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i Abstract )

A modern review of Kaluza-Klein theories is presented. We
adopt the version where the whole space is a principal fiber bun-
dle with the four-dimensional spacetime as base, and as typi-
cal fiber a (G Lie group. It is a natural generalization of gauge
theories which metric is just the Kaluza-Klein metric. For the
five dimensional theory we give an invariant formulation of the
axisymmetric-stationary case. Some techniques for obtaining ex-
act solutions and cosmology in specific dimensions are studied.
Finally the method of spontaneus compactification is outlined.
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In 1919 Th. Kaluza presented to Albert Einstein a new idea for unifing all till that moment known
interactions based on the Einstein geometrization theory. [t consisted in a generalization of the general
relativity theory into a five-dimensional rietnannian space interpreting part of the five-dimensional metric
a5 the four-electromagnetic potential. In a letter from Einstein to Kaluza, Einstein expressed his view of
Kaluza's idea with the comment: " [hr Gedanke gefelt mir zunachst ausserordentlich. "(I like your idea at
first sight very much).Indeed Einstein was enthusiastic with Kaluza's idea and presented it at the Sitzungs-
herichte der Preussiscchen Akademie der Wissenschaften at 8th December 1921, in a paper entitled “Zur
Unitatsproblem der Physic” [1]. This paper contained some inconsistences with the theory of Quanta as
remarked by Einstein himself. The first important step in ascribing physical reality to the fifth dimension was
taken by de Broglie and Schrédinger for the treatment of quantum problems.By starting with a generalized
wave equation, he discovered in the equation surprising solutions which were periodic in the fifth dimension
with a period related to the Planck constant. However, the first serious attempt to assign physical meaning
to the fifth dimension was made by Einstein and Bergmann [76]. These authors introduced the remarkable
assumption that the space is closed in a very small circle in the direction of the fifth dimension. Through
this change not only was the Kaluza theory generalized, but also a justification for the four dimensional
appearence of the “real” world was obtained. In a subsequent article, Einstein and Pauli [77] argued that
the theory is still unsatisfactory with respect to the group of admissible coordinate transformations, because
the fifth dirnension is treated differently from the other four dimensions. However they made the following
remark: "When one tries to find a unified theory of the gravitational and electromagnetic fields,one cannot
help feeling that there is some truth in Kaluza’s 5- dimensional theory”.

Kaluza-Klein theory (KK) consisted basically in associate to the v,,,(#, v = 1...4) components of the
five-dimensional metric the gravitational interaction and to s, the electromagnetic one, while vs5 remained
constant, the z° coordinate was a circle and all components of 45, A, B = 1...5 depended only on z!...z%
but not on £°. These assumptions appeared rather artificial and therefore unsatisfactory. Jordan [3] pro-
posed a modification of the KK theory by assuming that the component 55 varies like the other components
depending only on r!...z* Jordan found that this function vss, behaves like a scalar field without mass,being
the Jordan’s theory a gravitation, electromagnetism and scalar fields one. Nevertheless the assumptions of
£° was a circle and y4p depended only on z!...z* remained yet artificial. In the 1960’s E. Schmutzer [5]
constructed the KK theory supposing only invariance of the five metric under the action of a one-dimensional
group i.e. he supposes the existence of a Killing vector field in the five manifold and projected all the physical
quantities into the four space using the Killing vector field. The projective theory reproduces all the four-
dimensional physics excepting that the geodesic motion in five-dimensions does not project into the usual
four dimensional one. Kovacs [6] has shown more recently that there are many possible forms of motion in
such a projection. '

A reneved interst in the Kaluza-Klein theory arise with number of interesting obsevations made by
Rayaki [78). He pointed out that the 5- dimensional theory yields a geometrical interpretation of the elec-
tromagnetic field and of the electric charge. It provides a connection between the gravitational constant G
the radius of the circle of the fifth dimension I, and the electric charge e of the form G = e%I?. Morever,
increasing the dimensionality beyond five dimensions may be a plausible way to include the isospin space,
and in this way to obtain a unified theory involving strong interactions. Trautman (7] was the first to relate
five-dimensional KK theory with the structure of fiber bundles. The relationship between principal fiber
bundles and higher dimensional theories is clearer now [8].

The generalization of KK theories to more than five-dimensions was first mentioned by deWitt [9] and
further developed by many others. In this generalization, the Yang-Mills fields became part of the metric
in 4+n-dimensions in a similar context as the electromagnetic field did in the 5-dimensional theory. After
these works rnany atternpts to clarify the higher dimensional theory have been made [10],[18],[39] but the
microscopical interpretation of the theory remains yet unclear.

In the 1970’s. interest in higher dimensional Kaluza-Klein theory arose thanks to the introduction of
supergravity [63] and string theory [41]. In fact, these two theories naturally lead physicists to consider
higher dimensional field theories. As a result of this combination, new ideas appeared such as dimensional
reduction and the process called "spontaneous compactification ”. At the present time, Kaluza-Klein theory
is a very promising theory in connection with the superstring one [41]. It seems that any future unified
theory must be related in some way to the suggestion made by Kaluza in 1919.
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Iu this course we plan to give a exposition of the main ideas of the KK theory. The central idea here
is not. to give a general review of the subject (since at the present time it has a tremendous extension) but
rather to point out what we consider the main and more interesting feature of the Kaluza-Klein theory. In
order to do so, the frst part of this work is devoted to the five-dimensional theory, as explained in most of
the literature. In the second part we give a definition of the physicai quantities in a covariant manner, and
explain how it can be used for understanding better the theory. In the third part, we will generalize the
five-dimensional theory, and explain it consequences and problems. The fourth part pretend to give a clear
explanation of the geometry of the theory begining with purely geometrical suppositions. Finally, in the last
part, we will discuss the method of spontaneous compactification. We will see that such a method is closed
related with supergravity [63], [40] and superstrings [41].

I The Five-dimensional Theory

The Phylosophy of modern physics supposes the existence of two kinds of symmetries: the geomet-
ric and the inner one. GGeometric symmetries refer to the existence of privileged directions in the spacetime
in which the physics remains invariant. Inner symmetries refer to the invariance of the action under cer-
tain transformations. The first one depends on the phenomenal but the second one depends of the sort of
interaction we are studing. It is well-known that invarance of the action under the group U(1) refers to elec-
tromagnetic interactions [12], or invariance of the action under the group SU(2) x U(1) refers to electroweak
interaction. Let us start supposing that the group U(1) is acting on a M® riemannian space. This implies
the existence of a Killing vector field .X in M®. If we choose a local coordinate systern on M® such that

. - .2
X= 5—‘}5 the components of the metric tensor d5 do not depend on 8. Qbserve that the non #-dependence

of dS is a consequence of the action of the group on M?>. Of course if we choose any other coordinate system
the metric could depend explicitly on 8. This is because the presence of the group symmetry allows to choose
a gauge for the five-metric.

In part four we will deduce the explicit form of the metric in terms of purely geometrical suppositions.
But now let us begin with the so called K K ausatz for the five metric:

s’ = Jupdztdz’ + I*(B,dz* + d8)(B,dz" + db) (1.1)
# "
wrv=1..,4

where dS? is the five-dimensional metric, g,, are the components of the four-dimensional metric, I is the
scalar potential and B, the electromagnetic potential. g,,, I and B, depend only on z!...z* but not on
0 = z°. Observe also that [> = X4X4 = gs5 (A=1,...,5) is the radius of the five dimension. [t is easy to
check that a coordinate transformation of the fifth dimension

9 — 0+ A(z*) (1.2)

i.e. a local transformation of the group U(1) in M® is equivalent to a gauge:transformation of the four
electromagnetic potential B, — B, + d,A, because of the transformation rule

. X c‘?a:'c Bx'D ] ~
9B~ oD 3 3 5,5 (1.3)

The field equations can be deduced from the Einstein-Hilbert action in five dimensions

S = ! /(15x\/-g5R ‘ (1.4)

T 167G

where g5 is the determinant of the metric components g4g and R is the five-dimensional curvature scalar. If
we substitute the metric (1.1) into (1.4) and integrate over the § coordinate, one gets the four- dimensional
action

21

2=~ T6nCia

/ d*z/=g3I[R+ i«FB,.,B“"} (1.5).
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Here ¢4 is the determinant of the four-dimensional metric. R the four-dimensional curvature scalar and B,
the Maxwell tensor B,, = B, , — B,,. Variation of (1.5) with respect to the metric yields the Einstein’s
vquations coupled with the Maxwell stress tensor for B,,, and a scalar stress tensor for [ as sources. Variation
with respect to B, gives the Maxwell equations for the potential B, and with respect to [ one finds a field
cquation for the scalar potential [ where the currents are electromagnetic and gravitational.

[u order to have a direct coparison with the standard electromagnetic potential, one expects to recover
the Eiustein-Maxwell theory when [ is constant for some z#. Then we take the limit when I (z#) = [y=cte
and comparing with the Einstein-Maxwell action [13]

167C

Fu F™)

. 1
SeMm = —-—A'/(ﬁl’\/“-!]‘l[R"i‘
167G

thus the association with the constant (v, and the Maxwell tensor B,

2710 N 1
67Ge 167G )
and
Fuy = (Io/V167GBy,) (1.6)
Lolds

An interesting observation is that a redefinition of the 4-dimensional components of the metric like

1
Juv — 'I'fhw (1'7)

gives rise to the creation of a scalar field in the Lagrangian (1.5)

: -1 1 1

§—8= —0 o/ alR+ 6B BY — 297 20,40° .

