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Abstract 

One-dimensional quantum particle system with spins is considered. The 

Hamiltonian of the system (Calogero-Moser spin system) is 

4a2 _ 1 ~ 2 1 ~ - a - aui · UkH - - L.Jp.+ - L...J 
2 i=l J 2 i,k=l (Xj - Xl.:)2 ' 

h~k 

where Pi = -i8/8xi and Uj is the Pauli spin operator associated with j

th particle. We prove the integrability of the model through the quantum 

inverse scattering method. By introducing the annihilation and creation-like 

operators from the Lax operator, we construct the ground state. The wave 

function is of Jastrow-type. Further, we discuss a generaliza.tion of the model 

to SU(M) spin case. 
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Introduction 

Recently m.~ch at~enti0l! ~as b~en p~d to long-range interaction mo~el~~ In 

particular, the relevances to the quantum Hall effect and high Tc supercon

ductivi ty have been discussed. 

It is well known that the l~dimensional quantum N-body 'system, . 
1 N lP 1 N . 

H ~ :-- :E ~ + - :E V(xi - x~)J (1.1) 
. 2 i=1 8zi 2 i.Ie=1 

. , i~1e 

is integrable when the potential VCr) is g/r",g/ sin" rand per). Here per) 

is the Weierstrass p function[I,2,3]. Such integrable system is called the 

Calogero-Moser model. 

Spin systems with long-range interactions have been considered on a 1

dimensional lattice. Haldane and Shastry showed that the Gutzwiller wave 

function \Ito = e.xp(i1rE zi) lli<isin"(xi - Xj) is an exact eigenstate of the 

Heisenberg antiferromagnetic model with l/r2 interaction, 

J> 0, (1.2) 

where (j j = (oj, 0'1, oJ) are Pauli spins, and the periodic boundary condition 

is imposed[4,5]. It was suggested that excited states can be described in 

terms of semionic spin-l/2 spinons, and lead to a representation of the Wess

Zumino-Witten conformal field theory[6]. 

In this paper we consider a hybrid of the Haldane-Shastry model and the 
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Calogero-Moser model, 

(1.3) 

.8
pj=-s-. - (1.4)

8x', 
Here a is a parameter for the. interaction and (jj is the spin operator for j-th 

particle.$atisfying the ~9mmutat~~n relati.ons . 

(1.5) 

where . .Ojk is the Kronecker's delta. We call (.1.3) the Calogero-Moser spin 

system,' since parti;}e; with' spi~s are not confi~ed on the lattice. This system 

can be considered as a quantum realization of the Calogero-Moser model with 

int~rnal degrees of freedom[7]. 

In section 2, we prove the integrability of the Calogero-Moser spin sys

tem. Although the Hamiltonian (1.3) has been studied in [8,9], the proof 

based on' the quantum inverse scattering method is new. In section 3, we 

construct the ground state and evaluate the energy by introducing "annihi

lation" and "creation" operators from the Lax operator L. The ground state 

wave function is of the Jastrow-type and the ground state energy is simply 

obtainE;dJro;m. a bilinear form of the Hamiltonian. The last section is devoted 

to su~ary and discussions. We point out that the method in this paper is 

extended to ·include SU(M) spin model. 
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Integrability 

To prove the integrability, we shall use the quantuminverse scattering method 

for }la.I'ticle systems. Namely we introduce operator-valued N x N matrices 

"L and M (Lax pair) such tha.t the Lax equa.tion 

.. Ljle - i[H, Ljle] 
N 

- i[L, M]jle = i L (LjlMllc - MjlL,Ie) , (2.1) 
1=1 

"is equivalent to the equation of motion generated by a Ha.miltonian H under 

consideration. For spin system such as 

. 1 N 1 N. , .; 

H = - 'EP~ + -" L (4a2 
- a - aUj . UIe) h(xj - XIe), (2.2) 

. 2 .1=1 2 i.le=l . 
jJ41e 

we choose the La.."( pair as 

Ljle - pjOjle + ia(l - ojle)f(xj - xle)(l + Uj • UIe), 

Mjle - a(l- Ojle)g(Xj - xle)(l + Uj . UIe) 
""N 

+aojle L ~(Xj - x.. )(l.+ Uj . U.. ), (2.3) 
..=1 
.. J4j 

where we suppose that 

I(-x) = - I(x), g(-X) =g(x), z(-X) = z(x). (2.4) 

We substitute L and M (2.3) into the La..x equation (2.1). After a lengthy 

calculation we obtain the following functional equations for f(x), g(x) and 

z(x) : 
9(X)=fl(X) 

f(x)g(y) - f(y)g(x) = f(x + y) {z(x) - z(y)} (2.5) 

f (x) 9 ( - x) - f ( - x)9(x) = z' (x) 
1z(x)=h(x) 
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The third equation of (2.5) is an additional condition to the case of the classi

cal Calogero-Moser model[3]. Functional equations for the classical Calogero

Moser model have been solved (see, for instance, [10]). Similarly, we can solve 

(2.5) and find that the function f(x) has a form 

1 -, 
x a 
'. ( racot(ax), (2.6)f(x) = Sin ax 

a cn(ax) dn(ax) 
sn(ax)' a sn(ax)' a sn(ax) , 

•
where sn{x), cn{x), dn{x) are th~ Jacobi's elliptic functions a.nd a is a con

stant. 

