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QED is historically our principal reason for believing quantum field theory isA New Model Of Strongly Coupled QED usefull and at the same time its existence is uncertain. Arguments due to Landau 

[1) suggest that QED breaks down at some short distance scale. The screening of 
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Abstract--

We present a new model of QED vhich exhibits two distinct phases. One is 
conventional QED and the other is a. new strongly coupled phase characterized 
by a curvature law. In this new pW:.!e we ~ve a field theoretic derivation of the 
beta-function and show that it is non-tri'rial in the absence of virtual fermions 
due to the new curvature term. At short distances the running coupling ap
proaches an ultra-violet stable fixed point Qe = 1 rather than zero and increases 
at large distances indicating confin.ment. This behaviour depends crucially on the 
Minkowskian signature and does no1 0<:CUr in the Euclidean signature. We argue 
that the positromum spectrum in the ~ phase is approximtely described by 
a Majorana mass formula which varies inversely with the spin. We examine this 
spectrum in connection with the GSI experiments. The spectrum not only is in 
excellent agreement with the three oIJee:rved narrow e+e- peaks, but also predicts 
four new resonances with masses 1486 KeV, 1341 KeV and 1208 KeV and 1091 
Ke V. The spins of all the resonanoes are also predicted. 
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charge by virtual fermions implies the coupling at shorter and shorter distance 
becomes arbitrarily large to maintain a = Ji,- at large distances. The question of 
the existence of QED can be avoided by embedding it in a larger asymptotically 
free theory where other forces are not artificially turned off. Antiscreening of 
charges implies the coupling aprroaches zero at short distances and the theory 
is entirely well behaved. An alternative response is that QED without other 
forces may exhibit a phase transition to a well behaved theory. Instead of the 
coupling growing indefinitely it may approach a critical value ae of order one at 
short distances. Such theories may represent a new class of well defined quantum 
field theories. H QED is to exhibit a phase transition there presumably must be 
another source of coupling constant renormalization opposing screening to avoid 
Landau's argument. 

In this paper we propose a model of QED (2) which indeed possesses a new 
source of coupling constant renonnalization. The model has a weak phase cor
responding to ordinary QED and a new strongly coupled phase. In the strongly 
coupled phase we argue that a Majorana type mass formula, i.e. where the 
mass varies in'Vel.'8ely with spin, approximately describes the bound states of 
e+e-. We compare the spectrum with the GSI peaks. The model is phrased 
in terms of Feynman's spacetime picture of QED where matter is described by 
a quantum mechanical point particle. The origin of the new source of coupling 
constant renonnalizatioo. is the contribution to the action of the curvature of 
the world line a.saociated with the point particle. The curvature implies a non
triviall-dimeosional quantum field theory and thus source of coupling coostant 
renormalizatiOIl is at the first quantized level. 

The curvature term arises t~ a new regularization method applied to 
the relativistic point particle Maxwell system. Integrating out the vector poten
tial produces an effective action for.- the relativistic point particle. The effective 
action is diverpnt due to the singularity of the photon propogator at short dis
tances. Ordinarily this divergence is regulated by introducing a cuttofF ~ at short 
distances and amounts to mass renonnalization. A closer examination of the 
form of the divergence reveals an alternative way to regularize the theory. Be
cause the relativistic point particle current has support on a curve the new term 
in the effective action resembles the self inductance of an ideal current carrying 
wire corresponding to the world line C of the point particle. The divergence can 
be regulated by considering the mutual inductance of two disjoint wires C and 
Cf. where Cf. is obtained by displacing C a distance ~ along a unit normal n to the 
world line. So as to avoid dependence on: 0. special choice of normal a crucial step 
is to regard n as a constrained dynamical variable. This is a key departure from 
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ordinary QED and forms the new element in the definition of our model. The 
new regularization method yields not only mass renormalization but also a new 
finite term that depends on n. Eliminating n by its equation of motion implies 
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that the new term is precisely the curvature of the world line times h: = oh. 

The curvature term characterizes our new model of QED and a physical pic
ture of its origin can be formulated. Althout;h the calculation outlined was in 
terms of funtional integrals, the curvature arises at the c1assicallevel and can be 
understood as a generalization of classical mass renormalization [3]. The simple 
idea of a charged point particle is not well defined because the interaction of 
the charged particle with its own field gives a divergent contribution to the total 
mass. This infinity can be regulated by modifying the force law on distances 
of order f (e.g. Pauli-Villars regularization). Here we regulate the infinity in a 
new way by arranging the charged particle with arbitrary trajectory C not to 
interact with its own field but with the field of a charged particle with trajec
tory Cf: obtained by displacing C a distance f along a dynamical unit normal 
n. The proceedure clearly regulates the infinity in the Coulomb field as there 
is now a finite separation f between the chal-r;ed particles. However, there are 
now mutual inductive effects in addition to the change in inertia since there 
are two infintesimally nearby charged particles. The presence of the other par
ticle's electromagnetic field modifies the usual straight line motion into helical 
motion characteristic of magnetic fields. The inductive efl'ects are encoded by 
the addition of the curvature tenn in the action whose extrema are helicies. It 
is interesting to note that the relativistic point particle scalar field system does 
not exhibit a curvature term with our new ~arization method. The classical 
solutions of this system do not include helical motion characteristic of magnetic 
fields and consequently no curvature term sbould be preseut. 