5 — 5= g [ eVTRIRS 0B B = 0700,60%0] (19)
being /3 = I. This transformation eliminates the factor I of R in the Lagrangian (1.5). Now ¢ is like the

scalar potential of the Brans-Dicke theory [4]. This scalar potential is a feature of KK theories and is very
important in the analysis of the geodesic motion.

Following the phylosophy of general relativity, (see for example [13]) the free particle motion must be
a geodesic, in this case a five-dimensional one. Because of the presence of the Killing vector X = 3%, the
geodesic equation can be separated in two parts

a)
Igdxs ) dzi‘
- “B,——]m = cte = p,
R Ty P
y) :
d2zh u dz¥ dz“ _ _ééufi_x_y i uvlv_" h (19)

ds? + velis ds T om Y ds TRt T

Here, m is the mass of a test particle and p is the momentum of the particle on the fifth direction

. . A . .
p = mgs,,fiii-. If we want to reproduce the Lorentz force in (1.9) we have to associate to the charge of

¢
the test particle the quantity

p = qlo/V167C (1.10)

Neverthelees an observer will measure d5 and not d5 as in equation (1.9). Therefore if we write the geodesic
equations in terms of d5, from (1.1) and {1.9a) one gets

—ed$® = ~dS? + (p2/ I2?)dS?,

3



« = = 1.0, +1 for a space. null and time-like geodesic)and then equation (1.9) transtorm to ([6] and [14])

d*zH dx? dzv q Ldz? q? [,; I, o dz* dz¥

B N ek ' + Jiv :
dS? T hn TANNTA Mgy TR m'” 167(7 I3 {{l - dS dS

(1.11)

fastudy of the geodesic equation (1.9) and (1.11). and a clear deduction of (1.11) is given in [6]). Here we
have defined the quantity

_dS R
Meps = m— = [em” + =3
/s dS 2
which is the effective mass of the test particle projected into four-dimensions.
[t is not possible to determine the radius of the circle so far. However the radius Iy can be estimated re-

¢uiring quantization of charge ¢ = ne and momentum p = nh of the fifth dimension. One obtains from (1.10)

Iy = hV16wG e ~ 10~32em

Le. in equation (1.11) the KK radius Iy is of Plank length order. In the general case when one does not
choose a local coordinate system with killing vector X = % the five-metric might depend on z® too, but
then the metric can be expanded in Fourier series

daB = jan(z,9) Z hp(z)e™. (1.12)

n=—00

The KK ansatz does not make sense in this coordinate system because a function By, like in (1.1) would not
he a vector potential fulfilling the Maxwell equations and the I potential would not be a scalar potential. If
we t.ake only the modes with n = 0 in (1.12), we recover the spatial coordinate system with Killing vector
XN =4 This is because gap is a gauge potential in M® due to the action of G on M3, (G=U(1) in this
case ), all the n # 0 modes are only a consequence of a gauge. Then we can interpret this gauge fixing as a
dimensional reduction.

There must exist a certain limit for which we recover the flat space time with a isometry U(1), i.e. we
have to recover the Poincaré symmetries and the U(1) group in this limit where the M3 space is of the form
M* x 5. But in general one expects to have a more general symmetry acting on the M space. In order to
see this fact we make a general infinitesimal coordinate transformation

z# — o* + (2, 8)
8 — 0+¢%(z,0)

where

o0

A0 = Y (M) | (1.13)

n=—-o0

The Fourier series expansion of (*(z, ) can be make because of the periodicity in'the & coordinate. Now we
proceed like in four-dimensional gravity for recovering the Poincaré invariance (see [15] or [11} and [16]). In
four dimensional gravity one restricts the (#(k) function to be linear in z# : {# = a* + whz", with a* and
w¥ constants. In five-dimensions we restrict the functions ((™#(k) to be linear in z*in analogous manner , i.e.

Q-(n)“(l:) - a(n)u +w§‘rz)xv
¢ = () (1.14)

where al"# LU and ") are constants. Now we want to indentify the generator of this transformation.If

we take, for example, all w!™) and ¢" zero and a single non-zero a!)# we have

oH — k4 C(n)gteirw
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g — 4.
Then. a function o(z.#) would transform like
9(2,8) — o(z,0) + MMM = (1= (M PM)g

where we have defined

P = ie'"?9, (1.15)
Similarly we find
‘Il(t":) — ieine(xuau — ;L',,(?“) (1.16)
and \
Q) = iein*o, (L.17)

corresponding to the generators of the Lorentz transformations and the S! translations. These quantities
generate a (non-compact) infinite parameter Lie algebra containing the usual Poincaré algebra

[P, Pi™] = 0

[.WLT), P = )'(IIAVJID‘&"""") — i PR

[.ML';’, _V[,‘,Z‘)] = i(r),,,,Ar[,(";"'"” + 7Ipai\’f‘5:,"+") — ML 1, M}JZ"""))

Q™ QU™ = (n — m)QU+™)
[Q™), pﬁm)] = _mp£n+m)
(@™, M) = ~mM*™) (1.18)

The algebra (1.18) represents the fuill Kac-Moody symmetry [17] and contains for m = n = 0 the usual
Poincaré /(1) algebra. This means that the full Kac-Moody symmetry is spontaneously broken when one
takes only the modes n = m = 0, or equivalently when one chooses the local coordinate system with Killing
vector X = #. Actually, we get the algebra Poincaré  SO(1,2) for m = n = 0, because the generators

P, ML, QM Q=Y form this closed algebra (see ref.[18]).
To conclude this part, we determine the four-dimensional classical mass spectrum of the KK theory. In
order to do so, we vary the metric components 4p around flat spacetime [5]

gap(x,0) = nap + hap(z,8) (1.19)

where now 745 = diag(1,1,1,—1, Ip). Analogously as in four-dimensional gravity we expand the field equa-
tions R4g = 0 to first order in hig. One arrives at :

Dadph& = dcdah§ — d:0ph§ + 0dchap =0 (1.20)
Observe that equation (1.20) is invariant under the gauge transformations of h4p
hap — hap + 04(B + dp¢a (L.21)
so that we may choose the gauge (see [19])
6” /1“5 =0
f)shus =40

65:’155 =0 N (122)
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Again, hecause of the {/(1) symumetry acting on M7, we can expand the /1 45 functions in Fourier series.
Then the gauge (1.22) can be written as

ey =0

wh

hi;g’(.(:) =0 n#v

hs) =0 n#0 (1.23)

We substitute (1.23) into (1.20). The 55 component yields

a) i?“@nizgg) =0
by WMo =0 n#0 (1.24)
From the ;5 component one arrives at
a%dahly =0 . (1.25)
and using (1.24) one obtains
a*ht) =0 (n#0) (1.26)
The pv components reduce to
02 + 0,0, (WO + DEVPY = 040, W™ = 00, D = 0 (1.27)
and using (1.24) and (1.26) one arrives at
n®
(%8 + 7 R =0 n#0 (1.28)

Therefore the n # 0 tensor modes A\}) are massive with masses n?/I2. Equations (1.25) are the Maxwell
equations for the four vector ht:? in the gauge J,h("% =0, i.e. hf‘ﬂs) are massless. Finally equation (1.24.a)

is the equation for the massless scalar potential hg;’). To recover the massless graviton from equation (1.28)
we make the transformation

- 1 :
hm} = /zgﬁ) + 51),“,11@,0)5

then equation (1.28) can be rewritten as
00a 1Y) + 0,0, R — D00uhD™ = 0ad, B =0

which is just the equation for the massless spin-2 gravitation field. (see also ref.[20])

~

IT The Potential Formalism.

In this part we want to give a covariant definition of the physical quantities of the KK theory. We
shall proceed like in the Einstein’s theory of relativity defining a sort of Ernst potentials in five-dimensions.
But first we discuse shortly the Ernst and the electromagnetic potential in four dimensions.

The Ernst potential [21] is defined in the stationary case, i.e. when tlere exist a time-like Killing vector
field & with

E%a < a=1..4 (2.1)

Then the Lie derivative with respect to & of the metric and the electromagnetic potential vanishes.

LeBap =0, Legap=0 (2.2)



where 3, 4 is the electromagnetic field tensor. which fulfills the Maxwell's equations
BHe =& & B[au;u] = 0. (23)

Here B, is the complex self-dual electromagnetic field tensor (see ref. [22] and [23])

Brs = Bas + zfathw B (2'4)
[t follows that ¢ defined by
Ko .
(j)“ - 5 EO’ an (25)

is a gradient ¢, = ® ,. Because of (2.1) and (2.3) the integrability condition for the potential ¢

zp[mn w (E B[cm wl ™ LeBuy) = .

holds. The real and imaginary part of the complex potential ¢ describe the electrostatic and magnetostatic
potentials, respectively. Now we make use of the Einstein equations and of the Ricci identity observing that

(Ry = 22 BB, )¢ =0 (2.6)
we find that
I e e R Koz FAna ¢
SRR == =R B=0 (2.7)
2 2
where we have defined the vector
gu; fuu tuuaﬁ& vif

{a bar denotes complex conjugation). Other way it is easy to show that the Lie derivative of f{w with
respect to £ vanishes, i.e. we have the same situation as for the tensor (2.4) and allows us to define the
complex potential

g,;x = g;t = Eai{’an (28)

called the Ernst potential. \When electromagnetism vanishes, the real and complex parts of £ are the
gravitational and rotational potentials, respectively. The Einstein equations in terms of the Ernst and Elec-
tromagnetic potentials (2.5) and (2.8) respectively, are the Ernst equations (see ref.[21] [22] and [23]).

