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Summary. We investigate the accuracy of various analytic approximations for following the evolu­
tion of cosmological density fluctuations into the non-linear regime. We compare the results of the 
application of linear theory, the lognormal approximation and the Zeldovich approximation to a set of 
initial data with corresponding results obtained by a full three-dimensional N -body computation from 
the same initial conditions. A cross-correlation technique is used to quantify the agreement between 
approximated and N-body "final" distributions for different initial power spectra, different normali­
sation epochs and different degrees of smoothing of the final results. We also studied the distribution 
function of mass density. 

We find that the Zeldovich approximation is consistently the best approximation scheme. It is 
extremely accurate for power spectra characterised by n :5 -1; when the approximation is "enhanced" 
by truncating highly non-linear Fourier modes the approximation is excellent even for n =+1. It also 
matches the distribution function best of all our models, except at the high density tail where it fails 
to predict enough high-density regions. The performance of linear theory is less spectrum-dependent 
but this approximation is less accurate than Zeldovich for all cases because of the failure to treat 
dynamics. In fact, the truncated Zeldovich approximation is always more accurate than linear theory, 
even in the linear regime. The lognormal approximation provides generally a very poor fit to the 
spatial pattern, producing far too "clumpy" a distribution; on the other hand, the distribution of cell 
occupation densities is fitted reasonably well by a lognormal distribution, though not with the same 
variance as suggested by Coles & Jones (1991). 

Introduction 

Most theories of the origin of galaxies and large-scale structures in the Universe involve the assumption 
that such structures grew by gravitational instability from initially small fluctuations in the density of 
an almost homogeneous Universe. This assumption has recently received strong observational confir­
mation by the detection of temperature anistropies in the Cosmic Microwave Background Radiation 
(Smoot et ai. 1992). The gravitational instability picture is easy to understand at the qualitative level 
since the only astrophysics it involves is gravity. Furthermore, when the density fluctuation amplitude 
is small compared to the mean density, the growth of fluctuations can be.handled analytically using 
linear perturbation theory (e.g. Peebles 1980). However, galaxies and clusters of galaxies are clearly 
very non-linear objects today so we need to go beyond linear theory if we are to study the details of 
the structure formation process in these models. 

The general problem of the evolution of clustering in the nonlinear case (Le. when the clustering 
in strong) has proved to be analytically intractible in cases where the fluctuations are random (Le. 
possess no special spatial symmetry). For the most part, cosmologists have therefore resorted to 
numerical techniques based on the N-body simulation to study the late stages of the evolution of 
density perturbations. In some cases, however, one needs to make more detailed predictions than can be 
obtained using such computational techniques. For this reason, various analytic approximations have 
been suggested to provide robust analytic results in certain circumstances. A good approximation can 
also furnish us with an understanding of the main processes involved in the formation of structure. For 
example the Zeldovich approximation, which we discuss below, describes the formation of "pancakes" 
and "filaments". The ability of this approximation to reproduce the final structures in different models 
can be related to the relative strength of the pancaking process in the development of clustering for 
the models. 
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In hierarchical clustering models, where structures form in a "bottom·up" fashion from small scales 
to large, one would expect linear theory to be a useful tool for probing very large· scale structure as 
long as one smooths out structures on small scales. This is usually expressed mathematically by 
smoothing or averaging the density on some length scale such that the smoothed density field then 
has rms fluctuations less than the mean density. But is this degree of smoothing sufficient to make 
linear theory accurate for a wide class of initial conditions? And how good is the agreement between 
such an application of linear theory and the actual non-linear density field't 

One aspect of linear theory which is potentially disturbing· is that the statistical distribution of 
the density field remains invariant under linear gravitational evolution, except for increasing variance. 
If the initial fluctuations have Gaussian statistics, as suggested by most inflationary theories (Guth 
& Pi 1982; Bardeen, Steinhardt & Turner 1983; Brandenberger 1985), then there is clearly a problem 
with the requirement that the density should be everywhere positive. As a simple corrective to this, 
Coles & Jones (1991) suggested the Lognormal approzimation which essentially involves an exponential 
extrapolation of linear theory into the non-linear regime for which there is some empirical support 
(Coles & Jones 1991; Coles & Plionis 1991; Jones, Coles & Martinez 1992; Kofman et ale 1992a). 
But how good an approximation is the Lognormal distribution? Does it represent the distribution of 
non-linear clustering better than linear theory? 

The main drawback with these two approximations is that they are effectively local; they simply 
involve mapping the initial density at some lagrangian co-ordinate to some function of that density 
at the same co-ordinate at some later time. In situations where structures have a predominantly 
dynamical origin involving large-scale motions of material, such local approximations must be poor 
representations of reality. In view of this inadequacy, Zeldovich (1970) introduced a kinematic ap­
proximation which uses the gravity-induced velocity field at eary times to map initial lagrangian 
co-ordinates onto non-linear Eulerian co·ordinates (Shandarin & Zeldovich 1989). The Zeldovich ap­
prozimation has become a ubiquitous tool in analytical studies of clustering in models that involve 
pancake or "top-down" structure formation. But how good is the Zeldovich approximation in other 
circumstances? Is it better than linear theory for hierarchical models? 