The addition of a = fr times the curvature to the arc-~h action implies 
a non-trivial one dimensional quantum field theory with running roupling a and 
two phases. In arc-length gauge the theory is ana!ogc,us k) a O'-model model 
where the spin u constrained to lie on a unit sphere corresponds to the velocity 
:i of the particle. The curvature term then ooaesponds to the square root of the 
usual u-model kinetic term. The square root dFectively increases the dimension 
by one 80 that our model actually resembles a two dimensional non-linear u
model. It is well known that the beta functi<m of the temperature T is negative 
in compact non-linear u-models. Since T corresponds to : we might expect 
the beta function in a to be positive and not oppose screening. The internal 
symmetry of our model, however, is the Lorentz group rather than the rotation 
group of the u-model. The non-compactness reverses the sign so that the beta 
function of our model is negative. Thus the curvature term is a new source of 
coupling constant renormalization which opposes screening. 

The two phases of the arc-length plus curVature theory can be seen in a 
lattice regularization. The theory, being one dimensional, is an exactly solvable 
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quantum field theory in the sense of Wilson. For any finite value of the bare 0, 

the continuum limit of the theory is equivalent to the pure arc-length theory. This 
is the weakly coupled phase we identify with ordinary QED. However, for infinite 
bare 0, the curvature survives in the continuum limit and defines the strongly 
coupled phase. Although there is a general rule that one dimensional systems 
cannot exhibit a phase transition, this rule has exceptions. At T = 0 a phase 
transition can occur and a phase transition at T 1:- 0 can occur if sufficiently long 
range forces are included. Since a corresponds to t, the point a = 00 is indeed 
such an exception. Furthermore, we shall be interested in virtual e+e- pairs 
(summing over loops instead of open curves) where the action includes the long 
range Coulomb field. In this more realistic system, the phase transition will occur 
at a finite o. It is not clear whether these result will survive the introduction of 
virtual fennions in full QED. However, the running of the coupling constant due 
to the curvature does so on all distance scales as in the u-model in contrast to the 
running due to virtual fermions which does so only out to a Compton wavelength. 
At sufficiently large distances the curvature effects may therefore dominate over 
screening effects. Furthermore, the negative sign of the beta function would then 
be a qualitative indication of confinement. 

The order parameter of the two phases is the continuum coupling constant 
of the curvature term. This is similar to QeD without fermions where the order 
parameter is the coefficient of the area law in the Wilson loop. In contrast to 
QeD, the strong coupling phase of our model corresponds to a low temperature 
statistical mechanical system and the weak phase to a high temperature one. 
Similar statistical mechanical models arise in polymer physics. Polymers at low 
tempature poaaes a rigidity that is modeled by a curvature squared term in the 
energy. The mean square end to end distance R2 goes as L2 at low temperatures 
[4]. At hiP temperatures the ripdity is overcome by thermal fiuctuations and 
R2 goes as L. Thus the strong coupling phase of our model is analogous to 
rigid polymers and the weak phase to non-rigid polymers. An alternative order 
parameter, motivated by polymer physics, is to take the power of L in R2 in the 
large L limit. In polymer physics it is known that the addition of long range 
interactions does not change this exponent but gives subleading corrections in 
lnL. Thus the long range Coulomb interaction, in contrast to the curvature, 
does not change the phase. 

The presence of the curvature term in the strong phase dramatically alters 
the particle spectrum. It transforms a single particle of mass m described by 
the arc-length theory into an infinite number of particles with mass varying in
versely with spin [5]. Such a mass spectrum is called a Majorana mass spectrum. 
The spin degrees of freedom arise from the extra degrees of freedom associated 
with the higher derivative nature of the curvature term. The solutions of the 
arc length plus curvature theory are helicies about a time like direction and the 
different spin states correpond to helicies with different radii and angular fre
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quency. Although the arc length theory has 3 configuration degrees of freedom. 
the curvature term increases the degrees of freedom to 5. Our starting point was 
the ordinary relativistic point particle Maxwell system and one may ask where 
the 2 extra degrees of freedom associated with the higher derivatives originated. 
Essenially, the 2 degrees of freedom correspond to those in the constrained dy. 
namical unit normal n which when eliminated by its equations of motion gave 
the higher derivative curvature term. Another example of a particle transformed 
by its interaction with its own field occurs in the point particle Chern-Simons 
system studied [6J in connection with high temperature superconductivity. There 
a single bosonic particle of mass m is transformed into a fermion of mass m. The 
extra degrees of freedom here are discrete owing to the topological character of 
the Chern-Simons action. 

A central question for comparison with obsevation is the spectrum of bound 
states of e+e- in the strongly coupled phase. This problem possesses two new 
features not present in the weak phase. First there are an infinite number of 
Majorana states available for each particle. Second the strong phase is in the 
supercritical region Q > 1 where the Coulomb attraction overcomes the centrifu
gal barrier. Although we have not solved the supercritical Majorana bound state 
problem, we believe the principal features of the bound state spectrum are deter
mined by which mass state the particles are in rather than which orbital state. 
This belief is based on the observation that the bound state spectrum in the 
supercritical case with ordinary particles (not Majorana) has excited levels with 
exponentially small separations(7). Thus we expect the spectrum of bound Majo
rana particles in the supercritical case also to have a Majorana form. This answer 
bears an interesting analytic relation to the ordinary positronium spectrum in 
that the Majorana spectrum can essentially be obtained by inwrting both the 
quantum number and the coupling in the ordinary positrooium spectrum. 

