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We'prove’ that the empirical relation between “radii” and order of the Bose-

" Finstein correlatxons found by the UAl mmsmum bna.s couaboratzon isa consequence '

~of quantum statistics. It c0nst1tutes thus evzde dor “cobfrence and the standard

form of the densxty matrix.
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Bbse-Einstein correlations (BEC) constitute an ok ject of istensive nt.nd 5 both frum the
experimental and theoretical point of view (for a review cf. eg. {1?) One of the unsolved
questions in this field xelata to the experimental evidence for coherence. Accordmg to
: qna.ntu.m‘ statistics {2] the presence of coberence manifests itself in the second order Bose-
Einstein correlation through the appearance of two correlation terms instead of one as

| would be the ¢ case if the ﬁelds would be -:ompletdy chaotic. Consider the cornelator of
- the chaotm fields

- where in the assumptaon of “statwnanty ink space, dm is a function of ¢f, = —(ky ~ k3)?

Fot a supexposxtmn of coherent and chaotxc ﬁelds‘ o

.

the second order oonehuon functmn readz then zbi

Vdta
vb; Udskldal‘g
1 do 1 do
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~Ca(1,2) = 1+2p(1—p) d:z +9 diy N 3

w}lere p is the g:hiotii:ity deﬁned by '
p ) o <y > , .

an T - P <n> ~ )

aud Where <n > is the total mean multiplicity. The linear superposition in eq.(2) is

’ thﬁ usual Way to mtrodnoe coherence in quantum optica. It differs from the Landau-

e ‘Ginzburg type ansatz proposed in [4]. In eqs. (3), (4) we assume for simplicity that p is
j’}; : 'v ‘ © Mt should -be n!wed that x is & bona fide field, to be distinguished from e. 8. phenomenafogxcal

p ) “fields” as introduced in refs. [3] which are ms! quanzmes in momentum space.

2

< «c,.(k, )m(kz) >= Flky, ki) = \/F(k; B)Fkk)da ()
on!y. Here F(l- k} ==< n.,;\(k) >is the mean numbe: of chaotic partrcla of momentum k.

“t=re+fdu;-‘n‘ (2)

R

. and  ,

independent of momentum. The form of the function d;; is not determined by quantum

statistiés The onlybcnnstxa.int d has to satisfy on géneral physical gfounds is that it be

‘ a decreasing function of its a:gument In qua.ntum opt:cs di is usually parametnzed by

an exponcntml diyf = ea:p( Rqy3), while in pa.rhcle physzcs a G&usm&n parametnzatxon -

df, = exp(~— R%g},) is more frequently used, although in tbe few cases where exponentlals '

have also been tned they proved to be at least as good as Ganss:a.na. Eq (3) then reads -

© [2in these cases

CEor = 14 2p(1 - plexp(~’R)) + Pexp(~2’RY) ()

s

As emphasxzed almady in {2] there isnothing fundamenta.l in any of these pa:ametnzat:ons o

: :and xt 1s  up to the expenment to determme whnch form is more adequate. (Obvwnaly af - ’
:mcmscop;c theory like QCD should evmtuallybe a.ble t.c denve the “tme form oi d. ¥ In o
most expenmmtal studies however a one exponent canela.tmn formula for - Cz was \xsed

‘conta:mng aga:m two parameters, the meanmg of w}nch is not obvaous.

' | exp(—2¢°R? for s stussxan - PSRN
Ca=142 xﬂ WRY) i
‘ ' exp(—2gR) : for an exponentaal. : B .

Here ) is an empirical parameter which can be identified with either 2p(1 —p)orp?in

eq. (3) only if p <« 1 or p = 1, respectively. Ouly then ) is related to the chaoticity: I

- one rewrites egs. (5),(6) in the form

CFe =1 4+ Aoexp(~q"Rig) + Xexp(~¢* Rlg) ®
‘and )
C5™ = 1+ N exp(~4Rrcep) + X5 Pexp(~4Rress) UR

Ny —1+2p(1 plexp(~ qR)+pexp( 29R) [ B v(ﬁ)ﬂ' |
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then the clxaractenst:c QS feature of eqs (5}, (6) is the fact that the two correlation
terms are in & well deﬁned tela.tnonshxp, nmely the coefﬁc:ents )q,,\g are related by