In this paper we shall investigate the above questions by performing a quantitative comparison 
of the density fields obtained by applying each of the above approximations with the density field 
obtained by a direct evolution of the (random) initial conditions using a three-dimensional N-body 
particle-mesh code. Throughout this work we shall assume a matter-dominated Universe with the 
closure density, i.e. no = 1. The quantitative comparison consists primarily of determining the point 
by point correlation coefficient between the N -body density and the approximated fields in a manner 
described more fully in section 4. All these approximations discussed in this paper are intended to 
deal with random initial mass distributions so we exclude, for example, extrapolations of linear theory 
based on the assumption of spherical symmetry. The layout of the paper is as follows: in Section 2, 
we describe the mathematical approximations we shall use and also such technicalities as smoothing; 
in Section 3 we describe briefly our ensemble of N -body experiments; in Section 4 we describe the 
cross-correlation procedure; results are discussed in Section 5 and the conclusions are presented in 
Section 6. 
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2 Evolution of Density Perturbations 

The equations describing the evolution of density inhomogeneities in the expanding Universe under 
gravitational instability are as follows: first, define a dimensionless density contrast for the matter 
density p(~) by 

6(.~) = p(~) - Po (1)
Po 

where Po is the mean matter density, and ~ are comoving co-ordinates: ~ = r../a(t). We then have a 
system of three coupled non-linear partial differential equations: the continuity equation 

op 1 - + 3Hp + -V . (pv) = O· (2)ot a(t)- - , 

the Euler equation 

(3) 

and Poisson's equation 
(4) 

In these equations, lZ. and ¢ are the peculiar y·elocity and peculiar gravitational potential respectively; 
aCt) is the cosmological scale factor and, assuming a flat no = 1 Universe in the absence of pressure 
and radiation terms, a(t) 0( t 2

/ 
3 and poet) 0( a-3 

0( t-2 • The Hubble expansion parameter, H = (a/a). 
In order to solve these equations, we need to specify some initial data. In this study, we shall 

assume a scale-free initial power spectrum of density perturbations: 

(5) 

where 61e is the spatial Fourier transform of the density contrast (1). We shall take n = -2, -1,0, +1 
as illustrative examples in this paper. (Actually, we shall discuss the case n = -1 in more detail later 
in the paper as we feel it is the most relevant scale-free spectrum for gravitational clustering). We 
assume further that, at some initial time ti where we define a(ti) = 1 the density contrast is small and 
the phases of the Fourier ~omponents are randomly distributed on the interval [0,211"}. This is sufficient 
to guarantee that 6(~) is a Gaussian random field: all its statistical properties are then completely 
determined by P(k). 

The simplest approximate solution to the system (1)-(5) is obtained from linear perturbation theory 
(e.g. Peebles 1980). By writing p = Po(1 + 6) and solving the system (1-5) to first order in 6, we find 
the solution for the growing perturbation mode to be: 

(6) 

Since H2 0( a-3 for a matter-dominated Universe with the closure density and <p(~) is constant to first 
order in perturbation theory, we have 

(7) 

so that P( k) 0( a 2 in linear theory. The statistical distribution of 6 therefore remains constant, except 
for a scaling of the variance. Note that this solution is local, in that 6(~, t) depends only upon the 
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o(~, ti) at the same spatial co-ordinate at earlier times. Furthermore, it is clear that the solution (7) 
must be invalid with Gaussian initial data when (72 == (02 ) "-i 1, since the Gaussian distribution assigns 
a non-zero probability to regions having 0 < -1 in such a case (e.g. Fry 1985). 

We can make a crude correction to this by defining a chopped linear field by 

o( t) = { al (t)[1 + a(t)o(~, ti)] - 1 o(~, t) ~ -1 (8)~'-1 otherwIse 

where al(t) is a "renormalising" factor introduced to keep the mean density of the Universe constant, 
i.e. (0) = O. 

A further improvement upon simple linear theory was suggested by Coles & Jones (1991): the 
Lognormal lrlodel. Here the condition that 0 2:: -1 is met by choosing a different local mapping: 

(9) 


the renormalising factor is now 02(t) = exp( _(72a2 /2). 'V'le see from (9) that, to first order in 0, the 
lognormal model matches linear theory (7). Arguments for the appropriateness of this approximation 
for gravitational clustering in the non-linear regime are given by Coles & Jones (1991), Coles & Frenk 
(1991), Jones et ale (1992) and Kofman et ale (1992a). Note also that the three approximations (7), 
(8) & (9) are all local in the sense described above and one might therefore doubt their ability to 
trace accurately structures developed on very small scales by highly non-linear interactions; matter 
moves great distances away from its initial Lagrangian position when clustering is strong. We might 
therefore expect small-scale clustering predicted by these approximations to be incorrect and that 
better approximations might be achieved by attempting only to follow long wavelength perturbation 
modes. To check this out, we introduce truncated linear and lognormal approximations obtained by 
extrapolating not the full linear density field as in (7) & (9), but the field obtained by filtering out 
small-scale highly non-linear modes. ('\Ve find the chopped linear theory behaves almost identically to 
the straightforward linear theory so we do not discuss the filtered version of this. model.) We choose 
a sharp k-space cutoff for this purpose. Define a k-space truncated field by: 

(10) 


The resultant real-space field denoted o*(~, ti) is then used to obtain the extrapolated results: 

(11) 


and 
(12) 

by analogy with (7) and (9) respectively. The scaling parameter 02 is, of course, different to that 
defined in (9). 

