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A New Model Of Strongly Coupled QED
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Abstract™™*

We present a new model of QED which exhibits two distinct phases. One is
conventional QED and the other is a new strongly coupled phase characterized
by a curvature law. In this new phase we give a field theoretic derivation of the
beta-function and show that it is non-trivial in the absence of virtual fermions
due to the new curvature term. At short distances the running coupling ap-
proaches an ultra-violet stable fixed point a. = 1 rather than zero and increases
at large distances indicating confinment. This behaviour depends crucially on the
Minkowskian signature and does not occur in the Euclidean signature. We argue
that the positronium spectrum in tte strong phase is approximtely described by
a Majorana mass formula which vares inversely with the spin. We examine this
spectrum in connection with the GSI experiments. The spectrum not only is in
excellent agreement with the three observed narrow ete~ peaks, but also predicts
four new resonances with masses 1436 KeV, 1341 KeV and 1208 KeV and 1091
KeV. The spins of ail the resonances are also predicted.
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QED is hlstonca]ly our principal reason for believing quantum field theory is
usefull and at the same time its existence is uncertain. Arguments due to Landau
(1] suggest that QED breaks down at some short distance scale. The screening of
charge by virtual fermions implies the coupling at shorter and shorter distance
becomes arbitrarily large to maintain a = 11y at large distances. The question of
the existence of QED can be avoided by embedding it in a larger asymptotically
free theory where other forces are not artificially turned off. Antiscreening of
charges implies the coupling aprroaches zero at short distances and the theory
is entirely well behaved. An alternative response is that QED without other
forces may exhibit a phase transition to a well behaved theory. Instead of the
coupling growing indefinitely it may approach a critical value a, of order one at
short distances. Such theories may represent a new class of well defined quantum
field theories. If QED is to exhibit a phase transition there presumably must be
another source of coupling constant renormalization opposing screening to avoid
Landau’s argument.

In this paper we propose a model of QED [2] which indeed possesses a new
source of coupling constant renormalization. The model has a weak phase cor-
responding to ordinary QED and a new strongly coupled phase. In the strongly
coupled phase we argue that a Majorana type mass formula, i.e. where the
mass varies inversely with spin, approximately describes the bound states of
ete~. We compare the spectrum with the GSI peaks. The model is phrased
in terms of Feynman's spacetime picture of QED where matter is described by
a quantum mechanical point particle. The origin of the new source of coupling
constant renormalization is the contribution to the action of the curvature of
the world line associated with the point particle. The curvature implies a non-
trivial 1-dimensional quantum field theory and thus source of coupling constant
renormalization is at the first quantized level.

The curvature term arises through a new regularization method applied to
the relativistic point particle Maxwell system. Integrating out the vector poten-
tial produces an effective action for the relativistic point particle. The effective
action is divergent due to the singularity of the photon propogator at short dis-
tances. Ordinarily this divergence is regulated by introducing a cuttoff ¢ at short
distances and amounts to mass renormalization. A closer examination of the
form of the divergence reveals an alternative way to regularize the theory. Be-
cause the relativistic point particle current has support on a curve the new term
in the effective action resembles the self inductance of an ideal current carrying
wire corresponding to the world line C of the point particle. The divergence can
be regulated by considering the mutual inductance of two disjoint wires C' and
C¢ where C, is obtained by displacing C a distance ¢ along a unit normal n to the
world line. So as to avoid dependence on a special choice of normal a crucial step
is to regard n as a constrained dynamical variable. This is a key departure from
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ordinary QED and forms the new element in the definition of our model. The
new regularization method yields not only mass renormalization but also a new
finite term that depends on n. Eliminating n by its equation of motion implies
that the new term is precisely the curvature of the world line times fi' = ah.

The curvature term characterizes our new model of QED and a physical pic-
ture of its origin can be formulated. Although the calculation outlined was in
terms of funtional integrals, the curvature arises at the classical level and can be
-undemtood as a generalization of classical mass renormalization [3]. The simple
idea of a charged point particle is not well defined because the interaction of
the charged particle with its own field gives a divergent contribution to the total
mass. This infinity can be regulated by modifying the force law on distances
of order ¢ (e.g. Pauli-Villars regularization). Here we regulate the infinity in a
new way by arranging the charged particle with arbitrary trajectory C not to
interact with its own field but with the field of a charged particle with trajec-
tory C, obtained by displacing C a distance ¢ along a dynamical unit normal
n. The proceedure clearly regulates the infinity in the Coulomb field as there
is now a finite separation ¢ between the charged particles. However, there are
now mutual inductive effects in addition to the change in inertia since there
are two infintesimally nearby charged particles. The presence of the other par-
ticle’s electromagnetic field modifies the usual straight line motion into helical
motion characteristic of magnetic fields. The inductive effects are encoded by
the addition of the curvature term in the action whose extrema are helicies. It
is interesting to note that the relativistic point particle scalar field system does
not exhibit a curvature term with our new regularization method. The classical
solutions of this system do not include helical motion characteristic of magnetic
fields and consequently no curvature term should be present.

