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ABSTRACT 


We have computed the power spectrum of galaxy clustering, P(k), for a flux-limited redshift survey 

of 5304 galaxies detected by the Infrared Astronomical Satellite (IRAS), using a window function which 

minimizes the aliasing due to the sample boundaries. We use Monte-Carlo realizations of the data sample 

drawn from an N-body simulation of a Cold Dark Matter (CDM) universe to check our methods and to 

derive error estimates for the IRAS power spectrum. The derived IRAS P(k) appears consistent with 

the known two-point correlation function of IRAS galaxies on scales .- 20 h-1Mpc extrapolated out to 

large spatial scales (27r/k ..$ 100 h-1Mpc) and is characterized by a power law, P(k) <X k", with n .- -1.4. 

On larger scales, the IRAS power spectrum begins to flatten, but we see no significant evidence for a 

turnover out to the largest scales we measure, .- 180 h- 1Mpc. 

We. compare the IRAS power spectrum qualitatively with a variety of theoretical models. The 

shape of the IRAS power spectrum is not well matched by the standard CDM model (Oh =0.5); models 

with more large scale power such as CDM with Oh = 0.2 or CDM seeded with textures provide a better 

fit to the IRAS power spectrum. We perform a detailed quantitative comparison between standard CDM 

and the data using N -body simulations to map out the error distribution of P(k) on large scales. 

We find that the variance in the measured power on the largest scales is dominated by the poor 

sampling of Fourier modes with wavelengths comparable to the size of the sample, rather than by dilute 

sampling statistics. Consequently, in order to determine the validity of the standard CDM model on 

large scales, one must analyze many independent realizations of the CDM power spectrum. The analysis 

of repeated sampling of a single realization results in a significant underestimation of the variance in the 

CDM power which can lead to incorrect conclusions regarding the statistical significance of an observed 

power spectrum. 

The large sky coverage of our survey and our choice of window function leads to the orthogonality of 

different modes. We use this fact, in addition to the assumption of linear biasing, to derive the probability 

that the standard CDM model can produce power of comparable amplitude to that measured in the IRAS 

sample on large scales. On scales between 36 h-1Mpc and 180 h-1Mpc, consistency of the CDM model 

with the IRAS data constrains the linear biasing parameter, b, (IRAS to dark matter) to be b < 1.5 

at the 95% confidence level and b < 2 at the 99% confidence level. On large scales the CDM model is 

in good agreement with the IRAS P(k) if IRAS galaxies are unbiased tracers of the mass distribution 

(b=1). However, if the linear biasing model were to extend to smaller scales, it would lead to excessive 

power. 
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1. Introduction 

The two-point correlation function, ~(r), has traditionally been the primary statistic used to 

quantify galaxy clustering observationally. Measurements of e(r) from existing redshift surveys on spatial 

scales that are undergoing non-linear evolution (i.e., where e(r) » 1) have proven to be quite robust 

and reproducible. The canonical correlation function for optically selected galaxies is a power-law, 

~(r) = (r/5.4h- 1Mpc)-l.B, for r's 15 h-1Mpc (Davis & Peebles 1983; cf., de Lapparent, Geller, & 

Huchra 1988), where the Hubble Constant is given by Ho = 100 h km S-1 Mpc-1. Galaxies selected 

from the database of the Infrared Astronomical Satellite (IRAS) are characterized by a somewhat smaller 

correlation length and shallower slope with e(r) = (r/3.79h- 1Mpc)-1.57 (Saunders, Rowan-Robinson, & 

Lawrence 1992; Strauss et al. 1992a). 

In linear theory, the shape of the correlation function is maintained during the growth of the 

perturbations, and a current measurement of ~(r) in the region ~(r) « 1 would yield the intial power 

spectrum. But this is exactly where e(r) is most difficult to determine observationally. Since 1 +e(r) is 

calculated from a redshift survey by dividing the pair counts at a separation r by a quantity proportional 

to the mean density of the survey n, the uncertainty in e(r) for ~(r) .:s 1 will be limited by the fractional 

uncertainty in the mean density, a~ ~ an/no The uncertainty in n is due both to random errors arising 

from small number statistics, and to systematic effects caused by fluctuations on the size of the sample 

(Davis & Huchra 1982; Efstathiou, Ellis, & Peterson 1988), uncertainties in the degree of galaxy evolution 

(Fisher et al. 1992), errors in the selection function 4>(r), and the neglect of relativistic corrections to' 

the volume element. At best, current redshift surveys can determine the mean density to within::::: 5%, 

making it very difficult to directly determine the correlation function on scales ~ 30 h- 1 Mpc. 

The power spectrum of fluctuations P(k) is simply the Fourier conjugate of the correlation function. 

There have been a number of recent determinations of P(k) from redshift surveys (Baumgart & Fry 

1991; Einasto & Gramann 1991; Kaiser 1991; Hamilton et al. 1991; Peacock & Nicholson 1991; Peacock 

1991; Park, Gott, & da Costa 1992; Vogeley et al. 1992). The power spectrum can be more accurately 

determined in the presence of uncertainties in the mean density than can e(r); as we shall see in Equation 2 

below, for scales much smaller than the sample size, where the effects of the sample edges are unimportant, 

the calculated power spectrum is proportional to n-2 • Thus an error in the mean density of the sample 

only alters the normalization of the power spectrum without changing its shape. Because no theoretical 

models for the power spectrum currently predict the normalization a priori, but rather are normalized 

from the observations, this uncertainty in the normalization is of little consequence in comparing the 

results with the models. 
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There are recent indications that the power spectrum predicted by the standard Cold Dark Matter 

(CDM) model with Oh =0.5 is too flat for wavenumbers corresponding to spatial scales r ~ 50 h- 1Mpc; 

equivalently, when normalized to observed galaxy fluctuations on small scales, CDM has insufficient power 

on large scales (see also Bertschinger & Juszkiewicz 1988; Efstathiou, Sutherland, & Maddox 1990a; 

