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18 Feb.I992·01 A new mode'l of Q~xhibitiD« two distinct phases was recently proposed 

[I}. The model arises through a non-perturbative gauge invariant regularization 
Confining Beta Function For Strongly Coupled QED 

of the Wilson loop. It is characterized by a curvature correction to the perimeter 

law in the strong coupling phase which is absent in the weak coupling phase. 
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We give a field theoretic derivation of the beta function for a recently proposed 

model of strongly coupled QED. The beta function is non-trivial in the absence 

of virtual fermions due to the non-perturbative vacuum fluctuation of the puge 

field. The running coupling approaches an ultra-violet stable fixed point O'c = 1 

at short distances and increases at large distances indicating c:onfinmeo.t. This 

behaviour depends crucially on the Minkowski!W signature and does not occur 

in the Euclidean signature. 
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In this letter we shall study the beta function in the strong coupling phase of 

the model. The running coupling coostant a decreases at short distances to 

the axed point ac = 1 while at large distances the coupling increases indicating 

coofinement. 

The new model is phrased in terms of the Feynman spacetime picture of 

QED. The matter is described by a qunatum mechanical point particle x". , 

I' = 1,2, ...D, and the radiation by a quantum field A".. The effective action ..: ­
obtained by integrating out A,. is 

Sel/=l'°fd$+aof.uIt($)+2ao f f dz"d,I"'.s(I(x- II)2\) (1) 

c c c~~_ 

where p is the mass scale, Q' the &oe structure constant, .u the arclength, the 

curvature It is the length of the propel' aa:eleration , Ct + the positron trajectory, 

Ce- the electron trajectory, and C = C••UCe-. In eq.(l) we have ignored a 

complex piece which is irrela'ft!lJ.t for the analysis in this paper. The last term 

of (1) represents the relativistie versioo of the coulomb interaction{2J. The cur­

vature term arises from a non-perturbative gauge invariant regularization of the 

expectation value of the Wdsooloop (11. This new term characerizes our model. 

An essential feature of the etTective actioo is the adoption of new boundary con­

ditions in the higher derivative nriatiooal principle. The velocities and positions 

of e+ and e- at the initial and final points ate fixed. There are two principle 
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results of (IJ. First the model of QED defined by the quantum theory of (1) has 

two distinct phases. One is conventional QED and the other is a new strongly 

coupled phase. Second the bound states of e+e- exhibits a Majorana spectrum 

depending inversely on the square of the spin. It resembles an inverted hydrogen 

spectrum and distinguishes the strongly coupled phase. This is in sharp constrast 

with linear potential models motivated by lattice QED which have Regge type 

spectrum increasing with spin. 

It has been long conjectured [3) that the mysterious narrow e+e- peaks ob­

served in heavy ion collisions (4) should be explained by a strong coupling con­

fining phase of QED. Indeed, the spectrum predicted by our new model is in 

remarkable agreement with the observed peaks. The coupling 0 determined phe­

nomenologically from the mass formula is of order 2.5 which implies that the 

theory is certainly strongly coupled. Furthermore the mass formula predicts four 

new resonances as well as the spin assignment. The validity of the strong phase 

explanation of the GSI experiments requires that the e+e- state produced is 

confined. It is the purpose of this paper to show that our new model of strongly 

coupled QED has a running coupling a with a confining character which ap­

proaches Oe: == 1 at high energies. 

The two distinct phases can be exposed most simply by considering Sell in 

absence of Coulomb interactions. More detailed features of the two phases can 

later be seen when we include the long range Coulomb interactions. The phases 

of the quantum theory of (1) can be seen in an Euclidean lattice regularization [1), 

[5). The dramatic effects of continuuing to Minkowski space-time will be discussed 

subsequently. We discretize the domain space of Xll(S) by setting xf = xll(ia) 
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where a is the lattice spacing. The action then reads 

S =pOLlx, - Xi-II +2aoLlsin~1 (2a) 

where', is the angle between the two links " = Xi - X'-l and '.+1, and OOL, IJOL 

are the values of the bare coupling and mass scale respectively on the lattice. 

To proceed further in quantizing S we replace the Euclidean spacetime Jll by a 

lattice Zi.. The path in Z~ is now a random walk z = xo, Z., ...,z. where Zi and 

Xi-l differ by the unit vector Ii on the lattice. We can view z as a set of links 

'I, ...,1•. The action can be cast as an anisotropic random walk 

• 
S(z) = LE(I. "i+1) (26) 

1=1 

where E = 61 if 'i is parallel to IH1, ~ if Ii is perpendicular, and 63 if 'i is 

anti parallel. Agreement with action (2&.) implies 

61 = peL ~ = peL + ,f"2aoL 63 = peL + 2o0L • (2c) 

The propaptor of the discretized theory is 

G,(Xo, Yo) = L e-S(.) (3) 
.:Xe-Yo 

where Xo = (zo,i,) and l'i = (...., ju). 

