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Abstract 
A modern review of Kaluza-Klein theories is present.ed. \Ve 

adopt the version where the whole space is a principal fiber bun­
dle with the four-dimensional spacetime as base, and as typi­
cal fiber a G Lie group. It is a natural generalization of gauge 
theories which metric is just the Kaluza-Klein metric. For the 
five dimensional theory we give an invariant formulation of the 
axisymmetric-stationary case. Some techniques for obtaining ex­
act solutions and cosmology in specific dimensions are studied. 
Finally the method of spontaneus compactification is outlined. 
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I _ 

til UJ UJ Th. Ka.luza presented to Albert Einstein a new idea for uniting ail till that moment known 
illteracr.ions based on the Einstein geometrization theory. It consisted in a generalization of the general 
I'Piativity theory into a five-dimensional riemannian space interpreting part of the five-dimensional metric 
;1:; the fOllr-electroma.gnetic potential. In a lett.er from Einstein to Kaluza, Einstein expressed his view of 
Kaluza's idea with the comment:" Ihr Gedanke gefelt mir zllnachst ausserordentlich. "(f like your idea at 
first sight very much).Indeed Einstein was enthusiastic with Kaluza's idea and presented it at the Sitzungs­
herichte der Preussiscchen Akademie der vVissenschaften at 8t.h December 1D21, in a paper entitled "Zur 
Unitatsproblem der Physic.~' [1]. This paper contained some inconsistences with the theory of Quanta as 
remarked by Einstein himself. The tirst important step in ascribing physical reality to the fifth dimension was 
taken by de Broglie and Schrodinger for the treatment of quantum problems.By starting with a generalized 
wave equation, he discovered in the equation surprising solutions which were periodic in the fifth dimension 
with a period related to the Planck constant. However, the first serious attempt to assign physical meaning 
to the fifth dimension was made by Einstein and Bergmann [76]. These authors introduced the remarkable 
assumption that the space is closed in a very small circle in the direction of the fifth dimension. Through 
t.his change not only was the Kaluza theory generalized, but also a justification for the four dimensional 
appearence of the" real" world was obtained. In a subsequent article, Einstein and Pauli [77] argued that 
the theory is still unsatisfactory with respect to the group of admissible coordinate transformations,"because 
the fifth dimension is treated differently from the other four dimensions. However they made the following 
remark: "When one tries to find a unified theory of the gravitational and electromagnetic fields,one cannot 
help feeling that there is some truth in Kaluza's 5- dimensional theory" . 

Kaluza-Klein theory (KK) consisted basically in associate to the ,~v, (/,,11 = 1. . .4) components of the 
five-dimensional metric the gravitational interaction and to ,5~ the electromagnetic one, while ,55 remained 
constant. the x5 coordinate was a circle and all components of/,AB, A, B = 1. ..5 depended only on Z1 ...Z 4 

but not 011 x 5 • These assnmptions appeared rather artificial and therefore unsatisfactory. Jordan [3] pro­
posed a moditication of the K K theory by assuming that the component ,55 varies like the other components 
depending only on x I .. .x4. ,Jordan fonnd that this function /'55, behaves like a scalar field without mass,being 
t.he .Jordan's theory a gravit.ation, electromagnetism and scalar fields one. Nevertheless the assumptions of 
£5 was a circle and ,AB depended only on Xl ..• X4 remained yet artificial. In the 1960's E. Schmutzer [5] 
constructed the KK theory supposing only invariance of the five metric under the action of a one-dimensional 
group i.e. he supposes the existence of a Killing vector field in the five manifold and projected all the physical 
quantities into the four space using the Killing vector field. The projective theory reproduces all the four­
dimensional physics excepting that the geodesic motion in five-dimensions does not project into the usual 
fOllr dimensional one. Kovacs [6J has shown more recently that there are many possible forms of motion in 
such a projection. 

A reneved illterst in the Kaluza-Klein theory arise with number of interesting obsevations made by 
Rayaki [78]. He pointed out that the 5- dimensional theory yields a geometrical interpretation of the elec­
tromagnetic field and of t.he electric charge. It provides a connection between the gravitational constant G 
the radius of the c.ircle of the fifth dimension [, and the electric charge e of the form G = e2[2. l\1orever, 
increasing the dimensionality beyond five dimensions may be a plausible way to include the isospin space, 
and in this way to obtain a unified theory involving strong interactions. TrautI)1an [7] was the first to relate 
five-dimensional KK theory with the structure of fiber bundles. The relationship between principal fiber 
bundles and higher dimensional theories is clearer now [8]. ' 

The generalization of KK theories to more than five-dimensions was first mentioned by deWitt [9] and 
further developed by many others. In this generalization, the Yang-Mills fields became part of the metric 
in 4+n-dimensions in a similar context as the electromagnetic field did in the 5-dimensional theory. After 
these works many attempts to clarify the higher dimensional theory have been made [10],[18],[39] but the 
microscopical interpret.ation of the theory remains yet unclear. 

In the 1970's. interest in higher dimensional Kaluza.-Klein theory arose thanks to the introduction of 
supergravity [0:3J and string theory [41 J. (11 fact. these two theories naturally lead physicists to consider 
higher dimensional field t.heories. As a result of this combination. new ideas appeared such as dimensional 
reduction and the process called "spontaneous compactification ". At the present time, Kaluza-Klein theory 
is a very promising theory in connection with the superstring one [41]. It seems that any future unified 
theory must be related in some way to the suggestion made by Kaluza in 1919, 
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In this course W~ pian r.o give a exposition of the main ideas of the KI\: theory. The central idea here 
is not. t.o give a general review of the subject (since at the present time it. has a tremendous extension) but 
rat.her to point out what \V~ consider the main and more interesting feature of the Kaluza-Klein theory. In 
(lnler to do so, the first pan of t.his work is devot.ed to the five-dimensional theory, as explained in most of 
t he literature. In t.he st"cond part wt" give a definition of t.he physical quantities in a covariant manner. and 
/>xplain how it can be used for understanding better the theory. In the third part, we will generalize the 
fi ve-dimensional theory, and explain it consequences and problems. The fourth part pretend to give a clear 
explanation of the geometry of the theory begining with purely geometrical supposit.ions. Finally, in the last 
part, we will discuss the method of spontaneolls compactification. vVe will see that such a method is closed 
related with supergravity [Ga], [40] and superstrings [41]. 

I The Five-dhnellsiollal Theory 

The Phylosophy of modern physics supposes the existence of two kinds of symmetries: the geomet­
ric and the inner one. Geometric symmetries refer to the existence of privileged directions in the spacetime 
in which the physics remains invariant. Inner symmetries refer to the invariance of the action uqder cer­
t.ain transformations. The first one depends on the phenomenal but the second one depends of the sort of 
interaction we are studing. It is well-known that invarance of the action under the group U(1) refers to elec­
tromagnetic interactions [12], or invariance of the action under the group /3U(2) x U(1) refers to electroweak 
interaction. Let us start supposing that the group U( 1) is ac.ting 011 a M 5 riemannian space. This implies 
t.he existence of a Killing vect.or field X in 1'v/ 5 • If we choose a local coordinate system on 1.\15 such that 

X = the components of t.he metric t.ensor d:'/ do not depend on 0, Observe that the non O-dependence 

of d:" is a consequence of the action of the group on /vI 5 . Of course if we choose any other coordinate system 
the metric could depend explicitly on (J. This is because the presence of the group symmetry allows to choose 
a gauge for the five-metric. 

In part. four we will deduce t.he explicit form of the metric in terms of purely geometrical suppositions. 
But now let. us begin wit.h t.he so called K K ansatz for the five metric: 

(1.1 ) 

It, l/ = 1, .",4 

where d.';2 is the five-dimensional metric, 9p.v are the components of the four-dimensional metric, I is the 
scalar potential and Bp. the elect.romagnetic potential. 9p.v, I and Bp. depend only on xl ...X4 but not on 

5() = x • Observe also that /2 = X A X.4 = iJ55 (A=I, ... ,5) is the radius of the five dimension. It is easy to 
check that a coordinate transformation of the fifth dimension 

() -- () + A(xP.) ( 1.2) 

i.e. a local transformation of the group U (1) in lvf 5 is equivalent to a gauge; transformation of the four 
electromagnetic potential Bp. - Bp. + (J~,A, because of the transformation rule 

{JXle {Jx'D 

gAB -- YeD oxA {Jx B ' ( 1.3) 

The field equations can be deduced from the Einstein-Hilbert action in five dimensions 

-, 1 f [s r::-R'." = --,-.­ (XV-95
161r('k 

( 1.4) 

where 95 is the determinant of the lnetrlc components gAB and it is the five-dimensional curvature scalar. If 
we substitut.e t.he metric (1.1) into (1.4) and integrate over the 0 coordinate, one gets the four- dimensional 
action 

(1.5). 

2 
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1I!:re 94 is t.he det.erminant of the four-dimensional metric. R the four-dimensional curvature scalar and 8 1,1.1 

the Maxwf>l! tensor BlllI = 8//. 11 - B/LII • \'ariation of ( 1.5) wit.h respect to the metric yields the Einstein~s 
"'1uatiolls coupled wit.h the Maxwf>11 :5tress tf'flSOr for Bllv and a scalar stress tensor for [ as sources. Variation 
,rith rl'spet't to BII gives t.he ~laxwell equations for the potential Bli and with respect to lone finds a field 
"'1l1at.ion for the scalar pot.emial / \\.'here the currents are electromagnetic and gravitational. 