The ohsen..tion of a Major&na behavior for the bound state spectrum can 
serve as an experimentalsigniture of our new model of the strongly coupled pbli8e 
of QED. Attention has recently been focused on the strong phase of QED in an 
attempt to explain data from heavy ion collisions at GSI. An unexpected feature 
of this data is the observation of e+e- resonances with narrow peak energies 
in the range 1.4 to 1.8 MeV. The observation of 3 to 4 such peaks suggests a 
composite structure made out of e+e-. However, such a system cannot be the 
usual positronium spectrum of conventional QED as the levels lie bellow the 
2me =1.022MeV threshold. A more plausible explanation is to consider this sys
tem as new quasi-bound states of e+e- in the strongly coupled phase of QED. 
The strong electromagnetic background field of the colliding heavy ions is con
jectured to trigger the new phase. Although these peaks are not well unde..-stood 
experimentally, it is nonetheless interesting to compare them with the Majorana 
spectrum of our model. The spectrum not only agrees well with the observed 
peaks but predicts the spin and four new resonances. The coupling constant 
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Q determined phenomenologically from the mass formula is of order 2.5. This 
value exceeds the critical value Q'c = 1 where the transition to the strong phase 
is expected to occur and the theory is indeed strongly coupled. 
I A NEW MODEL OF QED 

The starting point of our new model of QED with two phases is phrased in 
terms of Feynman's spacetime picture of QED. The dynamical variables are the 
point in space-time x and the photon field A". The action is 

S(x, A) mo Jds+eo JA·dx ~J F2 (1) 

Integrating out the vector potential produces an effective action for the point 
particle defined by 

eiSeJ/ = JDAeiS(z,A) = i<moIc c6-4 Ie Iccz"cr"iS_.P+"') (2) 

where we have introduced C for the trajectory of the point particle %. H C 
is open and moving forward in time, Sell describes a single electron and its 
interaction with its own field. H C is a closed loop, Sell desa:ibes an e+e
pair and their mutual and seJf interactions. The real part of the double line 
integral represents the relativistic Coulomb interaction. Note that (2) differs 
from the Feynmen-Wheeler{8] action at a distance theory as they include only 
the real piece and not the imaginary piece of the double line inter-gal which 
represents radiation reaction. Sell is simply a representatioo. of ordinary QED 
with the usual Feynman boundary conditions and not the half-advanced half
retarded boundary conditions of Feynman and Wheeler, 

The double line integral in Sell is divergent when % = 'II. Our new model of 
QED arises by a fundamentally new method of regulatin« this divergence. In
stead of modifying the propagator (e.g. Pauli-Villars regularization) which breaks 
gauge invariance for non-zero f and amounts only to mass renormalization, we 
shall modify one of the trajectories C in the double line integral. This proeedure 
preserves gauge invariance because it does not break current conservation. 

The divergences of the double line integral are similar to those encountered 
in the self-inductance of a current-carrying wire C. These divergences can be 
regulated by considering the mutual inductance of two wires C and C(. The 
wire C( is determined by displacing C a distance t along a unit normal n" to C. 
We define the self inductance given by the double line integral as the limit of the 
mutal inductance as t -+ O. Geometrically this can be viewed as replacing C by 
a tiny ribbon with edges C and C( . This geometrical regularization introduces 
t and n to regularize the theory. We treat the normal n as a dynamical variable 
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and integrate over all normal configurations in order to avoid dependence on a 
specific choice of normal. This is in contrast to ordinary regularization methods 
which essentially introduce only a scalar parameter E. Thus part of our defi
nition of regularized QED involves the dynamical normal n. The result o( the 

regularization is a new term 10 = -a Jds "4:\') .n in addition to the usual mass 
renormalization. Since n is subject to the constraints that it be unit and normal 
implies the addition of the two terms It(n) = Jds['1OC'1:) . n) + '11(n2 - 1)] to 
10. Extremizing n in I(n) = (10 + Il)(n) we find that n must be ± the prin
cipal normal (i.e., the unit vector of the proper acceleration). However a unit 

normal n can in principle be subject to a further constraint tPJ:~') . n = O. Hence 

one can have the choice of adding a third term 12(n) = JdS['12(tPJ~~') • n)1 to 
the action I(n). Extremizing n in i(n) = (I +12)(n) one finds the solution for 

Pn are the remaining two normals in D=4. They can be expressed in terms of 
I' ...,_.tz;<.) RfS') "~h b' h liiT .Vi = EI'""- • , wr as fv;"T w ere w. are two ar Itrary vectors tate 10 a 

plane. However these two normals are in fact degenerate for class of curves whose 
equations are xl' wr or i P wr. Therefore they cannot seperate (regularize) 
such curves in the double line integral (2). If we insist that the regularization 
should apply for any arbitrary curve C other than the straight line then i is 
ruled out in favour of I. Thus the action I(n) is the unique minimal choice for 
determining n dynamically. From the ± principal normal solutions of I(n) we 
will choose the - sign which gives helical motion for % rather than the + sign 
which gives only exponential runaway motion. Quantum mechanically we inte
grate over n, '10, '11 in the path integral. The resulting effective action cootains a 
previously undiscovered curvature correction to the are-length action 

