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ABSTRACT 

We begin a study of nonlinear wave phenomena in molecular clouds. These clouds 
exhibit highly nonlinear structure that is often described in terms of "clumps" and "fil­
aments" which are bouncing around, twisting, and colliding within the cloud. These 
clouds are important because they ultimately produce the initial conditions for the star 
formation process. Our motivation is to explore the possibility that solitons (i.e., spatially 
localized, single hump wave entities which often exhibit remarkable stability) can live in 
these molecular clouds and produce their observed structure. In this paper we focus on 
the case of one spatial dimension and we show that a rich variety of nonlinear waves 
can exist in molecular cloud fluid systems (where self-gravity is included). We show that 
in the absence of magnetic fields no true soliton solutions are allowed, although highly 
nonlinear waves (whose crests become widely spaced and thus soliton-like) do exist. For 
clouds with embedded magnetic fields, we derive a model equation which describes the 
behavior of wave phenomena; this model equation allows solutions which correspond to 
nonlinear waves, solitons, and topological solitons. We briefly consider the stability of 
these wave entities and discuss the possible role they play in molecular cloud dynamics. 

Subject headings: hydromagnetics - wave motions - interstellar: molecules - stars: for­
mation 
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1. INTRODUCTION 


Molecular clouds are important objects in our galaxy. These clouds comprise a 
substantial fraction of the gas in the galaxy, they provide the initial conditions for star 
formation, and they are interesting astrophysical objects in their own right. Molecular 
clouds are now fairly well~observed (see, e.g., the recent review of Blitz 1992). In particu­
lar, the IRAS satellite has mapped these clouds at far-infrared wavelengths and has thus 
provided us with detailed column density maps (see, e.g., Wood, Myers, & Daughtery 
1999). Such studies indicate that molecular clouds are highly nonlinear structures, where 
the observed dynamic range in column density is typically "-I lOa and larger. Although 
observations clearly indicate the presence of nonlinear behavior, very little theoretical 
work along these lines has been done. The goal of this paper is to correct this situation 
by beginning a study of nonlinear wave phenomena in molecular clouds. 

Previous theoretical work has focused on the smallest size (and mass) scales, namely, 
the scales of molecular cloud cores, which are the actual sites of star formation. This 
work has studied the collapse of such cores (e.g., Shu 1977; Terebey, Shu, & Cassen 1984), 
and the formation of these cores through the process of ambipolar diffusion (e.g., Shu 
1983; N &kano 1985; Mouschovias 1976, 1978; Lizano & Shu 1989; see also the review of 
Shu, Adams, & Lizano 1987). On the larger size scales (larger than "-I 1pc), relatively 
little theoretical work has been done. The observed structure in molecular clouds on 
these size scales is sufficiently complicated that even describing, much less theoretically 
predicting, the cloud structure is a nontrivial task (see, e.g., Scalo 1990; Myers 1991; 
Houlahan & Scalo 1992; Wiseman & Adams 1992; Adams 1992). The linear stability 
of magnetically supported clouds has been studied (Langer 1978; PucIritz 1990; see also 
Dewar 1970), but such studies do not address the problem of nonlinear structure in these 
clouds. One notable paper which includes nonlinear effects (Elmegreen 1990) studies 
collisions of Al£ven waves in the absence of self-gravity and suggests a wavelike origin 
for clumpy structure. A study of magnetoacoustic waves in nonuniform media has also 
recently been completed (Fatuzzo and Adams 1992). 

In this present work we begin a study of nonlinear waves and solitons in molecular 
clouds. The study of nonlinear waves and solitons began during the last century (see, 
e.g., the classic papers by Russell 1844 and Riemann 1858) and has been one of the most 
important developments in classical physics in the last few decades (see, e.g., Weld & 
Rowlands 1990 and references therein). Although this subject can have an important 
impact on our understanding of structure in molecular clouds, it has not yet been ad­
equately explored in this context (or for any self-gravitating fluid). Since this subject 
is rather large and can rapidly become mathematically complicated, this present paper 
will concentrate on nonlinear waves and solitons in one spatial dimension. The study of 
nonlinear waves in higher dimensions (and other related topics) will be addressed in later 
papers. 

Solitons are a particular kind of nonlinear wave and will occupy much of our atten­
tion. Since many different definitions of solitons and related entities exist in the literature 
(e.g., Whitham 1974; Coleman 1985; Rajaraman 1987; Drazin & Johnson 1989; and In­
feld & Rowlands 1990), we begin by presenting working definitions of our own: We use 
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the term .to.tiono.ry wo.ve to mean any wave structure that is a function of the variable 
e= z -vot only (for one spatial dimension). We use the term .oIiton to mean any solution 
of a nonlinear wave equation (or system of equations) which (a) represents a stationary 
wave, and (b) is localized in space so that the wave form. either decays or approaches a 
constant at spatial infinity. This working definition is closest to what Coleman (1985) 
refers to as "classical lumps" and is more general than many in the literature, where it is 
often also required that (c) the wave form can interact strongly with other solitons and 
retain its identity. Solitons which also satisfy requirement (c) must have extraordinary 
stability in order to pass through each other and, after emerging from the collision, retain 
their initial forms. Such solitons are very rare; wave entities which satisfy the :first two 
requirements and not (c) are much more common. 

It is easy to see that solitons, if they exist, could be very important in understanding 
the structure of molecular clouds. One can imagine that a giant molecular cloud complex 
consists of a large collection of solitons bouncing around, colliding, and then emerging 
(perhaps even intact!) to collide again. In this paper, however, we show that true soliton 
solutions to the equations of motion do not exist for the case of one-dimensional. molecular 
clouds with no magnetic fields. On the other hand, the nonlinear model equations for 
clouds with magnetic fields do exhibit soliton behavior. In addition, even in the case of 
no magnetic fields, the nonlinear stationary waves can be neo.rI, soliton-like. We quantify 
these statements below. 

This paper is organized as follows. We begin in §2 with a discussion of nonlinear 
stationary waves in molecular clouds with no magnetic fields. In §3, we generalize the 
calculation to include the effects of a magnetic field. In particular, we derive model 
equations which can be easily solved and which include most of the essential. physics. 
We generalize the discussion even further in §4, where we discuss whether or not soliton 
solutions can exist. We show that clouds without magnetic fields cannot exhibit true 
soliton behavior, whereas the model equations for clouds with magnetic fields do in fact 
allow soliton solutions. In §5, we discuss briefly the stability of the waves. We conclude 
(in §6) with a summary of our results, a comparison to observations of molecular clouds, 
and a discussion of future research. Additional formal results (e.g., an estimate of the 
wavelength of nonlinear waves and a group of scaling transformations which leave the 
equations of motion invariant) are presented in the appendices. 

2. ONE-DIMENSIONAL WAVES WITH NO MAGNETIC FIELDS 

In this section, we study stationary nonlinear waves in molecular clouds without 
magnetic fields. In one spatial dimension, the equations of motion for the molecular 
cloud fluid reduce to the form: 

8p 8 
at + 8z (pu) = 0, (2.1) 

8u 8u 18p 81/1 
~ +u-+--+-=o, (2.2) 
ur. 8z p8z 8z 

821/1
8z2 = 41rGp. (2.3) 
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For a molecular cloud fluid on the size scales of interest (1 - 30 pc), we take the 
pressure to have two contributions, i.e., 

P = a!p + Po log(p/Po), (2.4) 

where the first term corresponds to ordinary thermal pressure (a. is the isothermal sound 
speed and is taken to be constant). The second term corresponds to a "turbulent" 
contribution to the pressure; this contribution is motivated by the empirical finding that 
observed line-widths vary with density according to av ex p-l/2 (see, e.g., Larson 1981; 
Myers 1983; Dame et ale 1986; Myers 1987; and especially Myers && Fuller 1992). The 
turbulent motions are generally supersonic, but subaHvenic. The particular functional 
form given in equation [2.4] results from interpreting the observed linewidth as an effective 
transport speed, i.e., av = l1tu.rb = (lJPtu.rb/lJp)1/2 = (Po/ P )1/2, where the last equality 
follows from the observed correlation; the turbulent term in equation [2.4] is then obtained 
by integration (Lizano && Shu 1989; see also Myers && Fu.1ler 1992). Notice that we are 
implicitly assuming that the turbulent motions are sufficiently small and isotropic so that 
they produce a pressure as described by equation [2.4]. These assumptions are consistent 
with available observations; in fact, an equation of state of the form [2.4] which includes a 
nonthermal contribution is more consistent with the data than a purely isothermal model 
(see Myers && Fuller 1992 for further discussion). 

