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Abstract 

We start by computing the classical periods of motion r(E) for a particle under the 

influence of a potential well of the form U(x) = alxll', with both v and 0: positive real 

constants. Assuming the reflection convention at the origin, we can extend oUl' results 

to the cases where both v and 0: are negative real constants. We also analyse the scale 

illvariance exhibited by these potentials using dimensional arguments directly on the 

classical e(luations of motion as well as the more powerful Lie method, appropriate for 

studying one-parameter symmetry groups of differential equations. The action variables 

J(E) are obtained from r(E) and we reobtain the Bohr·Wilson-Sommeneld quantization 

mit> for the energy spectrum of all the above potentials. An interpretation of the results 

is given ill the light of semiclassical arguments. 
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1. Introduction 

Since the. advent of Quantum Mechanics in the nineteen twenties, a lot of exact 

calculations have been made in the context of atomic and molecular physics in many 

different approaches. A reason is that this is a. way of checking whether a new approach 

is correct or when an alternative approach may shed some light. into the physical meaning 

of some results, etc. 

However, despite the great variety of mathematical methods supporting Quantum 

Mechanics calculations, a considerable number of problems still remain unsolved. To 

deal with such cases, it is unavoidable to start with approximate solutions. The kind 

of approximation one should try will strongly depend 011 what, kind of ('alculatioll one 

is interested in. Regarding energy spectra, semiclassical met.hods givt· in gt-'l1eral very 

good results(l) (the same cannot always be said for the correspouding wave functions). 

In part.icular, for those problems where the computation of action variahles are not quite 

involved, the Bohr-Wilson-Sommeneld (BWS) quantization rule is extremely convenient 

for computing atomic energy levels, yielding many times exact results, as in the Coulomh 

case(2), or even non-spherical symmetrical potentials like the Hartmallll potelltinl(3). 

III this paper, essentially of a pedagogical nature, we shall study many aspects of 

power law one-dimensional potential wells: we first consider a family of confining poten­

tials U( x) = alxll', with both a and v real positive constants, and thcm we considcr the 

of (singular) potentials = ;l~ > 0, with v and 0: it and 

a negative real constant respectively. The latter is of a nOll-confining nature, siuc(~ for 

E > 0 non-bounded motions are allowed. 

We will start by computing exactly the classical periods of motion r (a more prC'cis(> 

meaning for t.his concept will be given later on). We will also :>how two different mdhods 

for obt.a.ining the fuuctional dependence of r in terms of til(' tot.al t>UCl'gy E: one based 

on dimensional arguments directly applied to the classieal ('quntioll of mot.iou and the 

other, using t.lw Lie lllethocl(4), well suited for obtaining onc-parameter synuuet.l'Y groups 

of differential C'quations. 

Although for the above fanlily of confining potentials t.he WKB spectra have already 

been computed(S), as well as some numerical comparisoll betwecn WI\B and the BWS 

quantization has been made(S), we shall l'rohtain th<' BWS qmmtizat.ion rule using a 

slightly diffel'f~llt approach, based on the results for th<' classical periods of motion. We 
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shall generalize our discussion to include the singular potentials U(x) ex W' v > 0 

(x > 0), but, as we shall see, the nws quantization rule will work only for the cases 

where v < 2 (which fortunately includes the "one-dimensional Coulomb problem"), 

As faJ' as we know, exact analytical results have already been found only for a very 

few particular cases within the above familiet; of potentials, including the usual harmonic 

oscillator (v 2 in the first family), the one-dimensional Coulomb potential (v = 1 in 

the second family), aJld a few others. Even though there is a lack of analytical solutions 

for an arbitraJ'y v, the pel'iods of motion can be computed exactly. Hence, the action 

variables J(E) follow il1lediatly from the relation d~<.f) = T(E), making possible the 

use of the BWS quantization rule for obtaining the corresponding semiclassical energy 

spectra, 

This paper is organized as follows: in section 2 we sketch briefly the evaluation of the 

periods of motion in terlllS of E. In section 3 we show that had we been interested only 

in the functional dependence of T(E), we could have used only dimensional arguments 

and asked for a scale inval'iance of the poblem. III this section we also discuss the scale 

invariance frolU the point of view of the Lie method. In section 4 we compute the action 

variables and proceed with the BWS quantization to get the associated energy spectra. 