Sre,(C) = ,,)21) +I.P (3)1'0 f ds + 0.0 f dsk(s) +2ac f f dx"dy"6 (I(x 

c c c._ c.+ 

where 1'0 = rno +6mo is the renormalized mass, k(s) = ItP:'~·)1 is the curvature 
of C, the union of electron trajectory Ce- and the positron trajectory Ce+ and 
I.P stands for the imaginary part. To obtain Self as it stands it was crucial 
to check that quantum fluctuations due to'll are negligable. Furthermore a 
particular choice of sign of the curvature term. is again made so as the path 
integral is bounded. This choice of sign is part of the definition of our theory. 
In the language of Wilson loops, we have a previously undiscovered curvature 
correction to the perimeter law. Remarkably the bare coupling constant 0'0 is 

the "fine structure" constant l!. The third term. of (3) represents the relativistic 
version of the Coulomb interaction. The above result can also be obtained by 
employing a different regularization scheme due to Polyakov [6]. A novel feature 

7 

of ~his regularization is the independence of the coefficient of the curvature term 
from the cut-off E. In all other dimensions d, the coefficient depends on the cut
off as E4-4. The curvature term in (3) (or open paths has been studied in the 
cOl:lpletely different context of rigid paths [9] as toy models of rigid strings 

The higher derivative nature of this action implies that the number of degrees 
of freedom has apparently increased over that of the point particle we started 
v;llh. The extra degrees of freedom, as discmsed in the introduction, arise from 
the dynamical unit normal n. In the ordinary derivative variational principle for 
the action, x and n were held fixed at the initial and final points. To obtain 
equivalent equations of motion for the higher derivative action resulting after 
eliminating n, both x and x must be fixed at the initial and final points. In the 
palh integral quantization of the theory we therefore sum over all trajectories 
q.{o,Yo) with Xo = (xo,xo) and Yo = ("ChYO) held fixed. It is the spin of the 
M.jorana particle that is encoded in the new quantum numbers associated with 
x. 
II THE NEW STRONG PHASE 

The two distinct phases can be exposed most simply by considering Self in 
absence of Coulomb interactions. More detailed features of the two phases can 
latC' be seen when we include the long range Coulomb interactions. The phases 
of she quantum theory of (3) can be seen in an Euclidean lattice regularization 
in which the loop C is replaced by a closed chain of links. The dramatic effects 
of continuuing to Minkowski space-time will be discussed subsequently. On the 
181tice, the curvature theory (3) describes a self-avoiding random walk (SAW) in 
which the curvature term represents the repulsive interactions between the links 
of the walk. These interactions cause the walk to be "'rigid'" and have analogs in 
polymer physics. In fact rigid polymer chains are deecribed by a classical action 
similar to (3) with squared curvature term. The phases of a rigid polymer are 
~ by the behaviour of the mean square distance < R2 > between the 
two l"D.dE of the molecule. In fact OD<: obtains two phases: A low temperature 
T phase with < R2 >= L2, and a high temperature phase with < R2 >= ~L 
with 7 ~ the curvature coupling. At very high temperature the polymer 
loees its ..wdityand the chain becomes the usual gaussian random (ideal) chain. 
These remarkable properties of polymers are shared by our curvature model of 
QED. The strong phase of QED is analogus to the low temperature phase of 
polymers while conventional QED is analogus to the high temperature phase 
of polymers. The justification o( this statement is due to the remarkable scale 
in'tViant property of the curvature term in (3). If we rescale x by ax in (3) 
the effective . action Self rescales by an overall factor a. This implies that a 
corresponds to the inverse temperature t in oontrast to gauge theories where the 
gauge coupling constant is the temperature. The fact that our coupling is the 
in~ temperature has an important consequence that follows from properties 
of one dimensional statistical systems. In the absence of long range interactions, 

8 



these systems exhibit a phase transition only at T = O. Therefore one can 
intuatively understand that our model will exhibit a phose transition at a = 00 

in the absence of the long range Coulomb interactions. The inclusion of these 
interactions ultimately shift the critical coupling to a finite value a c• Our model 
on the lattice will therefore have a non-trivial fixed point at 0' = 00 whose 
continuum limit corresponds to a strongly coupled theory with finite rigidity 
(acordi....'" :/: 0). The model also exhibits a trivial fixed point at 0' = 0 whose 
continuum limit is the usual arc-length theory (gaussian random walk) which 
when coupled to Coulomb interactions gives rise to the usual perturbative weak 
QED. 

We proceed by discretizing the domain space of x"(s) by setting xf = x"(ia) 
where a is the lattice spacing. The action then reads 

s = pOLlxi - xi-II +2aOLIsinii (4a) 

where 8i is the angle between the two links 'i Xi Xi-I and ',H, and aOL,pOL 
are the values of the bare coupling and mass scale respectively on the lattice. 
The action for the self-avoiding random walk (SAW), SSAW, that follows from 
(4a) is obtained by replacing the Euclidean spacetime Hi by a lattice Z". The 
path consists of the sequence z = Xo, X), ... , X. where Xi and Xi-l differ by the 
unit vector Ii on the lattice. 'We can view z as a set of links II, .'" I•. The action 
can be cast as an anisotropic random walk 