We now want to combine equations [2.1 - 2.4] to produce a single nonlinear differ­
ential equation for the density p. We first non-dimensionalize all quantities according 
to 

u -+ u/a.., (2.5a) 

p -+ p/po, (2.5b) 

where (2.5c) 

t -+ ka.t, (2.5d) 

,,-=,.!!...2· (2.5e) 
poa.. 

The value of Po is determined by observational considerations, which suggest that Po = 
1 -+ 7 X10-11 dyne cm-2 for "typical" molecular clouds (see Myers && Goodman 1988; 
Solomon et ala 1987). In this study we are primarily interested in spatial size scales of 
1 - 30 pc where number densities are -100 - 1000 em-So For this range of density and 
a sound speed of a.. = 0.20 km/s (appropriate for a temperature T=10 K), the expected 
values of " lie in the range 6 - 50. The wavenumber k is just the inverse of the Jean's 
length that would result if there were only thermal pressure. Since" is typically large 
compared to unity, z = 1 corresponds to a fraction of the effective Jean's length, which 
is equal to (1 + ,,)1/2 for our assumed equation of state (see Appendix A). 

Here, we will study the class of nonlinear waves known as stationary waves. For 
these waves, the fluid variables are functions of the quantity 

(2.6) 
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where "0 is the (nondimensional) speed of the wave. Next, we introduce a new velocity 
variable 

(2.7)" = u - "0, 
which is simply the speed of the fluid relative to the speed "0 of the wave. 

Combining all of the above results, we obtain the continuity equation in the form 

(2.8)"P€ +"€P = 0, 

where the subscripts denote the derivatives. The continuity equation can be integrated 
to obtain 

pv = A = cOfUtcznt, (2.9) 

where the constant of integration A is the "Mach number" of the wave. 

If we differentiate the force equation [2.2] with respect to z and use Poisson's equation 
[2.3] to eliminate the potential, we obtain the following: 

(2.10) 

Next, we eliminate the velocity dependence by using the solution [2.9] and the remaining 
differential equation for the density P becomes 

(2.11) 

After a bit of manipulation, equation [2.11] can be integrated once to obtain 

(2.12) 

where {J is the constant of integration. 

Equation [2.12] provides us with much information concerning traveling wave solu­
tions to the fluid equations. Physically interesting solutions occur when P~ > O. For 
given values of A and {J (and for a given ,,), there will be a range of densities [PI, P2] 
for which P~ > o. The maximum value P2 corresponds to the density at the crest of the 
wave, whereas the minimum density PI is the density at the wave trough. The present 
analysis is complicated by the presence of a singularity in equation [2.12]. The quantity 
P~ blows up when p2 + "P = A2• This condition has one positive root which we denote 
as Pc: 

(2.13) 


It is straightforward to show (see Appendix B) that the singularity always occurs within 
the allowed range of densities, i.e., 

PI < Pc < P2· (2.14) 

Furthermore, the singular value pc corresponds to the density where the function in 
brackets is a maximum. In addition, it can be shown (Appendix C) that the singularity 
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is removable in the sense that we can integrate over it to obtain a continuous wave profile 
p(e)· 

For a given value of A (and a given IC), there exists a minimum value of {3 for which 
a (real) range of densities [PhP2] exists: 

{3miA = Pc + A2 /pc + IClog[pc], (2.15) 

where Pc is defined by equation (2.13). For values of {J near (but larger than) {3miru 
the range of allowed densities is small in the sense that Ip2 - PIliPc -< 1. Thus, the 
density variations of the wave are small and hence {3 -+ {3miA corresponds to the linear 
limit of this class of waves. The quantity {J - {JmiA provides a measure of the degree of 
nonlinearity of the wave. 

The parameter space available for nonlinear waves is fairly large: we get to specify 
IC (which determines the equation of state) and the constants of integration A and {3. As 
an example, we take IC = 10 (which is consistent with observations as discussed above) 
and A = 3 (which is t'"Wl km/s in dimensionful units if the sound speed is 0.33 km/s). For 
this choice of parameters, we find a family of nonlinear waves corresponding to varying 
choices of (3. The phase diagram. for this family of waves is shown in Figure 1. Waves 
profiles pee) for varying values of {3 are shown in Figure 2. For this example, {3miA = 9.81. 
Notice that as {J increases, the waves become increasingly nonlinear and the wavelength 
also increases (see Appendix D); the wave crests thus become widely separated and hence 
localized like solitons. 

3. ONE-DIM:ENSIONAL WAVES WITH MAGNETIC FIELDS 

In this section, we generalize our discussion of stationary nonlinear waves in molecu­
lar clouds to include the effects of magnetic fields on the wave motion. Molecular clouds 
are lightly ionized, i.e., the ratio of ions to neutrals is very small, typically t'"W 10-6 • As 
a result, essentially all of the mass resides in the neutral component. However, only the 
ionized component is directly coupled to the magnetic field; the neutral component is 
affected by the field indirectly through ion-neutral collisions. 

3.1 EqutJtiofU 0/ Motion lor the Neutral Specie, 

The equations of motion for the neutral species are almost the same as before: 

8p 8 

at + 8z (pu) = 0, (3.1) 


au + u au + !. 8p + 81P + '1p,(u - u,) = 0, (3.2)
at 8z p8z 8z 

2 

88z"" 2 = 411"Gp, (3.3) 

where we have neglected the gravitational contribution of the ions in the Poisson equation 
[3.3]. Here, quantities without subscript labels refer to the neutral component, whereas 
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subscripted quantities refer to the ionized component. The new (and final) term in 
equation [3.2] arises from the friction exerted on the neutral component of the fluid by 
the ionized component, which is in turn coupled to the magnetic field. The parameter 1] 

is the drag coefficient, which we will take to have a constant value of 1/ = 3.5 X 1013 cm3 

g-1 s-1 (Draine, Roberge, & Dalgarno 1983; see also the discussion of Shu 1992). 

3.! Ion Evolution: VOfa.ge into the Neutra.l Sea. 