Maddox et al. 1990; Park 1991). In this paper, we compute the power spectrum from a flux-limited 

redshift survey of 5304 IRAS galaxies (Fisher 1992) covering 87.6% of the sky. This is currently the 

largest full-sky redshift catalog in existence; the large volume of space probed by the survey combined 

with its simple geometry and high sampling density make it ideal for the determination of the power 

spectrum on large scales. Our method for extracting the power spectrum avoids using a Fast Fourier 

Transform (FFT) algorithm on volume limited subsamples; instead, the Fourier transform is performed 

as a direct point transform on the full flux-limited catalog. We find that the IRAS P(k) measured in 

redshift space is indeed steeper than the standard CDM prediction on large scales, and is well described 

by a power law, P(k) ex k", with n - -1.4 for 21r/k ~ 100 h-1Mpc. At scales ~ 100 h-1Mpc, the IRAS 

power spectrum begins to flatten, but the errors on this large scale are very large. 

We describe our technique for extracting the power spectrum directly from flux-limited catalogs 

in §2. In §3, we test our technique using Monte-Carlo simulations of the IRAS survey based on N-body 

realizations of a standard CDM universe. In §4, we apply our technique to the 1.2 Jy IRAS catalog. We 

compare the resulting IRAS power spectrum with previous results in the literature in §5. In §6 we give 

a qualitative comparison of the IRAS power spectrum with various theoretical models. §7 describes an 

extensive set of Monte-Carlo experiments designed to quantitatively test the validity of standard CDM 

on large scales. We conclude in §8. 

2. Estimating the Power Spectrum 

2.1. Technique 

Flux-limited galaxy catalogs are characterized by a radial selection function, 4>(r), such that for a 

homogeneous distribution of galaxies, the expected number of galaxies in the sample on a radial shell of 

thickness ~r at a distance r is given by wm·2 ~r¢(r), where n is the mean density of the entire sample 

and w is its solid angle (e.g., Yahil et al. 1991). In a flux-limited sample, an unbiased estimator for the 

galaxian density contrast, 6(1') == (p(r) - (p) )/(p), in a volume V containing galaxies at positions ri is 

given by 

(1) 
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where the caret denotes the statistical estimate of a quantity. This estimate of the density field can be 

decomposed into a superposition of plane waves, 

~ 1 '" 1 ik·r· W(k) (2)Uk = - L.t --e ' ­
nV . ¢(ri)

I 

where 
ik r (3)W(k) == ~ i d3 

re . 

is the Fourier transform of the catalog window. As an estimate of the power spectrum, one can compute 

the square of the modulus of the Fourier amplitudes: 

ll(k) == 6k 6k (4) 

(2: _1_e-ik.rj - nV W*(k»)= (n~)2 (~q)(~i/kr. - nV W(k») 
} 
. ¢(rj) 

The connection between ll(k) and the underlying power spectrum, P(k), is established by calculating the 

ensemble mean of ll(k), denoted by (ll(k». The expectation values of the sums appearing in Equation 4 

can be converted into integrals by rewriting the direct summation over particles as sums over infinitesimal 

cells with volumes d3ri and occupation numbers Ni (cf., Peebles 1980 §41.1), 

(ll(k)} = _1_ 2: (NiNj) eik.(r;-rj) + IW(k)1 2 (5)
(nV)2 II .. ¢(r;)¢(rj)

ce 6 I,) 

__1 2: (Ni) [W(k)e-ik.r, + W*(k)eik.ri] 
nV II . ¢(r;)ce 6 I 

The mean value of the occupation number for a cell located at radius r, is given by the expected count 

in a homogeneous universe, n¢(r)d3 r. The second moment of the counts is given by 

(N.N.) - {n2(1 +e(lri - l'jl»¢(ri)¢(rj)d3rid3rj, i -:f j (6)
• J - n¢(r;)d3 ri' i = j 

In the case i = j, we have used the fact that for infinitesimal cells, Ni can only take on the values 0 and 

1, and thus (Nl) = (Ni). 

Substituting Equation 6 into Equation 5 yields the expectation value of the estimator ll(k), 

(7) 

We can recast Equation 7 in terms of the true power spectrum by recalling that ~(r) is the Fourier 

conjugate of P(k). Here and throughout, the Fourier transforms will be defined by the following 

convention: 

e(r) = _1_ Jd3k P(k)e- ik . r 
(27r)3 

P(k) = Jd3 r ~(r)e+ik.r 

(8) 
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In this convention, P(k) is a spectral density and thus has the units of volume. One often sees this Fourier 

transform pair presented with a volume term normalizing the integrals, so as to make P(k) dimensionless. 

This has the undesirable effect of making P(k) dependent on the volume in which it is defined. 

Expressing ~(r) in terms of P(k) in Equation 7 gives 

P(k) 1 1J 3 (9a)(II(k» =-V + nV2 d r <p(r) 

where 

P(k) == Jd3k' P(k')G(k - k') (9b) 

with 

G(k - k') == (2~)3IW(k - k')1
2 (ge) 

Thus the mean value of the estimator, II(k), is simply the true power spectrum convolved with a window 

function that describes the geometry of the sample, plus an additional shot noise term. By isotropy, the 

mean value of TI(k) is a function of the magnitude of k only. In practice, one must average the expression 

given in Equation 4 over wavenumbers of fixed Ikl but with random directions in k-space. 