SSAW(Z) = L• E(I• . liH) (46) 
.=1 

where E 61 if I. is parallel to '.+1, 62 if Ii is perpendicular, and 63 if Ii is 
antiparallel. Agreement with action (4a) implies 

61 = POL 62 = poL + v'2a oL 63 = POL +2aOL . (4c) 

The propagator of the discretized theory is 

G6(XO, Yo) = L e-S(.r) (Sa) 
.r:Xo-Yo 

Define 
63PI = e 61 P2 = e~ P3 = e (56) 
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then explicitly we obtain the following expression ae Green's function: 

I' 

f dDk 
G(X,Pl.P2,PJ) = (21f)D eil:·J:G(k) (5c) 

-I' 

e D (1 2D"co.l:) D 
G(k) = ~[L - III e + 2DPJ L cosk" ] 

D ,,=1 1 - .A,. W 1'=1 (1 - X,,) 

where X" = .A" +w with 

D 

.A" = (PI +P2 - 2p.s)co$k" w = 2P3 L co,k" ' (5d) 
,,=1 

In the absence of the curvature term the above result reduces to that of the 
usual gaussian random walk. The above answer is obtained after imposing a 
convergence condition which is the requirement that 

e= e-I'OL + e-JIIo£-2aoL +2(D _ l)e-I'OL-.J2'ooL . (6) 

is less than one. The critical surface of the theoI-y is defined to be the point 
~" = 0 i,e the vanishing of the be.:re mass. Alternatively it is the line for which 
the susceptibility" = Es G(x,e) diverges. From (Sc) one simply obtains 

e
"=l-e 

thus the critical surface corresponds to the condition 

e= 1. (7) 

The poles of G can be easly determined for e< < 1 to be 

k~ = ;,,-1/2 + 0(1 e) (8) 

hence the mass Mo has a critical exponent equals to half. 
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Our objective is to look for non-trivial fixed points on the critical line. This 
tantamount to having non-trivial continuum theories whose sca.ling limits corre
spond to the action (3). 

The distinguishing feature of the curvature term, which represents the repul
sive interactions between the links. is the rigidity that it gives to the paths. This 
rigidity < R2 > is quantitatively measured in terms of the tangent to the chain 
of the Wilson loop of length L by the normalized tangent-tangent correlation 
function 

L L 


< R2 >= Jds Jds'.p(s - 8') 

o 0 

where 

.p(s - s') =< t(s)t(s') >= e-JIII £(-:-'> = e-JIII£C·-·') (9a) 

with the average being weighted with respect to the Boltzman factor e-S . Here s 
and s' specify points along the chain by their arc-length distance, a is the length 
of the link of the chain and VOL is the inverse correlation length of the tangents. 
Its exact value is, 

2o 2aOLvOL(D,aod In( 1 + 2(D _1)e-.r +e'OL
1 _ e-2ao£ ) • (96) 

1£ we require the continuum limit to have a finite rigidity then we demand the 
scaling limit a -+ 0, 'VOL -+ 0 to he such that their ratio "cot"....'" is kept fixed. 
The only fixed point on the critical surface which satisfies this scaling limit is 
(POe,aOe) = (0,00) for fixed D. All other points with finite ao < aOe give a zero 
rigidity or equivalently a zero continuum (t. The critical line flows towards a 
trivial fixed point at VOL = +00. In D=4 this is the infared stable point (31n2,0) 
whose continuum limit corresponds to the ordinary gaussain random walk. In the 
presence of Coulomb interactions this is the weakly coupled phase of QED where 
the curvature term becomes irrelevent and '" goes to zero in the continuum limit. 
The mean square distance < R2 > in the weakly coupled limit is 2:: which goes 
to zero in the continuum limit indicating the absence of rigidity. 

The continuum theory that corresponds to the fixed point (0,00) is a theory 
that lives, in the absence of Coulomb interactions, in one phase which is strongly 
coupled. This is our new proclaimed strong phase of QED. It is characterized 
by three physical mass scales M, the poles of the Green's function, 1', and II 

two of which are independent. They are defined by M = ALMo(p.,ao(AL», 
P = ALp.OL' and 2(D - 1)£1 = ALvoLCaod where the sca.le AL = ! -+ 00 is the 
lattice cutoff. The new mass scale v is analogous to AQCD (not to be confused 
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with the above Ad and determines the bare coupling at a particular large scale 
AL thru equation (9b). One obtains 00' .\d = ~In~. This is equivalent to 

the mass gap relation vALe-ti1 which gives a non-trivial beta-funtion in the 
temperature tOL = aOL-1 (c.f.eq.(15a». The inverse corrolation length 'VOL must 
also exist in the large D limit (D -+ oc) except in D = 1 where it is infinite 
(absence of rigidity) bec.ause the curvature term is identica.lly zero. Therefore 
tOL must he proportional to D 1. Hence we set tOL to be c-1v'2(D-I)towhere 
c is yet an arbitrary normaliza.tion constant. The ma.ss gap relation then reads 

v = ALe-~ (lOa) 

To determine c we note that since the mass scale v is being fixed, its physical 
value must he the same in the continuum and on the lattice. We will therefore 
ca.lcula.te the ma.ss gap relation in the continuum by considering the large D limit 
of the curvature effective action in the arc-length gauge: 

Sell = ao Jds(#+ i(x2 -1) + po) (1') 

c 

where II is the lagrange multiplier enforcins the arc-length gauge condition. In the 
large D limit the sa.ddle point approximation applies. In this case the stationa.ry 
loop C with two fixed points consists <l two cJassical trajectories of opposite 
dUectioos travelling togther. Conaequeutly a multiplicative faclol' of two will 
appeal' in front Sell' Our analysis gives the following result: 

1.1= A.,..,.e-W(~+I:) (106) 

where q is the continuum bare coup~ and k is a finite constant that is inde
pendeot from the coupling but depends 00 finite renormalization effects of the 
coup~. Because of closed paths t.rajectories, eq.(IOb) differs by a facto;: of two 
in the exponent from a similar result obtained in [Pisa.rski,91 for open paths. In 
computing (lOb) we have neglected finite size eiects. 