An appropriate scale for performing this k-space truncation is around the wavenumber correspond­
ing to the transition into non-linear evolution: knz, defined by: 

(13) 
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where clearly knl decreases with t as successively larger scales enter the non·linear regime. 
A qualitatively different approximation which attempts to track the displacement of matter par. 

ticles away from there initial Lagrangian positions is the Zeldovich approximation (Zeldovich 1970). 
Here one makes an ansatz relating the Eulerian (comoving) co-ordinates of a matter point, ~, at some 
time t to the initial unperturbed Lagrangian co-ordinates i' 

(14) 

where .i(~) is the initial velocity potential, related to the initial peculiar gravitational potential by 

(15) 


Here the spatial structure of the nonlinear density field is determined by the inverse of the determinant 
of the deformation tensor, Sij = Oii+a~:::j' At the epoch defined by the scale factor ac , in the vicinity 
of the Lagrangian point ie' the density formally reaches infinity wh~Tl the leading eigenvalue of Sij 

reaches Al (~) = 1/ac; this phenomenon is known as shell-crossing aIL.: indicates the transition from 
single-stream into multi-stream flow (Shandarin& Zeldovich 1989). The ansatz (14) breaks down at 
this point as trajectories cross. Until this catastrophe is reached, however, the Zeldovich approximation 
does track the motion of material fairly well and we would expect it to be a better approximation to 
the actual density distribution than the local approximations (7)-(12) for initial power-spectra that 
do not predict excessive shell-crossing on small scales. Traditionally the Zeldovich approximation is 
assumed to be good only when long-wavelength perturbation modes dominate which is sometimes 
formally expressed as n ~ -3. We would expect spectra with any significant large-scale power (e.g. 
n = -1, - 2 in (5)) also to fall into this category. However, in the same spirit as that which motivated 
the k-space truncated local approximations (11) & (12), we can expect to improve upon the simple 
Zeldovich approximation (14) by removing initial power in waves with k > knl' We shall refer to such 
an approximation as a truncated Zeldovich approximation (first suggested by Kofman et ala 1992b). 

Num-erical Simulations 

To provide comparison data sets for testing these approximation schemes we perform numerical N­
body experiments to follow the evolution of a cosmological density field approximated by a set of 
particles on a grid. The simulations used are described in much more detail elsewhere so we provide 
only essentials. 

To obtain generic results we use power-law density fluctuations of the form (5) as initial conditions. 
These fluctuations are of very low amplitude and are imposed by Fourier Transform on an array of 
particles on a uniform cubic lattice. At very low amplitude our use of the Zeldovich approximation 
(14) for initial conditions generates not only particle displacements but also velocities in accord with 
the growing mode of gravitational instability. Our initial conditions were generated with the ampli­
tude restriction that no particle can move more than 1/2 the cell width in response to the initial 
perturbations. 

In this study we examine simulations with 1283 particles, each on a comoving 1283 mesh with 
periodic boundary conditions. We used the enhanced PM (particle-mesh) method of Melott (1986). 
This makes them resolution-equivalent to simulations with 1283 particles on a 2563 grid in traditional 
PNI codes; see also Park (1992, preprint) and Weinberg et ala (1992, in preparation). The simulations 
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were run for various expansion factors a(t), normalised by lenl as defined by (13). We studied spectra 
corresponding to n = 1,0, -1, -2 (three realisations each), for lenl = 81e, and 4k" where Ie, is the 
fundamental mode of the box. These two scales represent a good compromise between resolution in 
terms of particles which drives one to look at large scales and the effect of OUI periodic boundary 
conditions which leads one towards smaller scales (Kauffmann & Melott 1992). To give some idea 
of the visual appearance of the full N ·body results we display, in FigUIes 1 & 2, slices through the 
final particle distributions for knl = 8 and ~nl = 4 respectively. Notice the strong impression of 
"filamentarity" in the cases where n =:5 -1 but that this impression is transient: as lenl decreases, 
the tendency of the structUIe to clump on small scales dominates the pattern. A general increase 
in clustering strength is clearly discernible in all cases for lenl = 4 rather than lenl = 8. The visual 
impressions of the spatial structUIes in the different simulations are similar because we use the same 
set of (random) phases for all spectra; we shall discuss these visual impressions in much more detail 
in Section 5. 