The shot noise term in Equation 9a is the generalization of the usual Poisson discreteness term 

linV for a sample characterized by a radial selection function; in the presence of non-uniform radial 

weighting the Poisson term is multiplied by the volume-averaged weight ir f :~:). The shot noise term 

in Equation 9a is the expectation value; in a given realization the shot noise is given exactly by the sum 

1 1 
(10)-""'­(nV)2 ~ <p2(rd, 

The convolution in Equation 9b is a manifestation of the uncertainty principle. Because the density 

is sampled in a finite volume, there is an inherent resolution limit Ak in the power spectrum, on the 

order of the fundamental mode, and there is therefore no point in sampling the power spectrum more 

densely. For example, the window function for a spherical volume of radius R can be calculated directly 

from Equation 2: 

W(k) = 3jl(kR) (11 )
kR 

where it (z) is the usual spherical Bessel function. 

The exact wavenumbers chosen for the estimation of the power spectrum, as well as the sampling 

geometry, are a matter of convenience dictated by the statistical and systematic limitations of the data, 

and are discussed in detail below. 
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Our procedure, therefore is as follows. For a given sample geometry, one averages the statistic TI(k) 

in Equation 4 for a set of wavenumbers with fixed Ikl but randomly distributed on a sphere in k-space. 

For each direction of k chosen, the shot noise given in Equation 10 is subtracted from II(k), and the result 

is multiplied by the sample volume; this gives an estimate for the true power spectrum convolved with 

an expression that depends on the sample geometry, P(k). In the analysis that follows we average over 

500 uniformly distributed directions of k at each frequency for which the power spectrum is computed. 

At this point, one could either attempt to deconvolve P(k) and compare to theoretical predictions, or 

one could convolve the theoretical predictions with the appropriate kernel G, and compare directly to the 

measured quantity, P(k). The latter approach is more stable, and we adopt it in this paper. Our choice 

of sample geometry will be discussed in the next section. 

2.2. Sensitivity of P(k) to the Mean Density and Selection Function 

As a first test of the method outlined above, we laid down particles randomly within a sphere of 

radius R, with a radial density profile consistent with the IRAS selection function and number density. We 

then calculated the quantity P(k) within the sphere using the methods described above, and compared it 

with the power spectrum P(k) = constant (white noise) convolved with the window function in Equation 

11 using Equation 9b. There was excellent agreement between the true and derived power spectrum 

for waves with frequencies much greater than that corresponding to the fundamental mode kf ,..., 7r / R. 

However, for frequencies close to kf' the estimated power differed significantly from the true power. 

There are three fundamental difficulties in measuring the power at low frequencies. First, from 

Equation 2, one expects the Fourier components of the density field to scale inversely with the density 

only for values of k such that W(k) is negligible; for wavenumbers Ikl approaching kf' W(k) is no longer 

negligible for a finite volume, and c5k no longer scales as n- 1 • Consequently, errors in the determination 

of n cause errors in the inferred shape of the power spectrum on the largest scales. Second, the window 

function couples the Fourier modes so that they are no longer orthogonal. This coupling can become 

severe at large spatial scales due to the broadening of W(k) at low frequencies, especially if one is working 

with irregularly shaped window functions. This covariance between modes will conspire with errors in 

the mean density to yield systematic errors in the estimated P(k) at low frequencies. 

Finally, there is the possibility of artificial large scale density gradients induced by a variety of 

effects. An artificial density gradient in the sample will introduce spurious power given by 

(12) 
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where ~(r) = 6n(r)/n(r) is the fractional error in the true density profile, nCr). Artificial density 

gradients will arise from errors in the selection function and the neglect of relativistic and evolutionary 

effects. 

For example, by working in Local Group redshift space and not correcting distances for our motion, 

the inferred selection function differs slightly from the true selection function that would be computed if 

the distances to all galaxies were known; this error in the selection function will introduce a slight radial 

gradient in the density. An estimate of the uncertainty of the selection function is given by the difference 

in the derived 4>( r) when calculated in real space and redshift space for a series of N -body realizations of 

the IRAS sample (described in §3). In this case, ~(r) in Equation 12 is given by 64>(r)/4>(r). This results 

in a systematic error in P(k) which increases with wavelength but is ~ 10% of the observed power for 

A <180 h- 1 Mpc. The problem is not alleviated by working with volume limited subsamples, because the 

determination of the absolute luminosity of each galaxy is dependent on the proper correction for the 

effects of peculiar motion. 

To first order in distance, the fractional error in the number density introduced by the neglect of 

evolutionary and relativistic effects is given by 

3 rHo 
~(r) =4-c- (0' - 2(qo + 1)) (13) 

where 0' parametrizes the density evolution, n(z) ex (1 + z)Q, and qo is the usual cosmological density 

parameter (Fisher et al. 1992). Notice that the evolutionary and relativistic corrections enter with 

opposite signs to first order and thus tend cancel one another for positive 0'. For our choice of geometry 

(cf., §2.3 below), 0' = 2 appropriate for the 1.2 Jy IRAS sample (Fisher et al. 1992), and qo = 0.5, the 

error induced in the derived power spectrum by Equations 12 and 13 is ~ 2% on the scales probed in 

our analysis. If we have severely underestimated the evolution and 0' = 7 (Saunders et al. 1990), then 

the error in the power could be as high as 25% on the largest scales. 

Because the error term, ~(r), depends on]y on the magnitude of the vector r for the effects 

considered above, it is an even function of r, and thus does not effect the odd imaginary part of the 

Fourier coefficients of the density field. However, if one were to use only the odd components, one would 

be in effect throwing out half of one's data, giving an unacceptably large variance in the inferred power 

spectrum. In any case, these sources of systematic error should be kept in mind when drawing conclusions 

about the presence of excess power on large spatial scales. 

The fact that we are working in redshift space rather than real space introduces another source 

of distortion to the power spectrum. The linear flow field enhances the apparent clustering in redshift 
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space, which causes the derived power to increase by a constant factor on large scales (Kaiser 1987). We 

will measure and calibrate this effect using linear theory and N -body simulations in § 3.3 below. 