We proceed in the same way for the five-dimensional KK theory. In the stationary case we have a second
Killing vector Y which commutes with the Killing vector X. Stationarity means:

YAY4 < 0. (2.9)
With these two conmmutating Killing vectors X and Y we can define in a covariant manner five potentials [24]
W= P = XX, f = —IYAY4 4+ 71 (XAY,)?
= —I72X Y \YE=e€apcpeNYEXED
eg = capecpeXYEY L (2.10)

In the spatial coordinate system where X* = & and Y4 = 6§ one finds that &, f, ¥, x and € respectively
are the scalar, gravitational. electrostatic, magnetostatic and rotational potentials. We can write now the
five dimensional field equations in termns of the potentials (2.10), but better than this we can write down the

7
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Lagrangian L from which we can derive the field equations

(4 S, . \ - . B
L= _)}._, ad™ + (e a+ o a)le™ + g )] (2.11)
LI T U S SO S B!
+2f(h LARERR + 2 XA\ )+ 3 ":3"‘“.‘\"'

and look for its invariant transformations. This is important because if we have a solution of the field equa-
tion ®* an invariant transformation of {2.11) ®* — &'4(®?8) will give us a new solution. All the invariant
transformations of (2.11) were found in ref. [24], by Neugebauer. In order to do so he defined a metric
derived from (2.11)

9 dpe?
[df? + (de + vdx)*] + ;2-1/;(&2(11/;2 + ;%dx?) + 3}%"2— (2.12)
which is the metric of a symmetric Riemannian space V.” i.e. the covariant derivative of the curvature tensor
of V> with respect to each coordinate, vanishes. The group of motion of the metric (2.12) will give us the
invariant transformations of (2.11). This group has 8 parameters. It was found in reference [25] that the
group of isometries of the metric (2.12) is SL(3,R) and the invariant transformations of (2.12) can be cast
i a very simple form as

|
"2 —
dS* = Y

g — egel (2.13)

where the matrix ¢ is a constant matrix of the same groups SL(3,R). The matrix g¢ SL{3,R) can be
parametrized as ’

) f2+62 “ff.'n’.’w'_’ —€ -212(€X+ff€21/))
— : 1 .

'2:/5(‘:\’ + fr) 3'57” st -K*f)

Observe that if we set y = # = 0 and x = |, the matrix ¢ transforms to:

-9 f"z +(2 —¢ 0
g = T —€ 1 0
Y

which is just the potential matrix for the Einstein theory where & = f + i¢ is the Ernst potential, ¢ belongs
in this case to the group SL(2,R), but these group is homomorphic to SU(1,1), therefore it is possible using
the complex transformation £ = f + i¢ to obtain

_ EE  Imé 0
g=——1| Imé€ | 0
ReE\ "o 0 —LRes

which belongs to the group SU(L,1) of the Einstein’s equations (see ref. [23] cap. 30). This means that
solutions of the Einstein equations in vacuum will be also solutions of the KK theory. If we start with the
Kerr-NUT solution of the Einstein’s theorv [23] and make a transformation (2.13) we get a 7 parametric
new solution which contains for example, the Belinsky-Ruffini solitonic solution [26], the Kramer [27], the
Neugebauer [24] and the “Kerr-NUT” solutions as limits (see ref. [25]).

Axialsymmetry is represented by the existence of a third Killing Vector field Z which is space like.
One can choose then a coordinate system in which the components of the five metric depend only on two
coordinates. In this case the field equations for the matrix (2.14) are the chiral equations

(pg.:9"" ) s+ (pgsg™"): =0 (2.15)

being z = p + (.4 = y(p,¢). The generalized inverse scattering method was applied to equation (2.15) for
finding exact solitonic solutions of g [28].
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One dimensional subgroups (one parametric subgroups) of SL(3.R) will give us two equivalent classes
of solutions of equations (2.13). [n this case equation (2.15) becomnes to

ga = Ag (2.16)

where A is the parameter of the group. These two classes are divided in subclasses depending on the eigen-
values of A. All classes and subclasses are given in [29] and shown in Table 1. (the subclass b =0 in table 1
15 given also in [30]).

There are three two-dimensional subgroups of SL(3,R). One is abelian, the second is SL(2,R) == SU(1,1)
to which the Einstein theory in vacuum belongs and the group 0(2,1) which contains a correspondence with
the Einstein Maxwell theory where the scalar potential & = 1. (See ref. [29])

From this technique many exact solutions of the KK axisymmetric stationary field equations have been
generated. In the literature one can find gravitational fields coupled with monopoles [3], [31]., [32]; dyons
(33],(34] ; dipoles [35];monopoles and dipoles [36]; strange potentials [36] etc. We want now to study some
of these solutions in order to establish some of the main features of the theory.

The first one was found by a simple extention of the Taub-NUT Euclidean solution [23] in four dimen-
sions [13][31]. We follow these papers now. This solution of the five-dimensional KK field equations is of a
pure magnetic monopole described by the metric (Killing Vectors X4 = 68;Y 8 = 62)

dS? = —dt® + I*(dz® + 4m(1 — cosb)dé)* + [~*(dr® + r2d8® + r’sen’0dg?)

4
XNAXa=(1+ ,—'_")-‘ (2.17)

If we compare it with the metric (1.1) we find that the electromagnetic potential and the scalar potential
respectively are

4, = (0,0, 4m(1 — cos),0), I* = (1 +4m/r)~! (2.18)

- Observe that if we set t = cte in (2.17) we recover the Taub-NUT metric, which is regular if z° is periodic
with period 167m [37]. Thus we have to identify 167m with 2 to obtain m = 1/8R. The flat space limit is
found to be » >> 1, in this linit we recover the Minkowski metric in spherical coordinates. Then o = |
and comnparing (2.18) with (1.6) we find that the magnetic charge is

_ im
8= VlonCi
Of course in this coordinates the gravitational mass obtained for the asymptotic limit of g44 = —1 for

r >> 1 vanishes, but the inertial mass, deduced from the energy momentum pseudo-tensor

___gtAB —- aChABC ~AB _CD AC BD)} (219)

, hABC = E:Ea"[_g(g 9“7 - 9%

is m/(7 [31]. What it is perhaps really happen is that the scalar potential I acts gravitationally and cancels
identically the gravitational contribution of the monopole. In order to see this, one should solve the geodesic
equations of the metric (2.17), but this is actually rather complicated (see ref. [14]). We will consider this

1ssue in an other easier solution. Let us write the four metric and the scalar potential (ref. [32] solution (16)

with ég = ~1 and Iy = 1)
ds? = — /1—2'"& +\/——,,—- /I_Zm 2402

(13:(1-*@)3/2 f= 1—2—:—2 h=y=€e=0 (2.20)

r

where we have used the transformation (1.7) and the notation of (1.8). The gravitational mass is m/2, and in
this case equals the inertial mass. But a test particle would interact with the mass and the scalar potential.

9
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Lo see this we write the geodesic equation (1.11) for the metric (2.20) as

) . 1}2 [
:-/—.;(”hf'r w4+ map Y uu™ = mﬂlwﬁ
-2 Iz
) YL o dx
T —_— ut = ——
Mogp = e 1-’151-’) ds

. . . dre { .
If we substitute the expression g, ., 5 = =422 we obtain

d ! . .
E(m;”u“g“p) - ;jme,fgw_,,u u® +megp, =0 (2.21)

One solution of these equations for a photon (with € = 0) is u* = (1 — ?—;"-)"/4 Then the newtonian
force will be

il

4 4
:-Z'mfff“lucr.p“uua = —§m’ff.‘l444/'“ u Meftp ‘

this means that it is exactly cancelled by the interaction with the scalar field [31], which gives rise to a
repulsive force cancelling exactly the newtonian force. Thus a test particle traveling around the mass F will
have a constant momentum

Pi=mgpu, = =m,gy utgaq

in other words, it does not feel the attraction of the mass 4m. Such a situation appears again in solutions
of higher dimensions. (See the next section)
The last solution we want to deal with is again a magnetic monopole, but with a Schwarzschild-like

gravitational potential. and a scalar potential given by [32]

2m 2

‘ 2m,,. m2sin‘d dr
182 = _ 12y . 1/2 _ 1/4 ' 2492
a (1 r ) [l 1,1"’(1 r ) ]{{l 1_2(1_2:15_)1 [(‘-""-’T) +1 ]
7 .09 2 2m 9
+r-sin0d¢-} — (1 — —)dt~
r
. 1

(2.22)

Ay = (0,0, 9m(l —cos8),0) [° = p =
g i »0) [1—2)3[1 = pin(l — 22)3]
This is an asymptotically flat solution of the five-dimensional field equations. For r >> 2m, (2.22)
approaches flat space in spherical coordinates. The gravitational mass M and the magnetic charge gy, are
given by :
nm

M=m and gy, = __\/1—6—(,‘ : T
p N

Observe that if m = 0 (2.22) becomes flat. But if 5y = 0, only the monopole charge vanishes. The four
mnetric (2.22) has a singularity at r = 2m, which is an horizon and if r,, = m + mv/1 + sin?6 the factor
m2sin’8

1-—7——,,:0.
,..'[l__—_'!l]

-
The r = 2m singularity is perhaps not essential, but one would expect that the four spacetime will be really
siugular at » = (.