In order to have a direct coparison with the standard elect.romagnetic potential. one expects to recover 
t he Einstein-Maxwell theory when I is constant for some X~l. Then we take the limit when I (xJ1.) = lo=cte 
and comparing with the Einstein-Maxwell action [1:3] 

thus the association with the constant Gk and the Maxwell tensor 8,,/,1 

21Tlo = __ 

and 

(1.6) 

holds 
An interesting observation is that a redefinition of the 4-dimensional components of the metric like 

(1.7) 

gives rise to t.he creation of a scalar field in the Lagrangian (1.5) 

Jd4(,., L' -1 r-::-"[R 1A.B Bl'v 1. -2.:.) A;":lQA] 
,J - L') = 161TGk .xv -Y4 + 4'1' J'V - 6q> Ucr'l'U 'I' (1.8) 

being q>1/3 = I. This transformation eliminates the factor I of R in the Lagrangian (1.5). Now q, is like the 
scalar potential of the Brans-Dicke theory [4]. This scalar potential is a feature of KK theories and is very 
important in the analysis of the geodesic motion. 

Following the phylosophy of general relativity, (see for example [1:3]) the free particle motion must be 
a geodesic, in this case a five-dimensional one. Because of the presence of the Killing vector X = :e' the 
geodesic equation can be separated in two parts 
a) 

b) 
d2xJ1. dxV dxa p ~ dxV p2 I 

--,- + rJ1. -~ -A- = -BJ1.- + _gJ1.V~. (1.9)A

dS2 va dS dS n, v cIS n,2 13 
Here, m is the mass of a test particle and p is the momentum of the particle on the fifth direction 
jJ = rll95A 't;;. If we want to reproduce t.he Lorentz force in (1.9) we have to associate to the charge of 
t.he test particle t.he quantity 

p =qlo/J161rG (1.10) 

:\evert.helees all observer will measure dS and not d.S as in equation (1.9). Therefore if we write the geodesic 
t:'quatiolls in terms of liS', from ( 1,1) and (l.ga) one gets 
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I ~ = -1. U. +1 for a space. Hull alld time-like geociesic)and then equation (1.9) transt'orm to ([6] and (14]) 

d'..!;/.'Ji. rfJ·i.I dJ' u II dx v 1/'2 (2 I dxiJ. dxv 
_'_ ' 1'" -' -'- - --FI'- ...... ___I_'_.-:..!:.( ,.1.1 , ____ ) (1.11)") T ;J/~ I' I' - ;, il.." ') 16 (" ['l!J f iI..' it..:.'i (.'-1 (,'" Ill .. !! I .J m~JJ i('r • (.J( • ..,- ('J 

( a st.udy of the geodesic ~qllation (1. U) and (l.11). and a clear deduction of ( 1.11) is given in [6]). Here we 
ha.ve defined the quantity 

,ciS' [. ') p2 ]l 
rHe-If = Tn-~ = f.n&- + I') J 

ciS ­

which is the effective mass of the test particle projected into four-dimensions. 
It is not possible to determine the radius of the circle so far. However the radius 10 can be estimated re­

quiring quantization of charge q =ne and momentum p =ntl of the fifth dimension. One obtains from (1.10) 

[0 = Ti.J16i('G/e '" 1O-32cm 

i.e. in equation (1.11) the 1\.1\ radius 10 is of Plank length order. In the general case when one QOes not 
5('hoose a local coordinate system with killing vector X = :fJ the five-metric might depend on x too, but 

t hen the metric can be expanded in Fourier series 

YAB = [jAB(X, 0) = L
00 

g~~(x)ein8. (1.12) 
n=-oo 

The KK ansatz does not make sense in this coordinate system because a function B like in (1.1) would not 
" he a vector potential fulfilling the Maxwell eqnations and the [ potential would not be a scalar potential. If 

we take only the modes with 11 = 0 in (1.12), we recover the spatial coordinate system with Killing vector 
X = ~~. This is becallse [JAB is a gauge potential in lvf 5 due to the action of G on M 5, (G=U(I) in this 
('a..,e ), all the n -:f:. 0 modes are only a consequence of a gauge. Then we can interpret this gauge fixing as a 
dimensional reduction. 

There must exist a certain limit for which we recover the flat space time with a isometry U(I), i.e. we 
have to recover the Poincare symmetries and the U(l) group in this limit where the M S space is of the form 
.\J4 x S·l. But in general one t"xpects to have a more general symmetry acting on the M5 space. In order to 
see this fact we make a general infinitesimal coordinate transformation 

xiJ. - .xiJ. + (/(X, 0) 

o- (} + (s(x, 0) 

where 

(A(X,O) = L
00 

(n)A(x)e in8 (1.13) 
n=-oo 

The Fourier series expansion of (A(x, 0) can be make because of the p~riodicity inthe 0 coordinate. Now we 
proceed like in four-dimensional gravity for recovering the Poincare invariance (see [15] or [11] and [16]). In 
four dimensional gravity one restricts the (" {k) function to be linear in xiJ. : (I' = aiJ. + w~ x", with all and 
wt constants. In five-dimensions we restrict the functions (n)A(k) to be linear in X" in analogous manner, i.e. 

((n)/'(X) = a(ll)iJ. +W1T~)J:1I 

(lUIS =c(n I (1.14) 

where atn )", w~" II' and cln I are constants. Now we want to indentify the generator of this transformation.If 
we take, for example, ali w(Tl) and en zero and a single non-zero a(Tl)l-i, we have 

4 
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() - o. 

Then. a function (]J(x. 8) would transform like 

\V ht"rt" Wt" have defint"d 

Pl7l I = ie in8 '-l
II U,l (1.15) 

Similarly we find 

·~f(n) = ieinQ(x a - x 8 ) (1.16)l'lll JI/I /II' 

and 
(1.17) 

corrt"sponding to the generators of the Lorentz transformations and the 8 1 translations. These qpantities 
generate a (non-compact) infinite parameter Lie algebra r.ontaining the usual Poincare algebra 

[pIn) p(rn)] = 0 
JJ 1 /I 

[ \4(111) pIn)] - i(l/ p(m+n) _ 11 p(m+nl)
• '1/1 \:r: -. A/I II AJJ /I 

[Q(n), Qt rn )1 = (71 _ m)Q(n+m) 

[Q(n), p~m)] = _mp~n+m) 

[Q(n) M(m)] - _mM(Tl+m) ( 1.18) , JJII - I'll 

The algebra (1.18) represents the full Kac-Moody symmetry [17] and contains for m = n = 0 the usual 
Poincare C;)U ( 1) algebra. This means that the full Kac-Moody symmetry is spontaneously broken when one 
takes only the modes n =m =0, or equivalently when one chooses the local coordinate system with Killing 
vector X = Actually, we get the algebra Poincare C~J SO( 1 ,2) for m = 11 =0, because the generators 

PJ~O), '\l~~) Q(l) I Qt -1) form this dosed algebra (see ref.[18]). I 

To conclude this part, we determine the four-dimensional classical mass spectrum of the KK theory. In 
order to do so, we vary the metric components gAB around flat spacetime [5] 

(1.19) 

where now 'lAB = diag(1,l, 1, -1, [0). Analogously as in four-dimensional gravity we expand the field equa­
tions RAB = 0 t.o first. order in h.4B. One arrives at. 

C)A cJBhg - iJCC1Ah~ - (JcaBh~ + ()c aehAB =0 ( 1.20) 

Observe that equation (1.20) is invariant under the gauge transformations of hAB 

hAB -I' hAB + (}A(B + ()B(A ( 1.21) 

so that we may choose t.he gauge (see [19]) 

{)JJhJJ5 = 0 

(J5hJlS = 0 

a5 
h!)!) = 0 , (1.22) 
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:\ :,,(11111. 1)('c1llls(> of t ht" {, ( 1) symIHPt ry actillg 011 .\(>. \\'I~ ran (-'xpalld t,he II A B fUllctions ill Fourier series. 
Tll!~ll tlH' ,!.!;tluge ( 1.:!:2) can Iw writtpH as 

()i' h:,~) (J:) =U 

hl':)(.t) =0 11.../.. U
Jla r 

I (n) - . 
l!)5 - U n¥-O ( 1.23) 

\Ve substitute (1.2:3) into (1.20). The 55 component yields 

(l) ':Ja!:l I (0 ) - 0( ua '55 -

( 1.24) 

From t.he Il5 component one arrives at 

o • (1.25) 

and using (1.24) one obtains 

(1.26) 

The ltV components reduce to 

'.){¥:.':l 1(0) 'J 'J. (/10)0' ,(0)5) .).) 1(0)0'
( (lrr "JUI + (11(" 'cr +'5 - «('to,: 1" ( 1.27) 

a.lld using (1.14) and ( 1.2(j) olle arrives at 

(1.28) 

Therefore the n =1= 0 tensor modes h~:!,) are massive with masses 112/({ Equations (1.25) are the Maxwell 

equations for the four vector h~,~) in the gauge dllh(O)1J = 0, Le. h~oJ are massless. Finally equation (1.24.a) 

is the equation for the massless scalar potential h~~). To recover the massless graviton from equation (1.28) 
we make the transformation 

t.hen equation (1.28) can be rewritten as 

(')''1 {) 1,(0) + ('J (,) 1"l(O)a - ('J !:I il(O)a (', a MOla - 0 
a II" I' /I a a(llJ /I a "IJ - , 

which is just the equation for the massless spin-2 gravitation field. (see also ref.[20]) 

II The Potential Forlllalislu. 

In this part we want t.o give a covariant definition of t.he physical quantities of the KK theory. We 
shall proceed like in the Einstein's theory of relativity defining a sort of Ernst potent.ials in five-dimensions. 
But first we diseuse shortly t.he Ernst. and the electromagnetic potential in four dimensions. 

The Erllst potent.ial [11J is dt"fined in tht" stat,ionary case, i.e. when there exist a time-like Killing vector 
field c. wit.h 

~O~a < 0 (t' = 1. ..4 (2.1 ) 

Then tht" Lie derivative wit.h respect to ~ of the metric and tht" electromagnetic potential vanishes. 