2.3 Sensitivity of P(k) to the Choice of Sample Geometry 

According to Equation 2, if there existed a geometry such that the window function vanished 

identically for the sampled wavenumber, then the scaling of Ok would be exactly proportional to n-1 
, 

which would solve the first of the three problems addressed above. One might argue that the sphere 

is the natural geometry for a full-sky redshift survey, and that it maximizes the survey volume for a 

given distance limit. A spherical region is particularly desirable when performing analyses in which the 

galaxies are weighted by the inverse of the selection function (cf. Equation 1) since, by radial symmetry, 

all galaxies at the boundary of the sample will then be given equal statistical weight. 

In that case the window function vanishes for values of kR which are zeros of the il(Z) Bessel 

function (cf., Equation 11). 

Unfortunately, plane waves are not orthogonal modes when integrated over a ·sphere. If they 

were, then the distribution in the plane spanned by the real and imaginary parts of Ok would be an 

isotropic bivariate Gaussian; deviations from isotropy indicate strong correlations between the modes, as 

well as covariance between the real and imaginary components of a given mode. We have examined the 

distribution of Fourier components in this plane for Poisson-distributed points. In the spherical geometry 

the distribution is very anisotropic. 

The orthogonality of the modes could be maintained by using spherical waves instead of planar 

waves. We have chosen not to take this route here, both because we wish our results to be readily 

compared with the usual description of the power spectrum by means of plane waves, and because we 

have found another effective way of generating orthogonal planar modes. We use a cylinder with length 

2R and a circular base of radius R which we align with the direction of k. We therefore give up the idea 

of maintaining a fixed sampling volume, and different galaxies are used to estimate the power for k's in 

different directions. The enclosed sphere of radius R is, of course, common to all the sampling volumes. 

Since we sample k in 500 random directions, we are, in effect, sampling a larger sphere of radius ..J2R 
with a window which is unity up to a radius of R, 'and then goes abruptly to zero at the outer edge of 

the volume. 

We now choose our wavenumbers by requiring that kR = n7r with n = 1,2,3, .... This not only 

causes W(k) to vanish, but it also maintains the orthogonality of the modes; unlike the spherical geometry 

mentioned above, the distribution of Ok in the complex plane is quite isotropic. 
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For long wavelengths, we calculate ?(k) only at the harmonic frequencies of the cylinder which is 

aligned along the k axis for each direction chosen; as stated earJier, 500 directions are averaged together 

for our final result. In practice, after the first five harmonics, W(k) is so small as to be negligible in 

Equation 3; thus for k > 57/R, we no longer require k to be a multiple of 71"/R. 

In the case of cylindrical geometry, the convolution integral in Equation 9b is given by, 

(14a) 

where 

F(.,) :; ;.[' d;' J?(.,')P ( ,;.,2; .,12) , (14b) 

and jo(x) and h (x) are the standard spherical and cylindrical Bessel functions, respectively. As stated 

above, we do not attempt to deconvolve the ?(k) derived from the data, but rather convolve all theoretical 

predictions using Equations 14 in order to compare with the observed spectrum. 

3. Testing the Techniques with N -Body Simulations 

9.1. Generation of Alock IRAS Catalogs 

In order to test the reliability of our method for extracting the power spectrum, we created a 

series of mock IRAS catalogs drawn from N -body simulations of a CDM universe. The simulations are 

those used by Gorski et al. (1989), Frenk et al. (1990), and Davis, Strauss, &. Yahil (1991), and are of a 

standard biased CDM universe (h =0.5, n = 1, A =0, n = 1) computed using a p3M algorithm with 

643 particles in a cube of comoving length 180 h-IMpc. The initial power spectrum in the simulations is 

that of Davis et al. (1985). The simulations are biased in the sense that their output times are chosen to 

make the rrns mass fluctuations in an 8 h-1Mpc sphere equall/b; the results presented here use a model 

with b = 1.6. The points selected as IRAS galaxies, however, are not biased; they do trace the mass. 

The details of how we construct a mock IRAS catalog are described in Gorski et al. (1989) and 

in Davis et al. (1991). Dissipationless N-body models with n = 1 tend to be too "hot" on small scales 

and have velocity dispersions in excess of those observed (e.g., Davis et al. 1985). Thus we convolve the 

velocity field with a Gaussian window of u = 1 h- IMpc in order to reduce the pair dispersion to values 

close to those observed. We then select those particles in the simulation whose properties match closely 

those of the Local Group (LG). To be chosen as a LG candidate, the particle must 1) have a peculiar 
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velocity of vp =600 ± io km s-1, 2) reside in a region in which the fractional overdensity, 6, averaged 

in a radius of 450 km s-l is in the range -0.2 < 6 < 1.0, and 3) reside in a region of low shear such 

that Ivp - (v)\ < 0.3vp, again within a sphere of radius 450 km s-l. There are 1101 particles in our 

simulation which satisfy these criteria. 

After choosing a suitable LG candidate, we mimic the geometry of the IRAS sample by rotating 

the coordinate system of the N -body model so that the velocity vector of the candidate particle is aligned 

with the direction of the observed Local Group motion (277°, 30°) as inferred from the dipole moment of 

the Cosmic Microwave Background (Smoot et al. 1991). We construct a flux-limited catalog around a LG 

candidate by including particles with a probability given by the value of the IRAS selection function (cr., 

§ 4.1 below) at the distance between it and the LG. Fluxes are assigned to the remaining objects so that 

their luminosities are consistent with the IRAS luminosity function (as inferred from the derivative of 

the selection function). The redshift of each particle in the LG rest frame is calculated from its distance, 

its peculiar velocity, and the peculiar velocity of the LG. The selection function and mean density are 

then recomputed directly from the redshifts (not distances, in order to mimic what is done with the true 

IRAS sample) of these data for particles within 10,000 km s-l of the LG using the methods ofYahil et 

al. (1991). Finally, particles lying in the regions of the sky not covered by our sample (cf., Strauss et 

al. 1990) are rejected, and these "excluded zones" are filled in with artificial galaxies in exactly the way 

the real data are treated (Yahil et al. 1991; cf., § 4.1 below). We created ten such mock IRAS samples 

centered on ten distinct LG candidates. 