A cOlluection between the classical results for the periods T(E) and the quantum spectra 

is also presented, Section 5 is left for the conclusions and final remarks. 

2. Exact Evaluation of the Classical Periods of Motion 

Iu this section, we shall compute exactly the periods of motion of a. test particle of 

ma.ssm under thc influence of the potential U(x) =olxl" (ill fact, U( x) is the potential 

energy) fOl' aJly V =I O. Of course, if v > 0 (v < 0), we must assume 0 > 0 (0 < 0) ill 

order to get a potential well aJld to make sense to talk about periodic motion. Iu the 

case of negative v and a, we shall also assume the ,'eflection cOllvention at the origin and 

the motion must be considered only in the region x > O. 

We call periodic motions those solutions x( t) satisfying the condition x( t +T) x( t) 

for any t and a finite T. The miuimal T is naturally called the period of motioll, since 

both the position and velocity of the particle repeat their respective values whellever a 

time interval equal to T has passed. 

Let us stmt then by considering a particle of mass m in a general potential U (;1: ) 

that allows only bowlded motions for SOUle range of the total energy E. It follows from 
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the energy COllsel'vatioll theorem that 

.)lh 
-=-(E - U(;r)). 	 (1)dt = ± HI 

1
As a consequence, the expression for the period of motion may be written as 


"2 (h: 

(2)

T(E)=2. J:L(E-U(;r»"1 JfI 

where Xl aJld X2 are the turning points determined by the algebraic equation E U(x). 

Let us remark that although the period of a (me-dimensionalmotiou is obviously a func­

tion of the energy, this result is not so direct in thl'ee dimensious. However, it call he 

shown that if a motion is actually a pel'iodic motion, and assumiug certaiu ('()uditiolls of 

differentiability, the associated period will be a fuuctiou ouly of the ellergy(i), 

Considering first the confining fUlllily potentials of the form U(.r) = 01.1'1", with both 

o 	and v positive, we CaJl write 

rs,;; fA ( J:" )-1
T(.4) = A-i V-;- 10 1 - A" 	 (/;r, (3) 

where A is the amplitude of the oscillations and we used that E U(A) lL-l". Obs(~rve 

that, for a given potential, once we have fixed tlw mllplitlld.- .4, tht' elU'l'gy E is auto­

matically fixed. Hence, there is no problem ill working with A instead of E, and this is 

what we shall do in the following calculations. Only when the energy is made explicitly 

necessaJ'y, shall we rewrite our results iu terms of E. 

In order to make explicit the functional depcndence of T(A) we make iu (3) the 

following change of variables u = fl'Olll which 

'" 
T(A) = Al-y rs;;; I(v) (4)V-;;- v ' 

whel'e I(v) is jUlSt til{' uumerical fador I(IJ) = 101 
(1 u)- l ut- 1dll. 

Interesting physical informatious call actually be obtailU'd directly from the fuu~­

tional depend('nn~ T( A.), so that for some purposes the computation of the numerical 

factor I(v) can be avoidedll$) (we will come back to this point iu the uext sectiou). 

The computation of the periods of Ulotion requires the exnd evnhmt.iou of I(v). Re­

calling the iut.egml representation of tlw EU}"l' gamma fum·jllu(U) f(:;) = 1.:0 t. -uu;-I du, 

we identify I( 'I) as the beta fuudioll Dd, -!;), where D(p,lJ) == I;!C!~~\). 
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Heucc, the periods of motion are given 

A'-i J87rW f(~) (5)
=-v- a r(~+!)' 

where we used that f(! ) ..fi. Substituting .4 = (-! )-: into (5), we get 

1 ) t JSm 7r f( ~ ) Elyf 
r(E) = ( ~ v f( ~ +!) (6) 

in agreemeut. with Landau's result(lO) if we identify 0' = A and v = n. 