For a test particle of mass p and charge e within the monopole field (2.22) we have

~u? = g*BP,Pp

10



lu the equatorial plane with # = /2 we can write the energy equation in terms of the components of the
five-mnomentum Py. We obtain (see ref.[38])

T o e R
E =1 (z2)%0% + Viir)
do

where the effective potential function V.(r) is given by

Lix!/? . L%
X + (i + =)

Ve(r) = T

Tl = plnyt/2)
Ls is the angular momentum in the fifth dimension and L, is the angular momentum about the axis of
syinmetry. Results for V.(r) vs » are calculated for the particles with 4 = |.m =1, L, = 10 and 5 = .09
for different Ls in ref. [38] and plotted in fig.l. and also for L5 = 2 and different 7 are plotted in fig 2. The
orbits on the equatorial and polar planes are also calculated in ref. [38] and shown in figs. 3 and 4.

Observe that the scalar potential I approaches I ~ | very quickly for r > 2m and approaches also very
quickly infinity when » approaches the horizon. This means that the effects of the scalar potential I become
important only near the horizon but desapear far away of it. This can be a reason why we can not detect /.
The behaviour of I? is shown in fig. 5

IIT The n-dimensional theory

In this sectjon we present the d = (n + 4)-dimensional KK theory and give its main results.
As in the first section let us begin with the so called KK ansatz, now for a d-dimensional riemannian
space. we have [8],[42].

(f.'j'z = guedatdz’ + Gap(w® + ekB“}d:r")(wb + ekBgdz") (3.1)
pov=1..4, a,b="5...d

where the d-dimensional space § = ds® contains a n-dimensional group G of motion ;¢ = g,,dz#dz” is the
four dimensional metric, i.e. the spacetime metric ; § = Japw®w® is the metric of a Lie group which will be
called the inner space and B = Bjt,dz* is the Yang Mills gauge potential, t, being the generators of the
group (. e is the couplings constant and % a scale parameter.

In general it is not necessary to take the inner space as the group of motion, but they are closely related.
For instance it is possible to take it as the homogeneous space GG/H, where H is a normal subgroup of G.
However for the moment andin order to obtain the field equations we will consider the inner space as the
group itself. In the next part we will clarify this point and from geometrical assumtions we will derive the
metric (3.1). In most of the literature [11],(3.1) is taken as the “ground state metric” and is put in by
hand. The spacetime metric and the Yang Mills gauge potentials are suppossed to depend only on the four
spacetime coordinates and (i is assumed to be compact. Here we take a more general d-metric and suppose
only that in g are acting n Killing vectors which form an G-algebra, corresponding to the G-group.

Let {£,} be a left-invariant basis of the tangent space to (i, dual to {w*}. Of course there exists a
canonical isomorfism between the basis {£,} at the identity and the Lie algebra G

1:T,.G—G
Ea — l(ga) =tla (32)
where the {£€,} vectors form the Lie algebra
e &) = EVFoEe abe=1.n (3.2a)

k= is a scale factor and f2, are the structure constants of G. It is easy to show that a local coordinate
transformation of the internal coordinates in the direction of the Killing vector, i.e.

Y=yt + R (y)et ()

11
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e gauge potentials transform like Yang Mills fields

B — Bi + fAbe” + dye (3.36).

The syrunetry of the whole space means that the Lie derivative with respect to the vectors {¢,} of the metric
. vanishes:

Le,g=0 (3.4)

From this. the internal dependence of the fields [8]
Jagup =0 ('%Bf‘ = —k“lfgl.Bf‘

Dafoe = k™" fihGde + k™ 100 (3.9)

.

holds.
The field equations of the unification are derived from the d-dimensional Einstein-Hilbert action

lq= /\/-Jd(m- Ayd%e (3.6)
where R is the curvature scalar of the d-dimensional space, g4 is the determinant of the § matrix coefficients,
A is the d-dimensional cosmological constant and (7; is the gravitational constant. ‘

The next step is to obtain an explicit expression for (3.6) using the metric given by (3.1) . In order to
do so we write the components of (3.1) in matrix notation

167G

o
y‘43=<a,w+e?k;g~.-,»3;‘3§ fLB’J:)) 37)
ekBp.‘]ij bij
with inverse
R N v ot W
—kegt’ B, gY +e“k*g*' B, B}

being g#* and §* the inverse of g,, and g; respectively.
With this expressions we can calculate the curvature scalar R of the whole space. We arrive at [8],[45]

- e2p2
R=R+R+€

| e - - ~
Gas B, B + 07 ((Dufac)(D* 5a) = ( Dyfias)( D*ea)]
+v;x(!7abD“f7ﬂb) - * (3.8)

where ¥, is the covariant derivative defined in B*, the spacetime; BY, is the field strength of the Yang Mills
potentials

BY, = 0,B2 — d,Bs + efi. B, B (3.9)

nv

R and R are the curvature scalars of B* and (i, respectively and D, is the gauge covariant derivative
p Y '

D, = 8, — kB0, (3.10).

So the action (3.5) can be now written down in the following form its

/ VERVIG IR+ Rt ek B, B +

10w(

12
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! ~b=ve ~ Y e ~ a1
+10 YT Dyifac { D*Tva) = (Dulas ) D*Tea)) + A} (3.11)
ip Lo a total divergence. The unification means then that [10]

ek /167G = | (3.12)

and we have again a unified Lagrangian of gravitation. Yang Mills, and scalar interactions, with cosmological
constant.

[n this approach we can derive the field equations from the action (3.11) or directly from the d-
dimensional Einstein equations. [n general we can add a energy momentum tensor and start from

. 1 s
Rap — (§R+ A)gag = —-87GrTap A B=1.4d. (3.13)

the result (up to the Typ tensor) will be the same.
The field equations (3.13) must be compatible with the vacuum or Minkowski metric and the group G.
Let us suppose that the 4-dimensional Ricci tensor vanishes, and B} = 0. It follows that {46] 8,gas =,0. Then

1.
guy = !]uy \R‘“; = 0, _TZ'(R + /l)g’uy - "SWGkTuy

which implies

1
T;w = ZTfi.‘l;w (314)

On the other hand R,, = R4, because of the last conditions, and thus

- , |
Rap = =87 (Tay — ZT‘;Q@) (3.15)

from which the expression for the cosmological constant

A = 87G(T - i(al - 2)Ty) (3.16)

holds. Equation (3.14), (3.15) and (3.16) are the flatness conditions. An interesting case is when the internal
space (i is an Einstein space, i.e. Rap = cJap. It follows that [47]
T = —(—— + 1T0)3 (3.17)
= —(——— 4+ =Ty4)g .
ab 387G 2 4)4ab

i.e., Ty is determined by the four dimensional part of the energy momentum tensor and the internal metric.
We will come back to this point in part V. .

We want now to show some of the results of this theory. In order to do so, we follow the work of [43],
who defines the inner metric as :

Eab = ‘251/"‘0@

in order to have det §,; = o for an unimodular G group. If we make this transformation, the unified la-
grangian transforms to

Lo=— F7:(,_\/;,:\/5[1?. + R+ 4mCip"poy By, B
Tk
_n—1(09)°
4n ¢?
1
+-PabﬂCd(DuPac)(Dude) +A+ ’\(ldetp“bl - 1)] (3.18)

4
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where A is a Lagrangian multiplier. Nevertheless the volume element should be /=¢s and not /=y40 as
in (3.18). Furthermore the o [eld appears with a negative kinetic energy. We can remove these defects by

performing the conformal transformation (see also eq.(7))

Hue — \/gfluu (319)

Considering this transformation the Lagrangian (3.18) becomes

\/ - - l bl
Lo = Y [R+47Gre™" pap Bl B + 5(0“{7)'

T 167G wy
~ 1 -
+Re*e + ACE” — 2(Dyp*)(D*pay) + A(|detp| = 1) (3.20)
where o is the dilaton field defined by
2179 I
o= %[#}Vﬁmﬁ = —;z-clmp . (3.21)

Observe that the couplings constant of the gauge fields is G = (e,
Now let us briefly study the cosmology of this theory. We start from the field equations (3.13) and the
natural ansatz (see ref.[44])

T;w = c—ta[(p + P)““UV + p.’fuu}
Tas = Vbe ™ p'Fas  Tya =0 (3.22)

which corresponds to a perfect fluid energy-momentum tensor in d-dimensions (here we have used the trans-
[ormation (3.19)). One chooses g,,, as the Robertson-Walker form, with p,; time-independent and o = o(2).
We substitute all of this in (3.13) and obtain

Y k 1., 3x(i,  _.
H + = ==(50"+V)+ Tk e
re 62 3

,

o+ 3He + % = 87Grb(p — 3p + 2p'Ye ™"
[

. b .
p+3H(p+p)+a[;2-(p-.3p+‘2p’)—cp] =0 (3.23)

V = Re™" + Ae™?”
being a = \/(n+2)/n, b = /n/(n+2). a,b and ¢ will be taken as free parameters for the moment. H is

the Hubble field defined in standard from H = r/r. Equations (3.23) corresponds to the standard cosmology
with o = 0 and cosmological constant R + A. These equations have-two symmetries. They are invariant
under the transformation ' "

a)

a—=bLR~—~A

and under the scaling

h)

0 —a+0, R—Re" ., A— A%, G — Gree.