3132\/_(1-\/") o (10)
‘ la.nd the radii appear in the ratm» ,

R? ~/’ "R;“

D] b

()

o Gmmm form of theQS density matrix (cf. below), these hxgher order correlations reduce
to aecond order. ﬁgl__ corxelatmns’ F(k,,ka), and in [2] CGeumien yag also derived. The

: a :mpa:tant pomt bere is that relations analogous to (10) (11} are obtmned for thc higher
‘otder correlations but the on!y mdcpendent parameters are stxll pand R. In {9] correlatxon )

] func.huns up to and mcludmg Cs were gwen for thc pa;rtxeular case: of a Gausmau correlator

o . aud & symmetnc conﬁguratxom in momentum space,

2

’ q;’2.= q¥3 = ‘133 T 0= q(znnl)n = 42 __ Q:rn(n - 1) ‘ (12)

’0! ' course, Bose-Emstem correlation functions involve only disgonal elements (in the partlcle number
- representation) of the- densxty matrix. Therefore, another characieristic feature of coherence, namely, the

I ;mseme of non-vanishing off-diagonal matrix elements, cannot be tested in BEC measurements.
3This is not to be confused with the case discussed in ref.[7] where it is assumed that the higher

rpmve',cxpliqitly that such & “non-standard™ prescription does not hold for hadron-hadron iMions, a
conclusion reached also by the authors of ref.[7] from the analysis of multiplicity distribution data.

Recently [5, 6} there have been attempts to test thxs predxchcm of Q° in the second order‘ -
i";corre!ataon functmn, but because of the hrml:ed statxshcs no clearcut distinction between )

: the forms. (5}, (6) on the one ha.nd amd (7) on the other hand could be established. There -

‘ Sms{:i however asother possxbdxty to check the. presence of coberence in BEC? by studysng
- ln@e: ordet pamcle (intensity) wn'elahons Indeed ag.a consequence of the standard

order intensity correlations can be reduced to the .ond order intensity correlations. The data of ref.[8]

where Q2, =" {, q,j These expressxom are:

It

Cy 1 + Zp(.‘t p)e‘n e 4 c"m Q”

0= 14 Gﬂ(l - p)e—R’Q HIE 3 ?(3 — zp)e—m’@.ls +gp3 -R’Qi.

L]

Coo= 1412001 - PRI 4 61~ 8p + 9pt)e MOy
4l - 9p)c""°3-" PR R
L Co= 1+ 20p(1 - p)e""°3-f‘° + wp’(la . 18p + 65} x

€L 4 205%(16 21p+ 67 )e"“’°*-"°_+-; L

Sp (53 44p)¢—m*a..ls + 44,_., 'e—a Qg' n
whem G:(l n} are deﬁned in mdo@ to the mnd—mde; case: :
| —m/&, R

v]'[ -—da/d’k. L

) y=1

| As can be mad:ly seen the formulu for Ca, Cq Cs emerge from the two correla.twn form‘ :
‘of C; and thus reflect the relationship (10), (11} charactensuc for coherent ﬁelda The .
: mesence of coherence (p < 1) manifests itself e.g. in Cy by the exxstenceof 3 eorxelahons‘ "' ;_
‘, terms rather tham 2, as would be the case for purely chaotic ﬁelds Fhrthermore the'-‘ -
"coeflicxents of these correlation terms and the ra.du" are again in wel] defined re}atmns,f‘
analogous to eqs.(10) , (11). Herefrom follows that a strong test of (2) the standard fm; =

of the densxty matrix and (b) the presence of coherence is the s:multmeous fit of second ' “

and higher order cotrclahon data by the QS formulae with the same parameters P md R. .

* A recent experiment by the UAL minimum bias Collabora.txon [8] has tested thls last QS ;

prediction for higher order BE correlations and found that the data.ca.n be better described
by an exponential ansatz for d than » Gaussian one. However the wthotﬂ of [8} also fmmd

that when comparing the data with an ad-hoc exponeatmi version of the qorrelavtxon:* =

5
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functxonl obtamed by sxmply replacmg Gmas:ms by exponenuals in the iammlae (13)

ndi; on the order m of the conelat:on,

: whm Ris mdepeudent of the order of the correlatxon

- & stmghfnrward consequence of the QS approach provided that the form of the hzgher

of qumtnm stamhcs and not: sxmply by “replwng" Ce by C,,p Once this is realized
it follows that 'r.he “true” radms is independent of the order of-the corrclation function
aud equal to the parameter R present in the correlator. The fact that relation (18) was

obtained empirichﬂy witbout any theoretical prejudice is in our view strong evidence for