The addition of a = f; times the curvature to the arc-length action implies
a non-trivial one dimensional quantum field theory with running coupling a and
two phases. In arc-length gauge the theory is analogcus to a o-model model
where the spin ¢ constrained to lie on a unit sphere corresponds to the velocity
z of the particle. The curvature term then corresponds to the square root of the
usual o-model kinetic term. The square root effectively increases the dimension
by one so that our model actually resembles a two dimensional non-linear o-
model. It is well known that the beta function of the temperature T is negative
in compact non-linear o-models. Since T corresponds to % we might expect
the beta function in a to be positive and not oppose screening. The internal
symmetry of our model, however, is the Lorentz group rather than the rotation
group of the g-model. The non-compactness reverses the sign so that the beta
function of our model is negative. Thus the curvature term is a new source of
coupling constant renormalization which opposes screening.

The two phases of the arc-length plus curvature theory can be seen in a
lattice regularization. The theory, being one dimensional, is an exactly solvable
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quantum field theory in the sense of Wilson. For any finite value of the bare a,
the continuum limit of the theory is equivalent to the pure arc-length theory. This
is the weakly coupled phase we identify with ordinary QED. However, for infinite
bare a, the curvature survives in the continuum limit and defines the strongly
coupled phase. Although there is a general rule that one dimensional systems
cannot exhibit a phase transition, this rule has exceptions. At T = 0 a phase
transition can occur and a phase transition at T # 0 can occur if sufficiently long
range foroes are included. Since a corresponds to .}-, the point a = oo is indeed
such an exception. Furthermore, we shall be interested in virtual e*e~ pairs
(summing over loops instead of open curves) where the action includes the long
range Coulomb field. In this more realistic system, the phase transition will occur
at a finite a. It is not clear whether these result will survive the introduction of
virtual fermions in full QED. However, the running of the coupling constant due
to the curvature does so on all distance scales as in the o-model in contrast to the
running due to virtual fermions which does so only out to a Compton wavelength.
At sufficiently large distances the curvature effects may therefore dominate over
screening effects. Furthermore, the negative sign of the beta function would then
be a qualitative indication of confinement.

The order parameter of the two phases is the continuum coupling constant
of the curvature term. This is similar to QCD without fermions where the order
parameter is the coefficient of the area law in the Wilson loop. In contrast to
QCD, the strong coupling phase of our model corresponds to a low temperature
statistical mechanical system and the weak phase to a high temperature one.
Similar statistical mechanical models arise in polymer physics. Polymers at low
tempature posses a rigidity that is modeled by a curvature squared term in the
energy. The mean square end to end distance R? goes as L? at low temperatures
[4). At high temperatures the rigidity is overcome by thermal fluctuations and
R? goes as L. Thus the strong coupling phase of our model is analogous to
rigid polymers and the weak phase to non-rigid polymers. An alternative order
parameter, motivated by polymer physics, is to take the power of L in R? in the
large L limit. In polymer physics it is known that the addition of long range
interactions does not change this exponent but gives subleading corrections in
InL. Thus the long range Coulomb interaction, in contrast to the curvature,
does not change the phase.

The presence of the curvature term in the strong phase dramatically alters
the particle spectrum. It transforms a single particle of mass m described by
the arc-length theory into an infinite number of particles with mass varying in-
versely with spin [5]. Such a mass spectrum is called a Majorana mass spectrum.
The spin degrees of freedom arise from the extra degrees of freedom associated
with the higher derivative nature of the curvature term. The solutions of the
arc length plus curvature theory are helicies about a time like direction and the
different spin states correpond to helicies with different radii and angular fre-
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quency. Although the arc length theory has 3 configuration degrees of freedom.
the curvature term increases the degrees of freedom to 5. Our starting point was
the ordinary relativistic point particle Maxwell system and one may ask where
the 2 extra degrees of freedom associated with the higher derivatives originated.
Essenially, the 2 degrees of freedom correspond to those in the constrained dy-
namical unit normal n which when eliminated by its equations of motion gave
the higher derivative curvature term. Another example of a particle transformed
by its interaction with its own field occurs in the point particle Chern-Simons
system studied [6] in connection with high temperature superconductivity. There
a single bosonic particle of mass m is transformed into a fermion of mass m. The
extra degrees of freedom here are discrete owing to the topological character of
the Chern-Simons action.

A central question for comparison with obsevation is the spectrum of bound
states of e*e™ in the strongly coupled phase. This problem possesses two new
features not present in the weak phase. First there are an infinite number of
Majorana states available for each particle. Second the strong phase is in the
supercritical region a > 1 where the Coulomb attraction overcomes the centrifu-
gal barrier. Although we have not solved the supercritical Majorana bound state
problem, we believe the principal features of the bound state spectrum are deter-
mined by which mass state the particles are in rather than which orbital state.
This belief is based on the observation that the bound state spectrum in the
supercritical case with ordinary particles (not Majorana) has excited levels with
exponentially small separations|7]. Thus we expect the spectrum of bound Majo-
rana particles in the supercritical case also to have a Majorana form. This answer
bears an interesting analytic relation to the ordinary positronium spectrum in
that the Majorana spectrum can essentially be obtained by inverting both the
quantum number and the coupling in the ordinary positronium spectrum.