Observe that v = 2 is the only particulal' case for which the period of motion is 

indcpendent of the energy(ll). Besides this, choosing as usual a ~mw2 (with v = 2), 

equatioll (6) leads to the familiar result r = ::r. Another well known example is given 

by the falling of a body under an uuiform gravitational field (neglecting til(' resistance 

of the air). The time for a test mass, initially at rest at height h, is simply given by 

Tfall = t r . Snhstitnting into (5) a = mg, v 1 and A h we readly get Trail = ~, a 

result known since Galilei's time. 

Now, let us tum our attention to the non-confining potentials given hy 

(T(J:) = with x > 0, a < 0 and v > O. There is then a singularity at the ori­

gin, and then we canllot say that the particle undergoes a periodic motion for a given 

E < 0, hecause it would have necessarily to have crossed the origin. 

How('ver, despite this singularity at the origin, a particle which is initially at rest and 

at a finite distance frolll the origin, reaches the origin after a fiuite time interval. This fact 

naturally suggests that with a slight modification of our problem, a definition of period of 

mot.ion will he possihle. Then, we shall assume t.he usualreflectioll convention{ 12) at the 
c~ 

origiu, that is, that when the test pal"ticle reaches the origin it is instantaneously reflected 

and then, we shall define the period of motion as twice the time interval necessary for a 

particle, initially at rest at a finite distance from the origin, to get the origin, that is 

l A (ix J¥2m lA L ( ;r" )-!
x 2r(A) = 2 / . = -r.:- 1- -A (1:1', (7) 

o ..1. ( F. -'- h.. \ J\ 0 " 

where, sillce for this family a < 0, we set a - J\:, 1\ > 0 and E = Observe 

due to the reflection conventioll, therf' is a difference of a factor 2 between defiuitions for 

the periods expressed by (7) and respectively. 
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Making the same change of variables ru> before (u = ), we get after some manip­

ulations 
_A J2m 7r f( *+t) (8)1+ t 

r( A) - v I\: f( *+1) , 

where for this case we identified the integral representation of B( *+~, 4). This formula 

generalizes Landau's result for the singular potentials U(x) ex: -w' (:I' > 0) and v> O. 

We first remark that a kind of one-dimensional Kepler's third law call be obtained 

from (S)' Substituting I( = GMm and v 1 into (8) it is easy to show that 

(3)2 47r2 
r2 

(9)A3 = '4 GAl' 

which exhibits the salUe property as Kepler's third law in three dimensions, that is, 
r'
fil'ex: 

Secondly, looking at equation (8), we readily conclt1df~ that, in coutrast with tit!' 

confining potentials discussed previously, there is no possibility for a period to be ilule­

pendent of A, since 1 + i" is always positive for v > O. This result, in fad, could have 

been foreseen by the following reasons: all these potentials allow llon-botlndetl motions 

for E ~ O. Hence, as E -+ 0_, Ol1e should already expect till' period to increase and tt'ud 

to 00. This must happen for all these non-confining potentials. 

It is also interesting to note that the power v determines qualitatively tilt' behaviour 

of r(A). For instance, for v > 2, as A increases r decreases. For 0 < v < 2, although 

the potentials are still of a confining nature, the period increases a.." .4 incn'as(~s. III fad, 

T -+ 00 as A -+ 00. And finally, for v = 2, (hanllollic o!;cillator), tht> pf~riO(I always 

f(~lllaius the same 110 matter how large .4 is. We sha.ll s!~(' in S('(~tioll 4 t.1t!' (j1\alltlllll 

mechanieal analog of these behaviours. 

3. Scale Illvariance and the Lie Method 

If we were only interested in finding out the fUllctional dependence of r( A), it would 

not be really necessary to compute the numerical factor I( v). This fact suggests that this 

functional dependence may also he obtained through more general Rl'gumfmts. III fact, 

the functional dependence of r( A) will be rdated to a scale iuvariance exhibited by the 

corresponding classical !'quatiolls of motion. Usiug Lagrangian Mcchallics, this functional 

(lependcnce is ohtaiuf'd in the book hy Loumis and Sternberg{l:J), and reobtained by 

Gordon{l4) through the usc of theorems of differential geometry. 
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Here, we shall pI'csellt twu alternative derivations: the first oue will he a more 

iutuitive method when! dimensional analysis is used directly in the classical equations of 

motion, and the second oue, the mentioned Lie method. We remm'k that we shall work 

with classical equations of motion, and we will never go out from Newtonian Mechanics. 