The equations of motion for the ionized component take the form 

(3.4) 


BUi Bu i 1 BPi 81P ( ) 1 [( ) ] ...-+Ui-+--+-='1PU-Ui +-- VxB xB ·z, (3.5)at 8z Pi Bz Bz 47rPi 

where z is the unit vector in the z direction. Notice that in using the continuity equation 
[3.4] for the ions, we are implicitly ignoring any chemical effects. The equations of motion 
for the magnetic field can be written 

a;: = V x (t&iZ x B), (3.6) 

V· B = o. (3.7) 

So far we have left the magnetic field B expressed as a vector. It is straightforward 
to show that the z ..component of the field must remain constant (by the "no monopole 
equation" [3.7]) and furthermore that only the perpendicular (to the z..ms) component 
enters into the dynamics. Without loss of generality, we can thus take the magnetic field 
to be of the form 

B=BY· (3.8) 

The equation of motion [3.5] for the ion component can be simplified greatly by 
noticing that the two terms on the right hand side of the equation are typically several 
orders of magnitude larger than the other terms (see the discussion of Shu 1992). Thus, 
to a high degree of approximation, the drift speed (u - Ui) is produced by the Lorentz 
force driving the ions through the sea of neutrals and the equation of motion for the ions 
becomes 

(3.9) 


3.3 The Stationary W live Approzimation 

We now look for stationary wave solutions for the above system of differential equa­
tions. We invoke the non..dimensionalization procedure of equation [2.5] and the definition 
of egiven by equation [2.6]. In this case, the continuity equations reduce to 

pv= A, (3.10) 
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(3.11 ) 

where we have defined 11 = U-110 and 11i = Ui-110. In the stationary wave approximation, 
the condition [3.6] which expresses field freezing also assumes the form. of a continuity 
equation 

(3.12) 

which can be integrated to obtain 
(3.13) 

where a is a constant. Notice that if we divide equation [3.13] by equation [3.11], we 
obtain the result B / Pi = constant, which expresses the fact that when we squeeze the 
ion fluid together (in one dimension) the magnetic field strength increases by the same 
factor. Notice also that we have converted the field strength to its nondimensional form: 
B -+ B / Bo, where Bo is a reference field strength (typically - 10 - 30 J'G; see, e.g., 
Myers & Goodman 1988; Goodman et ale 1989). 

The equation of motion for the neutral component is almost the same as in the field­
free case. The only difference is the presence' of the magnetic friction term in equation 
[3.2]. Proceding as in §2, we can differentiate the equation of motion [3.2] with respect 
to :e to eliminate the gravitational potential and then use the continuity equations to 
eliminate the velocities. After a bit of algebra, we obtain 

ppu [p2 + K.p - A2] + PtPt [3A2 
- p2 - 2K.p] + p5 + 1iAp~lJt [;] =0, (3.14) 

where ii = 71Po(41rGpo)-1/2 is the nondimensional version of the drag coefficient. 

We can now use the continuity equations derived above to simplify the ion equation 
of motion [3.9]. We eliminate the velocities (u - Ui) = (11 -11i) and the field strength B 
in favor of the ion and neutral densities: 

1 P 
- Pi~ = A - Ai-, (3.15)
7 ~ Pi 

where we have defined 7 = 21r(iiA:/a2 and where the parameter ( = poa~/B~ arises 
from the nondimensionalization of equation [3.9]. 

3.i A Model Equa.tion lor Nonlinea,r Wa,ve.t 

We have thus far reduced our problem to two coupled nonlinear ordinary differential 
equations (namely [3.14] and [3.15]). Although it is straightforward to integrate these 
equations using standard numerical techniques, we want to procede as far as possible 
using analytic methods. In order to make further progress, we must make some sort of 
simplifying approximations. The bulk of the matter is contained in the neutral compo­
nent; we are interested in the ionized component only in order to calculate the friction 
that the ions exert on the neutrals. This friction term. is proportional to 0e(Pi/p), which 
can be written in the form 

(3.16) 
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where we have used the ion equation of motion [3.14]. IT we now ignore the third term 
(which will be small when j is sufficiently large), we can rewrite this quantity as 

jA [ApO] -1 [Ap. ] jA 1BE(P,/P) = - --' -' - P = --(pF - p), (3.17) 
p A, Ai P PF 

where we have defined a reference density PF = Api/A,- IT we make the further approx­
imation that the reference density PF can be taken to be constant, we obtain an easily 
managea.ble model equation which describes the motion of the neutral component: 

(3.18) 

where we have collected all of the constants that determine the ion-neutral coupling into 
a single parameter r = 211",7fZA1A2/a2 (the parameter r is typically --1-10). Although 
this model equation is somewhat idealized, it does retain the essential physics of the 
friction term. In particular, the term is positive at low densities and becomes negative 
for sufficiently large densities. We emphasize, however, that our rather cavalier approach 
is motivated primarily to carry the problem as far as we can analytically (see Appendix 
E for a discussion of the validity of the model equation). 

The model equation of motion [3.18] can be easily integra.ted to obtain 

(3.19) 

where we have once again used /3 as the constant of integration. As we discuss in the 
following section, the solution [3.19] can exhibit many interesting types of nonlinear wave 
behavior. 

4. SOLITONS IN ONE-DIM:ENSIONAL MOLECULAR CLOUDS 

In this section, we discuss the existence and/or non-existence of solitons in molecular 
clouds for a variety of circumstances. In this discussion, we will use the methods of phase 
plane analysis as discussed at some length in Infeld & Rowlands (1990) and in Drazin & 
Johnson (1989). In this method, we look for traveling wave solutions to the equations of 
motion, i.e., we consider all fluid fields to be functions of e= :c - vote We then try to 
reduce the system of equations to a single equation of the form 

~p~ = F(p, 0;), (4.1) 

where the OJ are constants. Although we have used the symbol P as the field of choice in 
equation [4.1], one can, in principle, use any of the dependent variables. As we discuss 
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below, the properties of the function F determine the properties of the wave solutions 
pee) in a fairly simple way. 

First of all, physically meaningful solutions require that F > 0 (so that the solutions 
are real). In the present case, the field P is a density and must also be positive. Thus, 
physically relevant solutions exist when F(p) is positive over a range of postive densities. 
Next, we note that wave solutions exist when F(p) is positive between two zeroes of the 
function F. The zeroes of F correspond to maximum and minimum densities, which are 
obviously required for wavelike behavior. Finally, we note that the nature of the zeroes of 
F determines the nature of the wavelike solutions. In particular, if F is positive between 
two simple zeroes, then (ordinary) nonlinear waves result. However, if F is positive 
between a simple zero and a double zero (i.e., a point where both F and 8F/8p vanish), 
then a new type of solution - a soliton - can result. One way to see this is to expand 
equation [4.1] about the double zero, which we denote as Po: 

2 2 " [ 3] (4.2)Pf. = (p - Po) F (Po) + 0 (p - Po) , 

where F" (Po) > 0 because we are considering that case in which F is positive. Thus, as 
p -+ po, we obtain 

(4.3) 

where 6 is a constant. Putting all of these results together, we see that a soliton consists of 
a single large hump of material and that the density smoothly goes to its asymptotic value 
po as e-+ ±oo. Another way to describe this behavior is to note that the wavelength of 
the solution diverges for a soliton (see Appendix D). Notice that this same sort of behavior 
also occurs if the function F has a higher order zero (Le., the first n - 1 derivatives of 
F vanish) with 8 ftF / 8pft > o. In this case the density still smoothly approaches its 
asymptotic value as e-+ ±oo, although the approach is no longer exponential. 

The remaining possibility of interest occurs when the function F is positive between 
two double (or higher order) zeroes of F, say PA and ps. In this case, it can be shown that 
the solution p(e) can approach one value (e.g., PAl in the limit e-+ -00 and the other 
value (ps) in the limit e-+ 00. Solutions of this type are known as kink" or topological 
lolitonl t and arise frequently in the context of quantum field theory (e.g., Coleman 1985; 
Rajaraman 1987). 

t The reader might wonder just what is "topological" about a "topological soliton". In 
the case considered here, e.g., we can divide the entire space of solutions into subspaces 
labeled by the values of pee) as e -+ ±oo. Here we have four such subspaces: (PA,PA), 
(PA,PS), (pS,PA), and (ps,ps). These subspaces are disconnected subsets of the whole 
space of solutions in the usual topological sense (a solution belonging to a given subspace 
cannot be continuously distorted into a solution belonging to a different subspace). The 
space of solutions thus has a nontrivial topology (see, e.g., Coleman 1985 for further 
discussion). 
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4.1 A No-Soliton Theorem 

lor Molecula.r CloudA without Ma.gnetic FieldJ 


In this section we demonstrate that no true soliton solutions exist for one dimensional 
field-free clouds, i.e., physical systems that obey the equations of motion [2.1 - 2.3]. We 
could begin with the solution [2.12], which is applicable only for the equation of state 
[2.4], and show that no solitons are allowed. However, one might suppose that different 
equations of state could lead to a different conclusion. We will therefore generalize this 
present discussion to include any barotropic equation of state, i.e., any equation of state 
of the form 

p = pep)· (4.4) 

However, we must place mild further restrictions on the equation of state. We require 
that 

and pp-+ 0 as p -+ 0, (4.5) 

which imply that the pressure does not become infinitely large in the low density limit 
p -+ O. Finally, we require that the function p(p) can be expanded in a Taylor series 
about any density point p =1= O. Given this class of equations of state, we now derive the 
main result of this subsection, which we state as a theorem for emphasis: 

Theorem 1. No soliton solutions exist for one dimensional molecular clouds without 
magnetic fields, i.e., the physical system defined by equations [2.1 - 2.3], [4.4], and [4.5]. 