From (IOa,b) we obtain in the large D limit 

AL ~+l 
--- =t Deo (11)
AMom 

To fix c we recall that the lattice and momentum cut-offs for (non)-abelian gauge 
theories are just related by an overall constant [llJ. This determines c to be 2.... 
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This result should not be suprising because we know that the coefficent of to in 
(10) which is the coefficent of the beta function (c.f.(15a» is a universal constant 
that is independent of the regularization scheme at least in the weak coupling t 
(strong coupling a). The normalized bare running coupling is therefore (we will 
drop the superscript • in the rest of the paper unless stated otherwise) 

1
to(A) ao(AL) = D - 1,n-AL (12)

211" v 

Though the free parameters of the weak phase are the electron mass M = me 
and the fine structure constant a, in the strong phase, a at a particular scale is 
determined by dimensional transmutation and the free parameters are now M 
and v. 

The discrete order parameter of the two phases is obtained by computing the 
mean square distance < R2 > We find 

< R2 >= L2 $trongphase (130) 

< R2 >= 2La weakpha$e (13b)
Vo 

This implies that the Hausdorf dimension dl=1 for the strong phase and dl=2 for 
the weak phase. In the presence of Coulomb interactions the above two phases 
would be part of the same continuum theory. Therefore it makes sense to talk 
about the order paremeter which distinguishes these two phases. We define the 
analogus of the magnetization in statistical models 9 to be ~ then in the limit 
of long random walks we have: 

<9>=1 $trongphase (144) 

<9>=0 weakphase (I4b) 

The result (13) states that conventional QED with the scale ~ identified as t 
is analogus to high temperature polymers while our new stongly coupled QED is 
analogus to low t.emperature polymers. 

The beta function computed from (12) is 

,8(tO{AL)) -(~ .... l)t02(AL) (150) 

where ao-1 = to. This implies that to = 0 (ao 00) is an ultraviolet stable fixed 
point. This beta function is non-perturbative in the sense of QED (power series 
expansion in ao) although perturbative in to = .1... 

00 
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The beta function (15a), for very small to. is aa.ctly the expression for 
the beta function of the O(D + 1) non-linear (J'·m<Xk~ in t",o dimensions with 
coupling to. In fact in (12) we show that our CUJ"'6:.ure model in Euclidean 
(resp.Minkowski) is indeed equivalent to'O(D+l) (~. O(D,I» non-linear u
model in two dimensioIlB where the l1 field is nOlhi~ bolt i. It is known that the 
inclusion of long range interactions shifts the critical point of the l1-model in one 
or two dimensions to a finite value tOe :f. 0 and the O'-:nodel beta function then 
reads 

lJ(tO{AL)) = -(~~ l)(to(AL) - tOe)l te > tOe (15b) 

Therefore we expect that the effect of the preri>usly ignored long-range 
Coulomb interactions in our model is also described by equation (ISb). The 
detailed analysis is complicated and outside the KOpt of this article. However 
we can intutively understand the physics of these Coulomb interactions and their 
subtlities by drawing once more the analogy with p<N:mers. It is important to 
remark that the long Coulomb interactions in Mink~ ~ature become short 

range in Euclidean signat~ with a power law .;;b behaoour. It is natural 
to ask under what circumstances do such forces shift the aitical coupling from 
zero or infinity to a finite value a c• In the CIOIltexl d polymers it is known [5] 
that the inclusion of short range repulsive forteS between two different chains 
can in principle shift the aitical coup~ to a furiae value but the critical ex
ponent " of the mean square distance < R2 >= LlJt it ooly affected by the self 
repulsive interactions between the I.inb of the one chain. The curvature term is 
one sum example of these self-intendioos ... here • becomes ODe in the strong 
(rigid) phase. Therefore the presence of Coubnb ~ will not alter the 
rigidity of the paths of the point particle and ODe apedB two distinct phases 
as in (13) aeperated by a finite fixed point CJGc. F. any finite bare coupling 
ao < aoc: the continuum (renonnalized) ODUPliD& OOIISWlt O~t. associated with 
the curvature is zero because the tangent-~t om:olabon function vanishes 
in the oontinuum (absence of rigidity). This does lIIOI mean that the continuum 
coup~ constant Oeotd. associated with Coulomb int.eracboos is zero. This is 
because the bare coupling in the Coulomb sector shocld ~ differently. 
For ao > OOc the coupling constant runs as in (cl (16 J) due to the non~trivia1ity 
of the one dimensional curvature theory and the st~ phase is characterized by 
a non-vanishing aCOtl'. as well as OCOtt'. 