(2.2) 
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.,r[H'I·P £1,,; is tile elt"ctrolllagnNIC ti("!d tellsor. which fulfills t.he ;\laxwell's equations 

(2.:3 ) 


Ift're 8",.1 is t,he complex sdf-dual electromagnetic field t.ensor (see ref. [22J and [23]) 

(2.4) 

I t follows (,hat <I> defined by 

(2.5) 

is a gradient (Pit == <P,jJ' Because of (2.1) and (2.:)) the integrability condition for the potential <I> 

2(P,[m;nj fi(~O B[ap;vj - C{ Bpv) =a 

holds. The real and imaginary part of the complex potential <I> describe the electrostatic and magnetostatic 
potentials, respectively. Now we make llse of t.he Einstein equations and of the Ricci identity observing that 

(2.6) 

we find t.hat 

(2.7) 

whert" we have defined t.he venor 

(a bar denotes complex conjugation). Other way it is easy to show that the Lie derivative of J<:jJv with 
respect to ~ vanishes, i.e. we have the same situation as for the tensor (2.4) and allows us to define the 
complex potential 

(2.8) 

called t.he Ernst potent.ial. \Vhen electromagnetism vanishes, t.he real and complex parts of £. are the 
gravitational and rotational potentials, respectively. The Einstein equations in terms of the Ernst and Elec­
tromagnet.ic. potentials (2.5) and (2.8) respectively, are the Ernst equations (see ref.[21] [22] and [23]). 

'We proceed in the same way for the five-dimensional KK theory. In the stationary case we have a second 
Killing vector Y which commutes with the Killing vector X. Stationa~ity means: 

(2.9) 

\Vith these t.wo conmmutating Killing vectors X and Y we can define in a covariant manner five potentials [24] 

,,:"/3 = 1"2 = XAXA ;1 = lyAYA + 1-1(.,yAYA)2 

1/' == -1-2XA yA \,E == fABcDEXAyB XC;D 

. "AyB}?CDt,E = tABCDE./\. . (2.10) 

In the spatial coordinate system where X·-t == flf-:' and Y A = 6; one finds that /\', I, if), X and f respectively 
are tht" sc.alar, gravitational. electrostatic., magnetostatic and rotational potentials. We can write now the 
five dimensional field equations in terms of the potentials (2.10), but better than this we can write down the 

7 
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La~rall!riall L from which WI" call derive the Held equations 

L = '2;.(f,Al'\ + (t ,A + I:' y ..d( t ,A + 1:"<'..1)] (2.11).1. 

n . " -\ 1 '\ '2 (\' -\+ - (I\. - Jj' + -;- t ,. ) + - --;- I'\, "n:".\ I:" A \'2/ . .. . n:.!' . :) n:.! " 

and look for its invariant transformations. This is important because if we have a solution of the field equa­
tion <I>A an invariant transformation of ('2.11) <I>A -" <1»'.4(<1>8) will give us a new solution. All the invariant 
transformations of (2.11) were found in ref. [24], by Neugebauer. In order to do so he defined a metric 
derived from (2.11) 

(2.12) 

which is the metric of a symmetric Riemannian space V. 5 i.e. the covariant derivative of the curvature tensor 
of V5 with respect to each coordinate. vanishes. The group of motion of the metric (2.12) will give us the 
invariant transformations of (2.11). This group has 8 parameters. It was found in reference [25] ·that the 
group of isometries of the metric (2.12) is SL(3,R) and the invariant transformations of (2.12) can be cast 
ill a very simple form as 

(2.13) 

where the matrix c is a constant matrix of the same groups SL(3,R). The matrix gf SL(3,R) can be 
parametrized as 

(2.14) 

-2 (/2 + (2 -t 

9 = - -f 1 
/ 0 0 

which is just the potential matrix for the Einstein theory where f. = / + if is the Ernst potential, 9 belongs 
in this case to the group SL(2,R), but these group is homomorphic to SU( 1,1), therefore it is possible using 
the complex transformation t: = / + i( to obtain 

-'2 ( f.£ 
9 = -- Imt: 

Ref. 0 

whidl belongs to the group SU(l,l) of the Einstein's equations (see ref. (23J cap. a~). This means that 
solutions of the Einstein equations in vaC,llum will be also solutions of the KK theory. If we start with the 
Kerr-NUT solution of the Einstein's t.heory [23J and make a t.ransformation (2:13) we get a 7 parametric 
new solution which cont.ains for example, the Belinsky-Ruffini solitonic solution [26], the Kramer [27J, the 
Neugebauer [24] and the "Kerr-NVT" solutions as limits (sp€, ref. [25]). 

Axialsymmetry is represent.ed by the existenc,e of a third Killing Vec,tor field Z which is space like. 
One can choose then a coordinate syst.em in which the components of the five metric depend only on two 
coordinates. In this case the field equations for the matrix (2.14) are the chiral equations 

(2.15) 

being ==p + i(.!1 =y(p,(). The generalized inverse scattering method was applied to equation (2.15) for 
finding exact solit,onic solutions of 9 [28]. 

8 
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One dimensional subgroups (one parametric subgroups, of SL(:3.R) will give us two equivalent classes 
"I' solutions of equations t:l.1.5). [11 (.his case equation (2.15) becomes to 

fI,>. =.4g 	 (2.16) 

where A is the parameter of the group. These t.wo classes are divided in subclasses depending on the eigen­
values of A. All classes and subclasses are given in [29] and shown in Table 1. (the subclass b =0 in table 1 
is given also in [:10]). 

There are three two-dimensional subgroups of SL(:3,R). One is abelian, the second is SL(2,R) ~ SU(l,l) 
to which the Einstein theory in vacuum belongs and the group 0(2,1) which contains a correspondence with 
the Einstein Maxwell theory where the scalar potential#\. = 1. (See ref. [29]) 

From this technique many exact solutions of the KK axisymmetric stationary field equations have been 
generated. In the literature one can find gravitational fields coupled with monopoles [:3], [31]., [32]; dyons 
[:3:3],[:34J ; dipoles [35];monopoles and dipoles [:36J; strange potentials [:36J etc. We want now to st~dy some 
of these solutions in order to establish some of the main features of the theory. 

The first one was found by a simple ext-ention of the Taub-NUT Euclidean solution [23] in four dimen­
sions [1:3][:31]. We follow these papers now. This solution of the five-dimensional KK field equations is of a 
pure magnetic monopole described by the metric (Killing Vectors X A =6;;; yB =6f) 

(2.17) 

If we compare it with the metric (l.l) we find that the electromagnetic potential and the scalar potential 
l'espectively are 

A" =(0,0, 4m(l - cose). 0), (2 = (1 + 4nllr)-1 (2.18) 

Observe that if we set. t = etc in (2.17) we recover the Taub-NUT metric, which is regular if x5 is periodic 
with period l611"nl [:37]. Thus we have to identify 1611"m with 2 to obtain m = 1/8R. The fiat space limit is 
found to be ,. > > l, in this limit we recover the Minkowski metric in spherical coordinates. Then 10 = 1 
and comparing (2.18) with (1.6) we find that the magnetic charge is 

4m 

g = V1611"G 

Of course in this coordinates the gravitational mass obtained for the asymptotic limit of 944 = -1 for 
l' >> 1 vanishes, but the inertial mass, deduced from the energy momentum pseudo-tensor 

_gtAB =(/c/r4.BG • hABG =	_1_.OD[-g(fjABgCD _ gAGgBD)] (2.19)
1611"Dk . 

is miG [:31]. What it is perhaps really happen is that the scalar potential 1 acts gravitationally and cancels 
identically the gravitational contribution of the monopole. In order to see this, ~n~ should solve the geodesic 
equations of the metric (2.17), but this is actually rather complicated (see ref. [141). We will consider this 
issue in an other easier solution. Let us write the four metric and the scalar potential (ref. [32] solution (16) 
with 60 =-1 and 10 =1) 

4J = (1 _ 2m)3/2 	 '111 

f = 1-­	 (2.20),. pjr 
where we have used the transformation (1.7) and the notation of (1.8). The gravitational mass is m/2, and in 
this case equals the inertial mass. But a test particle would interact with the mass and the scalar potential. 
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[u st>t> t his we write the ~t"odesic t>qllation (1.11) for t.he metric (1.10) as 

dJ;J' _ - {/!' 1/2 llJl= __
m~Jj - m{t + -I')-'J)-m- cis 

fl' b' h . Ix" dg b'Wt" su stltute t e expreSSiOn !h,I'.1.t ~ = T we 0 tam 

d ( Jl t v a 
lis m"Jj/l !/JlP) - "271leJjYva,pu U + mpJj,p = 0 (2.21 ) 

One solution of these equations for a photon (with t =0) is ulJ = 6~'(l- 2:;' )-1/4 Then the newtonian 
force will be 

t.his means that it is exactly cancellf.'d by the interaction with the scalar field [31L which gives rise to a 
rl:'pulsive force cancelling exactly the newt.onian force. Thus a t.est particle traveling around the mass !f will 
ha.ve a constant momentum 

- 4PI' =meJJu/, =m =meJJu 944 

in other words, it does not fed the att.raction of t.he mass ~m. Such a situation appears again in solutions 
of higher dimensions. (Sf.'t" the next sect.ion) ­

The last solut.ion we want. to deal with is again a magnetic monopole, but with a Schwarzschild-like 
gravitational potential. aud a scalar potential given by [:32] 

AI' = (0,0, 'Im( 1 - cosO), 0) [-
? 

= "]1 
1 

1 (2.22)
[1 - _:.u 2 [1 - 11171(1 _ 'J _~n )2] 

This is an asymptotically Hat solution of the five-dimensional field equations. For r > > 2m, (2.22) 
approaches Hat space in spherical coordinates. The gravitational mass M and the magnetic charge gM9 are 
given by 

Observe that if m =0 (2.22) becomes flat. But if '1 =0, only the monopole charge vanishes. The four 
metric (2.22) has a singularit.y at l' =1m, which is an horizon and if 1'm =m + mv'1 + sin2(} the factor 

m2sin::?O 

1 - "[I 21U] =O.
,.- --

r 

The r = 1m singularity is pt:>rhap8 Ilot t>88t'lltial. but one would expect that the four spacetime will be really 
singular at 7' = U. 