An exhaustive study of equations (3.23) and their interpretation is inade in ref. [44] and plotted in fig. 6.
Solutious with and without big bang or horizon are shown, for an universe expanding or recontracting. In
other words. with this theory it is possible to solve the horizont problem of standard cosmology, because
there are some solutions without it. Also the missing mass problem could be solved, because equations
(3.23) show that there exist a contribution of the o field to the density of the Universe. To see this point,

14



we observe that if we identify the density and the presure of the o field as

i 1., L.,
.= . -0+ V = ——{=—g” - |
P = Tomen 27 V) P = g3 )
and substitute that in (3.23). we arrive at
a)
” [» ST(r g
He o+ = 2 o)
h)
o+ 3H{(pa +pa)+ (p+3H(p+p))e™"" = cope™" (3.24)

The first equation shows how p, contributes to the whole density of the universe. i.e. the existence of the o
field explain the stationarity of the galaxies. The second equation describes the conservation of the energy-
tnomenturn tensor (see ref. [44]).

All these results make clear (together with the dependence of Gy on o, the coupling constant of the
gauge fields), that the dilaton or scalar field plays a very important role in this theory.

In order to study it in the context of axisymmetric or spherically symmetric solutions we suppose that
the four-metric contains two commuting Killing vectors, one of them time like and the other space like.
Furthermore we suppose that the only field acting in the whole space is electromagnetism. In such a case
we liave n + 2 cominutating Nilling vectors and the metric can be cast in the form [48],

ds” = f(p, Q) (dp® +dG?) + gij(p, ()i d? (3.25)
1, j=3..d
Whith this metric, the Einstein equations (3.13) can be written as [49]
a)
L
. = inp) . —t (g.9~4)?

(lnf).- (lnp [( “p) zz 7(g.~g ) ]

b)

(pg-a"") s+ (pgsg™"): =0
s=p+iC (3.26)

where the (n + 2)z(n + 2) matrix (g);; = gi;. [f we want to solve equations (3.26) we need first to find a
solution of the chiral equations b) in order to solve a). There are some techniques for doing so: the solitonic
(inverse scatering) method for finding exact solutions of (3.26b) developed in refs. [48] and [50]; the “sub-
space ansatz” consisting in to parametrizing the g matrix as

g=g(N) N =X(3) (3.27)

is developed in general in ref. [51] and for the one and two subspaces in refs. [53] and [54], (see also [52]).
We want shortly to outline the one dimensional subspace ansatz.
Let us take the ansatz

g=g(A) A= A(zE) (3.28)
where A fulfills the Laplace equation
(PA)s + (PAs)s =0 (3.29)
The chiral equations reduce to
ga = Ag (3.30)


http:contribut.es

U A a constant matrix. (see also equation (2.15)). lu this case the integration of the function f in (3.25)
~ determined by A only.

(Inp'~ \f = bp(A ), f):%h'f!"’. : {3.31)

The integrability conditions of this last equation follows from the chiral equations [53]. The solution of the
atrix equation (3.30) depends on the classification of the matrix A. A classification under eigenvectors is
given in ref. [53] and shown in table 2. \We get magnetic monopoles with gravitational potentials like the
Newtonian potential, dipoles, monopoles and dipoles etc. Let us give one example [55]

g = A(r)dt* — B(r)(dr® + r?dQ?)

p= ‘\/ r? —2mr
= (r — m)cosf

with the electromagnetic potential given by

Ay =(0,0,0,1(r)),  Fap = 63diag(h~ h™', h?)

N\« i3 ¥
wn= (2] o= (52) 0= (52) o

If we calculate. like in part I, the inertial mass from (2.18) we obtain [55]

and

m

myp = (v'(—.; (333)

F

But now rernember that we have taken \/@g,, as the physical quantities. In this case, from the asymp-
totical behavior of g44, we get the gravitational mass to be

(2 = B)m
20+
This solution allows us to take 3 = 0 (that is no alweys so), in which case the gravitational and inertial

mass coincide. But then the scalar field (dilaton) vanishes.

If we accept that particles move in geodesic in the d-space, we can proced like in the first part (equation

(1.10)) to obtain the geodesic equation in four dimensions. If A is a dimensional geodesic parameter and S

the four- dimensional one, (but now using /¢g,, as the physical quantity) we obtain [55]

I :
Py = TorGr Jf

2 110 Bisp?
0ut

¢

(3.34)

mg =

dax

L o
'*':j(fw’“x + ') - Q*X—)

with

Voled + 7%

dS = vdr .\ = ( . NE
€4

drt 4 dz A

TR
b 4 dA

=== (3.35)

where now we have to take as effective imass

L (4t T"am s

Y T Y
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The presence of /o in the elfective mass is because of the transformation g, — vV@guy. ¢ is =-1.0, 1
for the d-dimensional geodesic and ¢4 is the samne one for the four-dimensional geodesic. Observe that even
when ¢4 = — I(space like geodesic) the effective mass can be associated to tlie mass of an ordinary particle.

If we substitute the solution (3.32) in the geodesic equation (3.35) we observe that the scalar potential
rakes an important part in the gravitational interaction. In the newtonian limit (3.35) reduces to

d*z o 5 s —(20— 3)m
— = 8=~V g4s) = ¢ O ——
I (307 ga4) = g i o
which means that the dilaton interacts with a repulsive or attractive force with the gravitational poten-
tial depending whether the dilatonic charge 43 is negative or positive [55].
It is now clear that the dilaton plays a very important role in the KK theory and its existence could
decide whether the KK theory could be taken as a realistic theory or not.

)

IV Geometrical Formulation of KK

In this section we want to show how the new n-dimensional KK theory is the unification of three
theories: the mathematical theory of fiber bundles; gauge theory and the old KK theory.

Let us start by showing the analogy between General Relativity with the standard gauge theory.

In general relativity one formulates the theory using geometrical principles. The interactions between
particles or fields, i.e. between matter is because of the curvature provoke by them in the spacetime. The
curvature of spacetime determines how matter interacts. On the other hand, interactions in gauge field
theory is understood as exchanging of virtual particles. Interaction, fundamental escences in the formula-
tion of physics, is rather diferent in the two theories of the 20th Clentury. How can we make both theories
compatible?

We know that in a geowetrical formulation the curvature and the covariant derivative play an important
role. In general relativity. one starts with a metric and determines the Christoffel symbols. These are in fact
the affine connection in the spacetime where the concept of force makes contact with the newtonian theory.
In other words: the knowlege of the connection is the fundamental point in the formulation of Einstein’s
theory. We could start with the Lagrangian formulation in four dimensions (3.6) and ask for the connection
which makes this Lagrangian extrem without torsion. The result is the Einstein theory of relativity.

On the other hand gauge theory is constructed with a fundamental piece: the minimal coupling princi-
ple, consisting in substituting the momentum p, with

Pu — Pu + e-Azta (41)

where now the A% are the Yang-Mills gauge potentials. In a coordinate representation, one changes the
partial derivative by the covariant derivative D,. But with this we are defining a connection in coordinate
space and with it we can formulate the geometrization of the gauge fields. The curvature is also defined in
the same way as in general relativity (see eg. [12])

[D;u Du] = —eBy, ] - (42)

where B, is given in (3.9). The difference here is that we have no metric and the connection B} diffieres
from the Christoffel symbols

Let us now comment about Fiber bundles. A fiber bundle is a mathematical structure which generalized
the concept of cartesian product between sets. For example, a cylinder is the cartesian product of the circle
St and [a,b), a closed set of the line (fig. 7) but the Mébius strip is not a cartesian product of S! and [a, b],
only locally, i.e. it takes two rotations of the circle (fig. 8). We caun define a projection # from the fiber bun-
dle (from the cylinder or Maobius strip for instance) to the base set, in the above example, for the circle (fig. 9):

TP —5! (4.3)
p— 7(p) = (z,y)

i7
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[

taking each point of P to a point of S'. In the case of the cyiinder this projection can be defined as the
“first projection” '

Tzy,z)=(ey) Py =1 a<z<b
but in the second exainple the projection m, can be taken only localy, for each loop.

The bundle structure in which we are interested is a fiber bundle endowed with a connection. In the two
examples above we can project the tangent vectors of P into the base space. Of course, a vertical vector has
zero projection in the circle. Therefore the vertical vectors are well defined throught the projection: they
are the vectors with zero projection in the base set (see fig. 9) But the horizontal vector can be defined in
many ways, they are actually free. To define a connection in a fiber bundle is to define the horizontal vectors
in it which remain invariant over the set 7~!(z) = F;. The set 7~!(z) = F; = {peP|r(p) = z} is called the
fiber, and note that in the examples above it is always the same for all z : F; ~ [a,b]. Finally, principal fiber
bundles are fiber bundles which fiber is a Lie group G and it is defined a product between points in P and
clements of (:. The product between them is called a right action of GG on P

R:Px(G—P .