In the classical case, it is easy to derive from the Lax operator L a set of 

integrals of motion {In}. A formula is given by 

(2.7) 


For the qua.ntum case, it is not so straightforward to obtain conserved op

erators from the Lax pair because of the noncommutability of the matrix 

elements. In general, using the "time evolution" operator U satisfying 

[U, H] = !llU, (2.8) 

we have from (2.1) and (2.8) 

[H, u- I LU] =O. (2.9) 

Thus, conserved operators {In} which correspond to classical integrals of 

motion {In } , may be written as 

(2.10) 
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For the case hex) =1/x2 , we find a simple method to construct conserved 

operators. From (2.3) with g(x) = -1/x2 and z(x) = l/x2 , we have 

(2.11) 
• J' 

Then, we can readily check that 

N 

[H, E (Ln)jlc] =E[Ln, M]jlc =O. (2.12) 
j,1c=1 • j,lc 

Th~t is, conserved operators {In} are giyen by 
, ~ 

1 N 
In = - E (Ln)ilc, - n = 1,2,· · · , N. (2.13) 

n i,1c=1 

A formula (2.13) is new. First three of them read as : 

(2.14) 

(2.15) 

Here E' means any two variables does not coincide. In general, {In} has a 

form 

(2.17) 
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Therefore, Ins are independent. Involutiveness of {In} is explained as follows. 

From the Jacobi's identity we know that Jm" =[1m' I,,] commutes ~th H 

and that Jm" is a conserved operator. However, (2.17) implies that Jm " does 

not have a term, t Ep~. Then, [I", 1m] =O. A direct calculation for showing 
- . 

[I", 1m] = 0 is left for a futu~e problem. 
:,:. 

A set of independent conserved operators {I,,} and their involutiv~n~ . 

prove the integrability of the model (1.3). 

-.. 
•

3 Ground State· Eriergy 

In this section we shall restrict our discussion to the case h(x) = 1/x2 where 
.. .:

the Hamiltonian (2.2) is nothing but (1.3). We may apply the same method 

to othe~ c~es. The ground sta~e has also been discuss~d inJ9], but here we 

shall give a formulation based on 'the quantum inverse scattering method. 

We introduce a set_ ~fop~r~to~~ {hj}, 

N .• N 1+ (J' j . Ule
h~J = L, Llej =pj - ta L, , (3.1) 

1e=1 - Ie=l X j - Xle 
k~j 

N • N 1 + (J' •• Ule 
hj = L, Ljk =pj + ta L, J (3.2)• 

k=1 k=1 Xj - Xk 
k~j 

The operators h} and hj are hermitian conjugate each other. These operators· 

may be consi~ered as creation and annihilation operators. This interpretation 

becomes clear when we add harmonic potentials tw2 E xf to the model (1.3) 

without spoiling the integrability. They satisfy the commutation relations, 

(3.3) 
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In terms of these operators, the Hamiltonian H is simply expressed as 

1 N 
H = - LhJhj. (3.5) 

2 j=l 

Note that (3.5) has a bilinear form ( or quadratic form) and then H is a 

non-negative operator. 

To obtain the ground state wave function, we consider the state hUg} 

which is annihilated by the "annihilation" operator hj J 

j = 1,···, N. (3.6) 

Equation (3.6) is explicitly written as follows, 

~ _ a f 1 +Uj" Uk) l1/J } = O. g (3.7)(8Xj «=1 Xj -.X« . 
«;!j 

It is interesting to observe that (3.7) is the Knizhnik-Zamolodchikov equation 

in the conformal field theory [11]. Obviously ItPg} is an eigenstate of the 

Hamiltonian, HI.,pg} =0, and therefore we conclude that the state f.,pg} is the 

ground state. 

Solutions of (3.7) are given by the Jastrow-type wave functions. The 

solution has a form 

l1/Jg } = II (Xj - Xk)24 • Ix), (3.8) 
j<k 

where Ix} can be represented as a hypergeometric-type integral [12]. For the 

ferromagnetic case, Ix} reduces to 

Ix} - IXF} = I T} ® I T} ® ... ® IT}· (3.9) 
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For the antiferromagnetic case, the state IXAF) corresponds to Anderson's 

RVB (resonating-valence-bond) state [13]. For a =1/4, the interaction term 

in (1.3) becomes purely spin-sp~ interactions and, as seen from (3.8), the 

particles behave like "semions". 

The generalizations to the case of periodic boundary conditions, and the 
... ~~. ~ .. : t.... • • ~ '"' • 

relations between I""g) and Haldane-Shastry model (1.2) will be discussed in . 
a. separate paper . 

•
4 Summary and Discussions 

We have shown that the quantum Calogero--Moser model can be generalized 

to the quantum integrable particle system with spins (Calogero--Moser spin 

system). Also we have introduced a bilinear form of the Hamiltonian and 

constructed the exact ground state. We point out that this transformation 

of the Hamiltonian is essential for the system to have the Jastrow-type wave 

functions as eigenstates. For excited states the asymptotic Bethe ansatz 

(ABA) method seems to be useful[14]. Since there exist solutions besides 

ABA solutions, the further study must be done for a complete understanding 

of this model. 

The method presented in this paper can be easily extended to the case of 

SU{M) spin model. The similar extension has been found in [9]. We use the 

permutation operator Pij in spin space, Pijl·· . O"i' •• O"j' • -) = I·· . O"j' •• O"i" .). 

For SU(2) case, the permutation operator P ij can be written as Pij = (1 + 

Ui • uj)/2. The La.x equation (2.1) is satisfied by choosing L, Iv! and H as, 

Ljk = pjOjk + ia(l - ojk)f(xj - Xk)Pjk, 
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Mjle = a(l - Ojle)g(Xj - xle)Pjle + aOjle L z(Xj - 2:,}Pj.., (4.1) 
':-F-j 

1 1 
HSU(M) = -2 L:~ + -2 L a (a - ljlc) h(xj - 2:1e). (4.2) 

j j~1c 

The functional equations for J(x),g(x),z(x) and h(x) are the same as (2.5). 

The -existence or the Lax 'pair,' L ~nd M, ~arantees the integrability or the 

model. 
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