To show this explicitly, let us consider the classical equations of motion for the family 

of confining potentials 

Ii(t) +VQX,,-I 0 for x > O. 

By a scale transformation in the variables t and x we understand 

x ---+ AX t --+ {Jt, (11) 

where both A and fJ are real positive constants. 

Nuw, we search for a scale invariance of equation (10). This amounts to ask what 

relation between A and fJ must exist in order that the substitution of (11) into (10) leads 

to the same equation, that is, to f(A,fJi v)(Ii +vax,,-l) = O. 

This means that, if g( J:, t) 0 is a solution of (10), g( AX, fJt) will be also a solution, 

Let us then find out the relation between A and Ii that verifies this assertion. 

Substituting the scale transformations (11) into (10) we get 

fJ2
A 

Ii +Av-IVQX V
-

I =O. (12) 

In order to be able to factorize the same constant factor from both terms on the 1.h.s. 

of (12), Aand fJ lUust be I'elated as f:J = AI-i. This means that the equation of motion 

(10) is actually iuval'iant under the scale transformations 

;1: ---+ AX t --+ AI-it. (13) 

As a consequence, whenever a physical quantity with the dimension of distance is 

scaled with A, all physical quantities posessing the dimension of time must scale with 

A1-1. Siuce the period of motion and the amplitude have the dimensions of time and 

distance l'espectively, the ollly way this happens is if r(04} 0( AI--1, as in equation (5). 

It is worth noting that t in (13) does not change for v = 2. Then, the period of 

motion is independent of the amplitude, which is equivalent to the scale inval'iance of 

(10) where the time does not scale at all. 111 othe!" words, if x(t) is a solutioll, AX(t) is 

also a solution. This conesponds to the fad that the classical ('<Iuation for the harmonic 

oscillator is lineal'. 

A complete analogous analysis for the non-confining potentialts U(x) -W' with 

x > 0, K > 0 and v < 0, leads to r( A) 0( .41+i. It is interesting to oluierve that this 

result (and the same can be said to the family of confining pot(~ntials) cau be ulied to con­

struct physical quantities I( r, A) that are actually invariant under scale transformation 

using well known results of dimensional analysis' 15). For iutstance, for the nOll-confining 

(singular) potentials these invariants mutst depend un the period and amplitude in the 
2 

very special combination I( r, A) = I( Ah~). The "one-dimensiunal" Kepler problem 

corresponds to the choice v = 1, and hcnce, we see that Kepler's thil'd law, r2 AJ, is0( 

nothing but a manifestatiun of this scale invariance. One could then think of the l'da­

tion r2 0( A2+" as the ugellel'alization" of Kepler's third law fOl' these one-dimensional 

potentials( 16) • 

We finish this section by showing that the above scale iuvariance could also have 

been analysed with the powerful Lie method(4), appl'Opdate fOl' searching ol1e-pa1'alllet~l' 

symmetry groups of differential equations. 

In ordel' to study the symmetries of a c1atssical equation of motion of order u uuder 

infinitesimal coordinate transformations of the form t ---+ t+e{( ;1:, t) i :r ---+ .I'+ell(.f, t), 

which contain of course the scale transformatious as a very pm'ticulm' case, OIl(> cuusiders 

the vector field in R2, X = f..(x,t)o/Ot + f}(x,t)D/Dx, whose local How gives the above 

mentioned infiuitesimal transformations. In onler to determine the symmetries of It 

differential equation of order n we ueed to know how veio{'ities, and a{'{~eleratiuns Itl k) of 

any order 1:, transform. This is carried out by introducing the II-prolongation XiII) whkh 

is It vectol' field in R x Til R projecting on X and preserving the cuntad distrihutioul·l). 
~, 

In the case at hmld, since the differential e(llUl.tiolls arc alwnys of secoud order, we will 

need only the second prolongation X(2) of X. 