Proof: Following the same procedure outlined in §2, we derive the general equation of 
motion for a stationary wave: 

28p 2] [2 28p S82p ] 5[ - A + P(P( 3A - P 8p + P 8p2 + p = 0, (4.6)PP(( P 8p 

which is written in nondimensional form. Fortunately, the first integral of equation [4.6] 
can still be found analytically: 

~p~ = p8 [p2: _ A2r2{.8 - p(p) - A2 / p} =.1"(p), (4.7) 

where /3 is the constant of integration. Equation [4.7] is the generalization of the solution 
[2.12] for an arbitrary barotropic equation of state p(p). 

In order to show that no solitons exist for this physical system, we must show that 
the function F cannot be positive between a double (or higher order) zero and a simple 
zero of F (where F is given by equation [4.7]). We first show that no multiple zeroes 
exist other than (possibly) at p = O. To show this, we first define 

g(p) = /3 - p(p) - A2 
/ p, (4.8) 

and write the solution in the form 

1 (8g )-22P~ = F(p) = p2g(p) 8p . (4.9) 
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Now suppose that po #= 0 is a zero of F. Then we must have g(po) = 0 and 8g18p (Po) #= 
o(for our given class of equations of state). We now write 8FI8p in the form 

8F 2 {(8g )-2 2(8g)-1829} + 2(89)-1 2(89)-1-=9P- -p- - p- =p- ( 4.10) 
8p 8p 8p 8p2 8p 8p' 

where all quantities are evaluated at p = Po and where we have used the fact that 
g(po) = 0 in obtaining the second equality (note that no competing infinities in the 
term in brackets are present). Since Po #= 0 (by hypothesis) and 8g18p is finite (for any 
physically reasonable equation of state), we find that 8F18p #= 0 for any possible zero 
po #= o. 

To complete the proof, we consider the possibility that p = 0 provides the required 
double or higher order zero. Let us expand the function F(p) about the point p = 0: 

(4.11) 

Given the constraints of equation [4.5], by inspection we see that F is always negative 
in a sufficiently small neighborhood of p = 0; thus, p = 0 does not provide the zero of F 
required for the existence of solitons. 

Since both Po #= 0 and Po = 0 fail to provide double (or higher order) zeroes of F 
with F > 0, we conclude that no solitons exist for this system. Q.E.D . 

./.1 Soliton Solution. to the Model Equation 

In this section we show that the model equation [3.181 can exhibit a wide variety of 
nonlinear wave phenomena including soliton solutions. As discussed above, the types of 
allowed wave solutions depend on the properties of the function F(p), which, in this case, 
is given by the right hand side of equation [3.19]. In particular, we are interested in the 
nature of the zeroes of the function F(p). We begin by noting that the point p = 0 will 
always be a multiple zero, as shown by the expansion about p = 0 

I -4{ 1 2 1 (A2 Ie) ( 2)}:r()p = p A --rA + -r - - - p + 0 p . ( 4.12) 
3 2 PF 3 

The point p = 0 thus provides a triple zero of F, but the function F is always negative in 
a sufficiently small neighborhood of p = o. As a result, soliton behavior in which p -+ 0 
as e-+ ±oo cannot occur for the solution [3.19] of the model equation of motion. 

We now consider (possible) multiple zeroes of F for some point Po #= o. To study 
this case, we write F(p) in the form 

F(p) = p'[p2 + "P - A2]-2 !(p), ( 4.13) 
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It is straightforward to show that a double (or higher order) zero of F(p) can occur at 
a point po i= a if and only if the function f(p) has a double (or higher order) zero at Po 
(provided that the double zero of f(p) does not occur at the singularity, i.e., provided 
that p~ + Itpo =F A 2). Our discussion is thus reduced to finding the nature of the zeroes 
of f(p). We can simplify the situation even further by adopting the particular choice 
pF = r / It, which reduces the number of parameters in the problem and eliminates the 
logarithmic term £rom f(p). Notice that the available parameter space is still quite large; 
we get to specify the constants It, r, A, and p. 

Now suppose that f has a double zero at a point po i= O. Since f is a quartic 
polynomial, this supposition implies that f is of the form 

f(p) = (p - PO)2 [_p2 + Bp - 0], ( 4.15) 

where B and 0 are constants which are related to the parameters appearing in equation 
[4.14]. By equating the coefficients in equations [4.14] and [4.15], we obtain consistency 
conditions of the form 

(4.16) 

It 2 2rA2 
(J = -22(r+A ) - -33 +2po. ( 4.17) 

Po Po 

Since the soliton solution cannot have the double zero of f(p) at the singularity, we 
must consider parameters such that pi + Itpo =F A2 and hence equation [4.16] reduces to 
r = po(1t - Po). In order to ensure that f (and hence F) is positive in the neighborhood 
of the double zero, we need the further requirement that 

(4.18) 

Finally, we note that we have sufficient freedom in our choice of parameters that we can 
make the further restriction 

2 A2Po + Itpo > , (4.19) 

which ensures that the singularity (see equation [4.13]) does not lie in the range of den­
sities taken by the wave form. 

As an example, we take the choice of parameters It = 10, r = 9, A = 3, /3 = 38, and 
hence Po = 1 and PF = 9/10. The resulting function F(p) is shown in Figure 3a, and 
the corresponding wave profile is shown in Figure 3b. Notice that the wave profile of the 
soliton is very localized - most of the interesting part of the profile occurs within lei < 1. 
As a second example, we consider the parameters A = 1, It = 10, r = 16, (J = 23 ~;, and 
hence Po = 2 and p F = 1.6. The resulting function F(p) is shown in Figure 4a, and the 
corresponding wave profile is shown in Figure 4b. Notice that the wave profile of this 
soliton is wider and lower than that of Figure 3. As we discuss in Appendix E, this second 
soliton solution is more consistent (compared to that of Fig. 3) with the approximations 
used in deriving the model equation. 
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•.3 Kinle Solutio~ to a Limiting Form 0/ the Model Equation 

In this section we study kink solutions (topological solitons) to a limiting form of the 
model equation of motion. As noted above, kink solutions require that the function :F(p) 
is positive between two double (or higher order) zeroes. Notice that since the quartic 
term (p4:) is negative in the function f(p), we cannot have two double zeroes of f where 
f > 0 in between. In the previous section we showed that although the point p = 0 is a 
multiple zero of F, the function is always negative in a neighborhood of p = o. However, 
we can in principle reduce the model equation of motion to a limiting form in which p = 0 
does provide a higher order zero about which F is positive. Let us simultaneously take 

PF 

the limits 
r ..... o and PF"'" 0, ( 4.20) 

in such a manner that the ratio approaches a constant, i.e., 

r 
- ..... /J = co~t4nt. ( 4.21) 

In this limit, the model equation of motion can show qualitatively new behavior. In 
particular, as we show below, kink solutions can be found. 