3.2. Monte-Carlo Results 

Figure 1 shows the mean of the resulting power spectrum, P(k), from our ten mock IRAS catalogs 

for six different sample volumes which correspond to right circular cylinders of length and base diameter 

30, 60, 90, 113, 143, and 180 h- 1Mpc. The solid symbols in each panel refer to the power spectrum when 

the real distances to the galaxies are used, while the open symbols refer to the power spectrum computed 

from the "Local Group" redshifts. In each case, the selection function is calculated self-consistently from 

the data. The error bars shown are the standard deviations in the estimates of the power from the ten 

different catalogs at each wavenumber. The dashed horizontal line in each graph is the level of the shot 

noise term given by Equation 10. 

Not surprisingly, as the volume increases, the shot noise contribution rises dramatically. 

Consequently, for high frequency modes it is desirable to compute the power spectrum in as small a 

volume as possible. For low frequencies, we must increase the size of the sample to ensure that multiple 
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wavelengths fit inside the volume; unfortunately, this must be done at the expense of increasing the shot 

noise contribution to the power. Thus more weight should be given to high frequency modes computed in 

smaller volumes, where the shot noise contribution is smaller. This behavior can seen in Figure 1 where 

the errors at high frequency become smaller as the sample volume is decreased from the 180 h-1Mpc to 

the 60 h-1Mpc cylinder. The volume can not be made arbitrarily small, however, because the variance 

in the derived power will then be dominated by sampling fluctuations.' This is apparent in Figure 1 for 

the 30 h-1Mpc cylinder. In this case, the errors at high frequency are larger than for the 60 h-1Mpc 

cylinder, because there are large variations in the local density fields of the CDM realizations. 

Figure 2 shows the power spectra from the different volumes plotted on a single graph. The P(k) 

from the different volumes are remarkably consistent despite the fact that the power spectra in different 

volumes are convolved with different window functions (i.e., different values of R in Equation 14). The 

mutual consistency of the power spectra suggests that a meaningful way to reduce the high frequency 

noise in the estimate of P(k) is to average the power spectra from the different volumes. Thus our 

final estimate of the power spectrum is a variance weighted average of the mean power in the different 

volumes. The error bar for this final estimate is taken to be the minimum of the standard deviations 

from the different sample volumes. Although this error estimate is not rigorous, it does give a rough idea 

of the uncertainty in the power. We use this averaging procedure and the corresponding errors merely 

as a convenient way of presenting the data from the different volumes as a single power spectrum. We 

stress that the probability distribution for the power is non-Gaussian and the variance is at best only 

illustrative of the spread of the power at a given frequency. In § 7 below, we use N -body simulations to 

derive the probability distribution directly, in order to compare the standard CDM model with observed 

power spectrum; no quantitative analysis is based on the averaged P(k) presented here. 

Figure 3a shows the averaged power spectra in our mock catalogs as measured in real space (Le., 

without redshift distortions). The solid curve is the power spectrum as measured from an FFT of the 

entire simulation, i.e., the "true" power spectrum, convolved with the cylindrical window function given 

in Equation 14. Although the power spectrum in Figure 3 is an averaged P(k) derived from the P(k) 

in different sized volumes, the convolution is performed for a cylinder size of 2R = 180 h-1Mpc to 

ensure that the distortion due to window function is correct1y estimated on the largest scales. The power 

spectrum has been computed at frequencies covering the full dynamic range of the simulations. The 

agreement is quite good; Figure 3a shows that the technique is in fact successful at recovering the true 

power spectrum. Note in particular that the filling in of excluded zones has a negligible effect on the 

derived power spectrum. 
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3.3. Redshift Space Distortions 

The power spectrum in redshift space is expected to be distorted from that computed in real space 

on both large and small scales. On small scales, the amplitude of the power spectrum is suppressed 

by non-linear effects, while on large scales it is enhanced by streaming motions (Davis et al. 1992); 

consequently, the power spectrum appears steeper when computed in redshift space than in real space. 

If the virialized peculiar velocities have a Gaussian distribution characterized by a dispersion, uv , then 

the power spectrum on small scales will be modified by 

P(k) _ P(k) Vi erf(kuv/Ho), (15)
2 kuv/Ho 

where Ho is the Hubble constant (cf., Peacock 1991). 

On large scales, where linear theory applies, the azimuthally averaged power spectrum is enhanced 

by a k-independent factor (Kaiser 1987) 

P(k) - f(O, b) P(k) where f(O, b) == [1+ 32(0-b-
0.6) + 5"1(0-b-

0.6)2] (16) 

The velocity dispersion in our N -body models is dominated by tight binary pairs with high relative 

velocity. In order to reduce the velocity dispersion to a level consistent with observations, we smooth the 

N -body model velocity fields on small scales as mentioned in § 3.1. Due to this smoothing, the suppression 

of the power spectrum at high frequencies described by Equation 15 will be limited. There will, however, 

be an enhancement of the power on large scales in accordance with Equation 16. In Equation 16, the 

appropriate bias is b = 1 since the galaxies in our simulations trace the mass; thus on large scales the 

power spectrum in redshift space is amplified in our simulations by a factor of 28/15. 