For a test partide of lllass Jl and charge e within the monopole field (2.22) we have 
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III t.ilt" (~quaLorial plane with H :ilL. we can writ.e the ellergy pquation in terms of the components of the 
Ii Vt'-tnolllentulll PA. \Ye obt.a.in (:jee ref.[:38]) 

11 th. '<)<) 

£ = +1 -=--) )-c;')- + L{r)..
!I (q; 

where the effective potential function ~'~(7') is g;iven by 

L'!.:(1/2 L'!. 

V1>(r) = <)( 1 I 1/?) + '({Jt 
2 + 1,,5)

1'~ -
p,

1J n X - ­

L:,) is the angular momentum in the fifth dimension and LI" is the angular momentum about the axis of 
syuunetry. Results for Ve ( 1') VS l' are calculated for the particles with J,2 = 1. 111 = 1, Le =10 and 71 =.09 
for different L5 in ref. [38] and plotted in fig.l. and also for Lr, = 2 and different '1 are plotted in fig 2. The 
orbits on t.he equatorial and polar planes are also calculated in ref. [38] and shown in figs. :3 and 4. 

Observe that the scalar potential I approaches I "" 1 very quickly for r > '2m and approaches also very 
quickly infinity when l' approaches the horizon. This means that the effects of the scalar potential I become 
important only near the horizon but desapear far away of it. This can be a reason why we can not ·detect I. 
The behaviour of (}. is shown in fig. 5 

III The ll-dhllellsiollal theory 

In this sect jon we present. the d = (n + 4 )-dimensional KK theory and give its main results. 
As ill the first section let us begin with the so called KK ansatz, now for a d-dimensional riemannian 

space. we have [8],[42], 

(3.1) 

Jl, V =1.. .4, (t, b =.1 ... d 

where the d-dimensional space fI = (I.";'.!. contains a n-dimensional group G of motion ;g =9 IJv dx IJ dxV is the 
four dimensional metric, i.e. the spacetime metric; ?i = YabW!lwb is the metric of a Lie group which will be 
cailed the inner space and B = B~tadxlJ is the Yang Mills gauge potential, ta being the generators of the 
group G. e is the couplings constant and J.: a scale parameter. 

In general it is not necessary to take the inner space as the group of motion, but they are closely related. 
For instance it is possible to take it as the homogeneous space G/H, where H is a normal subgroup of G. 
However for the moment andin order to obtain the field equations we will consider the inner space as the 
group itself. In the next part we will clarify this point and from geometrical assumtions we will derive the 
metric (:3.1). In most of the iiteratllre (11],(:3.1) is taken as the "ground state metric" and is put in by 
hand. The spacet.ime metric and the Yang Mills gauge potentials are suppossed to depend only on the four 
spacetime coordinates and G is assumed to be compact. Here we take a more general d-metric and suppose 
only that in iJ are acting 11 Killing vectors which form an (i-algebra, corresponding to the G-group. 

Let {~a} be a left-invariant basis of the tangent space t.o G, dual to {"",.J1}. Of course there exists a 
canonical iso~orfism between the basis {~a} at the identity and the Lie algebra g 

(3.2) 

where t.he {~tl} vect.ors form the Lie algebra 

(3.2a) 

1.:- 1 is a scale factor and /.:'lJ are the structure constant.s of g. It is easy to show that a local coordinate 
transformation of t.he internal coordinates in the direction of the Killing vector, i.e. 
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flit" I.!;auge potentials transform like Yaue; :Vlills fields 

(:3.3b). 

The synunetry of the whole space means that the Lie d.erivative with respect to the vectors {~a} of the metric 
y .....anishes: 

£eaY = U (:3.4 ) 

From this. the internal dependence of the fields [8] 

'.) - k-1fd - k-1fd ­U'19bc =" abgdc +. I1cgbd (3.5) 

holds. 
The field equations of the unification are derived from the d-dimensional Einstein-Hilbert action 

Itt = _.1_._, JV-YJ(R + A)ddx (:3.6)
101r(T k 

where R is the curvature scalar of the d-dimensional space, 9J. is the determinant of the 9 matrix coefficients, 
.\ is the d-dimensional cosmological constant and Gk is the gravitational constant. 

The next step is to obtain an explicit expression for (:3.6) using the metric given by (3.1) . In order to 
do so we write the components of (:3.1) in matrix notation 

(3.7) 

with inverse 

being fJlJII and iii j the inverse of gl'lI and iiii respectively. 
\Vith this expressions we can calculate the curvature scalar it of the whole space. We arrive at [8],[45] 

'>k'> 
R =R+ R+ e- "- !iabB~IIBbl'lI + ~gab!icd[(DJ,!iac)(DI'9bd) - (DI'Yab)(Dl'gcd)]

4 

+V
/1 

(gab DJl yt1b ) (3.8) 

where VII is the covariant derivative defined in B4, the spacetime; B~II is the Held ~·trengt.h of the Yang Mills 
potentials 

B tl .) B a .:) B a fa Bb Be 
1111 = Ull II - (II II + e b~ II II (3.9) 

Rand Rare the curvature scalars of B4 and G, respectively and DIL is the gauge covariant derivative 

DII =a,l ~ ekB~aa (3.10). 

So the action (3.5) can be now writt.en down in the following form its 

Ba BblLII1 J r-::- ~{R R- 1 <'k'>­1= -1'(' Y-!/4yYa + + -4£'- ·· .. gab 1111 +
011' r k 
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(3.11) 

II P to a I,utal divergeuce. Tltt:' unification means then that [10] 

(3.12) 

alld We> have again a unified Lagrangian of gravitation. Yang Mills. and scalar interactions. with cosmological 
constant. 

In this approach we can derive the field equations from t.he action (:3.11) or directly from the d­
dimensional Einstein equations. In general we ran add a energy momentum tensor and start from 

(3.13) 


t he result (lip to the T.4B tensor) will be the same. 
The field equations (:3.1:3) must be compatible with the vacuum or Minkowski metric and the group G. 

Let us suppose that the 4-dimensiollal Ricci tensor vanishes, and B~ = O. It follows that [46] Op.Ya6 =.0. Then 

which implies 

(3.14) 

On the other hand Rl1b = Rllb. because of the la'5t conditions, and thus 

R'lb = -X1rGk(Tab - ~T4gab) (3.15) 

from which the expression for the cosinological constant 

(3.16) 


holds. Equation (:3.14), (3.15) and (3.16) are the flatness conditions. An interesting case is when the internal 
space G is an Einstein space, i.e .. R(lb = egab. It follows t.hat [47] 

c 1'T' }_+ -4 J4 (3.17)Tab = -(-8 YabC-'1r TI.; 

i.e., Tub is determined by the four dimensional part of the energy momentum tensor and the internal metric. 
\Ve will come back to this point in part V. 

We want now to show some of the results of this theory. In order to do so, we follow the work of [43], 
who defines the inner metric as 

gab =</Jl/n Pab 

in order to have det gab = lJ) for an unimodular G group. If we make this transformation, the unified la­
grangian transforms to 

Lo = - 16~(:k I!i4 fi[R + R + 41rGI.;(pl/n PabB;!" Bbp.v 

11 - 1 (OJ,¢)2 
-~-;r 

+lpabpCd(DJ,Pac)(Dp.Pdb) + A + A(ldetpabl- 1)] (3.18) 
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\\'here A I::; a Lagrangian multiplier. ~evertheless the volume element should be V-!J4 and not V-!J4f/J as 
in (:3.11'1). furthermore "he ([) field appears wir.h a negative kinetic energy. \Ve can remove these defects by 
Iwrforrnin~ the conformal transformation (Sf'f' also eq.(7)) 

(:3.19) 


( 'ullsidt'rill,l!; r.his transformation t.he Lagrangian (:>.18) becomes 

(3.20) 

where 0' is the dilaton field defined by 

1 n + 2 1/'1 1 
('f =~[--] -In<jJ = --ciuqJ (3.21)

2 n 2 

Observe that the couplings constant of the gauge fields is Gk = Gke- Cd 
• 

Now let us briefiy study the cosmology of this theory. We start from the field equations (:3.13) and the 
Ilatural ansatz (see ref.[44]) 

;: -rd , ­ (3.22)Tab = V qJe - P gab 

which corresponds to a perfect fiuid energy-momentum tensor in d-dimensions (here we have used the trans­
formation (:3.19)). One chooses 91HI as t.he Robertson-Walker form, with P~lb time-independent and ('f =O'(t). 
\Ve substitut.e all of this ill (:3.1:3) and obt.ain 

.. '}H . d~! 8 (" b{ .) 2 ') -Cd
0' + oj 0' + -[- = 1J', k P - .)p + P e 

(0' 

(3.23) 

being a = J(1I + 2)/11, b = In/{n + 2). a,b and c will be taken as free parameters for the moment. H is 
the Hubble field defined in standard from H = i·/7·. Equations (3.23) corresponds to the standard cosmology 
with 0' =0 and cosmological constant R+ A. These equations have:two syntmetries. They are invariant 
under the transformation' 
a) 

(£ +-+ b, R - A 

and under t.he scaling 
h) 

An exhaust.ive study of equations (:3.2:3) and their interpret.at.ioll is made in ref. [44] and plotted in fig. 6. 
Solutiolls with ami without. big bang or horizon are shown, for an universe expanding or recontracting. In 
ot.her words. wit.h this t.heory it is possible to solve the horizont problem of standard cosmology, because 
there are SOlne solut.ions without it. Also the missing mass problem could be solved, because equations 
(:3.2:J) show that there exist a contribution of the u field to the density of the Universe. To see this point, 
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\\'f~ observ~ t.hat if WE' identify the dt'llsity and the presure of tile (J' field as 

1 1 . ') L')
fI" =-.-'-.-{ -(r + yI (jiT(Tk 2 

1 ( 1 . ')
p" = lU.... C·T.k -:-2 (r ­" 

. 
~ ) 

and substitute that in (:).23). we arrive at 
a) 

b) 

(3.24) 

The first. equation shows how p" contribut.es to t.he whole density of t.he universe. i.e. the existence of the (J' 

field explain the stationarity of the galaxies. The second equation describes the conservation of the e~ergy­
momentum tensor (see ref. [44]). 