Given the limit described above, we can find the first integral as before. We will 
begin by removing the logarithmic term from the analog of equation [3.19] by adopting 
the judicious choice of parameter /J = If,. The solution then becomes 

(4.22) 

By inspection we see that p = 0 is now a fourth order zero of :F and that :F is positive 
in the neighborhood of p = o. The point p = 0 thus provides the first of the two higher 
order zeroes required for kink solutions. 

The second multiple zero must be a double zero of the cubic polynomial 

(4.23) 

If we denote the desired double zero as po, the polynomial f(p) must be of the form 

f(p) = (p - po)2 [b - p], ( 4.24) 

where b is a constant (and we must have b > po in order to keep f(p) positive). By 
equating coefficients in equations [4.23] and [4.24], we can derive consistency conditions 
as in the previous section. The first of these can be written 

(4.25) 

Notice that if If, :F po, then equation [4.25] can be reduced to the condition A2 = p~ +~Po, 
i.e., the singularity occurs at the double zero of f(p) and hence we do not obtain the 
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required double zero of :F(p). As a result we must take Po = It. as the relevant root of the 
consistency equation [4.25]. The remaining consistency equation then takes the simple 
form 

(4.26) 

The requirement that :F is positive between the two multiple zeroes implies an additional 
constraint 

P> 3po = 31t.. ( 4.27) 

Given the above constraints, we can find kink solutions in which the allowed range of 
densities is 0 < P < Po. IT we want to simplify the situation by eliminating the singularity 
from the allowed range of densities, we must impose the further constraint 

(4.28) 

Notice that if both equations [4.26] and [4.27] are satisfied, then the constraint [4.28] is 
automatically satisfied also. In other words, for this kink solution, the singular value of 
the density (pc) always lies outside the range of densities accessible to the wave profile. 

As an example of this type of kink solution, we take It. = 10 as before. The first 
consistency condition then requires that po = 10 = It.. The consistency condition [4.26] 
and the positivity constraint [4.27] can both be satisfied if we take A = 10 and f3 = 40. 
For this choice of parameters, the first integral :F(p) is shown in Figure 5a and the 
corresponding wave profile p(e) is shown in Figure 5b. Notice the asymmetry in the wave 
profile p(e). This behavior results from the fact that the zero of :F on the high density 
side is a double zero, whereas that on the low density side is a fourth order zero. 

5. STABILITY OF THE WAVES 

In this section we discuss the stability of nonlinear waves in molecular clouds. In 
the previous sections we have shown that stationary nonlinear wave solutions exist for 
one-dimensional clouds. Furthermore, we have shown that solitons (and even kinks) 
can exist under the proper circumstances. However, there is no guarantee that these 
wave solutions will be strictly stable to the growth of small perturbations. If the wave 
solutions are unstable, then the clumps which they represent can live for only a finite (and 
hopefully calculable) lifetime. We stress that unstable waves are not fatal for a description 
of substructure in molecular clouds, since the clouds themselves have a relatively short 
lifetime (,..." lOT yr, i.e., less than a sound crossing time - see, e.g., Blitz 1992). Note that 
the substructure within the cloud (the clumps) could be even shorter-lived. However, the 
timescale for instability cannot be shorter than the required lifetime of the clumps. 

Unfortunately, a full treatment of the stability properties of these nonlinear waves 
is beyond the scope of this current paper. We can, however, obtain useful preliminary 
results. In particular, we show in this section that for clouds without magnetic fields the 
waves are always stable in the limit of short wavelength perturbations and that the waves 
are always unstable for perturbations with sufficiently large wavelengths. For the model 
equation, we also show that large scale perturbations can be stabilized with a sufficiently 
large coupling parameter r. 

15 



In order to discuss the issue of stability, we must return to the original time dependent 
formulation of the problem. We can simplify the situation somewhat by using e= Z - 'Vot 
as the spatial coordinate, i.e., we transform the equations of motion to a frame of reference 
which is traveling along with the unperturbed wave disturbance. Proceeding as in §2, we 
derive the general equations of motion in the form 

Pi + Pt:" + P"'e =0, (5.1) 

p+" p+2"
11et + 1111ee + "'e11e + ~pee - I pepe + P = 0, (5.2)

P P 
where we have defined 11 = U -110 as before and where subscripts refer to differentiation. 
We now expand the fluid fields according to 

P = pee) + 6(e, t), (5.3) 

11 = 11(e) + wee, t), (5.4) 

where the functions pee) and 11(e) on the right hand sides of the equations are the unper­
turbed stationary solutions and where 6 and 10 are to be considered as small perturbations. 
Next, we find the differential equations for the first order fields: 

(5.5) 

2(p + 3,,) P+ 2" ] P+ " P+ 2"Wet + [W11]ee + [1 + 4 pePe - I pee 6 + ~6ee - 2 I pe6e = 0, (5.6) 
P P P P 

where the subscript on the square brackets denotes differentiation. We can now state the 
first result of our stability analysis: 

Result 1. For one dimensional molecular douds without magnetic fields, perturbations 
with small size scales are always stable in ~he limi~ Ie -+ 00. 

Proof: To prove this claim, it is sufficient to consider perturbations which have a size scale 
much smaller than the wavelength of the unperturbed wave. In this case, we can consider 
the fluid functions p(e) and 11(e) which appear in equations [5.5] and [5.6] as slowly 
varying. For differential equations of the form [5.5] and [5.6] with constant cofficients, it 
is valid to expand the first order fields 6 and 10 into fourier modes and to consider only 
one mode at a time, i.e., we take 

6 = 6CII) exp[i(ke - wt)], (5.7) 

10 =WCII} exp[i(ke - wt)], (5.8) 

where 6CII} and WCII} are constants and where k is the wavenumber of the perturbation. 
The first order equations then take the form 

(5.9) 
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(kw - k2v +Vee + 2ikve) W(,,)+ 
(5.10)P+" 2 P+2" . P+3" ]

[1 - -2-k - 3 (2akpe + pee) + 2 4: PePe 6(,,) = o. 
P P P 

The above two equations can be combined to produce a dispersion relation which governs 
the stabilitylinstability of the waves in this (constant coefficient) approximation. In this 
particular case, we are interested in perturbations with short wavelengths and hence large 
k. IT we take the large k limit of equations [5.9] and [5.10], we obtain a dispersion relation 
of the form 

D(w, k) = k [p2w2 - 2Akpw + k2(A2 _ "P _ p2)] 
(5.11 ) 

- ik2pe [p + 3" - 3A(AIP - wlk)] + O(k) = 0, 

where we have used the solution V = Alpin obtaining this form. Notice that the second 
term (on the second line) is smaller than the first by one power of k. To leading order in 
k, the angular frequency w = wR is given by 

(5.12) 


which is always a real number - the quantity in the square root is the square of the (local) 
sound speed and is always positive. Thus, perturbations in the short wavelength limit 
are always stable (to leading order in k) and propagate at the sound speed relative to the 
unperturbed flow (recall that Alp = 11, the speed of the fluid relative to the rest frame 
of the wave). However, if we write 

w=wR+ii, (5.13) 

we can solve for the leading order contribution to the growth rate i: 

(5.14) 


where we have used the leading order solution [5.12] for the real part of w in obtaining 
this form. The growth rate i can be positive or negative (corresponding to either growing 
or damped perturbations), but the size of i is smaller than that of WR by one factor of 
k. The waves are thus truly stable only in the limit k -+ 00. Notice, however, that we 
cannot literally take the k -+ 00 limit; this discussion applies to size scales 1 Ik <:: 1 pc 
(the size of a small "clump"), but still sufficiently large that the equation of state [2.4] is 
valid. 
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Result 2. For one dimensional molecular clouds without magnetic nelds, perturbations 
with. sufficiently large size scales are always unstable. 