The observation of a Majorana behavior for the bound state spectrum can
serve as an experimental signiture of our new model of the strongly coupled phuse
of QED. Attention has recently been focused on the strong phase of QED in an
attempt to explain data from heavy ion collisions at GSI. An unexpected feature
of this data is the observation of ete~ resonances with narrow pesk energies
in the range 1.4 to 1.8 MeV. The observation of 3 to 4 such peaks suggests a
composite structure made out of ete~. However, such a system cannot be the
usual positronium spectrum of conventional QED as the levels lie bellow the
2m.=1.022MeV threshold. A more plausible explanation is to consider this sys-
tem as new quasi-bound states of ete™ in the strongly coupled phase of QED.
The strong electromagnetic background field of the colliding heavy ions is con-
jectured to trigger the new phase. Although these peaks are not well understood
experimentally, it is nonetheless interesting to compare them with the Majorana
spectrum of our model. The spectrum not only agrees well with the observed
peaks but predicts the spin and four new resonances. The coupling constant
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a determined phenomenologically from the mass formula is of order 2.5. This
value exceeds the critical value a, = 1 where the transition to the strong phase
is expected to occur and the theory is indeed strongly coupled.

I A NEW MODEL OF QED

The starting point of our new model of QED with two phases is phrased in
terms of Feynman's spacetime picture of QED. The dynamical variables are the
point in space-time z and the photon field A,. The action is

S(z,A):mo/ds+eo/A-d --}/F’ )

Integrating out the vector potential produces an effective action for the point
particle defined by

2
€St = / DAeS(EA) _ ilme fc G- fc fc =ty o) (2)

where we have introduced C for the trajectory of the point particle z. If C
is open and moving forward in time, S.;; describes a single electron and its
interaction with its own field. If C is a closed loop, S.ss describes an ete~
pair and their mutual and self interactions. The real part of the double line
integral represents the relativistic Coulomb interaction. Note that (2) differs
from the Feynmen-Wheeler[8] action at a distance theory as they include only
the real piece and not the imaginary piece of the double line intergral whick
represents radiation reaction. Sjs is simply a representation of ordinary QED
with the usual Feynman boundary conditions and not the half-advanced half-
retarded boundary conditions of Feynman and Wheeler.

The double line integral in Sy is divergent when z = y. Our new model of
QED arises by a fundamentally new method of regulating this divergence. In-
stead of modifying the propogator (e.g. Pauli-Villars regularization) which breaks
gauge invariance for non-zero ¢ and amounts only to mass renormalization, we
shall modify one of the trajectories C in the double line integral. This procedure
preserves gauge invariance because it does not break current conservation.

The divergences of the double line integral are similar to those encountered
in the self-inductance of a current-carrying wire C. These divergences can be
regulated by considering the mutual inductance of two wires C and C, . The
wire C, is determined by displacing C a distance ¢ along a unit normal n* to C.
We define the self inductance given by the double line integral as the limit of the
mutal inductance as ¢ —+ 0. Geometrically this can be viewed as replacing C by
a tiny ribbon with edges C and C, . This geometrical regularization introduces
¢ and n to regularize the theory. We treat the normal n as a dynamical variable
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and integrate over all normal configurations in order to avoid dependence on a
specific choice of normal. This is in contrast to ordinary regularization methods
which essentially introduce only a scalar parameter . Thus part of our defi-
nition of regularized QED involves the dynamical normal n. The result of the
regularization is a new term Iy = —a | ds%’;@ - n in addition to the usual mass
renormalization. Since n is subject to the constraints that it be unit and normal
implies the addition of the two terms I)(n) = fds[no(‘—'},ﬂ ‘n) +m(n? - 1) to
Ip. Extremizing n in I{n) = (Io + I;)(n) we find that n must be + the prin-
cipal normal (i.e., the unit vector of the proper acceleration). However a unit
normal n can in principle be subject to a further constraint p,’ 2 .n =0. Hence

one can have the choice of adding a third term I(n) = [ ds[q-g(ff;‘,'l -n)] to

the action I(n). Extremizing n in I(n) = (I 4+ I3)(n) one finds the solution for
n# are the remaining two normals in D=4. They can be expressed in terms of
vl = ehvro %—fﬂ%,@lwf as I:—:-'f where w{ are two arbitrary vectors that lie in a
plane. However these two normals are in fact degenerate for class of curves whose
equations are ¥ = w! or i = w¥. Therefore they cannot seperate (regularize)
such curves in the double line integral (2). If we insist that the regularization
should apply for any arbitrary curve C other than the straight line then T is
ruled out in favour of I. Thus the action I(n) is the unique minimal choice for
determining n dynamically. From the + principal normal solutions of I{n) we
will choose the — sign which gives helical motion for z rather than the + sign
which gives only exponential runaway motion. Quantum mechanically we inte-
grate over n,ne,1 in the path integral. The resulting effective action contains a
previously undiscovered curvature correction to the arc-length action