In Figure 3b we plot the mean redshift space power spectrum from the mock IRAS catalogs. The 

solid curve in Figure 3b is the real space power spectrum (shown in 3a) modified by the large scale 

distortion in Equation 16. There is good agreement between our measured power spectrum and the 

expected redshift power spectrum on large scales where Equation 16 is valid. The points in Figure 3c 

show the ratio of the redshift and real space power spectra as a function of frequency. The redshift 

distortion can be parameterized roughly by the following expression 

(k) = (k/kct + f(O, b) (17)
9 (k/kc)" + 1 

with n = 2 and kc = 27r/(20 h-1Mpc). This is shown as the solid curve in Figure 3c. 
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4. Application to the 1.2 Jy Survey 

4.1. Sample Selection 

The redshift sample used in the analysis of this paper consists of galaxy candidates chosen from 

the IRAS database using a color criterion described in Strauss et al. (1990). The sample is complete to 

a flux limit of 1.2 Jy at 60 pm and contains 5304 galaxies. Forty three objects (0.8% of the total sample) 

do not have redshifts at this writing. Sky coverage is 96% complete for 161 > 5°; our sample thus covers 

87.6% of the sky. A further description of the sample and its selection criteria can be found in Strauss et 

al. (1990) and Fisher (1992). 

All heliocentric redshifts have been converted to the Local Group reference frame using the 

transformation given by Yahil, Tammann, & Sandage (1977); "redshift" will refer to redshifts with 

respect to the Local Group rest frame. We will compute the power spectrum in redshift space, thus no 

corrections will be made for peculiar velocities. The selection function is computed using the maximum 

likelihood estimator of Yahil et al. (1991) which is unbiased in the presence of density inhomogeneities, 

using all galaxies with redshift less than 10,000 km s-l. Yahil et al. show that the selection function 

derived to 10,000 km s-l correctly describes the luminosity distribution of galaxies at higher redshifts; 

thus our derived selection function is valid out to the largest scales for which it is used. We "semi-volume 

limit" our sample by excluding all objects whose observed flux would fall below 1.2 Jy if they were to 

be placed at r, = 635 km s-l; thus we normalize the selection function so that <p(r) = 1 for r < r,. 

The mean density n is the optimal J3-weighted sum of all the galaxies within 10,000 km S-l (cf., Davis 

& Buchra 1982). As discussed in §2.2, the neglect of relativistic and evolutionary effects should not 

introduce a significant error in our analysis; consequently, we make no correction for these effects. 

Our choice of cylindrical sample geometry (outlined in §3.2) requires a sample with full-sky 

coverage. As in Yahil et al. (1991), the region at Ibl < 5° is filled with artificial galaxies with a density 

interpolated from the galaxy distribution at higher latitudes, while the high-latitude excluded zones are 

filled with the mean density of the survey. In total, 696 random galaxies are added in the excluded zones. 

We have confirmed using the N-body models described in §3.1 that this interpolation has a negligible 

affect on our results. 

4.2. The 1.2 Jy IRAS Power Spectrum 

In Figure 4, we show the IRAS power spectrum computed in six different volumes. Error bars 

represent corresponding variances found in the mock IRAS catlogs. We have used the Monte-Carlo 
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variances in each volume to form a variance-weighted mean spectrum, in the same way as described for 

the N-body models in §3.2. The mean IRAS power spectrum is shown as the solid symbols in Figure 5a. 

This is the central result of this paper. 

By using a cross-correlation technique between the QDOT redshift survey and its parent two 

dimensional catalog, Saunders et al. 1992 have inferred that the real space correlation function of IRAS 

galaxies on small and intermediate scales ( ,$ 30 h-1Mpc) is given by e(r) =(r/3.79h-1Mpc)-1.57. This 

implies that the IRAS power spectrum in real space should be ex k-1.4 at high frequencies. However, 

as discussed in §3.3, the power spectrum will have a somewhat steeper slope when measured in redshift 

space. In Figure 5a the solid line is a power law spectrum ex k- l .4 convolved with the cylindrical window 

function with 2R =180 h-IMpc to account for the distortion of P(k) due to the finite volume on large 

scales. As expected, our IRAS power is slightly st.eeper than this model. The non-linear distortion term 

given in Equation 15 will yield a steeper power spectrum. Measurements of the correlation anisotropies 

in the 1.2 Jy IRAS catalog suggest that IRAS galaxies have 0'" ~ 200 km s-I (Davis et al. 1992). The 

dashed line in Figure 5a is the k-1.4 spectrum modified by the redshift distortion factor given in Equation 

15 with 0'" =200 km s-l. This model appears to be in quite good agreement the observed spectrum for 

wavelengths ,$ 100 h-1Mpc. On scales larger than - 100 h-1Mpc, the IRAS power spectrum begins to 

deviate from the simple power law model. 

We can avoid the subtleties of the redshift distortions by comparing the IRAS P(k) with the two­

point correlation function in redshift space, e(s), of the 1.2 Jy survey. In Figure 5b, the solid curve is the 

Fourier transform of the average IRAS P(k) shown in Figure 5a. The triangles show e(s) determined 

directly from pair counts of the 1.2 Jy survey (Fisher 1992). The power spectrum and correlation function 

are in excellent agreement. 

5. Consistency with Other Determinations 

In Figure 6, we compare our power spectrum with a variety of published results. In the first 

panel, we compare our IRAS P(k) with the power spectrum of Peacock (1991) which provided a good 

empirical fit to the APM angular correlation function. The two solid curves span the range of fits given 

by Peacock. We have normalized the amplitude of his P(k) to the rms IRAS galaxy counts in spheres of 

radius 8 h- 1Mpc in redshift space (0'8 = 0.8; Fisher 1992) to account for the weaker clustering strength 

of IRAS galaxies relative to the optically selected galaxies of the APM survey. In addition we have 

convolved Peacock's power spectrum with the cylindrical window function in Equation 14 for a sample 
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of length 2R = 180 h-1Mpc in an effort to model the distortion of our IRAS P(k) on large scales. 