Proof: It is clear from physical considerations that this result must be true: On a suffi­
ciently large size scale, the "waviness" of the solution can be ignored and the wave profile 
p(e) can be conceptually replaced by a mean density (p). Standard Jeans analysis then 
implies that gravitational instability will. occur for a sufficiently large size scale. In the 
following discussion, we show that this argument does indeed hold (and thus this proof 
provides a consistency check on our approach). 

Let us define L to be the size scale of the perturbation (so that k = 211"/L is the 
wavenumber) and let A be the wavelength of the (unperturbed) nonlinear wave. We want 
to average all quantities in the problem over an intermediate length scale el, such that 
the ordering 

L >el> A (5.15) 

applies. Furthermore, we will take el to be an integer number of wavelengths (A). For a 
given function I, we denote its average via 

1 rez
el Jo I de = (I)· (5.16) 

When we average the equations of motion over the interval. (0, eI) we can pull the slowly 
varying functions 6 and 10 out of the integral, e.g., 

el1 Jorez 
(pwe + pelD) de = lDe{p) + lD{pe) + ... = lDe{p) + ... , (5.17) 

where the dots ... indicate higher order terms due to the (slow) variation of'W and 'We. 
In obtaining the second equality we have used the fact that the average of Pe vanishes. 
Using similar arguments for the other terms, the continuity equation [5.5] can be written 

6t + {p)lDe + {v)6e = 0, (5.18) 

where we have ignored the higher order terms (in 1/L). Similarly, the force equation [5.6] 
can be written in this same approximation in the form 

(5.19) 

where, for convenience, we have defined 

P = 2( P + 3" 2) and (5.20)1 - 4 Pe
P 

We now assume that the perturbations can be written in terms of Fourier modes as in 
equations [5.7 - 5.8] and obtain a dispersion relation of the form 

D(w, k) = k [(w - {v)k)2 + (p) (1 + PI - k2P2)] = o. (5.21) 
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The solution of equation [5.21] for w in terms of k can be written 

(5.22) 


In comparing the above form to the usual dispersion relation for a uniform density cloud 
in one dimension (see Appendix A), we see that the quantity (P)P2 plays the role of 

2the sound speed squared (note that P2 is the average of 0. / p) and that the other terms 
arise from the nonzero :fluid motions present in the waves. In this notation, the critical 
wavenumber kc for gravitational instability takes the form 

L2 _ 1 + PI 
(5.23)"'c - P

2 
• 

In the k -+ 0 limit, we obtain 

(5.24) 


which implies that w becomes pure imaginary and therefore the waves become unstable. 

Result 3. For physical systems governed by the model equation of motion [3.18J, which 
includes magnetic :fields in a heuristic fashion, perturbations on large size scales can be 
stabilized with a sufIiciently large coupling parameter r. 

Proof: In order to study the stability of the solutions, we must have a time-dependent 
form of the equations of motion (where magnetic fields are now included). Since the ion 
density and velocity have already been eliminated in obtaining the model equation itself, 
it is sufficient to consider only the netural density p and velocity 11, which we expand 
according to equations [5.3] and [5.41. The first order continuity equation [5.5] remains 
the same as before. In the force equation [5.2], before we take the first order perturbation, 
we must add a coupling term and obtain 

p + " p + 2" [1 1 ] 
l1(t + 1111(( + 11(11( + --2-pee - 3 P(P( + P + r - - - = 0, (5.25) 

p P P PF 

which implies a first order equation of the form 

P + " P + 2" [2(P + 3,,) p + 2" r ] W(t+[W111((+-2- 6((-2 3 p(6(+ 1+ 4 p(p(- 3 P((-2 6 = 0, (5.26)
P P P P P 

where we have again expanded the fluid fields according to equations [5.3] and [5.4]. If 
we redo the stability analysis (as outlined by equations [5.15 - 5.20]) with the inclusion 
of the magnetic coupling term, the dispersion relation becomes 

(5.27) 

where the angular brackets denote the intermediate spatial average as before. The critical 
wavenumber for gravitational stability/instability is thus 

k! = ~Jl+pl-r(:2)]' (5.28) 
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which clearly shows the stabilizing effect of the magnetic field (compare equations [5.23] 
and [5.28]). 

Notice that this model has the peculiar property that for sufficiently large coupling 
strength r (and for a range of values of the other parameters), the critical wavenumber 
becomes imaginary, i.e., the perturbations become stable on all length scales. In this 
regard our model equation departs from the true physical situation, where a sufficiently 
large scale perturbation will always be unstable (i.e., the magnetic Jean's length always 
exists - see, e.g., Strittmatter 1966; Mouschovias 1976). On the other hand, this stable 
feature of the model allows us to study wave propagation against a background which 
is not collapsing, a situation which apparently does occur in nearby molecular clouds. 
Notice also that, in practice, the parameter r must be very large to completely stabilize 
the system. If we use the soliton solutions presented in §4.2 to obtain a rough estimate 
of the values of PI and (1/p2) appearing in equation [5.28], we find that a value of 
r 100 - 200 is required to keep perturbations stable on all length scales. Notice,""-I 

however, that this stability calculation is not strictly valid for solitons. We have assumed 
here that the ordering of equation [5.15] applies whereas the wavelength of a soliton 
diverges. More detailed stability considerations must be applied in the case of solitons 
(see, e.g., Pego & Weinstein 1992). 

6. DISCUSSION 

In this paper we have begun a systematic exploration of nonlinear wave phenomena 
in molecular clouds. This present study has concentrated on the case of one-dimensional 
clouds. We have shown that a rich variety of nonlinear wave entities can live in these 
clouds and may thus provide some of the observed structure. 

For the case of one-dimensional molecular clouds without magnetic fields, highly 
nonlinear waves can exist (see Figure 2). As the waves become more and more nonlinear, 
the wavelength increases. We have shown that these waves are stable to perturbations 
on small size scales (the k ~ 00 limit) and unstable to perturbations with sufficiently 
large size scales (the k ~ 0 limit). For molecular clouds without magnetic fields, we 
have proved a "no soliton theorem" which shows that no true solitons can exist in these 
physical systems. 

For molecular clouds which contain magnetic fields, we have derived a model equa­
tion which governs wave propagation. This model equation admits a rich variety of 
phenomena (see Figures 3 - 5) including nonlinear waves, solitons, and kinks (topolog­
ical solitons). One interesting property of the model equation and its solutions is that 
for sufficiently large values of the coupling parameter r, the waves are stable even on 
the largest scale. Since the simplest physical arguments show that an effective Jeans 
length exists even in the presence of magnetic fields, this stability property of the model 
equation implies an apparent contradiction. However, observed molecular clouds are not 
collapsing on a free-fall time scale and are thus supported in some manner. The model 
equation also has this property and thus might be a reasonably realistic model of the true 
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astrophysical situation. In particular, the model equation allows us to study nonlinear 
wave propagation against a background which is not collapsing. 

We have derived several formal results which are presented in the Appendices. We 
have derived the linear dispersion relation for clouds with the joint isothermal/logatropic 
equation of state (Appendix A). We have studied the properties of the singularity (Ap­
pendices B and C). For clouds without magnetic fields, we have found an estimate of 
the wavelength of nonlinear waves as a function of parameters (Appendix D). We have 
discussed the conditions under which the model equation of motion is valid (Appendix 
E) and have found a Lie group of scaling transformations which leave the model equation 
invariant (Appendix F). 