Our discussion so far has been limited to the Eo:lidean sign!lture and we 
now discuss the effect of continuuing to the Mink~ sipature. The internal 
symmetry of our model can be easly seen &om the dfective action (1'). The 
velocity i" is analogous to the spin vector a" of the <X3,I) a-model albeit with 
a square root-like interaction. In fact from the ~-f1lDdiOll comparison for very 
small t, the model (1') is equivalent [12] to the usual 0(4?1) non-linear l1-model 
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in two dimensions. Evidently the effect of the square root in (1') is to increase the 
dimensionality of the domain and the range of the spin vector by one. The non
compact nature of the symmetry group, as is well known, effectively changes the 
sign of the of the coupling constant t in the compact models (13]. In particular, 
the sign of the /I-function in equation (15) changes sign. The beta function of 
our model of strongly coupled QED in the Minkowski signature is therefore: 

IJ(ao(AL) = -(D 1) (ao(AL) 2 ao > <roc211" ao - 1)
c (16) 

=0 <ro < <roc 

Thus the dramatic effect of continuuing to Minkowski signature is that <ro ap
proaches <roc at short distances. An important question is whether the above 
beta function preserves its sign after the inclusion of virtual fermions. We know 
that in weak QED the running of the coupling constant is due to screening ef
fects (vacuum polarization). The quantum fluctuations of the fermion field which 
creates the virtual e+ e- pairs are confined within a wavelength w less than the 
Compton wavelength m;l. Because of the dielectric nature of the medium, the 
effective charge ee/l of an electron is less than its bare charge eo and becomes 
smaller and smaller as we approach the Compton radius m;l away from the ori
gin r = O. As r » m;l the effective charge reaches an asymptotic fixed value 
e., that is independent of the distance r. In the language of the renormalization 
group this means that the coupling constant stops running for distance scales 
which are much larger than m;l . The coupling constant of our model on the 
otherhand, runs at all scales due to the nonperturbative fluctuations of virtual 
photons. Therefore we expect that the inclusion of fermion loops will not change 
the sign of the beta function beyond the Compton wavelength. In particular at 
large distance scales where confinement becomes important. We now return to 
(16) which WE: can solve by 

<rO(AL) <roc(1 + <roc 2 ) (110) 
{l + ao!'~~oc 

where 

3 A 2 n= _In--L- (116)
411" 112 

and <ro· is the coupling at the scale AL = II. For large AL the coupling becomes 

aoC )ao(AL) = aoc(1 + {f (18) 

which is independent of ao·. Tha.t the coupling is determined by the fixed point 
<roc and II is the so called dimensional transmutation. A similar phenomenon 
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occurs in QCD except there the fixed point is zero. The coupling Q()\:.:.) ap
proaches aoc from above at high energies i.e aoc is an US stable fixed punt. At 
low energies ao(AL) increases until ao 00 at AL = JlQED: 

2 411" ao2 
c (19)Inll~ED = Inll - 3 aO.(1I2) - OOc 

This behaviour of a suggests that e+e- states in our model of strongly coupled 
QED are confined. Unlike QCD, the beta function (16) is reliable at la..r!;e dis
tances since the perturbative expression in .1.. is a very .000 approx:imal:ion to ao 0 

the exact result at strong coupling. In further contrast to QCD the confuing na
ture of the model arises from treating matter dynamically (su.mming over loops) 
and would not arise by considering the Wilson loop in the static limit. 

We now turn to the question of the value of aoc• The anal.ogy with stIIl;istical 
mechanics previously discussed suggest that the effect of the long range C.oulomb 
interactions is to lift the critical temprature from zero to a finite Talue tOe ~c 
To determine this value, we examine the seemingly unrelated problem of the 
e+e- bound states. In the weak phase there is no difficulty in soI'ring the bound 
state problem for <r less than one. For a greater than one . ~he problen:. is DOC 

well defined unless the Coulomb potential is cut-off at some distance 0 = l. To 
remove the cut-off and obtain a finite ground state energy, the coupling a muse 
approach one as A -t 00 (14], (15] . However from the running coupling (11) we 
know that this is nothing but the value <roc = 1. This result is not affected by 
the Majorana nature of the bound states of e+e- [2]. 

We close this section with some remarks on related wwb (15). A proposal 
for the beta functions of strongly coupled QED with an ultraviolet fixed. point 
was given by Miransky. This beta function was obtained by simply pro&Udating 
a dependence Qf the ooupllilg 00. the cut-off A and demanctn~ the ~ state 
energy be fixed as A -t 00. In oontrast to Miransky, our ~ oe(.\L) has 
a non-trivial dependence OIl the scale in absence of virtual fennioos due to the 
nontrivial one dimensional quantum field theory associated with our curva.ture 
model (3). Our beta function, modulo the precise value of 00", was dde::mined 
by standard field theoretical techniques and differs from thal of Miransl.-y. 

The confining Minkowskian beta function discussed here should &leo ha~ 
implications for the string analog of the arc-length plus curvature model d.iicussed 
by Polyakov [10]. 

