get for the one-dimensional

Coulomb encrgy levels the following result

mutK? (1 ;
W= (;;) ) (32)
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in full agreement (for large n) with previous calculations using other methods?!),

5. Conclusions and Final Remarks

In this paper we have covered an extensive material about power law one-dimensional
potential wells, including both a classical and quantun mechanical {semiclassical) study
of them. We started by computing the classical periods of motion for a given energy E
and used this result for obtaining the corresponding action variables and then we used
the BWS quantization rule to get the corresponding spectra. The quantum and classical
results were compared and the connection between them was analysed under the light
of semiclassical arguments. We have also discussed the scale invariance of these systems
using simple argnments and the more powerful approach of the Lie method. Hence, we
think this material can be of great pedagogical value for enriching classical and quantum
mechanical undergraduate courses.

As a final remark, we would like to make a few comments on the case of isochronous
problems {those ones where 7(E) is independent of E). The usual harmonic oscillator
is the simplest example of an isochronous problem, for which the BWS quantization
rule leads to equal spacing energy levels. However, this does not mean that the energy
spacing (AE, = E,4, — E,) will have the same value for different isochironous problems.
The energy spacing will depend, of course, on the exact value of the respective action
variables. Let us see this explicitly in one example.

Pippard® showed (see also ref. [10]), that if a poteutial well U(x) is deformed into
another U(x), in such a way that for any value Up, the two solutions of U(x) = Uy are
separated one from each other the same value that the two solutions of U(x) = Uy, the
corresponding periods of motion will be the same. An explicit example is the case of
the potential U(x) = :}kxz + 5’;’—,, which can be obtained from a parabolic potential by
shearing and so its corresponding period of motion is actually independent of E. This
can be seen without solving the problem!®), but since there is a straightforward way of
solving the corresponding equation of motion, we shall do it as an interesting exercise in
a few steps.

Newton's second law for a particle of mass m under the influence of the above
potential is simply mi = —kzr + -f’s It can be shown that the solution for the previous

equation is given by x(f) = \/A cos(2(wt + a)) + E/k, wherc E = tmi? + Lka® + ?‘;’-; and
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we defined w? = %, and 4 and a are two integration constants, which are determined
by the initial conditions.

Clearly, the period of metion is given by 7 = % (this is one half the period for
the harmonic oscillator obtained with 3 = 0). Hence, the action variable is given by
(see equation (22)) J(E) = 2 E, so that E(J) = i;i“;J. Using the BWS quantization
rule, we get the following energy levels E, = 2n{hw), which clearly shows that the equal
energy spacing in this case (AE, = 2hw) is twice as that for the harmonic oscillator case
(B = 0). This result is in complete agreement (for large n) with previous calculations
obtained through other methods!!?).

Acknowledgment

One of us (C.F.) would like to thank to E. Martinez, A. Pacheco, J.V.G. Esteve,
F. Marroquim, M.V. Cougo Pinto and A. Segui for valuable comments and specially to
J.L. Cortés for enlightning discussions. We also thank to L.C. Albuquerque for providing
us with ref. [5]. This work was partially supported by Conselho Nacional de Desen-
volvimento Cientifico e Tecnologico of Brazil (CNPq) and by CICYT of Spain. C.F. also
thanks the Theoretical Physics Department of Zaragoza for hospitality.

References
1. Martin C. Gutzwiller, Energy Spectrum According to Classical Mechanics, J. Math.
Phys. 11 (1970), 1791-1806.

. The use of action-angle variables in the Coulomb problem can be found in standard

(8

textbooks as for example H. Goldstein, see ref. [13].

3. C. Farina, M. Gandelman and L.C. Albuquerque, The Bohr-Sommerfeld Quantiza-
tion Rule for a Ring-shaped Potential, J. Phys. A: Math. Gen. 22 (1989), L533-
L538.

4. This method is due to the Norwegian mathematician S. Lic. For a detailed discussion
see J. Stephani, Differential Equations: their Solution Using Symmetries, Cambridge
UP 1989; P.J. Olver, Application of Lie Groups to Differential Equations, GTM 107,
Spring 1986; see also ref. 15.

5. U.P. Sukhatme, WKDB Energy Levels for a Class of One-Dimensional Potentials,
Am. J. Phys. 41 (1973), 1015-1016.

6. D.J.W. Geldart and D. Kiang, Bohr-Sommerfeld, WK DB, and Modificd Semiclassical
Quantization Rules, Am. J. Phys. 54 (1986), 131-134.

14



. G. Marmo and G. Vilasi, When do Recursion Operators Generate New Conservation
Laws?, Phys. Lett. B277 (1992), 137-140.
. A.B. Pippard, The Physics of Vibration, Cambridge UP 1983.

9. E.T. Whittaker and G.N. Watson, 4 Course of Modern Analysis, (Cambridge Uni-

10.

11.

13.

14.

16.

17.
18.

19
20
21

versity Press, Cambridge, 1973).

L. Landau and E. Lifschitz, Mechanics, English Edition (Pergamon Press), translated
by J.B. Sykes and J.S. Bell, p.27 §11, Problem 2a.

This conclusion could have been achieved without computing the numerical integral
I(v). This is precisely what Pippard does in ref. [8].

. J.F. Carinena, C. Lopez, M.A. del Olmo and M. Santander, Conformal Geometry of
the Kepler Orbit Space, Celestial Mechanics 52 (1991), 307-343.

O.H. Loomis and S. Sternberg, Advanced Calculus, Addison-Wesley, Reading Mass.,
1968.

W.B. Gordon, On the Relation between Period and Energy in Periodic Dynamical
Systems, J. Math. Mech. 19 (1969), 111-114.

. Sec for instance J.F. Cariliena and M. Santander, Dimensional Analysis, in Advanced
in Electronics and Electron Physics, Vol. T2 p.181, ed. by P.W. Hawkes, Academic
Press, Inc., 1988.

V.1 Arnold, Les Méthodes Mathematiques de la Mécanique Classique, Mir, Moscow
1976.

H. Goldstein, Classical Mechanics, (Addison-Wesley, Reading, MA, 2nd ed., 1980).
D. Park, Classical Dynamics and its Quantum Analogues, in Lecture Notes in Physics
110, Springer Verlag, 1979.

. F. Scheck, Mechanics: From Newton'’s Law to Deterministic Chaos, Springer, 1990.
. I. Percival and D. Richards, Introduction to Dynamics, Cambridge UP, 1982.

. See for instance H. Boschi-Filho and A.N. Vaidya, Ann. Phys 212 (1991) , 1-27.

15