Sreg(C) = ds + og ¢ dsk(s) + 2 dz*dy*s (|(z — v)!|) +LP (3)
g I‘ocif'*‘o(;fs +offz (Izyl)+P3

« Vet

where g = mg + 6my is the renormalized mass, k(s) = l%’;@[ is the curvature
of C, the union of electron trajectory C,- and the positron trajectory C,+ and
LP stands for the imaginary part. To obtain S.ss as it stands it was crucial
to check that quantum fluctuations due to m are negligable. Furthermore a
particular choice of sign of the curvature term is again made so as the path
integral is bounded. This choice of sign is part of the definition of our theory.
In the language of Wilson loops, we have a previously undiscovered curvature
correction to the perimeter law. Remarkably the bare coupling constant ag is
the "fine structure” constant {E— The third term of (3) represents the relativistic
version of the Coulomb interaction. The above result can also be obtained by
employing a different regularization scheme due to Polyakov [6]. A novel feature
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of :his regularization is the independence of the coefficient of the curvature term
from the cut-off e. In all other dimensions d, the coefficient depends on the cut-
off as €!~¢. The curvature term in (3) for open paths has been studied in the
completely different context of rigid paths [9] as toy models of rigid strings [10].

The higher derivative nature of this action implies that the number of degrees
of ‘reedom has apparently increased over that of the point particle we started
with. The extra degrees of freedom, as discussed in the introduction, arise from
the dynamical unit normal n. In the ordinary derivative variational principle for
the action, z and n were held fixed at the initial and final points. To obtain
equivalent equations of motion for the higher derivative action resulting after
eliminating n, both z and Z must be fixed at the initial and final points. In the
pash integral quantization of the theory we therefore sum over all trajectories
C(%.Yo) With Xo = (z0,Z0) and Yy = (yo,%0) held fixed. It is the spin of the
Majorana particle that is encoded in the new quantum numbers associated with
z

II THE NEW STRONG PHASE

The two distinct phases can be exposed most simply by considering S.ss in
absence of Coulomb interactions. More detailed features of the two phases can
later be seen when we include the long range Coulomb interactions. The phases
of the quantum theory of (3) can be seen in an Euclidean lattice regularization
in which the loop C is replaced by a closed chain of links. The dramatic effects
of continuuing to Minkowski space-time will be discussed subsequently. On the
lattice, the curvature theory (3) describes a self-avoiding random walk (SAW) in
which the curvature term represents the repulsive interactions between the links
of the walk. These interactions cause the walk to be "rigid” and have analogs in
polymer physics. In fact rigid polymer chains are described by a classical action
similar to (3) with squared curvature term. The phases of a rigid polymer are
distinguished by the behaviour of the mean square distance < R? > between the
two ends of the molecule. In fact one obtains two phases: A low temperature
T phase with < R? >= L?, and a high temperature phase with < R? >= #L
with 7 being the curvature coupling. At very high temperature the polymer
loees its rigidity and the chain becomes the usual gaussian random (ideal) chain.
These remarkable properties of polymers are shared by our curvature model of
QED. The strong phase of QED is analogus to the low temperature phase of
polymers while conventional QED is analogus to the high temperature phase
of polymers. The justification of this statement is due to the remarkable scale
ipvariant property of the curvature term in (3). If we rescale z by az in (3)
the effective action S.ss rescales by an overall factor a. This implies that
corresponds to the inverse temperature 1’- in contrast to gauge theories where the
gauge coupling constant is the temperature. The fact that our coupling is the
inverse temperature has an important consequence that follows from properties
of one dimensional statistical systems. In the absence of long range interactions,
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these systems exhibit a phase transition only at T = 0. Therefore one can
intuatively understand that our model will exhibit a phase transition at o = oo
in the absence of the long range Coulomb interactions. The inclusion of these
interactions ultimately shift the critical coupling to a finite value a.. Our model
on the lattice will therefore have a non-trivial fixed point at @ = oo whose
continuum limit corresponds to a strongly coupled theory with finite rigidity
(acontinuum # 0). The model also exhibits a trivial fixed point at o = 0 whose
continuum limit is the usual arc-length theory (gaussian random walk) which
when coupled to Coulomb interactions gives rise to the usual perturbative weak
QED.