6.! ComplJrUon with Ob.seM1ed Molecular Cloud, 

A direct comparison between observed molecular clouds and the theory developed in 
this paper is somewhat difficult at present. The theory has focused on one-dimensional 
dynamics, whereas observed molecular clouds maps show structure in either two dimen­
sions (for column density maps) or in three dimensions (when line velocity information 
is included). Fortunately, however, some comparisons can be made. One way to describe 
cloud structure is to measure the mass fraction m of material above a given threshold 
density 1:: as a function of threshold density (Adams 1992): 

( .~) = Jd"'x p(x) e [p(x) - 1::] 
(6.1)m p, 4J - Jd"'x p(x) , 

where p(x) is a map of the cloud, e is a step function, and where the integrals are 
taken over the area (or volume) of the map. Observed IRAS maps of nearby molecular 
clouds (Wood et ale 1999) show smooth distributions of density as defined by equation 
[6.1] (see Wiseman & Adams 1992). Such profiles are similar to those produced by 
wave motions [Figures 2-5 show wave profiles p(e) which imply corresponding smooth 
distributions m(p; 1::) ] and are not consistent with the picture of high density "clumps" 
moving through a diffuse interclump medium. 

Another hint that large scale wavelike entities occur in molecular clouds comes from 
observed periodic or nearly periodic structure in maps of these objects. For example, the 
69",m continuum map of the star forming region NGC 6334 shows five regularly spaced 
condensations (see McBreen et ale 1979; see also Zinnecker, McCaughrean, & Wilking 
1992). In fact, the structure of molecular clouds is often described in terms of "large scale 
filaments" which have "fragmented" to form "clumps" (see, e.g., de Geus, Bronfman, & 
Thaddeus 1990 for a description of the Ophiuchus clouds). The question of whether or 
not nonlinear waves and solitons can explain the observed "clumps" in these clouds will 
be answered when the present calculations are extended to higher spatial dimensions (see 
below). 

6.3 Direction.s for Future Work 

Although some progress has been made, much work remains to be done before non­
linear waves in molecular clouds are sufficiently well understood. In the one dimensional 
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problem, the stability of the waves remains somewhat unresolved. Although we have 
studied the stability of the system in the limits of small scale perturbations (k --+ (0) 
and large scale perturbations (Ie -+ 0), a general stability analysis remains to be done. In 
particular, we would like to know the timescales on which these waves will change their 
form. Numerical simulations of wave propagation and!or more sophisticated mathemat­
ical techniques may be necessary to settle this issue. 

The next issue which must be addressed is the collision and interaction of the waves. 
In other physical systems, soliton wave entities can remain intact during collisions. Waves 
with this property occur in such widely disparate systems as the single humped solitons in 
shallow water (see Infeld & Rowlands 1990) and the solitons of the sine-Gordon system 
from quantum field theory (see Rajaraman 1987). It will be interesting to study the 
interactions of the soliton solutions to the model equation of motion derived in this 
paper. 

Another issue that we have not dealt with is the actual generation of nonlinear waves. 
We expect that a self-gravitating cloud, which is not in general in complete equilibrium., 
will tend to collapse and thereby generate a rich and complicated spectrum of wave 
motions (see, e.g., Arons & Max 1975). The self gravity of the cloud thus represents a 
more than adequate energy source for the waves; the process of star formation provides an 
additional energy source (e.g., Norman & Silk 1980). Only the most stable (longest lived) 
wave entities will survive to affect the observed cloud structure. In order to study the 
details of how these waves are generated, however, one must solve the full time-dependent 
form of the equations of motion as an initial value problem. We leave this task for future 
work. 

An important limitation of this present study is that it includes only one spatial 
dimension. In order to describe realistic molecular clouds, the present calculations must 
be generalized to include two (and three) spatial dimensions. One standard trend from 
fluid dynamics that should be kept in mind is that systems which are stable in one 
dimension are often unstable in two dimensions. Suppose, for example, we consider 
a nonlinear wave propagating in the z direction. In many cases, the wave will break 
up into several units (clumps?) along the iI direction. This kind of unstable behavior 
produces beautiful patterns in the case of surface waves on water (e.g., Saffman & Yuen 
1985; Infeld & Rowlands 1990) and may play an important role in our understanding of 
the observed patterns in molecular clouds. 

In summary, we have shown that a wide variety of nonlinear wave behavior, including 
solitons and kinks, can occur in one-dimensional molecular clouds. The extension of this 
work to include two spatial dimensions, instabilities, and interactions between waves 
provides an especially intriguing set of problems to explore in the future. 
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APPENDIX A: LINEAR DISPERSION RELATION 

In this Appendix, we derive the linear dispersion relation appropriate for a self­
gravitating fluid with the joint thermaJ.jlogatropic equation of state given by equation 
[2.4]. The linearized version of the fluid equations can be written 

(AI) 

(A2) 

(A3) 

where we have made the traditional approximation that the unperturbed potential ,;,(0) 

can be neglected in this treatment (see, e.g., Binney & Tremaine 1987 for further discus­
sion). After writing all of the first order quantities in the usual form 

F = Fo exp[i(wt + kz)] (A4) 

and performing a bit of algebra, we obtain the relevant dispersion relation: 

(A5) 

APPENDIX B: PRESENCE OF THE SINGULARITY 

In this Appendix, we show that the singular value of density (pc) always lies within 
the range of allowed densities of propagation of the waves. We begin by defining a function 
h according to 

A2 
h(p) = f3 - p - - - Itlogp, (Bl) 

p 

which is just the quantity in brackets in equation [2.12]. Thus, the requirement that 
P~ > 0 corresponds to h > 0; the end points of the range of allowed densities (Le., Pl 
and P2) are simply the zeroes of h(p). By inspection we see that h -+ -00 in the limits 
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P --+ 00 and P --+ O. Thus, the maximum of h must occur somewhere in between, i.e., 
when 

dh A2" 
- = -1+ - -- =0. (B2)
dp p2 P 

Notice that we must have 13 > f3min. in order to have h(p) positive at the maximum. The 
only solution to equation [B2] with positive density is 

(B3) 

which is the same as the singular value given by equation [2.13]. The singularity thus 
occurs at the maximum value of h; since the range of allowed densities is determined by 
the zeroes of h (provided they are real), the maximum value of h and hence the singularity 
will always fall within the allowed range. In order to complete the argument, we must 
show that the critical point Pc does correspond to a maximum of h. Consider the second 
derivative, 

(B4) 

We show that the quantity in brackets is negative (and hence h is a maximum) at Pc as 
follows: By inspection 

(B5) 

After subtracting the right hand side from both sides of the equation, we obtain 

(B6) 

Next, we divide by 2 and use the definition of Pc to obtain 

(B7) 

which shows that the second derivative is indeed negative at the critical point Pc. 

APPENDIX C: REMOVAL OF THE SINGULARITY 

In this Appendix, we show that the singularity of equation [2.12] is removable in 
that we can integrate over it to obtain a continuous wave profile. Using equation [2.12] 
we obtain 

(C1) 

The wave profile is obtained by integrating the above equation with respect to e. Near 
the singular point Pc, let us expand according to 

p = pc+ 5, (C2) 

V2Pb { 2 }1/21 1
5e. = ±(2Pc + ,,) 13 - Pc - A fpc - "log pc ""5 =±C""5. (C3) 
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In the neighborhood of the singularity, the above equation can be integrated to obtain 

6 = ± [±2C(de)] 1/2, (C4) 

where de is measured from the singularity and the inner ± sign is chosen to keep the 
quantity in brackets positive. The solution thus changes from one branch of the square 
root to the other at the singularity. 