(p,@) — R(p.a) = p,

such that

a) R(pe)=p
b) R(R(p,a),b) = R(p,ab) (4.4)

The theory of fiber bundles is presented in many books references. For example well-know principal fiber
bundles are the Hoff fibering. They are interesting because they are made of spheres, for instance:

52 (4.5)

In a principal fiber bundle the connection defines a one-form w in P with valaues in the corresponding
Lie algebra G of (i. That can be done in the following way: for each horizontal vector the one form relates
it with the zero vector of the algebra. Because there exists a one to one relation between the vectors of the
tangent space of (i and the Lie algebra G of (i, the one-form relates to each vertical vector on P a vector of
G. For example if G=SU(2) in one point the relation between the tangent space of G and the Lie algebra §
could be given by

p 9 0 0 0 .
ay oz 0 -1 0

; 00 -1

) )
x-%——*-;;f——- 0 0 0

gz 0z 1 0 0

‘ . 0 10

) ) )
yom—aam— =1 00 (4.6)
vy dy 0 0 0

and the one form w is defined with relation (4.6) plus the association of the zero matrix to each horizontal
vector of P, in each point p of P. In general the association varies from point to point, because each linear
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~ombination of (4.6) is equally good as an other. The main point is the projection of this one form w in the
base space. In order to do so we take a cross section o. that 1s. a local function from the base set to the fiber
bundle P such that the projetion from P comes back to the original point (see tig. 10). o defines obviously a
“high™ in the bundle. An other oy would define an other high (see fig. 10). With o we can project (because
it determines a high) the connection one form into the base set

A=c"w (4.7)
If we take an other o. say o, we had A" = #jw . but the relation between A and A’ is [56], [59]

A = ada™! + ada™! (4.8)

with « the transition elements of (i. But this is the well-known relation (3.3). For example if G = U(1),
topologically U(1) = S!, an element of 5! can be written as a = ¢'¢, then

A = 48 — e = A + do. (4.9)
In components

A= Ay + 040 (4.10)

which are just the gauge transformations of electromagnetism. Furthermore we can write the one form of
connection of P in the form [36]

w=atAa+a 'da (4.11)

of course, under the right action of the group ¢ — a’ = ab, w remains invariant w = a'~'Aa’ + a’~'da’. The
curvature is defined as

Q=dw+wAw=a"'Ba
being
B=di+AANA= %Bﬂut“d.}:“ Adz” (4.12)
{2 obeys the Bianchi identity

AQ+wAQ - QAw = 0. (4.13)

Let us return to the example (4.5). Here the base space is 52, the sphere. We cover S? with two recubriments
and write the l-form of connection in each half of the bundle as

Ay = A_ +de
One finds that a gauge potential satisfying the Maxwell’s equations is
Ar = ;i—(:i:l — cos)dé
whiclt is just the Dirac monopole. The curvature is given by
F=dAy = ;;-sim’;’dﬂ Adé (4.14)

which is just the corresponding strengh tensor.
Another example is the instanton. which is a connection of the fiber bundle [56]

SU(2)
|P
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54 (4.15)

So far we have done mathematics. On the other hand the Yang-Mills theory in the formalism of princi-
;al fiber bundle over the Minkowski space is well-known so as the theory of general relativity with fiber the
zroup U(3.1) [60]. Wath about a Yang-Mills theory over an arbitrary four dimensional riemannian space?

Let us take a principal fiber bundle P with connection whose fiber is a paracompact group (3, and base a
four-ditnensional riemannian space. Tliese assumptions define a metric in P because the connection separates
the vectors on P in their vertical and horizontal parts. so the metric in P can be defined as (see eg. [8] and [42])

(U V) = §(U,, V)
g(Uk, Vo) =0

9(Ur, Vi) = y(dn(Us), dn(Vir)) (4.16)
where §. 4y and g are the metrics on (i, the base space B* and P, respectivelly. If {&4} is a base of the
one-forms defined over P, the metric (4.16) can be written as .

J = gasw™ 0 + [po® @b, (4.17)

which is defined in ail P. In what follows we will write ¢ in local coordinates. P is a fiber bundle, this
means that it is locally a cartesian product of an open set U of B* and (i, the fiber, i.e., there exist an
homomorphistm o called trivialization from P to Ux(7, ¢ : P — [/ x (& (see fig. 11). As before the vertical
space in P is well defined because the projection 7 of these vector is zero. Let {é,} be a base of the vertical
space and {e,} a base of the complement, the horizontal one. Of course the projection of the horizontal
vectors is non zero, furthermore their form a base {e,} of the tangent space of U, ie

d7(éq) = €q

dm(ég) =0 (4.18)
Now we project the vectors {é,,é,} to the tangent space I/ X (7 throught the trivialization. Observe that
the projection from [/ x (¥ into U. is the canonicai projection my : I x (¢ — U, (z,a) — z in such a form that

T=mo¢ (4.19)

Let be the projection of {€q4, €4} into T(I7 x (7)

dd(éq) = BPeq — AT
do(es) = Clep + Dtem (4.20)
where {e,,} is a right invariant basis of the tangent space of (i, such that {eq4, e, } is a base of the tangent
space of {/ x (/. But from (4.19) we have
dn(éq) = dmyodp(éy) = Bge,@ = f',,,
dd(é4) = dmy o dd(és) = (Pesy =0 (4.21)
ie. B? =4 and C? = 0. The set do(é,) = D™e,, is again a basis of the tangent space of G and we can
rewrite them as DT'e,, — ¢,. So we have
dp(éq) = ea — AY'em
dé(es) = e,. (4.22)
It is easy to find the dual basis of {(4.22). we arrive at

- €Ca — Ag;em
A=
e"l
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oA = {‘“’a (4.23)

W+ AT

where {w”} is the dual of {e,} and {w™} is the dual of {e,,}. With this basis we can write the metric § in
the trivialization,

J = fasw™ 2w’ + Iym(w" + Abw®) 2 (0™ + AJw”) (4.24)
of course this is the metric (3.1) if we write
W = dz®

and

AL =ekBy, oy = Jab (4.25)

i.e. if we write (4.23) in a coordinate basis. To obtain § we take the pull-back of ¢ observing 'that the
pull-back is in this case

$T(Q) = Qo™ + U (@" — A507)] 41 (4.26)

The pull-back of the cotangent basis of U x (7 is

W) =w" , P+ AW =W (4.27)

so for the pull-back of the metric we obtain

§=0"F= gap0™ Q0P + Impd”™ O™ |41 (4.28)

ie. (4.17). It is clear that ¢ = gpw® 9w is the space-time metric i.e.,the metric on B* and § = [ypw” Quw™
the metric in G. :

Finally we want to show that A%wPt, is the connection component projected into B* of the bundle.
Remember that the one-form of connection in P is a one form w which assigns zero to the horizontal vectors
and an element of the corresponding Lie algebra to the vertical vectors. We can write w as:

w = t, (4.29)

[t fulfills these condition, because

w(éa) = w(éqlta =10
w(éy) = w(€p)ta = djta = tp.

Let us now project it into I/ C B*. For doing so we define a local cross section using the trivialization ¢

S=¢lold:U—P . (4.30)
where /d is a identity function defined as [d : [ — [] x (f.x — (x,¢e) e being the identity in G. Then the
pull-back of S applied to w is given by (see equation(4.27))

$*(w) = (13" 0 $71)(@"1a)
= Id"((w® + Ajw)ta) = AjwPtq (4.31)

thatis A = Agu" tq 1s the projection of the one-form of connection to U and is the Yang-Mills-gauge potential
We have shown that the KK ansatz (3.1) is actually not an ansatz but the metric of the natural
generalization of gauge theory. Some remarks must be done:
1) The decomposition (4.16) or (4.17) can be only done il g is right invariant on the group G. Never-
theless we can take as fiber the quotient set (i/H where H is a normal group of G (see [18] and [45]). For
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=xatuple if (v = SU(3) x SC(2) x 7(1). the maximal normal group is H = S07(2) x (/1) x U/(1), so as dim
(i = 12 and dim H = 5. we have dim GG/H = 7. We conclude that the minimal dimension of P in order
ro have the metric ¢ invariant under S77°(3) x SU/(2) x U'(1) 18 7 + 4 = 11, i.e. the maximal dimension of
supergravity [61][18].

2) There is no way to decide which group i or (:/H must be taken. Perhaps a quantumn mechanics
treatiment (QM) could do so.

3) There is no satisfactory quantumn mechanics treatment of general relativity and of KK theory either.
This is a classical theory of fields but in order to have interactions of all kind we have to work with the
Planck scale, but then an QM treatment becomes important. We think that at this level the structure of
the elemental particles take an important rolle. (Geodesics suppose particles as points. We should suppose
that particles have indeed structure at this level being the geodesic motion only an aproximation of the real
one. One could suppose that partilcles are strings insteat of points. Then a treatment of string (i.e. that
they move over minimal surfaces) instead of geodesic motion could be better for the understanding of the
microworld.

V The method of spontaneus compactification .

We have seen how by considering the spacetime to be of the form M* x (7 the Kaluza-Klein formalism
elegantly unites the Gravitational and Yang-Mills theories in one framework. In this chapter, by using the
method called "Spontaneus Compactification” [62] we will now adress the problem of how a d—manifold
breaks into a 4—manifold and small compactified (d-4)-manifold. In other words, here we are interested to

understand how the transition
MY — M x G

takes place.

The purpose of this chapter, however, is not to give a complete review of the subject, but rather to
mention their main features. For this reason instead to consider a general dimensionality d most of the time
we will consider d=11. We will show that in such dimensionality the method of Spontaneous Compactification
leads naturaly to consider Supergravity [63] and Superstring theories [41].

Let us start with the Einstein-Hilbert action in d dimentions;

S = 1,, /(l‘ix{\/ —gR + other fields} (5.1)
47|'(rk
The field equations obtained from this action are
: L. P
Run — Zj!/MNR = 87GTyN (5.2)
and \
other field equation = 0 (5,3)

Here Ty is the energy momenturn tensor in d-dimentions due to matter fields; scalar, external Yang-
Mills fields and other fields.