III MASS FORMULA 
The mass spectrum of our new curvature model of strong coupled QED can 

be calculated from the poles in the amplitude for e+e- annihilatioo. In the 
ordinary phase of QED (no curvature), the singularities of the amplitude COnsL.."l 

of the spectrum of the usual positronium. poles accumulating at the th.reslold 2p. 
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In the strong phase of QED, there should actually be a spectrum of thresholds 
as well as poles accuumulating at each of these thresholds. The reason is that a 
single particle described by arc length plus curvature action is transmuted into 
an infinite nwnber of particles with masses varying inversely with spin (Majorana 
particle). This transmuation phenomena is also encountered in 0=3 [6] where 
a bosonic particle described by arc-length plus torsion action is transmuted into 
a fermionic particle. Here we shall asswne without proof that the Coulomb 
interactions induce a fine structure on the spectrum of thresholds so that the 
poles are effectively given by the threshold spectrum. In any event, the Majorana 
spectrum should be contained in the exact spectrum. We shall calculate the 
thresholds (branch cuts) of the amplitude A in the strongly coupled phase through 
the semi-classical approximation. The stationary loops with two fixed points 
consist of two classical trajectories of opposite directions travelling togther. A 
factor of two in I' and a then arise from the stationary phase approximation. 
Given this double propagator picture of the stationary loop, the singularities can 
be calculated using the classical solutions of Sell with I' and a doubled. The 
solutions in the arc-length gauge x2 1 are helicies about the time axis: 

xo =yO+J(1 + (Rw)2)t, xl=yl, x2 y2+&inwt, x3 =y3+Rcoswt(20) 

where yP is a constant vector and 1', R,w and a are related by I'R = a(I+(Rw)2). 
The action calculated in terms of the classical solutions is 

. 21' . 
Sel1 = MX + 2aX = X +2aX (21)Jl + (Rw)2 

where X (resp. X) is the distance between the intial and final points (resp. 
velocities). The amplitude in the stationary phase a.pproximation is then 

1 M I JtI •A (_-_(_)3 2e- T X -oX)2 (22)
2M 27rX 

where the over all power two arises from the two classical trajectories comprising 
the closed stationary loop. The singularities MJ are obtained from the Fourier 
transform of (22). The subscript J is the intrinsic spin of the closed path (total 
spin) which is equal to 2aRw. In terms of the fine structure constant a, the scale 
1', and the spin J the singularities are: 

MJ = (21')2 (23)1 + (2aQED)-2J(J + 1)' J = 0,1,2, ... 

where the classical J2 is replaced by its quantum mechanical value J(J + 1). 
A spectrum such as (22) where mass varies inversely as spin is called a Ma~ 
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rana spectrum. This spectrum resembles an inverted hydrogen spectrum anc. 
distinguishes the strongly coupled pha..qe. 

The observation of the mass spectrum (23) in nature can serve 8.<; an 
mental signature of our model of the strongly coupled phase of QED. 

IV CONNECTION WITH GSI EXPERIMENTS 
Recent observations of multiple narrow e+e- peaks resulting from hea\"y ion 

collisions [16] have been the center of many theoretical studies [17]. The ::lost 

promising so far is the conjecture that such peaks are due to the decay 0: the 
bound e+e- system formed in a new strongly coupled phase of QED indrlced 
by the strong electromagnetic field of the colliding heavy nuclei. Although these 
peaks are not well understood experimentally, it is nonetheless intriguing to com
pare them with (23). In the context of our model, the observed peaks C&:l be 
used to fit the free parameters 21' and 0'. We find· 

Mo = 21' =1833±SKeV (2441) 

and indeed a strong "fine structure" constant 

a = 2.4 ±0.08 . '246) 

The resulting mass spectrum obtained from (23) shown in table 1 is in exceUent 
agreement with the observed peaks. It fits the data very well with X2 = 1.6 fOf" 
one degree of freedom. Although strictly speaking the peaks are in energy rather 
than invariant mass, qualitative arguments based on Doppler broadening [16) 
indicate that the energy coincides with the invariant mass to a good aocuracy. 
The error incurred in this assumption is of order 0.1% and we shall neglect it 
since it is below the experimental errors of the obeerved peaks (d.table 1). 

The mass formula also predicts uew phenomena which could serve as a test 
of our model. Though the spectrum implies an infinite number of e+e- bound 
states, their observation in terms of the decay into separate e+ and e- states 
in the ordinary phase of QED is limited due to the descending nature of the 
Majorana spectrum. A bound state with mass less than 2me could not decay 
into e+ and e- by conservation of energy. Since the bound state masses: are 
infered through their decay into e+e-, there are only four new mass poin~ to 
be observed. Taking errors into account, a fifth new mass point M1 = 989 KeV 
may exist. The spin of each state is also predicted and is a signature of our 
model of strongly coupled QED distinguishing it from linear potential models 
[IS] motivated by lattice QED.We summarize our predictions in table 1. 

.. It is important to note that the parameter 21' is e88entially determined by tbe beavieA 
observed mass. The heaviest mass reported by EPOS (1.83 MeV) differs from that rt'J«\ed 
by Oranse (1.92MeV). Here we follow EPOS. 
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0= 2.4 ±0.08 X2 1.6 

Mass (KeV) 

Mo 

Experiment 

1831 ±8 

Theory 

1833 

Spin 

0 

Ml 1782±20 1758 1 

M2 1630±8 1632 2 

M3 1486 3 

M.. 1341 4 

Ms 1208 5 

Ms 1091 6 

Table I 

It is interesting to point out that the fourth point we predict based on the 

EPOS data agrees with a fourth observed peak at 1498 ± 20 KeV reported by 

the ORANGE group. 


