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ABSTRACT 


A simple argument to recover in perturbation theory the recently discovered asymp

totic freedom of massless ).¢4 theories is presented. It is pointed out that no upper limit on 

the Higgs mass can be obt~ined from the vanishing of the renormalized scalar self-coupling 

in the broken phase. 
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The problem of the "triviality" of A<jJ4 theories is one of the most challenging (and 

controversial) in the area of today quantum field theories. In fact, by accepting the trivi

ality hypothesis, the self- interacting scalar sector of the Weinberg-Salam[l] theory has to 

be replaced by some more fundamental structure at some, unknown, energy scale whose 

magnitude increases by decreasing the Higgs boson mass. 

Despite of the general belief, however, rigorous arguments[2] do not exclude, in four 

space-time dimensions, a meaningful continuum limit for A<jJ4 theories which corresponds 

to asymptotic freedom. Therefore, it is remarkable that such a result has been obtained 

in refs.[3,4,5) by analyzing the effective potential of massless A<jJ4 theories which exhibit 

spontaneous symmetry breaking (SSB)[6]. 

The peculiarity of massless A<jJ4 theories[7] can be understood by recalling some prop

erties of the exact effective potential[8] V(<jJ). It may happen that in some approximation 

(one loop, variational method, .. ) say vappr.(<jJ), the effective potential is not convex down

ward in some range of <jJ. This result implies that vappr. (<jJ) cannot be trusted in that region 

but, still, its absolute minima may have an important physical meaning ( i.e. signaling the 

occurrence of SSB). For instance, as discussed in ref.[9], it is possible to recover the convex

ity property by improving on the gaussian approximation, e.g. going beyond the gaussian 

subspace of the whole fu ..nctional space, but, in the end, in an infinite 3-dimensional vol

ume, only the absolute minima of the non convex approximation have a non vanishing 

probability content. Therefore, the situation is similar to a quantum mechanical double 

well potential in the limit n-t 0 where there is no tunnelling and the ground state wave 

function is non vanishing only at the minima of the classical potential. This result, how

ever, does not imply that SSB in quantum field theory is a classical phenomenon. In fact 

the convexity property implies that the exact effective potential has to be completely fiat 
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[10,11] in the region enclosed by the gaussian minima </J = ±¢ as any positive curvature at 

</J = 0 would never allow for SSB. As a consequence, in the presence of SSB, the effective 

potential cannot be an analytic function[8] since it cannot be reconstructed by a Taylor 

expansion starting in the interval -¢ < </J < +¢ where all its derivatives vanish identi

cally. Therefore, the only mass renormalization condition which is compatible with the 

exact properties of V (</J) of being the Legendre transform of the generating functional for 

connected Green functions and, at the same time, can produce SSB is the massless case as 

defined from the condition[7] 

(1) 


In other words, even starting with a non convex classical potential whose negative mass 

squared is redefined order by order in perturbation theory, one will, unavoidably, end up 

with a non negative curvature at the origin and the only possibility to obtain SSB is 

associated with the above condition thus discovering, in the end, that the theory does not 

possess any intrinsic scale, in its symmetric phase, and SSB is the effect of dimensional 

transmutation i.e. of the asymptotic freedom of the massless theory. 

As shown in refs. [4,5] , asymptotic freedom is discovered in connection with a non 

trivial rescaling of the bare vacuum field </J =< q, >, whose anomalous dimension starts 

to O(A), rather than 0(~2), as first suggested in ref.[12]. In fact, by defining the renor

malized field q,R(~) = </JZ;1/2 + h(x)Z;:1/2, one finds the different behaviour of the two 

renormalization constants Z¢ '" l/A and Zh = 1+0(A)+0(A21nA) so that Z;1/2 ~ 0 and 

Z;1/2 ~ 1 in the infinite cutoff limit A ~ 00 where A ~ 0 and )''In ';;h = fi~ed, mh being 

the mass of the shifted field h(x). The behaviour Z;1/2 ~ 0, typical of a composite field, 

expresses the non trivial dynamical content of the long range components of the underly

ing massless theory which, as discussed in ref.[13], needs a singular field renormalization 
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constant to satisfy the stringent constraints associated with its conformal invariance and, 

at the same time, be interacting (the non triviality of conform ally invariant, massless ).4>4 

theory, has been recently rediscovered, with a completely different technique, also in re

f.[14] ). The shifted field, on the other hand, is trivially free in the infinite cutoff limit due 

to Z h = 1 and all interaction effects are reabsorbed into its mass. 