The two distinct phases correspond to the two distinct ways of taking the 

continuum limit. This tantamount to having two fixed points on the critical 

surface of the theory, 

e= e-llel. +e-"'L-2oU +2(D -- l)e-lle l.-.Jf«eL = 1 . (4) 

Eq.(4) is obtained by setting the mass scale M(lJoL,aoL) associated with the 

propagator (3) to zero. The distinguishing feature of the curvature term, which 
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represents the repulsive interactions between the links, is the rigidity that it gives 

to the paths. This rigidity is quantitatively measured in terms of the tangent 

to the chain of the Wilson loop of length L by the normalized tangent-tangent 

correlation function 

,,(8 - 8') =< t(8)t(s') >= e-~£(·:·') = e-~£("-"') (Sa) 

where the average is weighted with respect to the Boltzman factor e-S , 8 and 8' 

specify points along the chain by their arc-length distance, and JlOL is the inverse 

correlation length of the tangents, 

2ooJloL(D,aOL) = In(I +2(D _I)e-..!2oO£ +e- £ (5b)1- e-20OL ) 

The strongly coupled phase arises by demanding (3) have a non-zero continuum 

limit,i.e. JlOL = O. The fixed point satisfying VOL = 0 and equation (2) is 

(POL' aOL) = (0,00) for fixed D. The other fixed point corresponds to the absence 

of rigidity and this occurs for VOL = +00. This is the infared stable point (3In2, 0) 

corresponding to the weakly coupled phase of QED. Thus the curvatu..-e term is 

irrelevent and " goes to zero in the continuum limit. 

Our new strongly coupled phase is characterized by three physical mass 

scales M, 1', and JI two of which are independent. They are defined by M = 
ALMo(p,ao(AL», I' = ALpOL, and 2(D - I)JI = ALVOL(aoL) where the scale 

AL = ! -+ 00 is the lattice cutoff. The new mass scale JI is analogous to AQCD 

(not to be confused with the above AL) and determines the bare coupling at a 

particular large scale AL thru equation (5b). One obtains aO(AL) ~ln~. 

This is equivalent to the mass gap relation JI = ALe-~ which gives a non-trivial 
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beta-funtion in the coupling tOL = aOL-1 (c.f.eq.(lOa». However, the fixed point 

VOL must also exist in the limit D -+ 00 i.e JI must have a non-trivial value except 

in D 1 where it is zero. Therefore tOL must be proportional to D - 1. Hence we 

set tOL to be c-1v'2(D -I)towhere c is yet an arbitrary normalization constant. 

The mass gap relation then reads 

JI=ALe-~ (6a) 

To determine c we note that since the mass scale JI is being fixed, its physical 

value must be the same in the continuum and on the lattice. We will calculate 

the mass gap relation in the continuum by considering the large D limit of the 

curvature effective action in the arc-length gauge: 

Sell = ao f ds(Jii + i(i;2 -1) +Po) (1') 

C 

where II is the lagrange multiplier enforcing the arc-length gauge condition. In the 

large D limit the saddle point approximation applies. In this case the stationary 

loop C with two fixed points consists fX two classical trajectories of opposite 

mrections travelling togther. Consequently a multiplicative £actor of two will 

appear in front Sell' Our analysis gives the followiJJ« result: 

II = A__e-~(~+i) (60) 

where to is the continuum bare couPIin« and k is a finite constant that is inde­

pendent from the coupling but depends on finite renormalization effects of the 

coupling. Because of closed paths trajectories, eq.( 6b ) differs by a factor of two in 

the exponent from a similar result obtained in [10] for open paths. In computing 

(6b) we have neglected finite size effects. 
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From (6a,b) we obtain in the large D limit 

AL___ = eD'o~+i (7a)
Amom 

To fix c we recall that the lattice and momentum cut-offs for (non)-abelian gauge 

theories are just related by an overall constant [12). This determines c to be 2'lr. 

This result should not be suprising because we know that the coefIicent of to in 

(6) which is the coefficent of the beta function (c.f.(10a» is a universal constant 

that is independent of the regularization scheme at least in the weak coupling t 

(strong coupling a). The normalized bare running coupling is therefore (we will 

drop the superscript * in the rest of the paper unless stated otherwise) 

1 
to(A) =ao(AL) = AL (8)I,D - n­

2'lr v 

Though the free parameters of the weak phase are the electron JDa88 M = me 

and the fine structure constant a, in the strong phase, a at a particular scale is 

determined by dimensional transmutation and the free parameters are now M 

and v. 

The discrete order parameter of the two phases is obtained by computing the 

mean square distance 

L L 

< R2 >= Jds Jdlt/J(s - s'). 
o 0 

We find 

< R2 >= L2 strongphase (9a) 

< R2 >= 2La weakphase (9b)vo 

(In the continuum limit of the weak phase a -+ 0 , Vo -+ ex> and therefore 
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< R2 >-+ 0.) This is equivalent to the statement that the Hausdorf dimension 

d,.=l for the strong phase and d,.=2 for the weak phase. Equivalently we can 

regard the presence or absence of the curvature in the continuum thoery as the 

order parameter which distinguishes the weak phase from the strong phase. 