The agreement is quite good for low wavenumbers, while the discrepancy in slope on small scales simply 

reflects the redshift space effects in the [RAS sample versus the real space power spectrum of the optical 

sample, derived from angular correlations. Moreover, we confirm the break from a power law in P(k) at 

log k ...... -1.3, or scales of 200 h- 1Mpc. 

In panel b of Figure 6 we compare the [RAS P(k) with the empirical fit to the power spectrum of 

galaxies from the Center for Astrophysics (CfA) Redshift Survey given in Vogeley et al. (1992). Again, 

to account for the differing clustering strengths of infrared and optical galaxies, we renormalized the 

efA result to the rms [RAS galaxy counts (0"8 =0.8) and to model the distortions of the [RAS P(k) 

on large scales we convolve their result with our cylindrical window function with 2R = 180 h-1Mpc. 

The agreement is striking. The two power spectra are virtually indistinguishable over the entire range 

of scales probed. In particular, we confirm the flattening of the power spectrum noticed by Vogeley et 

al. for .A ~ 125 h- 1 Mpc. We do not, however, see any evidence for a turnover in the spectrum. 

In panel c of Figure 6, we show the predicted variance in cubical cells, (1'2(1), from the [RAS 

?(k). The variance in a cubical cell is given by a straightforward integral over the power spectrum (cf., 

Efstathiou et al. 1990b). We have used an approximation to this integral given by Peacock (1991), 

(18a) 

where the effective wavenumber, keff' for a cubical cell of length I is 

V12 [1 (n+ 1)]-..hkff=- - -- I (18b)
e I 2 2 . 

In Equation 18b, n refers to the spectral index characterizing the power spectrum on scales .A ...... 2/; we 

use the values of kef f given by Peacock for a spectral index consistent with the APM angular correlation 

function. The solid curve shows the variance predicted by the 1.2 Jy [RAS power spectrum. The 

dashed lines represent the variance when the power spectrum is perturbed up and down by the standard 

deviations of the power found in the N-body simulations. The stars show the variances computed directly 

from the 1.2 Jy survey in spheres and approximately translated to boxes (Bouchet et al. 1992) while the 

triangles are the variances determined by the QDOT redshift survey (Efstathiou et al. 1990b). The error 

bars on the QDOT results are the stated 95% confidence limits. 

The agreement between the variance inferred from ?(k) and the actual variances in the 1.2 Jy 

sample is quite good. The predicted variances are consistent with the QDOT determinations for the 
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smallest and largest cells. The QDOT estimate of the variance in the 40 h-1Mpc cell appears to be 

significantly in excess of both the inferred variance from the power spectra and the variance determined 

directly from the 1.2 Jy sample. It has been suggested, however, that the QDOT estimate of the variance 

at 40 h- 1 Mpc could be a statistical fluke (Park 1991). 

6. Qualitative Comparison with Theoretical Models 

One of the main difficulties in comparing models with the data is in the normalization of the 

model power spectra. The standard method of normalizing to the galaxy counts in an 8 h- 1 Mpc sphere 

is dubious since the linear models do not model the non-linear evolution. Moreover, the scales contributing 

to the (Ts normalization will be affected differentially by the redshift distortions discussed in §3.3. Modes 

in the fully linear regime will be significantly enhanced relative to their value in real space while non-linear 

modes will be suppressed. 

In this section we content ourselves with a brief visual comparison of the IRAS power spectrum with 

the linear theory predictions of various theoretical models ofstructure formation; we reserve a quantitative 

comparison with the standard CDM model for §7. Consequently, we are concerned primarily with the 

shape of the power spectra and not the exact normalization. Therefore in this section we have chosen to 

normalize all theoretical predictions to the observed rms fluctuations of IRAS galaxies when measured 

in redshift space in a sphere of radius 8 h- 1 Mpc; for the 1.2 Jy IRAS survey this implies a normalization 

of (Ts =0.8 (Fisher 1992). 

The normalized model power spectra are convolved with the cylindrical window function as given 

in Equation 14 with 2R = 180 h- 1 Mpc, to model the distortion of the power spectrum on large scales 

due to our sample geometry. In addition, since the comparisons are made with linear theory predictions, 

we restrict the comparison to wavelengths > 20 h- 1 Mpc. We emphasize that the error bars shown for 

the IRAS power spectrum are not rigorously defined and that the distribution function characterizing 

the power at a given frequency is non-Gaussian; the reader should not attempt to quantitatively judge 

the validity of the models described below with a "x-by-eye" fit. 

6.1. Adiabatic Cold Dark .Matter Models 

The linear theory CDM power spectrum is given by 

P(k) = Ak 2 (19)
[1 + ok + /3k3 /2 + -rk2] 
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with 0' = 1.711,/3 =9.0/3 / 2'1 = 1.012, and I = (nI1 2)-1 (Davis et al. 1985). Standard CDM has the values 

h =0.5 and n = 1. The standard linear theory CDM power spectrum is shown by the solid line in Figure 

7. The IRAS power spectrum from Figure 5 is shown as the points with error bars. When normalized 

to the galaxy counts, the standard CDM power spectrum appears to underestimate the observed power 

on scales .2:, 50 h- 1Mpc. Again, the error bars in Figure 7 are merely suggestive, and cannot be used 

to reject standard CDM using X2 statistics. In § 7 below, we will use N-body models to calculate the 

distribution function of the errors in order to calculate the likelihood that the data are consistent with 

standard CDM. 

The amount of power on large scales in the CDM model is controlled by the horizon length at the 

epoch of radiation and matter equality. Since the horizon length scales as (nh2)-1, the degree of large 

scale power in the CDM model may be increased by decreasing either the value of the Hubble constant or 

the value of the cosmological density parameter. Current observations suggest that h .2:, 004, so, lowering 

the Hubble constant may not be the best solution to increasing the amount of large scale power. 