We proceed by discretizing the domain space of z#(s) by setting 2 = z#(ia)
where a is the lattice spacing. The action then reads

. O
S = IlOLI-Ti - :!:.'_ll + 2(!01]]8"!5'! (4a)

where 6; is the angle between the two links [; = z; — z;1 and liy1, and aop, por
are the values of the bare coupling and mass scale respectively on the lattice.
The action for the self-avoiding random walk (SAW), Ssaw, that follows from
(4a) is obtained by replacing the Euclidean spacetime R* by a lattice Z¢. The
path consists of the sequence z = zg,2y,...,74 Where z; and z;_; differ by the
unit vector /; on the lattice. We can view z as a set of links Iy, ...,l,. The action
can be cast as an anisotropic random walk

Ssaw(z) = ) E(li - lis) (4b)

=1

where E = & if [; is parallel to l;41, 8 if |; is perpendicular, and &3 if [; is
antiparallel. Agreement with action (4a) implies

S =pop & =por+V2a0p 83 = pop + 200y - (4c)

The propagator of the discretized theory is

Gs(Xo,Yo)= Y 50 (54)
2:Xo—Yo
Define
p=e" p=ci py=eb (5%)
9

then explicitly we obtain the following expression ue Green’s function:

eFTG(k) (5¢)

[ dPk
G(I,PLP'Z,PJ):./(?K)D
-

_ M D
(k) = —[E a ). 2D 5 (f‘f ';“)1

where x, = A\, + w with
D
Au=(p1+p2~2p3)cosky, w=2p; Zcoak,. . (5d)
#=1

In the absence of the curvature term the above result reduces to that of the
usual gaussian random walk. The above answer is obtained after imposing a
convergence condition which is the requirement that

€= e#u 4 g~ror=2a0 L (D 1)ebor—ViaoL (6)

is less than one. The critical surface of the theory is defined to be the point
k, = 0 i.e the vanishing of the bare mass. Alternatively it is the line for which
the susceptibility ¢ = }°_ G(z,£) diverges. From (5c) one simply obtains

thus the critical surface corresponds to the condition
{=1. (M
The poles of G can be easly determined for £ << 1 to be
ko =i+ 0(1-¢) ®)
hence the mass My has a critical exponent equals to half.
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Our objective is to look for non-trivial fixed points on the critical line. This
tantamount to having non-trivial continuum theories whose scaling limits corre-
spond to the action (3).

The distinguishing feature of the curvature term, which represents the repul-
sive interactions between the links, is the rigidity that it gives to the paths. This
rigidity < R? > is quantitatively measured in terms of the tangent to the chain
of the Wilson loop of length L by the normalized tangent-tangent correlation
function

L L
< R!>= ]ds/ds'tﬁ(s ~3')
0 []

where
¥(s — &) =< H)i(s') >= e~ mE T2 = etuln=w) (9a)

with the average being weighted with respect to the Boltzman factor e=. Here s
and s' specify points along the chain by their arc-length distance, a is the length
of the link of the chain and vgy is the inverse correlation length of the tangents.
Its exact value is,

1+ 2(D — 1)e~V2a0L 4 ¢=2a01 )

1 —e~2a0z

vor(D,aor) = In( (9%)

If we require the continuum limit to have a finite rigidity then we demand the
scaling limit @ — 0, vg; — 0 to be such that their ratio veontineum i8 kept fixed.
The only fixed point on the critical surface which satisfies this scaling limit is
(#10., a0c) = (0, 00) for fixed D. All other points with finite ap < ap, give a zero
rigidity or equivalently a zero continuum a. The critical line flows towards a
trivial fixed point at vg; = +00. In D=4 this is the infared stable point (3in2,0)
whose continuum limit corresponds to the ordinary gaussain random walk. In the
presence of Coulomb interactions this is the weakly coupled phase of QED where
the curvature term becomes irrelevent and ¥ goes to zero in the continuum limit.
The mean square distance < R? > in the weakly coupled limit is 1'%‘— which goes
to zero in the continuum limit indicating the absence of rigidity.

The continuum theory that corresponds to the fixed point (0, 00) is a theory
that lives, in the absence of Coulomb interactions, in one phase which is strongly
coupled. This is our new proclaimed strong phase of QED. It is characterized
by three physical mass scales M, the poles of the Green’s function, yu, and v
two of which are independent. They are defined by M = ApMy(u,ao(AL)),
p = Appoy, and 2(D — 1)v = Agvor(aor) where the scale Ay = 1 — oo is the
lattice cutoff. The new mass scale v is analogous to Agcp (not to be confused

1

with the above Ar) and determines the bare coupling at a particular large scale
A thru equation (9b). One obtains a¢\g) = :}iln%. This is equivalent to

the mass gap relation v = A Lc_‘)& which gives a non-trivial beta-funtion in the
temperature to; = agy~! (c.f.eq.(15a)). The inverse corrolation length vy must
also exist in the large D limit (D — oc) except in D = 1 where it is infinite
(absence of rigidity) because the curvature term is identically zero. Therefore
{9 must be proportional to D — 1. Hence we set {5, to be c"’\/i(D~ 1)t5 where
c is yet an arbitrary normalization constant. The mass gap relation then reads

v=ALe T (10a)