FIGURES 1 &; 2 

Since OUI particles began on a regular cubic lattice, and since we are uniformly sampling alternate 
particles in each direction (i.e. 1/8 of the particles altogether) to make the plots, the reader can easily 
discern relics of the lattice in the extremely low-density regions in those cases where there is little 
power on small scales. OUI actual particle density is much higher, but plotting limitations prevent 
us from showing them all. We could eliminate the lattice appearance by random rather than uniform 
sampling, but that would introduce a shot-noise error into the pictUIes. At OUI actual computational 
particle density the lattice has little effect on dynamics. For example, we can reproduce analytic 
results for spherically-symmetric collapse and void expansion very well (Peebles et ale 1989), in spite 
of the cubic symmetry of OUI code. 

To suppress any shot noise effects in OUI quantitative analysis we binned the resulting particle 
distribution into densities on a 643 mesh. Further Gaussian smoothing, as described later, was allowed 
to vary so that we could study the results at various density contrasts. To compare these distributions 
directly with the density distributions obtained from the approximations introduced in section 2, we 
also binned the initial (linear) fluctuations onto 643 grids and mapped them point-by-point into the 
"final" distributions using (7)-(12). 

Zeldovich results were created by evolving the initial data (with and without Ie-space truncation) 
by the Zeldovich approximation (14) on the 1283 mesh and then binning onto 643 grids at the end, as 
in the N -body result. Since the Zeldovich approximation is the only one of our examples that actually 
produces a point distribution, we have plotted diagrams analagous to those of Figures 1 and 2, but for 
brevity we display in Figure 3a,b only the case where n = -1 and only for truncated initial spectra. 
These plots should be compared with Figure Ic and 2c respectively. Notice how the the Zeldovich 
approximation seems, qualitatively at least, to produce a similar large-scale distribution although the 
small-scale structures are clearly different in the N -body case. Notice further how the extensive shell­
crossing that occurs when lenl = 4 results in a washing out of the structures; a similar phenomenon 
occurs at a much earlier epoch for n > -1 which is why we introduced the Ie-space truncation in 
Section 2. The relics of the initial grid are also clearly apparent in the Zeldovich figures, even more so 
than in the N -body case because of the failure of the Zeldovich approximation to include small-scale 
forces. 

FIGURE 3 
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Because we extrapolate only the smoothed density field using our other approximation schemes 
(7)-(12), we cannot make plots of this kind for them. In order to construct a visual representation 
of the distributions obtained from all of our approximation schemes, we therefore need to represent 
a continuous distribution. The simplest way to do this is to produce a grey-scale plot. Figure 4 
consists of 7 grey-scale plots showing N-body, Zeldovich (truncated and untruncated), linear theory 
(truncated and untruncated) and lognormal (truncated and untruncated). The linear grey scale is 
applied to regions with 1 < 6 < 10; regions with 6 < 1 appear white, regions with 6 > 10 appear 
black. The example shown has n = -1 and lenl = 8; this example is representative of the general 
performance of the different approximations, as we shall see in the next section. 

FIGURE 4 

Qualitatively, both the Zeldovich variants produce a pattern similar to the N -body distribution on 
large scal~s but do not trace the small-scale structure well. The untruncated Zeldovich approximation 
has a washed-out appearance because of the copious shell-crossing, even at lenl = 8. Both linear and 
lognormal untruncated seem to bear very little resemblance to the N-body result, although in the 
linear case at least, some of the densest regions are in roughly similar positions (e.g. the two dense 
concentrations at top right). The lognormal distribution clearly produces too few concentrations and 
those that are produced a far too dense; there is, however, some spatial resemblance between the 
positions of the dense regions in the model and N-body distributions. The truncated linear and 
lognormal distributions are very similar but both seem to bear only a vague resemblance to the final 
N -body distribution. Clearly the final structures in such a model have been much influenced by 
dynamics in their formation, which is not well described by local approximations. It is incidental to 
the main purpose of this work, but this clearly casts doubt on treatments of galaxy clustering that 
rely upon the identification of peaks in the linear density field with non-linear objects at late times 
(e.g. Bardeen et ale 1986): there seems to be very little spatial correspondence between linear and ­
non-linear fields which has already been demonstrated in the case of one-dimensional gravity (Williams 
et ale 1991). 

Cross-Correlations 

Interesting though the visual impressions gleaned from Figures 1 to 4 may be, we clearly need some 
way to measure objectively how well the N-body results compare, not just with the Zeldovich ap­
proximation but also with our other analytical models (7)-(12). The main tool we use to check the 
accuracy of the analytic approximations we discussed above is quite simple. Basically, we compare 
each grid-point in the density field evolved by the approximation schemes with the corresponding 
grid-point for the full numerical solution. To quantify the correspondence between the two fields, we 
compute the product-moment correlation coefficient: 

(16) 

where .X:i, Yi represent the density contrasts in the i-th pixel of the N-body and model distributions 
respectively, and averages are taken over all pixels in the simulations. Note that lSI ~ 1 and a value 
S = +1 denotes perfect agreement between each point in X and each point in Y though it does not 
imply that X = Y at every pixel, ego .}( = CY with C constant obviously also gives S = +1. The 
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variance of ..\ and Y scale out of this problem so one can get a perfect correlation coefficient even if 
the variance is not the same for the two distributions as long as there is a good spatial correspondence 
between the two distributions. If the structures in the two distributions are in the same place, however, 
but the distribution functions are different, the correlation coefficient will, in general, be less than unity. 