All these results make clear (together wit.h the dependence of G N on (J'. the coupling constant of the 
gauge fields), that the dilaton or scalar field plays a very important role in this theory. • 

In order to study it in the context of axisymmetric or spherically symmetric solutions we suppose that 
the four-metric contains two commuting Killing vectors, one of them time like and the other space like. 
Furthermore we suppose t.hat the only Held acting in t.he whole space is electromagnetism. In such a case 
we have n + :2 cornmutat.ing Killing vectors alld the metric can be cast in the form [48], 

ciS''.! = !(p, ()(dp'2 + d('2) + !/ij(p,()dxid;LJ (3.25) 

i, j= :3 ... d 
vVhith this metric, the Einstein equations (:l.l:» can be written as [49] 
a) 

b) 

.: = p + i( (3.26) 

where the (1l + 2)J:(1l. + 2) mat.rix (!/)ij = !/ij. If we want. to solve equations (:3.26) we need first to find a 
solut.ion of the chiral equat.iolls b) in order to solve a). There are some techniques for doing so: the solitonic 
(iuverse scatering) method for finding exact solutions of (:3.26b) developed in refs. [48] and [50]; the "sub­
space ansatz" consisting in t.o parametrizing t.he !J matrix as 

(3.27) 

is developed in general in ref. [51] and for the one and two subspares i"n refs. [.5:3]~nd [54], (see also [52]). 
We want shortly to outline the oue dimensional subspace ansatz. 
Let us take the ansatz 

9 =g(A) A=A(=,E) (3.28) 

where A fulfills the Laplace equation 

(PA,r ).: + (pA,.:: ),.; =0 (3.29) 

The chiral equations reduce to 

9,>.. = Ag (3.30) 
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,,"!Ill!; A a constant matrix. (:;f'e also equation (:2.1;"))). in t.his case {,he integration of the function fin (:3.25) 
.~ determined by A ollly. 

(3.31 ) 


The integrability condit.ions of this last equation follows from the chiral equations [5:1]. The solution of the 
Illatrix equation (3.:l0) depends Oil the classification of the matrix A. A classification under eigenvectors is 
given in ref. [53] and shown in table 2. \Ve get magnetic monopoles with gravitational potentials like the 
\ ewt.onian potentiaL dipoles, monopoles and dipoles etc. Let us give one example [55] 

g = A(1')dt2 - 8(1')(d1'2 + 1'
2df22) 

P = J1'2 - '2m1' 
.: =(1' - m)coBB 

with the electromagnetic potential given by 

and 

1'- m 
0' T'-m)!'} (1'-m)"(

A(1') = -- , 1;)(1') = - , h(l') = - (3.32) 
( l'+m ) ( 1'+m 1'+m 

If we calculate. like ill part I L t.he inertial mass from (2.18) we obtain [55] 

111 
7H[ =n- (3.33)

'f 
( .T 

But now remember that we have t.aken j":i;g"v as the physical quantities. In this case, from the asymp­
totkal behavior of g44. we get the gravitational mass to be 

(2a - /3)m 
mg = (3.34)

2(; 

This solution allows us to take {3 = 0 (that is JIO alweys so), in which case the gravitational and inertial 
mass coincide. But then t.he scalar field (dilaton) vanishes. 

If we accept that particles move ill geodesic in the d-space, we can proced like in the first part (equation 
(1.10)) t.o obtain the geodesic equation in four dimensions. If A is a dimensional geodesic parameter and S 
the four- dimensional one, (but now using V9Y"V as the physical quantity) we obtain [55] 

wit.h 

(3.35) 

where now we have to take as effective HlasS 



The presence of JQ ill the elfect.i v€' mass is I)pcause of the transformation !lltll - .;;pyf,J.v, to is = -1. 0, 1 
ft)r t.11t" d-dimensional g;eodesic alld t4 is the same Oil€' for the four-dimensional geodesic. Observe that even 
\\'hl"l1 t d = -I (space lik€' l!;€'odeslc) the effective mass call he a'isoc.iated to the mass of an ordinary particle. 

1r we substitutl" the :solution (:i.:tn in the geodesic equation (:l.:35) we observe that the scalar potential 
takes an important part. ill th€' gravit.at.ional interaction. In the newtonian limit (:L:35) reduces to 

id'2 
x _ ij o' ~ -1/2 _ ii o.( -(2a - d)m)

dS'.! - Y J ( 2 tp 944) - Y; 2r 

which means that the dilatoll interacts with a repulsive or attractive force with the gravitational poten­
£.ial depending whether the dilatonic charge t3 is negative or positive [55]. 

It is now clear that the dilat.on plays a very important role in the KK theory and its existence could 
decide whether the KK theory could be taken as a realistic theory or not. 

IV Geoluetrical Fornnilatioll of KK 

In this section we want to show how the new n-dimensional KK theory is the unification of three 
theories: the mathematical theory of fiber bundles; gauge theory and the old KK theory. 

Let us start by showing the analogy between General Relativity with the standard gauge theory. 
In general relativity one formulates the theory using geometrical principles. The interactions between 

particles or fields. i.e. between matter is because of the curvature provoke by them in the spacetime. The 
curvature of spacetime determines how matter interacts. On the other hand, interactions in gauge field 
theory is uuderst.ood as exchanging of virtual particles. Interaction, fundamental escences in the formula­
riOll of physics. is rat.her diferel1t. in t.he t.wo theories of t.he 20th Century. How can we make both theories 
compat.ible'? 

"Ve know t.hat in a geolllet.l'ical formulation the curvature and the covariant derivative play an important 
role. In general relativity. Olle start.s with a met.ric. and determines the Christoffel symbols. These are in fact 
the affine connection in the spacetime where the concept of force makes contact with the newtonian theory. 
In other words: the knowlege of the connection is the fundamental point in the formulation of Einstein's 
theory. We could start with the Lagrangian formulation in four dimensions (3.6) and ask for the connection 
which makes this Lagrangian ext.rem without torsion. The result is the Einstein theory of relativity. 

On the other hand gauge theory is constructed with a fundamental piece: the minimal coupling princi­
ple, consisting in substituting the momentum Pf,J. with . 

(4.1) 

where now t.he A~ are the Yang-Mills gauge pot.entials. In a coordinate representation, one changes the 
partial derivative by the covariant derivative DI" But with this we are defining a connection in coordinate 
space and with it we can formulate the geometrization of the gauge fields. The .curvature is also defined in 
the same way as in general relativity (see ego [12]) 

(4.2) 

where B~,V is given in (:3.9). The difference here is that we have no metric and the connection B~ diffieres 
from the Christoffel symbols 

Let us now comment about Fiber bundles. A fiber bundle is a mathematical structure which generalized 
t.he concept of cartesian product. between sets. For example. a cylinder is the cartesian product of the circle 
.c,,·1. alld [a.b], a dosed set. of the lille (fig. 7) but t.he Mobius st.rip is not a cartesian product of 8 1 and [a, b], 
ouly locally, i.f'. it t.akes two rot.at.ions of t.he circle (fig. 8). We can define a projection 1T from the fiber bun­
dle (froll1 tIl€' cylilld€'l' or :\(ijhills st.rip for instance) t.o t.he base s€'t. in the above example, for the circle (fig. 9): 

(4.3) 

P -'" 1T(p) = (x,y) 
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i ;tkinJ!; each point of P to a point of ..,'1. In the case of the cyiinder this projection can be defined as the 
"tirst projection" 

7rdx,y,=)=(J:,y) ,.z::!+y'2=1 as:=S:b 

IlUt. in the second example t.he projection iT! can be taken only [ocaly, for each loop. 
The bundle structure in which we are interested is a tiber bundle endowed with a connection. In the two 

pxamples above we can project the tangent vectors of P into the base space. Of course, a vertical vector has 
zt'ro projection in the circle. Therefore the vert.ical vectors are well defined throught the projection: they 
are the vectors with zero projection in the base set (see fig. 9) But the horizontal vector can be defined in 
many ways, they are actually free. To define a connection in a tiber bundle is to define the horizontal vectors 
in it which remain invariant over the set 7r- 1(x) =Fr. The set 7r- 1(x) =Fr ={P€Pj7r(p) = x} is called the 
tiber. and note that in the examples above it is always the same for all x : Fr ::::: [a, b). Finally, principal fiber 
hundles are fiber bundles which fiber is a Lie group G and it is defined a. product between points in P and 
elements of G. The product b(~t.ween them is called a right action of G on P 

R:PxG-P 

(p, (t) - R(p, a) =P l 

sHch that 

a) R(p, e) =p 

b) R(R(p,a),b) =R(p,ab) ( 4.4) 

The theory of tiber bundles is presented in many books references. For example well-know principal fiber 
bundles are the Hoff fibering. They are interest.jug because they are made of spheres, for instance: 

S'l 

S·3 

Ill' 

8 2 (4.5) 

In a principal fiber bundle the connection defines a one-form w in P with valaues in the corresponding 
Lie algebra 9 of G. That can be done in the following way: for each horizontal vector the one form relates 
it with the zero v~ctor of the algebra. Bt>cause t.here exists a one t.o one relation between the vectors of the 
tangent space of C and tlw LiE-' algdn(t (i of G. tile one-form rt"'lates to each vertical vector on P a vector of 
9. For t>xarnple if (; =S li (:2) ill Ollt> point t.he rt"'lat.ioll between the tangent space, of G and the Lie algebra 9 
('ould b~ gi ven by 