The fact that the same theory, namely massless ).4>4, can exhibit both asymptotic 

freedom in its symmetric phase and triviality in its broken phase, could have been deduced 

directly from the perturbative expansion for the massive theory without no need of inves

tigating the effective potential. Indeed, let us consider the zero momentum coupling as 

defined in terms of the running coupling constant ). = )'(JL) in the M S scheme by taking 

into account the basic one loop bubble of particles with mass m 

(2) 


• 1 £ ()and Introduce t = '2ln m 2 ' Our problem is to keep fixed i.e. JL- independent ).R and, 

at the same time, to be able to take the limit t -+ 00 to recover the properties of the 

continuum theory. From the equation 

d).R
-=0 (3)
dt 

we obtain (we assume d;;:2 = 0, and set ).(JL) = ).(t)) 

d).(t) 3).2(t) 3t).(t) d).(t) 
--- -----=0 (4)

dt 167r2 87r2 dt 

In the usual perturbative analysis, one neglects the third term on the left hand side of the 

above equation since, for small ).(t), it contributes a term O().3(t)) and solves the equation 

d).(t) _ 3).2(t) 
dt - 167r2 
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Then, by introducing the arbitrary boundary condition at t = 0, one finds 

.\(0) 
(5).\(t) = 1-~ 

161l"2 

and is forced to identify .\R = .\(0) for consistency with the basic one loop relation (2) 

which is seen as the the first term of the infinite expansion 

.\(t)
.\R = .\(0) = ~ (6) 

1 + 161l"2 

This procedure, where one ignores the possibility that for small t .\(t) '" lit, leads to 

the well known problem of the Landau pole, since no limit t -+ 00 is possible and it is 

clear that the way in which one handles with the one loop expression will affect the whole 

renormalization procedure. On the other hand, by keeping the third term in eq.(4) we 

obtain the equation 

d.\(t) _ -3.\3(t) 1 
(7)

dt - 161r2 .\(t) - 2.\R 

By assuming that .\(t) and .\R are both non negative we find that eq.(7) has to be studied 

separately for .\(t) - 2.\R > 0 and for .\(t) - 2.\R < 0 to preserve the uniqueness of the 

solution. In both cases, however, no limit t -+ 00 is possible if .\R > O. The only possibility 

is associated with the case .\R = 0, i.e. ( bo = 16
3
1l"2 ) 

1
.\(t) = (8)

bot 

d.\(t) = -b .\2(t) (9)dt 0 

which corresponds to assume that the particle mass is related to JL and .\ = .\(JL) through 

the relation 

(10) 


just the condition which corresponds to minimize the one loop potential for the massless 

theory[7] where m 2 - >'t2. In this case, in fact, the limit t -+ 00 is possible and one 
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recovers that the asymptotic freedom of the massless theory implies the triviality of the 

shifted theory. 


Let us now consider the higher loop contributions and introduce the variable 


so that the basic one loop correction (2) has the form 

,\~) = '\(t)(l - z) 

In the region z == 1- € (€ > 0) and we are interested in the limit z -4 1 (i.e. in establishing 

the definite relation in eq.(10) ) it is convenient to rearrange the terms of the perturbative 

expansion in ,\~) rather than in '\(t). This procedure amounts to include, for any leading 

logarithmic term, the corresponding leading logarithmic correction, so that the effective 

expansion parameter is z(l- z) < z rather than z itself. By adopting this type of expansion, 

which works also in the case z < < 1 where, by the way, does not introduce any significant 

modification with respect to the usual analysis, we obtain the structure 

,\~) == '\(t)(l - z) 

A}i") == A(t )(1 (11) 

which, for any N, gives 

(N)
'\R Iz=l == 0 
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Notice that the limits z ~ 1 and N ~ 00 do not commute. Indeed, for any z = 1 - € < 1 

we obtain 

(12) 


as in eq.(6), whereas 

(13) 


implies again eqs.(8,9). 

The analysis can be easily extended to include the next-to leading, next-to-next-to

leading...terms, by realizing that the perturbative relations have a validity only for z < 1. 

For instance, let us consider the recursive relations (A~) is defined in eq.(11), b = t; ) 
A(N)

A	(N,l) _ R 
R - (N)( ( ))1 - bA(N) In AR l+bA t 

R A(t)(l+bAr» 

(N) 
A(N,lH+1) = AR (14)

R 	 (N) A(N,AI )(1 +bA(t))1 - bA 1n _R""""--_____---,-,,~.,..;.. 
R A(t)(l+bAr,AI») 

Eq.(14) contains, in the limit N ~ 00, M ~ 00, all the leading and next-to leading 

corrections to the zero momentum coupling. For any z < 1, by defining 

'1' I' ,(N,AI)( )""R = tmN_CX) tmAI-CX)""R z 	 (15) 

the condition 

dAR
-=0
dt 

implies the two loop relation 

d~~t) =0 +bo(>.(t)? + b1(>.(t))3 
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However, in the limit z -+ 1, we obtain identically 

(16) 

and the associated relations (8,9). 

The same procedure, when used in the effective potential for the massless theory, 

shows that the one loop minimum of ref.[7] is not modified by the higher order terms. 

In conclusion, our results, which are in agreement with ref.[2] where it is shown that 

asymptotic freedom is the only possibility to generate a meaningful continuum limit for 

)...4>4 theories in four dimensions, indicate that the usual belief concerning the triviality 

of )...4>4 theories has to be reconsidered ( see also ref. [14]). Indeed, the vanishing of the 

renormalized coupling in the broken phase for infinite cutoff is just the consequence of 

SSB and of an underlying dinamics which has no intrinsic ultraviolet cutoff. Therefore, a 

new approach to derive theoretical upper limits on the Higgs mass is required. 
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