We should point out at the start however that such a point-by-point test is a very severe test 
for any approximation scheme, especially if the density field is strongly non-linear on some scale. 
The approximated spatial" structure might be quite similar to the N -body results in terms of relative 
position of the main features, but if the inhomogeneities are in just slightly the wrong position in the 
model field compared to the N -body field, a very weak correlation coefficient will be obtained. To 
relax the test we therefore compute not just for the "raw" density fields but also for fields obtained 
by smoothing the density field on some scale R. We smooth both N-body and approximated fields: 

6(~, R) = / d3~' 6(~')W(I~ - ~/I; R) (17) 

we have chosen, for convenience, a Gaussian window function W: 

. 1 (2 )W(\rl'R) = -_. exp __r_ (18)- , v'27rR 2R2 

Roughly speaking, one expects linear theory and the other approximations to be valid perhaps until 
0'2(R) = (6(~, r )2) = 1 or until clustering defined by the two-point correlation function, e(r), has an 
amplitude greater than unity. To determine more rigorously the point where these approximations 
begin to fail, we examine smoothing scales around the correlation scale, rc, defined by e(rc) = 1. This 
scale is related to the reciprocal of knl in a spectrum-dependent fashion (Melott & Shandarin 1992). 
We shall find it convenient in the next section to give S as a function of 0' rather than R so that the 
computer grid scale does not appear in the plots). For information, we show in Figure 5 how the rms 
fluctuation O'(R) scale.s with the filter radius R for knl = 4 and knl = 8 for each of the 4 test power 
spectra. Note that the rms fluctuation increases at a fixed smoothing scale as knl decreases. 

FIGURE 5 

Results and Discussion 

We actually ran 3 different realisations of each of the 4 initial power spectra; each of these 12 produces, 
at a given expansion factor, 7 distributions [N-body; linear (7); "chopped" linear (8); lognormal (9); 
truncated linear (11); truncated lognormal (12)]. The two different values of knl correspond to 2 
different scale factors. The total number of distributions we cross-correlated therefore is 168, and we 
study the behaviour of S for each as a function of O'(R). 

The set of 3 different random-phase realisations of the initial conditions allows one to estimate the 
errors in S for a given model; the typical errors we obtained were of order 10-3 in S so we do not plot 
these on the figures we shall show in this section. The value of S does indeed seem to be a reliable 
indicator of the performance of each of these models. 

Figure 6a,b,c,d shows the behaviour of the the cross-correlation coefficient S as a function of 0' 
for all the approximations and for the 4 different initial power spectra. Some points are immediately 
noticeable. 
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FIGURE 6a,b,c,d 

First, all models become more and more accurate as u is decreased (Le. as the smoothing scale 
increases). The only exception to this rule is the chopped linear model and then only for n = +1. 
The reason for this is that the "chopping" process is applied to the linear field before smoothing; 
the chopping and smoothing do not commute and the resulting smoothed distribution will always be 
incorrect in the underdense regions. This is not such a problem for n < 1 because the linear density 
field in these cases does not have rms amplitude much greater than unity even without smoothing in 
these other cases. 

Second, note that while the curves for knl = 4 and knl = 8 are not identical for the same power 
spectrum, the relative performance of the different models is independent of the normalisation. The 
main reason for checking the two different normalisations was to see if the results do behave in a 
scale-free manner as expected from the scale-free initial conditions and the scale-free nature of gravity. 
The finite spatial and frequency resolution of the code we use obviously destroys this invariance at 
very small and very large scales but that is clearly not a problem for the two normalisations we have 
chosen for this work. The exact value of S thus obtained depends on how well individual structures 
are resolved, which depends on knl, but the relative values for the different approximations do not. 

The other immediately obvious point is that all approximations become less accurate (Le. S 
increases) at a given u as n increases. This is because the relative amounts of small-scale clustering 
compared with large-scale clustering increases in these cases. We expect all of our approximations to 
have problems when there is lots of small scale power. 