() () 
-­ -y-­
~ Oy az 0 0 

0 
-1 n 

() 
-

j) 
~- --­
~ {Jz 00 

0 
0 

~l) 
0 () 

y- -J:-­
Oy Dy (~l I 

0 
0 D (4.6) 

and the one form w is defined with relation (4.6) plus the a.'580c.iation of the zero matrix to each horizontal 
vector of P. in each point p of P. In general the association varies from point to point, because each linear 
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"ombination of (4.6) is equaily good as an other. The main point is the projection of this one form w in the 
Ila..;;e space. In order to do so we take a cross section 0'. t.hat is. a local function from the base set to the fiber 
hundle P sllch that the projetion from P comes back to the original point (see fig. 10). 0' defines obviously a 
"bigh" in the bundle. An other 0"1 would define an other high (see fig. 10). \Vith 0' we can project (because 
It det.ermines a high) the connection one form into the base set 

.-l = (1*:"; (4.7) 

If Wf~ take an other 0', say 0'1 we had .4.' = Iii"'" . bllt the relation between A and A' is [56), [.59] 

(4.8) 

wit.h a t.he transition elements of G. But this is the well-known relation (:J.:J). For example if G = U(1), 
topologically U(I) =,,,'1, an element of 8 1 can be written as a =ei.p, then 

(4.9) 

In components 

(4.10) 

which are just. t.he gauge transformations of electromagnetism. Furt.hermore we can write the one form of 
connection of P in the form (56] 

(4.11) 

of course, under the right action of the group a - a' = ab, w l'emains invariant w = a'-l Aa' + a,-l da'. The 
curvature is defined as 

n =dw + w 1\ w =a -1 B a 

being 

(4.12) 

n obeys the Bia.nchi identity 

dO. +w 1\ 0. - 0. 1\ w =o. ( 4.13) 

Let liS return to the example (4.,5). Here the base space is S'2, the sphere. \Ve cover 8 2 with two recubriments 
and write the I-form of connection in each half of the bundle a.':! 

One finds that a gauge potential sat.isfying the Maxwell's equations i~ 

1 
A± = :l (±1 - cos(J)dcP 

which is just the Dirac monopole. The curvature is given by 

F =dA± = !sin(Jd(J 1\ dcP ( 4,14) 
:2 

which is just the corresponding strengh tensor. 
Another example is the instanton. which is a. connection of the fiber bundle (56J 

S'U(2) 

IP 
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(4.15) 

So far we have done mathematics. On the other hand the Yang-Mills theory in the formalism of princi­
;,;d fiber bundle over the Minkowski space is well-known so as the theory of general relativity with fiber the 
:.:.roup U(:L 1) (60]. Wath about a Yang-Mills theory over an arbitrary four dimensional riemannian space? 

Lf't us take a principal fiber bundle P wit.h connection whose tiber is a paracompact group G, and base a 
f:Jllr-dilllf'lI~lOnal riemannian space. These assllmptions define a Inetric in P hecause (,he connection separates 
; hE' vt-'ctors on P in t.heir vert,lcal aBel horizontal parts. so the metric in P can be df'fined as (see ego [8] and [42]) 

y( C,I , ~ ~) = !i( Uv , ~~ ) 

!I (UH, Vv ) =0 

iJ(UH, VH) =g(d7r(lIH),d7r(VH)) ( 4.16) 

where y. y and g are the metrics 011 G, the base space 8 4 and P, respectivelly. If {w A } is a base of the 
one-forms defined over P, the metric (4.16) can be written as 

(4.17) 

which is defined in all P. In what. follows we will write fJ in local coordinates. P is a fiber bundle, this 
means that it is locally a cartesian product of an open set. U of 8 4 and G, the fiber, i.e., there exist an 
Iiomornorphism (lJ called trivialization fro III P to UxG, ¢ : P - U x G (see fig. 11). As before the vertical 
~pace in P is Wf'll defined because the projection 7r of these vector is zero. Let {fa} be a base of the vertical 
space and {co} a base of the complement, the horizontal one. Of course the projection of the horizontal 
vectors is non zero, furthermore their form a base {C a } of the tangent space of U, ie 

dir(fa) =fa 

(17r(e a ) =0 ( 4.18) 

);ow we project the vectors {C a , en} to t.he tangent space U x G throught the trivialization. Observe that 
I he projection from (i x G into U. is the canonical projection 1I't : U x G - [1, (x, a) - 3: in such a form that 

iT =1r} 0 <p (4.19) 

Let be t.he projection of {e a, en} into T( C x G) 

(4.20) 

where {em} is a right invariant basis of the tangent space of G. sllch that {c a , em} is a base of the tangent 
space of U x O. But from (4.19) we have 

d1l'(e a ) =dirt 0 d¢(c a ) = B~el3 = e~ 

ddJ(e a ) =dirt 0 d¢(e(l) =C~e/J =0 (4.21 ) 

i .e. B~ = 6~ and C~ =O. The set d(JJ( en) = D;;' Crn is again a basis of the tangent space of G and we can 
rewrite thelu a-:; D:1n Crn - ell' So we have 

d¢(e a ) = CO' A~em 

dlb(ea ) = Ca· ( 4.22) 

It is easy to find the dual basis of (4.:2:2), we arrive at 

.ITn- _ ea - j'"1a em 
CA ­ { em 
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(4.23) 

where {Wi)} is the dual of {eer} and {wm} is the dual of {em}. \Vit.h this basis we can write the metric 9 in 
the trivialization, 

(4.24) 

uf COllrse t.his is the met.ric {:3.1) if we write 

and 

A~ =ek8~, ( 4.25) 

i.e. if we write (4.2:3) in a coordinate basis. To obtain 9 we take the pull-back of ¢ observing that the 
pull-back is in this case .. 

¢*(f2) = f2~wa + f2n(w" - Aijw/))I4>-l ( 4.26) 

The pull-back of the cotangent basis of U x G is 

l1¢'"(w a ) =wOe ! ¢*(wa + A~W(l) =w ( 4.27) 

so for the pull-back of the metric we obtain 

• A,'"- ~a ~{J I -n -ml9 = IP 9 = galiw ® w + mnW C9 W 1/1-1 (4.28) 

i.e. (4.17). It is clear that 9 =!1aliwa ®w/3 is the space-time metric i.e.,the metric on 8 4 and 9 = Inmwn ®w n 

the metric in C;. 
Finally w(~ want to show that A;jw/3 ta is the connection component projected into 8 4 of the bundle. 

Remember t.hat the one-form of connection in P is a one form w which assigns zero to the horizontal vectors 
and an element of the corresponding Lie algebra to the vertical vectors. vVe can write w as: 

(4.29) 

It fulfills these condition, because 

w(Ca ) =wl1 (C a )ta =0 

w(eb) = W<l(cb)ta =bbta =tb. 

Let us now project it into U C 8 4 • For doing so we define a local cross section using the trivialization ¢ 

5' = ¢ -1 0 lel : [J - P ( 4.30) 

where {d is a identity function defined as {el : U ....... U x (;,x - (x, e) e being the identity in G. Then the 
pull-back of S applied to w is given by (see equat.ion( 4.27)) 

S*(w) = (Id* 0 ¢-h)(~<lta) 

= i(i*(w a + A~w{J)ta) =A~w/3ta (4.31) 

that is A =A~wJ3ta is the projection of the one-form of connection to U and is the Yang-Mills-gauge potential 
\Ve have shown that the KK ansatz (3.1) is actually not. an ansatz but the llletric of the natural 

generalization of gauge theory. Some remarks must be done: 
1) The decomposition (4.16) or (4.17) can be only done if Ii is right invariant on the group G. Never­

t.heless we c.all take as fiber t.he quotient set (i/H where H is a normal group of G (see [18] and [45]). For 
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"X<llllp!P if (; = ;'1'e (:» x .''IF (:2) x ,'( 1), t lIP maximal lIormal group is H = .,-:'{' (:2) x t: (l) x U( 1), so as dim 
(; = 1'2 and dim H .1. wp have dim (~/H = T. \Ve conclude that the minimal dimension of P in order 
rl) have tlw metric !I invariant under ."l'{'(:l) x _,'U(2) x U(l) is 7 + 4 = 11, i.t~. the maximal dimension of 
:"-upergravit.y [61][18]. 

'2) Tllf~re is no way to decide which group G or G/H must be taken. Perhaps a quantum mechanics 
! reatment (QM) could do so. 

:3) There is no satisfactory quantum mechanics treatment of general relativity and of KK theory either. 
This is a classir.al theory of fields but in order t.o have interactions of all kind we have to work with the 
Planck scale, but then an Ql\'l treat,ment becomes important. vVe think that at this level the structure of 
t he elemental particles take an important rolle. Geodesics suppose partides as points. vVe should suppose 
that particles have indeed structure at. this level being the geodesic motion only an aproximation of the real 
one. One could suppose that partilcles are strings insteat of points. Then a treatment of string (Le. tha.t 
t hey move over minimal surfaces) instead of geodesic motion could be better for the understanding of the 
rnicroworld. 

V The lllethod of spontallens cOlllpactificatioll 

\Ve have seen how by considering t.he spacetime to be of the form M4 x G the Kaluza-Klein formalism 
degantly unites the Gravitational and Yang-Mills theories in one framework. In this chapter, by using the 
11Iet.hod called "Spont.aneus Cornparr.iliration'~ [62] we will now adress the problem of how ad-manifold 
hreaks int.o a 4-manifold and sInal! compactilied (d-4 )-manifold. In other words, here we are interested to 
understand how t.he t.ntnsitioll 

ta.kes place. 
The purpose of this chapter, however. is not to give a complete review of the subject, but rather to 

mention their main features. For this rea..;;on instead to consider a general dimensionality d most of the time 
we will consider d= 11. \Ve wiil show t.hat in such dimensionality the method of Spontaneous Compa.ctification 
leads naturaly to consider Sllpergravity [6:3] and Superst.ring theories [41]. 

Let us start with the Einstein-Hilbert action in d dimentions; 

(5.1) 

The field equations obtained from t.his action are 

(5.2) 

and 
other field equation =0 (5,3) 

Here T,H N is the energy momentum tensor in d-dimentions due to matter fiel,ds; scalar, external Yang­
~Iills fields and ot.her fields. 