- wntebelow

pk N / Do’ Do exp{- / dn / dwz(a'(k,} 7(k,))x

‘M(khkz)(O(kz) ~(ka))} lar><.] - 9

wher:e"[a' > is a coherent state { a(F)ja >= o(f)ja > ) and the definition dw =
- PR/ {(2x)°2E¢} is used. Here v stands for the coherent part of the field. In eq.(19)
LM is the inverse operator of the chaotic field cor'relator F (see eq.(1)) -
/ danM (b )k k) = 800, k).
. Here, Da denot.es the functional dlfferentxal and N is a normalization constant

6,..

(16),. !or t-lus exponennal" case the xadn extxacted from higher order correlat:ons arenct
. the,sams as those found ﬁom the second order oorrelatmn. As a matter of fact the authora ‘

’,°£ [8} obtained a “purely phenomenologmal" relation for this apparent dependence of the '

= n\/m(m“‘i‘)“ ‘ as)

In thw lette: we show that this phenomenologxcal” relatxon (18) is nothing else but

'o:der coxrelaﬁon funct.zons is deﬂved frorn the initial correlator according to the rules A

" the presence of coher rence as. well as for the standaxd form of the densxty matnx whlch we.

NOtc‘ that p is Gdussiah iri o and d‘ " ‘This is not to bewnfuwi with ﬁxe 'gauéaiani "

: parmetnzanon of the oorrei&tor mentmmd above: Expressxon (19} for the dmsxty matrix . g
" is-standard in quannm optxcs and toget.her thh the linear auperpoemon of coherent and . V
‘chaotic fields has been introduced in particle physxcs in ref. [10} and used subsequently

in the QS analysis of muitxplxcxty data, (cf. ref. [11]) for a recent rev,xew). Its first test in - 3

correlation data was performed in vef. {8}

Given the fact that the density matnx is the most geueral opemtar whxch characterim -

completely any quantum system, the relevance of thxs ﬁndmg is obvious. In sorne sense,

k however, the evidence for coherence is even a more 1mpoxtant ‘achxevement. Indeed, QS -
oo k‘mlyxérence is the manifestation of a global collective property of the system, prgsent in‘ a.ll‘ )
| modem quantum field theoretical (QF’I‘) appmaches to pa.mcle physxcs and in parhcular e

in all QFT treatments of confinement. Nevertheless the expemnenta.l ev:dence for this ‘

fundamental property in particular in Bose—Emstem correlations has been controvetszal

ATIxis ’is so because (i) the intercept C3(0), which was mmtally praposed as a test of

coherence {10] is not easily accessible to experiment and is also sensitive to other effects

difficult to control (for a review cf. e.g’, [1]); (i) the distinction between one a.nd two

'_ correlation terms in C; demands, as mentioned above, higher statistics than ava'ila.ble‘ at’ ‘

present.

In the rem:under of tlns paper we shall give the formulue for hnger order correlatxons B

_up to and including fifth order for an a.rb:ttary correlator d, show how egs. (13)

: (16) emerge from them as a particular case, write the correspondmg reia.hons for the .

exponential parametrization of d and in this way derive eq.(lS) from QS. One obtains:

Ci(1,2) = 1 + 2p(1 - p)Rebidib; + pdyady - R (20)
5 ' - i ST e
03(1,2, 3) = 1 +;{%d]2d2‘ +p(1 —p)ﬁ;dy‘\@g
1,23
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" where we have intmduccdyﬂ( k) = ~(k}/}y(k}| and assumed as in ref.[2] that the cﬁa.uticity ‘

""‘",bf:i + z {"‘“dlzdzl + "(1 “P)eldw’z + !idndndsx

B YR

: 7 + p’(l —p)a‘dudzza3 + ”“dl?d?ldﬂ%

7,

L+ -(1 p)’o'duvae‘dm +2a- Pisdan3dsibs

o+ .m*—‘fzzdzadudu +p"'(l « p)@idiadazdsibe}) (22) .

. - Ce(1,..,5) ‘f"-“ I+ Z {""durdn +-(‘1 -;P)U;‘dnazv-l- %¢1zdndal ;

:.z,ns .