To determine ¢ we note that since the mass scale v is being fixed, its physical
value must be the same in the continuum and on the lattice. We will therefore
calculate the mass gap relation in the continuum by considering the large D limit
of the curvature effective action in the arc-length gauge:

Seu=ao/ds(v/§+§(z"—l)+;xo) (1"
c

where » is the lagrange multiplier enforcing the arc-length gauge condition. In the
large D limit the saddle point approximation applies. In this case the stationary
loop C with two fixed points consists of two classical trajectories of opposite
directions travelling togther. Consequently a multiplicative factor of two will
appear in front S.7;. Our analysis gives the following result:

Vo= Amc-g‘%ﬂ)

(100)
where ¢} is the continuum bare coupling and k is a finite constant that is inde-
pendent from the coupling but depends on finite renormalization effects of the
coupling. Because of closed paths trajectories, eq.(10b) differs by a factor of two
in the exponent from a similar result obtained in [Pisarski,9] for open paths. In
computing (10b) we have neglected finite size effects.

From (10a,b) we obtain in the large D limit

A rc 1
AL _BFE

Amm

(1)

To fix ¢ we recall that the lattice and momentum cut-offs for (non)-abelian gauge
theories are just related by an overall constant [11]. This determines ¢ to be 2x.
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This result should not be suprising because we know that the coefficent of t§ in
(10) which is the coefficent of the beta function (c.f.(15a)) is a universal constant
that is independent of the regularization scheme at least in the weak coupling ¢
(strong coupling a). The normalized bare running coupling is therefore (we will
drop the superscript * in the rest of the paper unless stated otherwise)

A
=ao(AL) = —'é;—’"”;é (12)

t (A)
Though the free parameters of the weak phase are the electron mass M = m,
and the fine structure constant «, in the strong phase, a at a particular scale is
determined by dimensional transmutation and the free parameters are now M
and v.
The discrete order parameter of the two phases is obtained by computing the
mean square distance < R? > We find

< R*>=1I2 strongphase (13a)
<R>= %I_,g weakphase (13b)
0

This implies that the Hausdorf dimension dj=1 for the strong phase and dj =2 for
the weak phase. In the presence of Coulomb interactions the above two phases
would be part of the same continuum theory. Therefore it makes sense to talk
about the order paremeter which distinguishes these two phases We define the
analogus of the magnetization in statistical models © to be then in the limit
of long random walks we have:

<O>=1 strongphase (14a)

<B0>=0 weakphase (149)

The result (13) states that conventional QED with the scale £ identified as S
is analogus to high temperature polymers while our new stongly coupled QED is
analogus to low temperature polymers.

The beta function computed from (12) is

(D

Blto(AL)) = Des?(Ar) (15a)

where agp~! = to. This implies that ¢y = 0 (ag = o) is an ultraviolet stable fixed
point. This beta function is non-perturbative in the sense of QED (power series
expansion in ag) although perturbative in tg = L
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The beta function (15a), for very small ty, is exactly the expression for
the beta function of the O(D + 1) non-linear ¢-mod¢: in two dimensions with
coupling ty. In fact in [12] we show that our curvziure model in Euclidean
(resp.Minkowski) is indeed equivalent to O(D+1) (reso. O(D,1)) non-linear o-
model in two dimensions where the o field is nothing bat £. It is known that the
inclusion of long range interactions shifts the critical point of the o-model in one
or two dimensions to a finite value tg, # 0 and the o-model beta function then
reads

(D

pieo(r) = "BV wo(an) - te> o, (15b)

Therefore we expect that the effect of the previously ignored long-range
Coulomb interactions in our model is also described by equation (15b). The
detailed analysis is complicated and outside the scope of this article. However
we can intutively understand the physics of these Coulomb interactions and their
subtlities by drawing once more the analogy with polzmers. It is important to
remark that the long Coulomb interactions in Minkowsli signature become short

range in Euclidean signature with a power law —5;, behaviour. It is natural
to ask under what circumstances do such forces shift he critical coupling from
zero or infinity to a finite value a.. In the context of polymers it is known [5]
that the inclusion of short range repulsive forces between two different chains
can in principle shift the critical coupling to a finite value but the critical ex-
ponent g of the mean square distance < R? >= L is only affected by the self
repulsive interactions between the links of the one chain. The curvature term is
one such example of these self-interactions where y becomes one in the strong
(rigid) phase. Therefore the presence of Coulomb interactions will not alter the
rigidity of the paths of the point particle and one expects two distinct phases
as in (13) seperated by a finite fixed point aq.. For any finite bare coupling
ap < ag, the continuum (renormalized) coupling comstant @ ees. associated with
the curvature is zero because the tangent-tangent corrolation function vanishes
in the continuum (absence of rigidity). This does not mean that the continuum
coupling constant Gcons. associated with Coulomb imteractions is zero. This is
because the bare coupling in the Coulomb sector shodd renormalize differently.
For ag > ag, the coupling constant runs as in (c.f (16 ) due to the non-triviality
of the one dimensional curvature theory and the strong phase is characterized by
a non-vanishing acent. 88 well 88 Gcont.