The cent.ral idea in t.he met.hod of Spontanells Compactification is to look for solutions of the field 
pquations (5.2) and (5.:3) wirh allow the metric !IM N t.o be written in the form 

(5.4) 

whl':'re t.he Illetrics !1IU/ and !hllTl sat.isfy the reduced field equations 

(5.5) 

C',1 > 0 (5.6) 
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J'Pspectlvf'iy. Here (.\ and (':2 are constants. \\"ith C',! > 0 assure t.hat. the iur.ernal space is compact [64] , 
and with ('\ < O. we expected that the four dimensional space-time sat.isfy the Positive Energy Theorem 
[(jilJ. If we a.'5sume that ail the matter fields vanish then the field f'quatiolls 0).:2) and (5.3) reduce to the 
lif'ld equation 

(5.7) 

Therefort'. in this ca."t> C 1 = 0 and Co! = O. The vanishing of C\ is fine, but a vanishing of C2 does not 
a.u;ree wit.h the field equat.ion (5.0). So. pure gravity with zero energy-momentum tensor seems to be not 
\,f'ry satisfactory. \ Vp can still try the case 

RMN - ~fJMNR + AgMN =0 (5.8) 

where A is a cosmological constant term. This equations imply 

2,\ ,
R (5.9)MN=d_'2 9MN 

and hence either 

(.'1 > 0 (.''2 > 0 

0(' 

So, both conditions are not in agreement with the field equations (5 .•5) and (5.6). Thus, we conclude, like 
many others [66], that in Kaluza-Klein theory it is necesary t.o have gravity plus" matter" fields. The 
uatural question is what kind of" matter" fields. 'VVe could cosider a.'5 a matter fields, for instance, scalar fields 
(I> or external Yang-Mills fields A~{f' However, the completely antisymmetric gauge field AMNP provides the 
simplest and more int.eresting object to produce spontaneous compactificatioll. 

Let us first write t.1lt' fields equations associated to the met.ric YMN and the gauge field AMNP; 

(5.10) 

F MNPQ. ­,Q- 0 (5.11) 

where FMNPQ is the curl of t.he gange field AMNP, that is, 

(5.12) 

Let liS now t.o show that t1w following solut,ioll of t.he field equat.ion (5.11), 

(5.13) 

=0 othe7'wise 

produces a spontaueus compactification 
First notice that 

F MNP 'F2 (5.14)FIlMNP 1/ = b 491-'1/ 

FI\INP - 0FmMNP 11 - (5.15) 

and 
F MNPQ - ')4F2 (5.16)FMNPQ - ~ 4 

Therefore (5.10) reduces to 

(5.17) 
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TllUs. ('1 = -F:; < 0 and C'J, = F1 > 0 so. if F4 ::j::. 0 the appearance of the gauge field AAfNP causes a 
.. pontaneous compactificatioll. 

At this stage, although we have had success ill producin.u; a spontaneous compactification. at least three 
il!":'W important problems we need to face. The first one is that the gauge field A}\.{ NP has been introduced by 
tli.lnd. The second one is that the assumption that the compact space has a radius of the order of the Planck 
It'ught leads to a very large cosmological constant for the ordinary space-time. finally, the third problem is 
t hat by introducing the gauge field AMN P we lost the nice geometrica.l original idea of Kaluza. The two first 
problems are presumible solved by Supergravity theory in eleven dimentions [67J. \Vhile the third problem 
~eems to be solved by Superstring theory (41J. In this work we will briefly explain how Supergravity in 
rl = 11 solves the first problem and we leave the reader to consult the literature about the problem of the 
rosmological constant [66J. We will briefly explain how Superstring solves the third problem. 

Let is first start recalling the main aspects of Supergravity. We need first to clarify the meaning of the 
.. :,;uper" of t.he word Supergravity. Before 1974 the symmetries of bosons (particles with integer spin) and 
fermions ( particles with half integer spin) were studied separately. Bosons were transformed into bosons and 
ff:>rmions were transformed into fermions. But at. t.hat. year an important symmetry was descover;d which 
IlUits a boson and fermion ill only one superpartide (onJ. This symmetry is now called supersymmetry [70]. 

If we associate a generator operator Q t.o such a supersymmetry then Q will change fermionic states 
int.o bosonic ones and vice versa. 

Qlboson >= Ifermion > (5.19) 

Qlfermion >= Iboson > (5.20) 

Now, normally a generator, let say .i;of a usual symmetry determines an element of the group A trough 
the formula A = c(Jj! where (} is an infinitesimal paramet.er. In supersymmetry a similar construction is 

possible. III fact the formula 9 =etQ defines an element of a "super" group. The infinitesimal parameter ( 
mayor may not be a function of the spac.e-time coordinates. If f is constant (independent of the space-time 
coor'dinates) the supersymmetry is called global and local if f :::: i(x). Supergravity is the theory oflocal 
supersymmetry. Since according to supersymmet.ry bosons and fermions accur always in pairs we expect 
that there must be one fermionic companion to the ordinary spin-2 gravitational field gJ.'/I' The metric 
in terms of the tetrad e~~ is . 

gJ.'/I =e;e~7}mn (5.21) 

where '11,/1 is the Millkowsti metric. The infinitesimal supermetric transformation of the tetrad e'; turns out 
to be 

(.5.22) 

where ( = f( x) is the infinitesimal parameter and ,m are t.lle Dirac matrices, The field 'II~n called the 
gravitino has spin :J/2 and is t.he fermion companion to the gravit.ational field gJ.'/I (spin 2). 

If there are N gravitinos in the t.heory we have 'II~i wit.h i = 1, ... ,' Nand N ::; 8. Theories with N > 8 
seem to be llllconsistent [6:3J. Of course if we have more gravitinos, in addition to- the bosonic graviton, we 
need to introduce more bosonic degrees of freedom. 

Let us count t.he degrees of freedom of N = 1 supergravity in eleven dimensions. 

CtlM tl-ausversal and ll'aceless: 9(9 + 1) - 1 = 44 (5.23) 
~ 

W:t[ t1'(L1lsve1'sal in yauge ,MW~f =0 : 9 x 3~ :32 =128 (5.24) 

Here \{Ijl is a I\lajoralla spinor. Thus in order to match the number of fermionic degrees of freedom with 
the number of bosonic degrees of freedom we need additional 128-44=84 bosonic degrees of freedom. Since 

(5.25)(n =84 
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The 	gauge neld AM N P provides such an extra bosonic de!;rees of freedom. 
Returning now to the problem of spontaneolls compactification we first notice that the field equation 

(5.10) and (5.11) corresponds to the bosonic sector of N=1 supergravity in d = 11. Thus. from this point of 
view the gauge field At\lNP is 110t a field put it by han(l. but rather is a bosonic field that comes from N =1 
:-;upergravity in d = 11. 

Let us now see if it is possible t.o give a geometrical interpretation to the gauge field AMNP. In 
!·Iectromagnetism the gauge field AM is the source of a point particle with charge Yo. The relevant term in 
t.he Lagranian is 

(5.26) 

Suppose we have an antisymmetric gauge field AMN. Because AMN is antisymmetric a term of the 
form 

(5.27) 

vanishes. So if we want to construct the analog of Ul.26) for AMN we need to make an important.. change. 
The problem is solved if we introduce another parameter 0' sHc.h that XAi = y,\I(r,O') = X(~a), a,b = 0,1, 
because now we can make the combination 

1 ovAl ()v N 
<lb A .\. 4. (5.28)2!Yl( {}~a o~b' MN 

Thus we conc.lude that the gauge field AMNcan not be the source of a point particle, but rather is the source 
of a string parametrized by (T. 

Similarly, the gauge field AM N P will be the source of a membrane. In this case the analog of (5.26) and 
(5.27) will be 

1 ()v M ovN t)vQ
(tbe·\. .\. A A (5.29):l! !12( i:J~a 8~b 8~(' 1.1NQ 

Therefore in general a completely antisymmetric gauge field AM1, ...Mp+l will be the source of a p-brane with 
interaction term of the form 

8XM1 OXM l'+l
---!1 t;a 1 •..al'+1_'- AM \1 	 (5.30)(p + I)! p 8~al ... a~aJl+l 1.· .. J 

• 1'+1 

where flp is the "charge" of the system and the indices a,b =O, .. .,p. 
Let us introduce t.he induced mt"'t.ric 

(5.31) 

and 	the notation 

It = det(hab ) 	 (5.32) 

The ac.tion of a point particle moving in a gravitational field flM N and electromagnetic field AM is 

(5.33) 

where a, b = 0 and 0 0 measures t.he inertial of t.he system: no is t.he rest mass of the particle. 
The analog of (5.;1;1) for the st.ring is the ac.tion [41] 

(5.34) 
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fur tht:' melllbrane we have the action [(1)-[12) 

(5.35) 

;llld in general for any p-hrane Wf' have 

(5.36) 

Therefore from these act,ions we see t.hat t.he gauge field AMN leads naturally to consider string theory, 
A"'I NQ to membrane theory, and in general the gauge field AMI, ... .Mp +1 to p-brane theory. 

There are other two alternative classical equivalent actions associated to p-branes. One is [71J 

• (5.37) 

and the ot.her one is [72-73 ] 

s·;1l = -i21,(p+ 1)-~ J([1'+If.F/(fab hao )i!:Jjl+ 

i.h-.lUl UyMp+l!lP f'+1 ~ <&l···ap+l _A_ .\ 4. (5.38)+(p+l)! J(,,( (/f.al "·()f.ap+1 • Mt .... Mp +1 

where '1<&0 and lab are auxiliary metrics. 
Under the Weyl transformation 

'I~b = I\(f.hab (5.39) 

we notice that S':[ is Weyl invariant only for the string (p= 1), while under the \Veyl transformation 

(5.40) 

S': II is \Veyl invariant for any p-branes 
Let us now return to the problem of spontaneous compactification. \Ve notice before that the gauge 

field A MNP is an important object in N=l d=l1 supergravity. Now from (5.35) we observed that the gauge 
held AMNP is also an important object iu membranes theory. The question arises weather N=l, d=l1 
sllpergravity and membranes theory are relat.ed. 