The n-pl'Olongatioll X(fI) is given by (see e.g. H. Stephani'.J) 

viII) 0 0 (1) 0 In) 0 
~,. = f.. -0 + f}-D + 11 0 (I) + ... + I} -0( )' (14)

t x It U 'I 

where U(l) is the velocity, u(2) the acceleration, and so OU, u(k) the higher order acceler­

ations, and the III k) an' defined by the recUl'1'cuce rule 

(H1) _ cill lk ) IHl)d{ 
(15)'I - -;u- - It cit ' 
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with 11(0) = O. Since we are looking for a scale irivariance, for which t -.. e~t ~ (1 +~)t 

and x -.. e'~;c ~ (1 + le).c, we shall put {(x,t) = t ; ,,(x,t) = IX' 


A simple calculation shows that in our case, 


11(1) = (f l)u(l) (f l)v ,,(2) = (f - 2)u(2) == (f - 2)n, (16) 

where v = uO) and a = u(2), so that the second prolongation of X is simply given by 

.0000
~\(2) = t- +lX- +(f -1)tI- +h - 2)a-. (17)

Ot {)x {)v on 
The differential equation (10) is represented by the three-dimensional sUlface 

E in R x T2 R defined by the equation a = Ol/x.,-l and the condition for X to gen­

erate an infinitesimal symmetry of (to) is that the flow of X(2) preserves E, i.e., the 

tangency condi tion 

X(2)(a - Ol/X.,-I)} = 0, (18)
{ 

I1=O.,r~-l 

an identity which leads, after simple calculations, to 1 = 2=,,' This means, for an in­

finitesimal e, that the equations of motion are invariant under 

t ---t (1 + ~ e~t x ---t (1 + ~ e1~x, 

which correspond to the flow of X = tf, +IX :r' Of course a function /(x, t) invariant 

under X is a solution of X / 0, which is solved by looking for first integrals of the 

characteristic system t¥ = ~~. i.e., /(x,t) is a function of xt-'. 

As iudicated before, the connection with our previous results, is based on the ideu­

tificat.ioll A (:'~. Then, equations (19) are rewritten as X -.. Ax ; t -.. Aft = AI-'it, 

which are precisely transformations (13). 

4. Bohr-Wilsoll-Sommerfeld Quantizatioll'" 

We will start by obtaining the action variables J(E) from the expressions for the 

periods T(E) and then we proceed with the BWS quantization rule for the above one­

dimensional potentials. We shall also compare classkal and quantum mechanical results 

and give a semiclassical interpretation for the connection between them. 

Just to introduce notation and basic ideas, let us make a very brief review of the 

formalism to be used. There are many books which may pJ'Ovide the interested reader with 
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more details in the Hamilton-Jacobi formnlhnl1(l7-19). In parti('ular, for one-dimensional 

motions see Percival and Richards(20). Let us consider one-dimensional systems descrihed 

by a Hamiltonian H( q,p). The Hamilton-Jacohi equatiou is given by 

oS oS 
H(q, oq ) + at (q, P, t) = O. (20) 

A solution S( '1, P, t) of this equation is the generating function of a canonical transfor­

mation from the cauonical variables to the new oues (Q, P) in such a way that the 

transformed Hamiltonian is identically zero. 

Since the Hamiltonian is assumed to be time independent, we can writp S( q, P, t) 

W(q,P) - Et, where W(q,P,t) is called Hamilton principal functiou. With sw:h a de­

composition, the Hamilton-Jacobi equation becomes H(q, i~:') = E. 

For physical systems describing periodic motions (either a rotation 01' a Hhmtion), 

it is extremely convenient to make a canonical transformation into a new set of canonical 

variables, called action-angle variables. In particular, using these variahles we can obtain 

the frequencies of the system without solving the problem at all. 

The action variable for a one-dimensional periodic motion is defined as J Jlxiq, 

while the associated angle variable is w == ~.r (q, J), where we have written the Halllilt.Oll 

principal function in terms of J. Hanlilton's equations take the form 

. aH . OB 
J = -(J) = 0 w = -(J) == (21)

Ow {)J 

From the above equations of motion, we can see that J is actually a constant, ami tl\(~U a 

direct integration yields w(t) = pt +b. It call be showu tlHlt tJ is the fJ'(~quellcy associated 

to the p{~riodi(' motion of the variable q( t )(17), which nUl he found wit.hout. solving the 

problem. We just defiu(" J, write the Hamiltoniml a.s H(J) und then compnt.(' tJ i~~. 