N ow let us consider each kind of approximation in turn. 
The (untruncated) Zeldovich approximation performs poorly for n = +1, unless the field is heavily 

smoothed (0' < 1). Its performance is slightly worse for knl = 4 compared to knl = 8 for all spectra 
(there is more shell-crossing the smaller knl ). The approximation is, however, extremely good for 
n :::; -1 even when 0' is of order unity and beyond. The dramatic improvement obtained by truncating 
the small-scale modes at knl even for n = +1 is remarkable. After such a truncation, the Zeldovich 
approximation is significantly better than linear theory in the mildly non-linear regime. In most 
cases, it is significantly better than linear .theory even in the linear regime. Interestingly, however, 
the truncated Zeldovich approximation is actually worse than the untruncated approximation for 
n = -2 in the non-linear regime. This must be because there is little small-scale structure in this 
case and the simple Zeldovich approximation can follow a small amount of small· ,:('ale clustering 
reasonably accurately. Removing the small-scale structure therefore reduces the pt::f:Jrmance of the 
approximation. It is important to stress that this cannot be connected with a cutoff of the spectrum 
at the Nyquist frequency: the stages we discuss have knl respectively 8 and 16 times smaller than the 
Nyquist frequency in the initial conditions. On the other hand, when there is a lot of small-scale power 
(as in n = +1) Zeldovich gets small-scale structure all wrong and the approximation is improved by 
removing the small-scale structure altogether. 

The performance of linear theory is much less spectrum-dependent. The shapes of the curves of S 
versus 0' are remarkably similar for all power spectra, although the gap in performance between linear 
theory and the Zeldovich approximation increases as n decreases. In no case does the "chopped" 
linear theory improve upon the straightforward application of (7) so we shall not discuss this model 
further. Truncated linear theory also performs less well, in all cases, than the straightforward version. 
This confirms the comments in Section 3 about the visual impression of the agreement between linear 
theory and the N -body results: even with heavy smoothing the N -body results do not trace the linear 
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structures at all well. Of course the k-space truncation corresponds to a smoothing in real space so 
even effectively smoothing twice does not bring about a good agreement. 

The straightforward lognormal approximation (9) is extremely poor even with heavy smoothing. 
Indeed for the cases with knl = 4 it was not possible to compute the lognormal approximation because 
of arithmetic overflows occuring when the exponentiation in (9) was attempted. Any small-scale non­
linear structure causes this approximation to have problems; the mapping (9) is just too steep. There is, 
however, some improvement with decreasing spectral index. The truncated lognormal approximation 
is better, but still not as good as linear theory, producing a performance roughly comparable to - and 
indeed, in some cases almost exactly the same as - linear theory. 

To reinforce the main points we have made, Figure 7 shows the linear theory and truncated 
Zeldovich results for all the power spectra plotted on the same graphs. Notice how the performance 
of linear theory versus 0" is almost spectrum-independent and scales roughly with knl (less accurately 
so for the more negative power-spectra). The Zeldovich results also scale roughly for a given power­
spectrum, but are more dependent upon the initial spectrum. One can interpret this as a relative 
increase in the importance of "pancaking" in gravitational clustering with decreasing n. Nevertheless, 
the truncated Zeldovich result is always better than linear theory, even when n = +1, a situation 
when this approximation is rarely applied. Extrapolating this result to cases where n > +1 leads us 
to speculate that it is only when n > +1 that pancaking is unimportant for gravitational clustering. 

FIGURE 1 

Aside from the visual "calibration" provided particularly by Figure 4, it is difficult to assign a 
meaning to the actual numerical value of S for any particular situation. We discussed above the 
possibility that, without smoothing, only a slight displacement of structures in the N-body and model 
results could result in a low value of S even if the spatial patterns produced in the two cases were 
quite similar. In order to understand how S increases with smoothing scale in such a case, consider 
the following toy example. Suppose we have a density distribution in one dimension represented 
by a single point mass. Now construct another distribution by displacing the mass by a distance d 
(representing the mis-match between model and N-body result). We now smooth each distribution by 
Fourier convolution with a Gaussian filter of width R and compute the cross-covariance between the 
two distributions. The result is simply calculated: S = exp(-d2 /4R2 ) (the actual values of the two 
masses scales out of the problem). In this case if R = d, S ~ 0.8. Smoothing by the correlation scale 
typically produces an S of this order for linear theory (see Figure 5) and this might be interpreted, 
roughly speaking, as meaning that the largest structures are typically misplaced by a distance of order 
the correlation length in linear theory relative to the real distribution. The situation is of course more 
complicated than this in three dimensions because the behaviour of S with R will then be strongly 
dependent upon the geometry of the mass distributions in the two cases. 

It is worth also pointing out that the procedure of k-space truncation actually produces a density 
field which has a calculable correlation coefficient with respect to the original field. If we take linear 
theory as an example, we find that the cross correlation coefficient is given by 

ftft
' P(k)k2dk 

(19)S= fooo P(k)k2dk . 

Unfortunately the lower integral diverges for power-law spectra but, for our simulations anyway, the 
power-spectrum is truncated at the Nyquist frequency of the 1283 grid: kN = 64. Taking this as the 
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upper limit of integration in the denominator we get 

s = G~) ("+3)/2. 
(20) 

For n = -1 and knl = 8 (Le., 16 in units of the 1283 grid) this gives S = 0.25. This gives some idea 
of the measure of correlation one can expect by just removing high-frequency power from the density 
field, i.e. just ignoring small-scale features. 