The ceutral idea in the method of Spontaneus Compactification is to look for solutions of the field
equations (5.2) and (5.3) wich allow the metric garn to be written in the form

amn(z,y) = (”‘“'Om .‘/mr(;)( v) ) (5.4)

where the metrics g, and gm», satisfy the reduced field equations
Ry = 'y Juv 1 <0 (5”5)

Ryn = Cogmn 2 >0 (56)
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respectively. Here () and (' are constants. With 'y > 0 assure that the internal space is compact [64] |
and with (') < 0. we expected that the four dimensional space-time satisfv the Positive Energy Theorem
[65]. If we assume that all the inatter fields vanish then the field equations (5.2) and (5.3) reduce to the
field equation

Ryn =0 (5.7)

Therefore. in this case (!} = 0 and (» = U. The vanishing of (| is fine, but a vanishing of Cy does not
agree with the field equation (5.6). So. pure gravity with zero energy-momentum tensor seems to be not
very satisfactory. We can still try the case

. 1 . R
Run - QQMNR + Agun =0 (5.8)

where A is a cosmological constant term. This equations imply

Ryn = ——9MN (5.9)
d -2
and hence either
>0 (9 >0
or
iy <0 (' < 0

So, both conditions are not in agreement with the field equations (5.5) and (5.6). Thus, we conclude, like
many others [66], that in Kaluza-Klein theory it is necesary to have gravity plus "matter” fields. The
natural guestion is what kind of " matter” fields. We could cosider as a matter fields, for instance, scalar fields
® or external Yang-Mills fields A%,. However, the completely antisymmetric gange field Apyp provides the
simplest and more interesting object to produce spontaneous compactification.

Let us first write the fields equations associated to the metric gy and the gauge field Ay p;

L o .
Run — QHMNR = '(').“RUABCFf:}Bc - Eg!}MNFABL Fagep) (5.10)

FMNPQ,, = (5.11)
where Faynpq is the curl of the gange field Axnp, that is,
Fynpg = dmAnpq) (5.12)
Let. us now to show that the following solution of the field equation (5.11),
Frvad — et o= const ‘ (5.13)

=0 otherwise

produces a spontaneus compactification
First notice that

FuunpFMNF = 6Flgu, (5.14)
FumnpFYNP =0 (5.15)
and
FunpoFMNFPQ = 24F; (5.16)
Therefore (5.10) reduces to
Ry = —:;-ngw (5.17)
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Ron = %F;-’g,,,,, (5.18)

Thus. (| = =F; < 0 and Cy = £ > 0 so. if F4 # 0 the appearance of the gauge field Ay yp causes a
~pontaneous compactification.

At this stage, although we have had success in producing a spontaneous compactification. at least three
niew important problems we need to face. The first one is that the gauge field Apnp has been introduced by
liand. The second one is that the assumption that the compact space has a radius of the order of the Planck
lenght leads to a very large cosmological constant for the ordinary space-timne. finally, the third problem is
that by introducing the gauge field A4 yp we lost the nice geometrical original idea of Kaluza. The two first
problems are presumible solved by Supergravity theory in eleven dimentions [67]. While the third problem
seems to be solved by Superstring theory [41]. In this work we will briefly explain how Supergravity in
d = 1 solves the first problem and we leave the reader to consult the literature about the problem of the
cosmological constant [66]. We will briefly explain how Superstring solves the third problem.

Let is first start recalling the main aspects of Supergravity. We need first to clarify the meaning of the
“super” of the word Supergravity. Before 1974 the symmetries of bosons (particles with integer spin) and
fermious ( particles with half integer spin) were studied separately. Bosons were transformed into bosons and
fermions were transformed into fermions. But at that year an important symmetry was descovered which
uuits a boson and fermion in only one superparticle [69]. This symmetry is now called supersymmetry [70].

If we associate a generator operator () to such a supersymmetry then @ will change fermionic states
into bosonic ones and vice versa.

Qlboson >= |fermion > (5.19)
Q|fermion >= |boson > (5.20)

Now, normally a generator, let say Jof a usual symmetry determines an element of the group A trough
the formula A = €%/, where # is an infinitesimal parameter. In supersymmetry a similar construction is
possible. In fact the formula g = ¢*? defines an element of a "super” group. The infinitesimal parameter ¢
inay or may not be a function of the space-time coordinates. if ¢ is constant (independent of the space-time
coordinates) the supersymmetry is called global and local if € = ¢(z). Supergravity is the theory of local
supersymmetry. Since according to supersymmetry bosons and fermions accur always in pairs we expect
that there must be one fermionic companion to the ordinary spin-2 gravitational field g, . The metric
in terms of the tetrad e} is .

Guv = 6:,"6:7)mn (5.21)
where 7, is the Minkowsti metric. The infinitesimal supermetric transformation of the tetrad e} turns out
to be

dey = : ¢ "l',‘)\Il" (5.22)
where ¢ = ¢(z) is the infinitesimal parameter and 4™ are the Dirac matrices. The field ¥, called the
gravitino has spin 3/2 and is the fermion companion to the gravitational field g4, (spin 2).

If there are N gravitinos in the theory we have ¥4, with i = 1,...,N and N < 8. Theories with N > 38
seem to be unconsistent [63]. Of course if we have more gravitinos, in addition tothe bosonic graviton, we
need to introduce more bosonic degrees of freedom.

Let us count the degrees of freedom of .V = 1 supergravity in eleven dimensions.

ey transversal and traceless : M -1 =44 (5.23)
9x32-32 -
W4, transversal in gauge vM¥§, =0 _Xz— =128 (5.24)

Here W9, is a Majorana spinor. Thus in order to match the number of fermionic degrees of freedom with
the number of bosonic degrees of freedom we need additional 128-44=84 bosonic degrees of freedom. Since

AmnNp; transversal (2) = 84 (5.25)
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The gauge field 43 np provides such an extra bosonic degrees of freedom.

Returning now to the problem of spontaneous compactification we first notice that the field equation
(5.10) and (5.11) corresponds to the bosonic sector of N=1 supergravity in d = 11. Thus, from this point of
view the gauge field Ay p is not a field put it by hand. but rather is a bosonic field that comes from N = |
supergravity in d = 1.

Let us now see if it is possible to give a geometrical interpretation to the gauge field Ay np. In
clectromagnetism the gauge field Ay, is the source of a point particle with charge gq. The relevant term in
the Lagranian is

d M
go——Awm (5.26)

Suppose we have an antisymmetric gauge field Aprny. Because Ay y is antisymmetric a term of the
form
dXM dXN
' —AMN (5.27)

dr dr

vanishes. So if we want to construct the analog of (5.26) for Axsny we need to make an important, change.
The problem is solved if we introduce another parameter o such that Y* = ¥ (r,0) = x(£°%), a,b = 0,1,
because now we can make the combination

Lo M Y ‘
STEAN DEs Deb AmN (5.28)
Thus we conclude that the gauge field Aarnycan not be the source of a point particle, but rather is the source
of a string parametrized by o.
Similarly, the gauge field Ayryp will be the source of a membrane. In this case the analog of (5.26) and
(5.27) will be :

itqfczbcf)YM N ox?
3192 Thea peb e

Therefore in general a completely antisymmetric gauge field Aps, . ar,,, Will be the source of a p-brane with
interaction term of the form

——AMNQ (5.29)

! axMi axMew

Qy...Gpp1
TUp€ ) ..4——66("“

(p+1) AM\ . My (5.30)

where g, is the “charge” of the system and the indices a,b = 0,....p
Let us introduce the induced metric

M axN

lap = F‘W!IMN(XQ) ' (5.31)

and the notation

h = det(hay) (5.32)

The action of a point particle moving in a gravitational field garn and electromagnetic field Ay is

d A
5o = —Qq / V=hdr + g0 / ;—TAMdr (5.33)
where «,b = 0 and £ measures the inertial of the system: Q is the rest mass of the particle.

The analog of (5.33) for the string is the action [41]

b ()XM dX

e e M (5.34)

S\ =—Ql/\/-hd?s+ /lq



fur the mewbrane we have the action {71]-[72]

abe X XY 0@ -
P /l‘j‘ /:-f-—-/['j b e ()fb (”_’_ \1,\;Q (5.35)

and in general for any p-brane we have

My .M
- f ) Ip p41 _ay.....- iy ()X ()\ Pl P,
Sp = "'Qr/df’HV /“*’ ’1)_/d‘fl+ et e dgar m”fim....z\!p“ (5.36)

Therefore from these actions we see that the gauge field Axrn leads naturally to consider string theory,
Ay ~ng to membrane theory, and in general the gauge field Ay, ar,,, to p-brane theory.
There are other two alternative classical equivalent actions associated to p-branes. One is [71]

.S‘}{[ = S) / €I’+l V (7dbh(tb + 1 - )
My Gy Mps
.'/p—/wA'uHx O OxTen = A, My * (5.37)

(p+ 1) DEd T Qgarn

and the other one is [72-73 ]

1= i+ 17 [ @/

o ) a ().\l\f) 0XWIP+I
+M/(F+lcfm pbt & ()fa‘ . WAM“WAIH" (538)

where v, and f,; are auxiliary metrics.
Under the Weyl transformation

Yab = NE)Yab (5.39)

we notice that 5’;," is Weyl invariant only for the string (p=1), while under the Weyl transformation

for = NE) fab (5.40)

S”’ is Weyl invariant for any p-branes

Let us now return to the problem of spontaneous compactification. We notice before that the gauge
field Apsnp 1s an important object in N=1 d=11 supergravity. Now from (5.35) we observed that the gauge
field Apsnp is also an important object in membranes theory. The question arises weather N=1, d=!1
supergravity and membranes theory are related.