However, since we have already comput.ed the period:; of motion (n'uu'JUher that 

T ~), we shall use this relation in the opposite way, that is, instead of evaluating the 

integral J == Jpdq, we shall obtain J(E) by a direct integratioJl of 

dJ(E) =T(E). (22)
dE 

Hence, for the confining potentials, after suhstitutiJlg (G) into (22) and integrating, 

we obtain 

J(E) = (.!.) t ./SlIl1r r( t+ ~) E¥.!- (23) 
a f(;; +1) , 
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where we used that:: r(::) = r(:; +1) and the illt('gratioll constant wa.') chosen snch that 

J(E) 0 for E = O. 

Solving (23) for E(J) we obtain 

it;.Lr(! +.:!) J 
0''' " 2 

E(J) = { ,.rsm;:r(t + 1) } 
(24) 

Using now the BWS (IUantization rule, that is, substituting J by nh (n = 1,2, ... ), 

we get 

E'I = C(v,a)ui#, (25) 

with an obvious definition for C(v,a). According to the Correspondence Pl-illciple, this 

formula is supposed to be a good approximation only for large quantum numbers. The 

energy levels given by (25) will coincide with those obtained by the WKB method if n is 

replaced by n + l (see ref, [5]; for a comparison one must use that r( i) 4- and to 

identify q = v). 

In onlel' to avoid the constant C(v,a) ill the finall'esults, we can use the ratio of 

two tluccessive energy levels. Hence, we can suulluarize our results by writing 

En+l = (n +l)tF . (26)
En n 

Once one energy level is fixed, all the others 8.1'e automatically determined by (26). 

The harlllonic oscillator corresponds to v = 2, and a = !mw2 , Substituting these 

values into (25) iUld computing C(v,a), we get the well knowlll'esult En = nllw, which 

is coned for large n (that is, in the domain of the correspondence limit). 

Looking at (25), we also see that t:..EII == Ell+! - En actually increases (decreases) 

with n for v > 2 (0 < II < 2), so that, the harmonic oscillator is the limiting case (within 

the family of potentials U(~:) <xlxl", with v > 0) between those for which t:..E" increases 

with 11 8.11{1 those for which I1En decreases with 11. Although not obvious, this fact is 

closely related to the fUllctional depelldellCf! of the classical period of mot.ion r( E). In 

what follows we shall establish this connection based 011 semiclassical argulUents. 

Having ill mind that T(IE ) = ~~, we assume that the COl'l'espondence Principle is 

valid (lal'ge quantum uumbers n), and write 

1 dE.. 
(21)r(E) <X dn' 

11 

where we substitnted J by nil and we m'e considering ill this limit 11 roughly as a coutiuous 

variable. The meaning of ~ is such that if * illneascs (dc·creases) with iucreasing 

H, it means that the spacing betweeu two succe:ssive enel'gy levels, L).Eu = Eu+l - Ell 

becomes larger (smaller) and larger (smaller) as 11 iucrea:st.'s. 

Hcnce, looking at equation (21) we see that those potentials for which r( E) decreases 

(increases) as E increases will have energy spacing t:..En that increases (decreases) as " ,I'" 

increases. When r(E) is independent of E the potentials will exhibit au c(plal spacing 

energy levels. 

Let us now pass to analyse the case of the lloll-confiuiug (singular) poteutiak For 
.1 

this case, the total energy is given by E = - ~\~ , so that .4 = (~\~)". Substituting this 

expression into (8) we get 

r(E) = JC~ V2nur r (~ + l) (-E)-¥f. (28) 
v r(~+I) 

Then, putting (28) into (22) and integrating we get the action variahles 

,...1 V8mll' ( 1)lU. r (~+ 4) E-::.=.!J(E) =.1\"-- - 2" 2" (29)
11-2 r(~+I) . 

Solving for E(J) we have 

E(J)= {(-1)~ [(~)t (v-2)r(~+I) l~} (30)
J.. r(~+!) J . 