QOur discussion so far has been limited to the Euclidean signature and we
now discuss the effect of continuuing to the Minkowsa signature. The internal
symmetry of our model can be easly seen from the effective action (1'). The
velocity * is analogous to the spin vector o* of the ((3,1) ¢-model albeit with
a square root-like interaction. In fact from the 8-function comparison for very
small t, the model (1') is equivalent {12] to the usual 0(4,1) non-linear o-model
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in two dimensions. Evidently the effect of the square root in (1) is to increase the
dimensionality of the domain and the range of the spin vector by one. The non-
compact nature of the symmetry group, as is well known, effectively changes the
sign of the of the coupling constant ¢ in the compact models [13]. In particular,
the sign of the B-function in equation (15) changes sign. The beta function of
our model of strongly coupled QED in the Minkowski signature is therefore:

Blaohr) =SS 1f osae

=0 ap < ag,

Thus the dramatic effect of continuuing to Minkowski signature is that ag ap-
proaches aq, at short distances. An important question is whether the above
beta function preserves its sign after the inclusion of virtual fermions. We know
that in weak QED the running of the coupling constant is due to screening ef-
fects (vacuum polarization). The quantum fluctuations of the fermion field which
creates the virtual ete pairs are confined within a wavelength w less than the
Compton wavelength m}. Because of the dielectric nature of the medium, the
effective charge e.ss of an electron is less than its bare charge ¢¢ and becomes
smaller and smaller as we approach the Compton radius m;! away from the ori-
ginr = 0. As r >> m! the effective charge reaches an asymptotic fixed value
€qs that is independent of the distance r. In the language of the renormalization
group this means that the coupling constant stops running for distance scales
which are much larger than m_;! . The coupling constant of our model on the
otherhand, runs at all scales due to the nonperturbative fluctuations of virtual
photons. Therefore we expect that the inclusion of fermion loops will not change
the sign of the beta function beyond the Compton wavelength. In particular at
large distance scales where confinement becomes important. We now return to
(16) which we can solve by

ao(AL) = aoe(l + ——2¢ ) (17a)
U+ 5l
where
3 AL2

and ag* is the coupling at the scale Aj = v. For large Ay, the coupling becomes
ao(Ar) = aoe(1+ 55%) (18)

which is independent of ag*. That the coupling is determined by the fixed point
ap. and v is the so called dimensional transmutation. A similar phenomenon
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occurs in QCD except there the fixed pomt is zero. The coupling a¢(..;) ap-
proaches ag, from above at high energies i.e ag, is an U.V stable fixed paat. At
low energies ag(AL) increases until ap = 00 at Ay = vQeDp:

2 _ g 4x 003 .
anQED = Inv* — -3—8-0—*(;,2)—-60—‘: . (lg
This behaviour of o suggests that et e~ states in our model of strongly coupled
QED are confined. Unlike QCD, the beta function (16) is reliable at large dis-
tances since the perturbative expression in -&3— is a very good approximazion to
the exact result at strong coupling. In further contrast to QCD the confiuing na-
ture of the model arises from treating matter dynamically (sumining over loops)
and would not arise by considering the Wilson loop in the static limit.

We now turn to the question of the value of ag,. The analogy with staistical
mechanics previously discussed suggest that the effect of the long range Coulomb
interactions is to lift the critical temprature from zero to a finite value tg, = %
To determine this value, we examine the seemingly unrelated problem of the
ete~ bound states. In the weak phase there is no difficulty in solving the bound
state problem for a less than one. For o greater than one . the probler is not
well defined unless the Coulomb potential is cut-off at some distance a = 71( To
remove the cut-off and obtain a finite ground state energy, the coupling « must
approach one as A — oo [14], [15] . However from the running coupling (17) we
know that this is nothing but the value ag, = 1. This result is not affected by
the Majorana nature of the bound states of ete™ [2].

We close this section with some remarks on related works [15]. A peoposal
for the beta functions of strongly coupled QED with an ultraviolet fixed point
was given by Miransky. This beta function was obtained by simply postalating
a dependence of the coupling on the cut-off A and demanding the ground state
energy be fixed as A — co. In contrast to Miransky, our coupling ae(Ar) bas
a non-trivial dependence on the scale in absence of virtual fermions due to the
nontrivial one dimensional quantum field theory associated with our curvature
model (3). Our beta function, modulo the precise value of ag., was determined
by standard field theoretical techniques and differs from that of Miransky.

The confining Minkowskian beta function discussed here should aico have
implications for the string analog of the arc-length plus curvature model discussed
by Polyakov [10].