Of course, the cross-correlation coefficient is just a single number for each of the simulations and 
one cannot hope to represent all the detailed relative behaviour of the different approximations in a 
single number. To give some more information about some of our results we have plotted, in Figure 8, 
scatter diagrams of the cell density (actually, 1 +6) in the N-body results against that in the model 
results for selected power spectra (just n = 1, -1), for two diffferent smoothing scales, R = Rc and 
2Rc, and just for the truncated Zeldovich, linear and truncated lognormal approximations. These 
examples greatly elucidate the reason for the relative performance of the models, and also give the 
reader a means of visually interpreting the quantitative value of S. 

FIGURE 8 

Notice how smoothing considerably tightens the relationships, as expected. There is considerable 
scatter in the Zeldovich results for n = 1 but the relationship is clearly better than linear theory. 
Whereas linear theory looks roughly the same for n = -1 at the same smoothing scale, the Zeldovich 
approximation is clearly better. When the smoothing scale is 2Rc, where Rc is the correlation length, 
the relationship is very tight indeed, but there is clearly still a systematic deviation: both very high 
and very low densities are incorrectly predicted by the Zeldovich approximation. The systematic effect 
is gross for the linear results in this case, particularly in the low-density regions. 

We see also reasons for the poor performance of the lognormal approximation: the k-space trun­
cation is too severe, reducing the fluctuations too much compared to the "real" results. However, 
the fact that the lognormal result smoothed at 2Rc has less systematic deviation than linear theory 
suggests that some other truncation criteria might produce a fairly good approximation. 

The generally disappointing performance of the lognormal model casts doubt upon the argument 
for it outlined by Coles & Jones (1991). But there is considerable evidence that the distribution 
function of galaxy counts is approximately lognormal, both in 3-d space and projection, and there 
is some evidence for lognormality in the multifractal description of galaxy clustering (Coles & Jones 
1991; Coles & Plionis 1991; Coles & Frenk 1991; Jones et ale 1992; Kofman et ale 1992a). We have, 
however, here chosen to implement a specific lognormal model which produces a final distribution 
function whose variance is fixed by the linear density fluctuation amplitude. This study has shown 
that this procedure, based on crude kinematical considerations, is not an accurate procedure in general. 
However, this does not mean that the distribution function can not be accurately represented by a 
lognormal distribution. In Figure 9, we plot the distribution functions for a representative example of 
our simulations (knl = 8; n = -1; R = Rc). 

FIGURE 9 

The first noticeable feature of the N-body distribution function is that it possesses a long tail, 
approximately of straight line form in this plot. This is very characteristic of lognormal distributions 
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(Kofman et a1. 1992a give other examples); but it should be stressed that smoothing and exponenti­
ating the linear field (9) do not commute: our lognormal approximation does not produce distribution 
functions after smoothing that are themselves exactly lognormal. The untruncated lognormal distri­
bution (left) gives too extended a tail, whereas the truncated lognormal has too shallow a tail. Given 
freedom to match the variance (equivalent to choosing different truncation wave-numbers) a lognormal 
distribution would clearly provide a good fit to the distribution function. To summarise, our lognormal 
approximation (9) & (12) reproduces neither the spatial structure nor distribution function of the real 
non-linear distribution very well at late times, but the distribution function does seem to be fit by 
a lognormal distribution of some kind; this question is discussed further in Jones et ale (1992) and 
Kofman et ale (1992a). 

It is interesting also to note that the untruncated Zeldovich approximation matches the distribution 
function at moderate and low densities, but fails in the high-density regions by not producing enough 
very dense regions. This is clearly a consequence of the failure to treat small-scale interactions correctly 
as the orbits begin to intersect. Notwithstanding this problem, the truncated Zeldovich approximation 
provides the best fit to the distribution function of all those we have tried. For n = -1 and knl = 8, 
it is almost indistinguishable from the N -body results if p :s 3.Spo. 

Conclusions 

We have systematically and quantitatively compared various analytic approximations for non-linear 
gravitational clustering with the results of "full" N -body simulations. The cross-correlation coefficient 
is a simple and easy to interpret method for comparing two spatial distributions; we have used it to 
determine the degree of correspondence between approximations and N -body results as a function of 
the degree of smoothing. We have probed a wide range of initial power spectra and have checked that 
our results are not influenced by resolution or boundary effects. 