Using (naively) the BWS qU8.11tization mle (J =uh, fl = 1,2, ... ), we finally ohtain 

En = C'(v,J\)u~, (31) 

with au obvious definition for C'(v,]{). .... 
However, we see from (31) that Ell diverges as n --to 00 for v 2:' 2 (iu ('olltrHst with 

tIl" expected uon-confining behaviour Ell ~ 0 as n ~ 00). This displuys aln.·ndy iu a 

semiclassical approach, that in theS(' cases th" corresponding Hamiltullinu op(~mtor is lIot .' 
bounded from below, lending to problems in the quantization procedure. 

Fortunately, the "oue-dimensional Coulomb" pl'Ohlcm c01'l'espouds to v = 1. III 

this case, after It straight.fol'wanl evaluation of C't II,]{) we get for the oue-(limeusiouul 

Coulomb energy levels the following result 

tH7I",lJ(l ( 1 ) (32)Ell = - 21.2 ,,2' 
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ill full agreement (for large n) with previous calculations using other methods(21). 

5. 	Conclusions and Final Remarks 

In this paper we have covered an ext.ensive material about power law one-dimensional 

potential wells, iucluding both a classical and quantum mechanical (semiclassical) study 

of them. We started by computing tlw classical periods of motion for a giVf~n energy E 

and used this result for obtaining the C01'l't'sponding action variables and then we used 

the DWS quantization rule to get the corresponding spectra. The quantum and classical 

rcsults were compared and the cOllnection between them was analysed under the light 

of s('mida.ssi<-al arguments. We have also discussed the scale invariance of these systems 

nsing simple argulllcnts and the more pow(~lful n}lproach of the Lie method. Hence, we 

think this material can he of great pedagogical value for elU'iching classical aud quantum 

medmllical uudergl'aduate courses. 

As a fillall'emark, we would like to make a few comments on the case of isochronous 

prohlems (those ones where T(E) is independent of E). The usual harmonic oscillator 

is th(' simplest example of an isochronous proble111, for which the BWS quantization 

rule leads to equal spacing energy levels. However, this does not mean that the energy 

spacing (AE" = En+ I - E,I) will have the same value for different isochronous pl'Ohlems. 

The energy spacing will depend, of COUl'se, on the exact value of the respective action 

variahl.·s. U·t. us see this (·xplidtly in one example. 

Pippnrdl8 ) show('d (s(~e also rcf. [10]), that if a potential well U(;I') is defc>l1neu iuto 

~moth('r 0(:1'), ill such a way that for any value Uo, the two solutions of U(;I') = Uo are 

separat,(~d Ollf' fWIll t'adl other the same value that the two solutions of U(;1') = Uo, the 

corresponding periods of motion will h(~ tIl<' same. An explicit example is tllf~ cas<' of 

the potential U(.l~) = 1~:x2 +~, which call be obtained frolll a pamholic potential hy 

shearing ami so its cOl'responding period of motion is actually iudependent of E. This 

can be s(''Cn without solving the problem(8), but since there is a straightforward way of 

Rolving the COI'H~spou<ling equation of motion, we shall do it as au interesting (~xcn:ise in 

a few steps. 

Newton's second law for a particle of mass m undel' the influ(,uce of the above 

potential is simply m;j: = -kx +!s. It can be shown that the solution for til(' previous 

equation is given by J·(t) viA cos(2(wt +a)) + E/~~, where E 1m;i~2 +!k:r2 +band 
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We.' defined ...;2 = !, and .4. and {.\ an' two int.c.·gl'nt,ioll nmstants, which an' determined 

by the initial conditions. 

Clearly, t.he period of motion is given hy T = ~: (this is ow' half t.he period for 

the harlllonic oscillator obtained with fJ = 0). Hence, the action variable is given by 

(s('C e(luation (22» J(E) = ~:E, so that E( J) = ;~ J. Using the DWS <tuautizatioll 

rule, we get the following energy levels En 2n(hw), which clearly shows that the e<tual 

energy spacing ill this case (AEn = 21JW) is twice as that for the harmonic oscillator case 

(f3 = 0). This result is in complete agreement (for large 11) with pf(~vi()\ls calculations 

obtai ned through other methods( 19) • 
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