In connection with such a question the following picture is known [74]

Supermembrane ........ »N = |, d = Ll Supergravity
Type A Superstring — N = 2, d = 10 Supergravity (non-chiral) '- “

Picture [A] ,
To explain in detail this picture will make this work very long. So instead we will try first to clarify such
a picture and then for completeness we will explain how string can be obtained from membranes. We will
also briefly explain how gravity arises in strings theory.

Let us first briefly clarify the picture [A]. With the arrows am we mean that from Kaluza-Klein procedure
we can obtain type IIA superstring, from supermembranes and that N = 2, d = 10 nonchiral supergravity
can be obtained from N = I, d = 11 supergravity . The arrow — means that N = 2. d = 10 nonchiral
supergravity is the field theory limit of Type [IA superstring. Finally the arrow ......ymean that there is not
still a direct prove that from supermembranes we can obtain N = 1, d = 11 supergravity.

The central idea to show that strings can be obtained from membranes is to apply the Kaluza-Klein
procedure simultaneously to the world-volnme and to the space-time. This procedure is called double di-
mensional reduction [7.4].
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In order to pertfomn such a procedure let us first rewrite the membrane action in the form

L[ = ibj
—5/11‘56\/*7(7“"/%:,— H+

M 3 N 5,Q

g2 [ e abeOXT OXT OXE

3—!/(1 e T fb Bee e Amne (5.41)
where a.b.., etc., = 0. 1.3 and MN = 0,1....d-1. Now it is convenient to split the coordinates as
="My M=01....d-2 (5.42)
=(&%p), u=0,L (5.43)
The procedure of double dimensional reduction is determined by the following ansatz

dx™ =0, (5.44)
y=p, " (545)
3p%33 = 0, (5.46)
Oydpn = 0. (5.47)

This ansatz allows to write the space-time metric g5 and the world volume metric ,; in the Kaluza-Klein
form;

2 2

91{1,\} = (I,—'.?/3 (gMN ;?AﬁAIAN (D(;ih}"> , (548)
GGy #°G

5= 0 -2/3 (7«16 ‘;:‘?Gb b ‘D¢2 a.) (5.49)

Using these two ansitze the action (5.41) becomes

F3
1= L oerm(£) s

633Gy = ax™ Ap )Gy — dx™ An) (5.50)
(_I"_ 4/3 / abSdY !dYN()y
+[(¢)) d*¢e €€ T, Ay

where an overall factor of [ dp has been dropped. Making variations of this action wici: respect to ¢ and G,
we learn that

$=0 (5.51)
G = dax™ Anr ; . (5.52)

where we used the equation v,5 = hqp which is obtained from (5.50) when we make variations with respect

Lo Yqb-
Now, subtituting these results back into (5.50) we get

, ! 5 aba M

S = —§/d“£\/~77 8ax™ O™ gren+
!72 ¥ abdx ()Y
92 [ o 5.53
2 / L ST v AN (5:53)

which is the string action. Here ¢*® = ¢**3 and Apyn = Apmny. Similar procedure can be applyed to super-
membranes. [n this case which such a procedure a type II A superstring is obtained [74].
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Let us now make some few comments about how gravity arises irom strings.
From (5.37) we have that the action of a string moving in a lat Minkowski spacetime is

g1 1 2 abs Mo N
U= =g [ ES =11 0T
where
' 1
(¥ == =
Q,

Varing this action with respect to v*° gives the two-dimensional energy-momentum tensor

o M l , .
Tos = daXxM XN narn — 5%&(764(30:“ dax™ man) =0

and varing it with respect to y* leads to the Euler-Lagange Equation

2 (/T w2 WM =

\/_()ca )Eb

(5.55)

-

(5.56)

Two reparametrizations and one Weyl invariance allow to choose the three independent elements of v,4 so

that

_, _ (-t 0
7*26-](15- 0 1

the two dimensional Minkowski metric. Making this choice (5.55) and (5.56) simplify to

T = 0ax™ 0x " marn = 3as(n°0:x™ dax™ umw) = 0
and
OQXM - nubaaabXM =0
The general solution of this equation is

XM=\ (r—o)+x1(r+0)

(5.57)

(5.58)

(5.59)

Let us consider closed strings. For them the appropriate boundary condition is just periodicity of the coor-

dinates
vMira) = vM(r, 0+ 27)
The general solution of (5.58) compatible with the periodicity requirernent is
l l .
M — =M )}4 _a, 1 I -2m('r aJ
XR =57 + 3 2 Ef(r Z ‘
n¢0 N
, 1 L,
M -\/l —'>m(‘r+v7)
XL = o\ —-1 H(r+ o)+ e
=5l T Z
n#0

(5.60)

(5.61)

(5.62)

where a;f and &} are oscillator coordinates. The constant { = v2a'. We have the following poisson brachets

{“ﬁzv “:} = i"lém,un n,
{&::n d’r‘:} = iniénl,r; 7]””
{oh, d} = 0.

P X} =0,
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The oscillator « and a® are not all independent since we have the constraints (5.57). In fact using the light

cone coordinate ¢ = 7+ ¢ and ¢~ = 7 — ¢ we have that
{ . o
Tiy = ;;(Too +Tn)=xr=0 (5.64)
| - ,
T__ = E(TQ() - Tm) =\L = 0 (565]

Using (5.61) and (5.62) we have

L 2ir 1 -
L = E/e'“ nOT _do = Q—Z“am_nu,, =0, (5.66)
. . l —
Ln= é/€+2’m’T++(la‘ = EZ&"”"'&" = 0. (5.67)
L,, and L,, satisfy the Virasoro algebra ¢
{Lm,Ln} =im = n)Lynyn (5.68)
{Lin,Lp} = i(m = n)Lmsn (5.69)

At the quantum level the Poisson brackets (5.63) become quantum relations and the constraints L,,
must apply to physical states.

(Lo—=1)]¢ >=0 (5.70)
Lnlg >=0 m=1,..etc. (5.71)

An important change at the quamtum level is that due to normal ordering of the oscilators o}f and &@¥ the
Virasoro relation (5.68) would introduce a c-number. In fact we get

d .
(L, Lu] = (m=n)Lmsn + B(m3 ~ M) - (5.72)

This anomaly is the responsable that in order to have a consisten quantum theory we should fix d=26 for
the boson string and d=10 for the superstrings. Surprisingly these two numbers can be written in terms of
“sacred” mesoamerican numbers; 13 and 5.

Let us consider the state

107 >=a' &l 0> (5.73)

where i,j = 0,...,23. The state |2 > corresponds to the tensor product of a massless vector of SO(24)
from left moving modes with a massless vector of SO(24) from right-moving modes. The state |0 > is the
ground state of the bosonic open string. The part of |Q¥ > which is symmetric and traceless in i and j
transforms under SO(24) as a massless spin two particle. Therefore this part of |% > can be associated to
the graviton. The trace term 6;;|Q7 > is a massless scalar. Finally the antisymmetric part |27 >= —[Q >
tranforms under SO(24) as an antisymmetric second rank tensor. What we would like to emphatize here is
that the graviton is part of the spectrum of closed strings. At this stage however is difficult to understand
how a curved space-time could be built from the “graviton” string spectrum.

Suppose we consider a closed string propagating in a curved spacetime. The action (5.53) can be gen-
eralized to include scalar fields iu the form

v . L[, .
§= / LE/TRUN) + 3= / d*e =Y RC(2)
l ] 1 l 2
+§;(;/d~f[§\/~7'r“”aax"'é?bx”guzv + 5¢%0ax™ ox" Ann] (5.74)
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where we taked g2 = | and introduce the constant a According to Fradkin and Teythin [75] the effective
action

C(®.gyn. Ay, )= / IDV.x&/'D\'/‘lf% (5.75)
can be written in first approximation in o as. (for d=cte)

2 20 L, ; | to
[y ~ /d"s\’\/—l r’—’{“[l + I(v {R+ 4((’};{0)2 - EFE{NP + U ")] (5.76)

Considering C = const. then the classical field equations corresponding to this action will be

1
Rarn — Ey.st =~ Farpq F;{;)Q —guNF?

FMPZ =0 (5.77)

s

where « and 3 are numerical constants.
Here we notice that solution with maximal symmetry are obtained in the case Fyryp ~ epyrnyp. But this
kind of compactification would lead to spaces of the form M4 = $3 x B where 53 is an anti-de Sitter three-

dimensional space time.
There is a conjecture that a similar procedure can be applied to any p-brane. In that cases the general

structure of [' will be

D(.g,4)~ [ d/=a{V(e) - S—Zlv_;fn(<l>)3m<b8~¢g““"

»

2(P)R
S‘z)f(

1 - 1
3 (B Faty .y MM ()
(p+ 1)1Q2 oM Qp

If we consider a solution Fyr, ar,,, ~ ¢, .34, then compactification of four dimensions is preferred in the
case of membranes.
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Fic. 1. Plot of V,(r) for various values of Ls with u? = 1, m =
1, L, = 10, and n = 0.09.
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Fic. 3. Nature of equatorial orbits of the test particles.
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FIG.6 The cosmological solutions in the absence of a vacu-
um condensation. All the solutions except (a), (d), and (h) have
nq particle horizon.
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