In terms of both visual resemblance and cross-correlation coefficient the Zeldovich approximation 
is the best of our schemes and, in its k-space truncated form, it is surprisingly accurate even for 
initial power spectra with lots of small-scale power. The Zeldovich approximation in this form is 
always better than linear theory (it is even better in the linear regime), although the efficacy of linear 
theory in absolute terms is much less dependent upon the initial power spectrum than is the Zeldovich 
approximation. The considerable improvement of the Zeldovich approximation can be interpreted as 
the relative increase of "pancaking" in gravitational clustering with decreasing n. It is also important 
to stress that we have discussed the domain where n > -3 where the performance of the Zeldovich 
approximation has often been assumed to be very poor (e.g. Peebles 1980). Knowing that the Ze1dovich 
approximation describes the formation of pancakes we conclude that pancaking is important not only 
in its traditional domain of spectra with sharp cutoffs or power-laws with n < -3 at the beginning of 
the non-linear stage, or even for n < -1 as the adhesion model suggests (Kofman et ale 1992b and 
references therein) but that it is an important process for all power-law spectra with n < +1. Certainly 
the Zeldovich approximation (which includes pancake formation) is a much better approximation for 
the nonlinear stages in such cases than a simple extrapolation of linear theory. In other words the 
degree to which filaments and sheets are present in the results of N-body simulations is directly related 
to the performance of the Zeldovich approximation. Our present results prove that the Zeldovich 
approximation is very good if n < -1 and deteriorates with increasing n. Of course one has to keep in 
mind that all results were obtained for initial power-spectra in the finite range between the fundamental 

12 



mode kJ =1 and the Nyquist mode kN =64. A direct extrapolation of these results to pure power-law 
spectra on the infinite range 0 < k < 00 can be dangerous without a clear understanding of how to 
make the transition the limit kN / kJ --+ 00. 

We see the importance of this result for cosmology as explaining the large-scale structure of the 
Universe as a result of gravitational clustering from initial conditions without a sharp cutoff on the 
scale of tens of Mpc. The slope of the initial spectrum is, however, probably negative on the scales 
of clusters and superclusters (n '" -1) in good agreement with early suggestions. An example of a 
spectrum with such a form is given by the CDM model (Bardeen et ale 1986). 

It is worth stressing that we tested only the simplest naive extrapolation of linear theory. H more 
elaborate extrapolation schemes are assumed they cannot be rigorously verified on the basis of the 
present results but our results strongly suggest that one should test the validity of any such extension 
of linear theory before using it to speculate about cosmology. 

The lognormal approximation - the form of the lognormal distribution suggested by Coles &; Jones 
(1991) - performs badly relative to both linear and Zeldovich approximations in terms of producing 
the same spatial structure and does not match the density distribution function at all well. On the 
other hand, from this study and other related works (Jones et ale 1992; Kofman et ale 1992a) there is 
now considerable evidence that gravitational clustering is well described by a lognormal distribution 
function. One must conclude therefore that although the lognormal distribution may be correct, the 
attempt to provide a motivation for it by extrapolating linear theory through the continuity equation 
was incorrect and some other physical motivation must be sought. 
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Figure Captions 

Figure 1. Positions of every second particle in a slice two cells thick in our final N -body simulations. 
The figures have the same (random) phases but different spectra, as labelled by the different values of 
n. The normalisation corresponds to knl = 8. 
Figure 2. As Fig. 1, but with knl = 4. 
Figure 3. Dot-plots of slices through the distributions obtained by e'volving the same initial conditions 
as Figure 1,2 by the truncated Zeldovich approximation until knl = 8 (left) and knl = 4 (right) for the 
case n = -1; these should be compared with the bottom left parts of Figs 1 &; 2 respectively. 
Figure 4. Grey-scale plots of (a) N -body (b) Zeldovich ( c) truncated Zeldovich ( d) linear (e) truncated 
linear (f) lognormal (g) truncated lognormal. The plots represent on a linear grey-scale densities 
between 10 > 6 > 1. Regions with 6 < 1 appear white; those with 6 > 10 appear black. The initial 
power spectrum is n = -1 and knl = 8; the N-body and Zeldovich results can be compared directly 
to Figures 1 and 3. 
Figure 5. Behaviour of the rms density fluctuation in our N -body simulations as a function of 
smoothing scale (in computer grid units) for our different power spectra and normalisations. 
Figure 6a,b,c,d. Plots of cross-correlation coefficient, S against rms density fluctuation (1' for (a) 
n = 1, (b) n = 0, (c) n = -1 and (d) n = -2. The left plot of each pair has knl = 8, the right has 
knl = 4. The different models are indicated on the key: Z (Zeldovich); 0 (lognormal); L (linear). The 
k-space truncation is labelled as (t) and the chopped linear theory (8) is labelled L(c). the lognormal 
does not appear in some cases because of overflow errors (see text). 
Figure 7. Summary of the results for linear theory (left) and truncated Zeldovich (right) for all power 
spectra and for knl = 4 (lines only) and knl = 8 (lines connecting open circles). 
Figure 8. Scat ter plots of approximate results vs N -body results for selected cases. The three rows 
correspond to (top) truncated Zeldovich (middle) linear theory (bottom) truncated lognormal. From 
left to right in each row we have (left) n -= 1, smoothed at R e , (middle) n = -1 smoothed at Re , 

(right) n = -1, smoothed at 2Rc • Only one in four grid points in each spatial direction on the 643 

grid are sampled: 4096 points in all. 
Figure 9. Distribution functions for the case n = -1, knl = 8, R. = Re. The N~body results are 
shown as the solid line; linear, lognormal and Zeldovich approximations are shown as in the key, in 
straightforward form on the left and with k-space truncation on the right. 
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