+ ,“‘(1 P)ﬂ'dlzd:sea + —dndudud(s + &2(1 p)’g'drﬂza' 113494

R fi(; - P)dndzxr d:u94 + -*dmdzsduhr + P3 (1- p)0,dud23ciu04

+ idudzxdadcsdm+—(1 - p)é; duazdudadsy
o+ —-(1 P)dxzdzlaadud4sas+p3(l P)eégdug:esds&d«sses

+ 3411423434445451 +'(1 —P)e'dtzdz:daqdues} ’ ‘ (23)

' 'péajaxneter P is'in&ependent of mo,menta‘(ior a more general form cf. §12}).

“For the symmetncal momentum conﬁguratxon (12} and for 8 = const , we recover for S

- i the Gaussxan form of the field correlator the results (13) (16) obtained in ref.{9].

‘ Fbr the cxponential parmnetrizatim however one gets

a
G
Ca

]

L]

"

1+2p(x —p)e""’" +ple e ‘ (29)

:1 +. 6}’(1 _ p)e-RQ../\/i_‘_ 3}"‘,(3 - 2p)e—;};RQn + 2pae—«/:ikq,, . (25)
b .

1 + 121,(1 — p)c"Rq(-’\/ﬁ- + 6})2(7 - Sp + 2})2)6-”‘9"1‘/6 +

4p3(11 - gp)c‘:mq"/ﬁ + gpic-mQu/\/i ‘ o (26)

SR f+]idnéndu+p*a~p)mudaaa} S @

c. = 1 +20p(1 - p}e’m"’m + mnga & 18p + 6p’) x|
s »:RQ..N‘G 20:)3(16 2lp+6p‘)e""q‘m

(53 44P)G~Wu-}ﬂ+ “p e“v‘th"Jﬁ e . (27)

~ and these are dmﬁerent from those derived empmca.ﬂy and used in [8} Nevertheless tlie_y '
can be made to coincide with thnse used in (8] after the substitution (18) Tbis pmves o

: thaz the eq. (18) found empirically in {8] is nothing else but a oomequence of qumtm -

; ’statxstxcs and in pamculax of the presenee of pamha.l coherence. ‘ v ' '

ln wnclusimx, we have ‘shown that the UAl-data. on the bigher otdér Bosé-Ei:istein' o

correlatxons can be considered as evidence for the standard form (19*) of the densxty matrix

" and for the presence of coherence The fa.ct that the QS re!attons between the coeiﬁcienta -

of the correlations a.nd the “radii” are'not only. sat:sﬁed by the second order correlation B

function but simultaneously also by the third; fourth and fifth, and that this dwcov'ery was f

made by “trial and error”, suggests that fhe QS laws are robust enough to resist attempts o
of “f#lsiﬁcatioxi”. To paraphrase Voltaire: if quant\im statistical cbhéreﬁce would not -
- have. existed, one would have to invent it. To have made possible this conclusion isa
' grea.t merit of the expenment of ref. [8}. Furthermore thls strengthens very much the -
- confidence in the experimental values for R a.nd ? obtamed in [8],ie. R 1 4 fm and
- p 2045 . As a matter of fact the value p ~_§).45 is cons:etent mth the value obtained for ’

the chaoticity from the-analysis.of highjér‘mmnents of the multiplicity distribution (13}, .
especially if one takes into account that only charged data were available for that

analysis®.

Even after the resuk has been corrected accordmg to eq. (18) a small dependence of the radius R on
the order of the correlation remains. There may be several reasons for t.lns Fmﬁy the puaxmtmhon of
the function d is not general enough, see ref.[12}. In paﬂ.w.u!u a8 emphasized in ref.[7]) the mmpta_m of
“stationarity” in Q space, on which (24) - (27j are based, may not hold exactly, Moreaver, in general the
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fchaéticity P ter p is tum dependent {12, 14]. Secondly the symmetry assun;ption (12) may

be wo strong. This particularization can be avoided (cf. e.g. [8]). Thirdly the corrections introduced in
zef. [8} in the higher order cortelations for the Coulomb interaction and for the limited detector acceptance
: ‘were o&lnned by straagbtforward" extension of the corresponding conectmn factors from the second
' on‘ler wrre)at)on function. That such a procedu:e may introduce biases has been proven above in the

use of eorrehum
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