APPENDIX D: AN APPROXIl.\4ATION FOR THE WAVELENGTH 

In this Appendix we estimate the wavelength for the nonlinear waves considereed in 
this paper. We explicitly consider only clouds without magnetic fields (§2), although the 
generalized case including magnetic fields can be treated similarly. We begin by writing 
the first integral of the equation of motion in the form 

1 dp r::;;:t:\ 
In - = v:F(p)· (D1)

v2 ~ 

By definition, the wavelength .,\ is then given by 

(D2) 


where PI and P2 determine the allowed range of densities (see §2). The factor of two in 
front of the integral arises because the wave profile samples the range of densities twice 
during a complete wave cycle. Using the known solution for nonlinear waves (see equation 
[2.12]), we can write the integral for .,\ in the form 

(D3) 

where we have split the integral into two parts because we must take different signs for 
the square root on different sides of the singularity at Pc (see equation [2.13]). We have 
separated out one factor of 1/P in the integrands because the remaining factor forms a 
perfect differential. IT we pull out one factor of 1/P from each integral by invoking the 
Mean Value Theorem, we can evaluate the remaining integrals and thereby obtain 

)3/2{ 2/ }1/2 { II}.,\ = (2 f3 - Pc - A Pc - "log Pc - + - , (D4)
Po. Pb 

where Po. E [PhPC] and Pb E [PC,P2]. The expression [D4] is exact form some (unknown) 
values Po. and Pb in the given ranges. Although we are left with this uncertainty in how to 
estimate Po. and Pb, equation [D4] does illustrate the general behavior of the wavelength 
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as a function of parameters. In particular, for large constants of integration {3, we see 
that A~ {31/2. 

Finally, we note that for the case of solitons (and kinks), the function F(p) has a 
double (or higher order) zero at either PI and P2- As a result the integral in equation 
[D2] diverges for a soliton, i.e., solitons have an infinite wavelength. 

APPENDIX E: VALIDITY OF THE MODEL EQUATION 

In this Appendix we try to ascertain the conditions under which the model equation 
of motion (see §3) is valid. This model equation involves two principal approximations: 
(a) the pe term is dropped altogether from equation [3.16], and (b) the ion density 
is replaced by an equivalent constant value. The second of these approximations will 
generally lead to quantitative, but not qualitative, differences in the behavior of the 
solutions. On the other hand, the first approximation is potentially more dangerous. 

In order to estimate when the omitted term plays an important role in the dynamics, 
we must compare it to the terms which are kept_ The omitted term, which we will denote 
as M, is given by 

(El) 

This term will generally be small compared to the gravitational term. However, the most 
important term in the model equation for purposes of comparison is the coupling term 
K given by 

r •K=--p, (E2)
PF 

because this term allows the model equation to exhibit qualitatively different behavior 
than that of the field-free case. In particular, this term K allows for the existence of 
soliton solutions. The ratio of the terms given by equations [El] and [E2] is simply 

"D = M _ :;;APF Pi Pe (E3)
"'-K- r P p. 

We expect the model equation to be a good approximation to the true physical system 
when the ratio 'R, is small. 

We now try to estimate the size of the ratio 'R, for cases of interest. Let X denote 
the average value of Pilp, i.e., X is the average ionization fraction (where the average 
is taken over the range of densities appearing in the wave profile). Next, we replace 
the quantity pelP by an appropriate average value, which we denote as (pel p). In this 
present discussion, in order to obtain values for the quantity (pelp) we simply average 
over the appropriate range of densities. Notice, however, that if we were to average over 
an entire wave cycle, the derivative Pe would be negative as often as positive and the 
average would vanish. We are thus overestimating the effect of this term. The definition 
of:;; implies that:;; = 7.5 X 10·n~/2, where no is the number density of the reference state 
(see equations [2.4] and [2.5]). Given these definitions, the ratio 'R can be written 

• 1/2 APF ( I)'R, = 7.5 x 10 X no r Pe P . (E4) 
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Since we are mostly interested in how well the model equation works for soliton 
solutions, we will use the soliton solutions of Figures 3 and 4 for comparison (we are 
thus checking these soliton solutions for consistency). For the soliton in Figure 3, the 
quantity ApF/r = 3/10 and the average (pelp) = 2.7. If we use a representative value 
of X = 10-" and no = 100 cm-3, we obtain "R, = 0.6, which is reasonably small and thus 
fairly gratifying (recall that we have overestimated the effect of the factor (pt.1p)). For 
the soliton in Figure 4, the quantity ApF/r = 1/10 and the average (pelp) = 1.3. If we 
use the same values of X = 10-" and no = 100 cm-3 , we obtain 1(, = 0.1, which suggests 
that this second soliton is even more consistent with the use of the model equation. 

Notice that in the above discussion our assumed value of the ionization fraction 
(10-") is somewhat small for a number density of n = 100 cm-3 (see Elmegreen 1979). 
Keep in mind, however, that the reference density no sets the scale of the density (Le., it 
defines what p = 1 means), whereas the mean ionization fraction appearing in equation 
[E4J is that appropriate for the mean density of the soliton wave (and this density can 
be much larger, a factor of ~20 higher in this particular case). In any case, we are 
living fairly close to the edge of the limit of validity of our model equation. If the mean 
ionization fraction (or the reference density scale) is much larger than the values given 
above, then the ratio "R, can approach unity (or larger) and the model equation becomes 
a poorer representation of the real physical system. On the other hand, the available 
parameter space is sufficiently large that the ratio ApFIr will often be much smaller 
than in these examples. When we adopt the choice pF = r I" (which eliminates the 
logarithmic term from :F), the ratio ApF/r = AI". Soliton solutions can thus arise from 
the model equation in a consistent fashion for small ratios AI", Le., relatively slow wave 
motions with a large component of "turbulent" pressure support. 

APPENDIX F: TRANSFORMATIONS OF THE MODEL EQUATION 

In this Appendix we find a Lie group of scaling transformations which leave our 
model equation of motion invariant. We begin with the model equation itself, which can 
be written in the form 

where PF is considered to be a constant. Now consider transforming the scale of the 
density and the variable eaccording to 

p~Ap, (F2) 

(F3) 

IT we insert these forms into the equation of motion [F1J, we find that the equation of 
motion remains invariant under the transformation provided that 

, = A-1/2, (F4) 
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and the constants scale according to 

A ...... AA, (F5) 

(F6) 

(F7) 

(F8) 

If we now let CI =A-1/2, and let G. represent the transformation given above (for a given 
a), then the set 

(F9) 

forms a Lie group of transformations which leave the model equation of motion invariant. 
The group operation is defined by G.G. = G ••. Transformations of this type show us how 
to rescale solutions to different densities (or for different values of the other parameters). 
Notice that if we set r = 0 in equation [Fl], we obtain the equation of motion appropriate 
for clouds with no magnetic fields. H we ignore equations [F7] and [F8], we are left with 
the scaling tranformations for the field-free equation of motion. 
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FIGURE CAPTIONS 


Figure 1. Phase diagram for nonlinear waves in molecular clouds without magnetic fields. 
All of the cases considered here use" = 10 and A = 3. The family of curves corresponds 
to varying /3 = 10, 15, 20, 25, and 30. The function p~(p) increases with increasing /3. 

Figure 2. Wave profiles for nonlinear waves in molecular clouds without magnetic fields. 
We have set" = 10 and A = 3. (a) Wave profile for /3 = 10. (b) Wave profile for /3 = 
20. (c) Wave profile for P= 40. 

Figure 3. Soliton solution to the model equation of motion for stationary waves in a 
molecular cloud with magnetic fields. The parameters for this case are " = 10, A = 3, 
r = 9, P = 38, and PF = r/" = 0.9. (a) The first integral function :F(p). (b) The wave 
profile pee). 
Figure 4. A second soliton solution to the model equation of motion for stationary waves 
in a molecular cloud with magnetic fields. The parameters for this case are" = 10, A = 
1, r = 16, P= 23 ~i, and PF = rile = 1.6. (a) The first integral function :F(p). (b) The 
wave profile pee). 
Figure 5. Kink solution (also known as a topological soliton) to a limiting form of the 
model equation for stationary waves in a molecular cloud with magnetic fields. This 
limiting form of the equation has r -+ 0 and PF -+ 0, but r IPF -+ con.stant = JL. The 
parameters for this case are Ie = 10, p. = 10, A = 10, and P = 40. (a) The first integral 
function :F(p). (b) The wave profile p(e). 
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