The beta function computed from (8) is 

P(tO(AL» = -(~~ 1)t02(AL) (lOa) 

where ao-1 = to. This implies that to = 0 (00 = (0) is an ultraviolet stable fixed 

point. This beta function is non-perturbative in the sense of QED (power series 

expansion in ao) although perturbative in to = l,-. 
The beta function (lOa), for very small to, is exactly the expression for the 

beta function of the O(D+1) non-linear a-model in two dimensions with coupling 

to. It is know that the inclusion of Ions ~ interactions shifts the critical point 

of the a-model in one or two dimensions to a finite value tOe: :j. 0 and the a-model 

beta function then reads 

P(tO(AL») = -(~~ 1)(to(AL) - tee)' to> toe: (lOb) 

Therefore we expect that the eIfect. d the previously ignored long-range 

Coulomb interactions in our model is also described by equation (lOb). We 

shall give an argument for the value d toe: shortly. 

Our discussion so far has been limited to the Euclidean signature and we 

now discuss the effect of continuuin« to the Minkowski signature. The internal 

symmetry of our model can be easly seen from the effective action (I'). The 

velocity il' is analogous to the spin vector 5" of the 0(3,1) O'-model albeit with 
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a square root-like interaction. In fact Crom the p-Cunction comparison for very 

small t, the model (I') is equivalent to the usual 0(4,1) non-linear a-model in 

two dimensions. Evidently the effect of the square root in (1') is to increase the 

dimensionality of the domain and the range of the spin vector by one. The non­

compact nature of the symmetry group, as is well known, effectively changes the 

sign of the of the coupling constant t in the compact models [6]. In particular, 

the sign of the ,8-function in equation (10) changes sign. The beta function of 

our model of strongly coupled QED in the Minkowski signature is therefore: 

,8(oo(AL» = -(D -1) (oo(AL) _ 1)2 
00> OOe' (11)

211' OOe 

Thus the dramatic effect of continuuing to Minkowski signature is that 00 ap­

proaches aOe at short distances. We now obtain the running coupling from (11). 

The solution is 

OOe )
ao(AL) = aoe(1 + no + ~ (120) 

~, Go·-Ge. 

where 

n 3 A 2 
u=-ln-L (1211) 

v24'l1' 

and ao· is the coupling at the scale AL = v. For large AL the coupling becomes 

aGe)
OO(AL) = aOe(1 + 1f (13) 

which is independent of ao·. That the coupling is determined by the fixed point 

aOe and v is the so called dimensional transmutation. A similar phenomenon 

occurs in QeD except there the fixed point is zero. The coupling oo(At} ap­

proaches aoc from above at high energies i.e OOe is an U. V stable fixed point (cf. 
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Fig.l). at low energies OO(AL) increases until 00 = 00 at AL = IIQED: 

2 2 411' aO
2 
e ___ _ (14 )1nvQED = lnv - 3 00.(112) - aO 

e 

This behaviour of a suggests that e+e- states in our model of strongly coupled 

QED are confined. Unlike QCD, the beta function (11) is reliable at luge dis­

tances since the perturbative expression in ~ is a very good approximation to 

the exact result at strong coupling. In further contrast to QCD the confining na­

ture of the model arises from treating matter dynamically (summing over loops) 

and would not arise by considering the Wilson loop in the static limit. 

We now turn to the question of the value of OOe' The analogy with statistical 

mechanics previously discussed suggest that the effect of the long range Coulomb 

interactions is to lift the critical temprature from zero to a finite value tOe = -!-. -ee 

To determine this value, we examine the seemingly unrelated problem of the 

e+e- bound states. In the weak phase there is no difficulty in solving the bound 

state problem for a less than one. For a greater than one , the problem is not 

well defined unless the Coulomb potential is cut-off at some distance (I = t. To 

remove the cut-off and obtain a finite ground state energy, the coupling a must 

approach one as A -+ 00 (7), [9] . However from the running coupling (13) we 

know that this is nothing but the ~-alue OOe =1. This rerult is not aft'ected by 

the Majora.na nature of the bound states of e+e- II}, (S). 

We close this letter with some remarks on related works(9J. A proposal for 

the beta functions of strongly coupled QED with an ultraviolet fixed point was 

given by Miransky. This beta function was obtained by simply postulating a 

dependence of the coupling on the cut-off A and demanding the ground state 

energy be fixed as A -+ 00. In contrast to Miransky, our coupling OO(AL) has 
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a non-trivial dependence on the scale in absence of virtual fermions due to the 

nontrivial one dimensional quantum field theory associated with our curvature 

model(I). Our beta function, modulo the precise value of OOj;, was determined 

by standard field theoretical techniques and differs from that of Miransky. 

The confining Minkowskian beta function discussed here should also have 

implications for the string analog of the arc-length plus curvature model discussed 

by Polyakov [11]. 
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