III MASS FORMULA

The mass spectrum of our new curvature model of strong coupled QED can
be calculated from the poles in the amplitude for ete™ annihilation. In the
ordinary phase of QED (no curvature), the singularities of the amplitude consist
of the spectrum of the usual positronium poles accumulating at the threskold 24.
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In the strong phase of QED, there should actually be a spectrum of thresholds
as well as poles accuumulating at each of these thresholds. The reason is that a
single particle described by arc length plus curvature action is transmuted into
an infinite number of particles with masses varying inversely with spin (Majorana
particle). This transmuation phenomena is also encountered in D=3 [6] where
a bosonic particle described by arc-length plus torsion action is transmuted into
a fermionic particle. Here we shall assume without proof that the Coulomb
interactions induce a fine structure on the spectrum of thresholds so that the
poles are effectively given by the threshold spectrum. In any event, the Majorana
spectrum should be contained in the exact spectrum. We shall calculate the
thresholds (branch cuts) of the amplitude A in the strongly coupled phase through
the semi-classical approximation. The stationary loops with two fixed points
consist of two classical trajectories of opposite directions travelling togther. A
factor of two in g and o then arise from the stationary phase approximation.
Given this double propagator picture of the stationary loop, the singularities can
be calculated using the classical solutions of S,s; with ¢ and a doubled. The
solutions in the arc-length gauge #% = 1 are helicies about the time axis:

= y°+\/(l +(Rw))t, ' =y', z¥ = y*+Rsinwt, z* = y>+ Rcoswt (20)

where y* is a constant vector and g, R,w and a are related by R = a(1+(Rw)?).
The action calculated in terms of the classical solutions is

. 2u .
Seps=MX + 20X = ——E_—_X +2aX 21
1 TR (21)

where X (resp. X) is the distance between the intial and final points (resp.
velocities). The amplitude in the stationary phase approximation is then

- i ﬂ_ 3/2 ,~M X -aXy2
A=GaGx)" ) (22)
where the over all power two arises from the two classical trajectories comprising
the closed stationary loop. The singularities M? are obtained from the Fourier
transform of (22). The subscript J is the intrinsic spin of the closed path (total
spin) which is equal to 2aRw. In terms of the fine structure constant «, the scale
u, and the spin J the singularities are:

2
M= () 7=0,1,2,.. (23)
1+ (2agep)~?J(J +1)’ h

where the classical J? is replaced by its quantum mechanical value J(J + 1).
A spectrum such as (22) where mass varies inversely as spin is called a Majo-
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rana spectrum. This spectrum resembles an inverted hydrogen spectrum and
distinguishes the strongly coupled phase.

The observation of the mass spectrum (23) in nature can serve as an experi-
mental signature of our model of the strongly coupled phase of QED.

IV CONNECTION WITH GSI EXPERIMENTS

Recent observations of multiple narrow e*e~ peaks resulting from heavy ion
collisions {16} have been the center of many theoretical studies {17]. The most
promising so far is the conjecture that such peaks are due to the decay of the
bound e*e~ system formed in a new strongly coupled phase of QED induced
by the strong electromagnetic field of the colliding heavy nuclei. Although these
peaks are not well understood experimentally, it is nonetheless intriguing to com-
pare them with (23). In the context of our model, the observed peaks caa be
used to fit the free parameters 2u and a. We find"

My = 2u = 1833 + 8KeV (24a)
and indeed a strong "fine structure” constant
a=244+008. (24b)

The resulting mass spectrum obtained from (23) shown in table 1 is in excellent
agreement with the observed peaks. It fits the data very well with x* = 1.6 for
one degree of freedom. Although strictly speaking the peaks are in energy rather
than invariant mass, qualitative arguments based on Doppler broadening [16}
indicate that the energy coincides with the invariant mass to a good accuracy.
The error incurred in this assumption is of order 0.1% and we shall neglect it
since it is below the experimental errors of the observed peaks (cf.table 1).

The mass formula also predicts uew phenomena which could serve as a test
of our model. Though the spectrum implies an infinite number of ete~ bound
states, their observation in terms of the decay into separate et and e~ states
in the ordinary phase of QED is limited due to the descending nature of the
Majorana spectrum. A bound state with mass less than 2m,. could not decay
into et and e~ by conservation of energy. Since the bound state masses are
infered through their decay into ete~, there are only four new mass poinis to
be observed. Taking errors into account, a fifth new mass point M7 = 989 KeV'
may exist. The spin of each state is also predicted and is a signature of our
model of strongly coupled QED distinguishing it from linear potential models
{18] motivated by lattice QED.We summarize our predictions in table 1.

* It is important to note that the parameter 2u is essentially determined by the heaviest
observed mass. The heaviest mass reported by EPOS (1.83 MeV) differs from that reported
by Orange (1.92MeV). Here we follow EPOS.
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a=24+008 x? =16
Mass (KeV) | Experiment | Theory | Spin
M, 1831+8 | 1833 | O
M 1782+20 | 1758 1
M, 1630+8 | 1632 | 2
M, 1486 | 3
M, 1341 4
M;s 1208 | 5
Mg 1091 6
Table I

It is interesting to point out that the fourth point we predict based on the
EPOS data agrees with a fourth observed peak at 1498 + 20 KeV reported by
the ORANGE group. '