In cOllnect.ion wit.h stich a question the following picture is known [74] 
Supermembl'alle ........~ N = I! d = II Sllpergravit.y

l 1 
Type IIA Superst.ring - N = ~. d = 10 Sllpergravity (non-c.hiral) " 

Picture [A] 
To explain in detail this picture will make this work very long. So instead we will try first to clarify such 
a picture and then for completeness we will explain how string can be obtained from membranes. We will 
also briefly explain how gravity arises in strings theory. . 

Let us first briefly clarify the picture [A]. \Vit.h the arrows M.O we mean that from Kaluza-Klein procedure 
we can obtain type IIA superstring, from supermembranes and that N =2, d = 10 nonchiral supergravity 
ran be obtained from N = 1, d = 11 supergravity . The arrow - means that N = 2. d = 10 nonchiral 
supergravit.y is t.he field theory limit of Type [IA superstring. Finally t.he arrow ...... =>rnean that there is not 
still a direct prove that froin supermembranes we can obtain N = 1. d = 11 supergravity. 

The eentral idea to show that strings can be obtained from membranes is to apply the Kaluza-Klein 
procedure simultaneously to the world-volume and to the space-time. This procedure is called double di­
mensional reduction [7.4]. 
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I n order to perfom such a procedure let us tirst rewrite the membrane action in the form 

.J[ 1 Ji3 R( ah/'.'~') = - - I f. -" ~tlb - 1)+- 2 

0 kt a ,N a Q
!l2 (pc«ibc_X__t_--.:L -1 •.. (5.41)
:3! J I., 8E,iJ. aE,b (Ie' M NQ 

where a.b.. , etc. = O. L:) and AfN = U,l, ...d-l. Now it. is convenient to split the coordinates as 

\:,.\i - ( kt I Y , VI - 0 1 --i - 2 ,- X .) i'A' , (5.42)- •••• , t. 

fi = (E,a,p), a =0, l. (5.43) 

The procedure of double dimensional reduction is determined by the following ansatz 

iJpXM =0, (5.44) 

Y =p, (5.45) 

op'Yiib =0, (5.46) 

(1YYMN =o. (5.47) 

This ansatz allows t,o write the space-time metric iJ M N and the world volume metric "::1iib in the Kaluza-Klein 
form; 

(5.48) 

(5.49) 

Using t.hese two ansatze the action (5.41) becomes 

:-;£1 = -~ Jd2~h{ (*) ~ "Y.'''".+ 

<b2/3~4/3_t'Jb(G - aaX M AM )( Gb - (}bXJ"\<t AN) (5.50) 

P 

a 

J 0 Ala NO+[(~)4/3 _ I]} + Y2 d2cfab3 X X. YA 
t/J 2! ~ OE,aof,b()p M Ny 

where an overall factor of I dp has been dropped. Making variations of this action wich respect to ¢ and Ga 

we learn that 
(5.51 ) 

(5.52) 

where we used the equation Tllb = hab which is obtained from (5.50) when we make variations with respect 
to Tab. 

Now, subtituting these results back into (5.50) we get 

(5.53) 

which is the st.ring action. Here tab =(clu3 and AM N =AM Ny. Similar procedure ca~ be applyed to super­
Inembranes. [n t.his ("ase whidl such a procedure a type II A superstring is obtained [74]. 
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Ll't. liS now make some few ('omments abollt how ,e:ravity arises from strina;s. 
from (5.;)7) we have that the action of a string moving in a Hat "'linkowski spacetime is 

I.."l/ - __1_ J./2,
'·1 - ( I.., 0,54)

:lu' 

"\' here 

\'aring this action with respect to 'Y ub gives the two-dimensional energy-momentum tensor 

" IH'J N 1 {cd ::l At .:} N ) 0TIlb = (laX (bX 71MN - '2'Yab 'Y veX (ldX 711'vlN = (5.55) 

and varing it with respect to y,\/ leads to the Euler-Lagange Equation 

_1_~{ r::::: (Ib~} )\1 =0 .. (5.56)
r--::: 'J' "I V -'Y1 'J~b XV _Ai ( I.., ( ~ 

Two reparametrizations and olle \Veyl invariance allow to c.hoose the three independent elements of 'Yab so 
that 

(~l n'Yab = 7lab 

the two dimensional Minkowski metric. Making this choice (5.55) and (5.56) simplify to 

(5.57) 

and 

(5.58) 

The general solution of this equation is 

(5.59) 

Let us consider closed strings. For them t.he appropriate boundary condition is just periodicity of the coor­
dinates 

(5.60) 

The general solut.ioll of (5.58) ('ornpatible with t.he periodicity requirement is 

(5.61) 

I;(\1 = !yM + !,'2]i'(r + 0") +!.!. ""' '!'it iH e-2in
(T+I1 , (5.62)

,L:l:2 2L...."n 11 

n;eO 

where a;!f and (t;~' are oscillator coordinates. The constant I = ';20.'. We have the following poisson brachets 

~ I' - 1/ } • J.: I'V{ n m , nn = lnlllm ,n 7] • 

J' -II} - 0 (5.63){ O'u,n'm - . 

= 7/ JJv{pJ.l! XII} I 
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The oscIllator O'~ and a~ are not all independent since we have the constraints (5.5i). In fact using the light 
<"one coordinate (1+ = i + (T and (1- = i - (T we have t.hat 

T++ = ~(Too + Tod = yh = 0 (5.64) 

1 7' . 'I 0
~(Too - .1nd =Yi, = (5.65) 

Using (5.61) and (.5.62) we have 

(5.66) 

-m-- 2
1 J +2imD'T L - 1~ - - - 0L r ++((1-2'L..,O'm-n.O'n-. (5.67) 

-,"l. 

Lm and Lm satisfy the Vil'asoro algebra 

{Lml Ln} = i(m - n)Lm+n (5.68) 


{Lm,in} = i(m- n)£m+n (.5.69) 


At the quantum level the Poisson brackets (5.6:1) become quantum relations and the constraints Lm 

must apply t.o physic.al states. 

(Lo - 1HlP >= 0 (5.70) 

Lm IlP >= 0 Tn = 1, ...ctc. (5.71) 

An import.ant change at t.he quamtum level is that due to normal ordering of the oscilators a~( and ii~ the 
Virasoro relation (5.68) would introduce a c-number. In fact we get 

(5.72) 

This anomaly is the responsable that in order to have a consisten quantum theory we should fix d=26 for 
the boson string and d= 1 0 for the superstrings. Surprisingly these two numbers can be written in terms of 
"sacred" mesoamerican numbers; 1:3 and 5. 

Let us consider the stat.e 

(5.73) 

where i, j = 0, .",2:3. The st.a.t.e Inij > corresponds to the tensor product of a' massless vector of 5'0(24) 
from left moving modes with a rnassless vector of SO(24) from right-moving modes. The state 10 > is the 
ground state of t.he bosonic open st.ring. The part of Inij > which is symmetric and traceless in i and j 
transforms under S'0(24) as a massless spin two particle. Therefore this part of IOij > can be associated to 
the graviton. The trace term 6ij Ini ; > is a massless scalar. Finally the antisymmetric part Inij >= -Inij > 
tranforms under S'0(24) as an antisynunetric second rank tensor. \Vhat we would like to emphatize here is 
that the graviton is part of the spectrum of closed strings. At this stage however is difficult to understand 
how a curved space-time could be built from t.he "graviton" string spectrum. 

Suppose we consider a closed string propagating iu a curved spacetime. The action (5.53) can be gen­
eralized to include scalar tields in the form 

S' = J(Pe;:::r(I>(X) + ~J cPe;:::rRC(x)
4i1" 

(5.74) 
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\\' Iwrp Wp t.aked !l2 and imroduct> t liP. constant 0 :\rcording to Fradkin and Tpyt,hin [7.5J the effective I 

artioll 

r«I>. flUS· .-l,lLV, .. ) .f 'Prab J'pyM £: (5.75 ) 

(',til be written in first approxima.tion ill 0" as. (for <l>=rte) 

(.5.76) 

Considering C =const. then the cl;L'Ssical field equations corresponding to this action will be 

1 PQ ')
Ri\lN - ~9,\lNR ~ FMPQFN - 9MNF­

FMPg =0 (5.77) 

\\' here 0' a.nd {3 are numerical constants. 

Here wp notice that solution wit.h maximal symmetry are obtained in the case PUN P ...., tMN p. But this 

kind of compactification would lead to spaces of the form Md = .~'3 X B where .~'3 is an anti-de Sitter three­

dimensional space time. 


There is a conjecture that a similar procedure can be applied to any p-brane. In that cases the general 
structure of r will be 

r(~, fl, A) --.; Jdd\v'=!i{ V«P) - ~:2 fd~)()M<"paN~!IMN 
l' 

1 
+ rr! f'A~)R+ 

11 

1 1 
---- r «"P)F FM1 ..+ .. M p+1 + O( r\4)
(p + 1)!n~ J3 M, ... M p+ 1 up 

If we consider a solution FM
1 
,.,\J1'+1 ...., t.HI .. '\/,,+1 then c.ompactification of four dimensions is preferred in the 

rase of membranes. 
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FIG. 1. Plot of Vt(r) for various values ef Ls with J..l2 1, m = 
1, /;e ..:... 10, and 11 = 0.09. 
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FIG.2. Plot of V~(r) for various values of T\ with Jl2., 1, m = 
1, L~ = 10, and Ls == 2. 
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FIG. 3. Nature of equatorial orbits of the test particles. 
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FIG. 6 The cosmological solutions in the absence of a vacu .. 
um condensation. All the solutions except (a), (d), 'and (h) have 
nq particle horizon. , 




Fig.7 The cylinder 
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Fig. 8 The Mobius strip 
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Fig. 10 Cross section in principal fibred bond Ie. 
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Fig. 11. The trivialization of a Fibred bandle. 