Another way to improve the agreement of CDM with the observations is to introduce a non-zero 

cosmological constant in such a way that the universe remains flat but n < 1. In fact, a model with 

nh = 0.2 and nA = 0.8 appears to nicely fit the angular correlation function from the APM galaxy survey 

(Efstathiou et al. 1990a). The dotted line in Figure 7 is the prediction of a CDM model with n = 0.2, 

h =1.0, and nA =0.8. Peacock & Nicholson (1991) also found this model to be a good fit to the power 

spectrum of radio galaxies. Baumgart & Fry (1991) concluded that a low n CDM model (in their case 

nh = 0.34) was the best fit to the power spectrum of optical galaxies as determined from the Center for 

Astrophysics (Huchra et al. 1983) and Pisces-Perseus (Haynes & Giovanelli 1988) redshift surveys, and 

Park (1991) used this model to fit the density distribution of the IRAS redshift survey of Saunders et 

al. (1991). This model appears to provide an excellent fit to the IRAS power spectrum. 

6.2. Isocurvature Models 

We consider here the power spectra for two models based on isocurvature perturbations: CDM 

with isocurvature fluctuations, and a baryon-dominated universe with isocurvature fluctuations. The 

power spectrum for scale invariant isocurvature CDM perturbations is given by 

P(k) = Ak (20)
v l/v'[1 + (O'k + (/3k)3/2 + (lk)2) ] 

with 0' = 15.6/, /3 = 0.91, 1 = 5.8/, 1/ = 1.24, and I = (nh2)-1 (Efstathiou 1991). The short-dashed 

curve in Figure 7 shows the isocurvature spectrum for h = 0.5 and n = 1. Although the fit to the IRAS 
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spectrum is quite good, this model is already ruled out by measurements of anisotropies in the microwave 

background (Efstathiou & Bond 1986). 

The second isocurvature model we examined is the baryon isocurvature model of Peebles (1987). 

This model was designed with the intention of providing more power on large scales than does CDM. 

The long-dashed curve in Figure 7 shows the spectrum from a fully ionized model with 0 =0.2, h =0.5, 

and n = -1; we are grateful to Nicola Vittorio for providing this spectrum. The model predicts excessive 

fluctuations on large scales which appear inconsistent with the data. 

6.3. String and Texture Models 

The dot-dashed curve in Figure 7 shows the predicted power spectrum from a cosmic string network 

evolving in a flat universe dominated by Cold Dark Matter. The power spectrum shown is taken from 

Albrecht & Stebbins (1991) and is given by 

(21) 

with 0'2 = 7.57/, 0'3 = 5.89/, 0'4 = 1.931, 0'5 = 0.000357/, and I = h- 2 (h = 1 in Figure 7). This 

power spectrum is based on the numerical simulations of Bennett & Bouchet (1990) and Allen & Shellard 

(1990), and assumes that the string network is characterized by a scaling solution and that the power is 

dominated by the coherent motions of long strings; perturbations induced by string loops are neglected 

in their analysis. As noted by Albrecht and Stebbins, the string power spectrum is much shallower than 

the other spectra we have considered so far; when it is normalized to the galaxy counts it has a deficit of 

power on large scales. Comparison of the string spectrum to the IRAS power spectrum shows that this is 

indeed the case. The string spectrum does a very poor job of reproducing the observed power spectrum. 

Recently there has been considerable interest in the formation of structure within a CDM universe 

with perturbations seeded by textures (cr., Gooding, Spergel, & Turok 1991; Cen et al. 1991). The long 

dash-dotted curve in Figure 7 shows the CDM-texture power spectrum from Turok (1991) as quoted in 

Peacock (1991), 

P(k) = Ak , (22)
[1 + (O'k + ({3k)3/2 + (1k )2)"] II" 

with v = 1.2, 0' = 19.4/, {3 =6.6/, 1 = 3.0/, and I = (Oh2)-1. In Figure 7 we show this spectrum for 

the case h =0.5 and 0 =1. Peacock (1991) noted that this spectrum gave an excellent fit to the power 

spectrum of his radio galaxy survey (Peacock & Nicholson 1991) as well as the CfA results from Baumgart 

& Fry (1991) and the variance in cells from the QDOT IRAS survey (Efstathiou et al. 1990h). We too 
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find that the CDM + texture model provides a very good fit to the data. Although the non-Gaussian 

nature of the string and texture models means that the power spectrum does not provide a full description 

of the density field even in the linear regime, the power spectrum is still a well-defined quantity, and it 

is meaningful to compare it to observations. 

7. Quantitative Comparison with Standard CDM 

The N -body tests described in §3 were adequate for checking the overall effectiveness of our 

technique for measuring the power spectrum. To access the validity of a cosmological model, however, 

ten observers from a single N -body realization are not sufficient to map out the probability distribution 

of power at a given frequency. In order to ascertain the goodness of fit between a model and the data, 

one requires a large number of catalogs constructed from independent realizations of the density field of 

the model. Multiple catalogs drawn from a single realization will probe the distribution of power due 

to dilute sampling fluctuations, but only independent realizations will properly account for statistical 

fluctuations in the underlying power spectrum. 

Unfortunately, it is computationally impractical for us to evolve a sufficient number of large scale 

N-body realizations of a CDM universe using methods with enough force resolution to accurately model 

highly non-linear evolution on small scales (using e.g., PM or p 3 M techniques). However, since we are 

primarily interested in measuring the power spectrum on large scales, we can accurately model the large 

scale evolution of a CDM universe using the Zel'dovich approximation (Zel'dovich 1970). We use the 

methods of Efstathiou et al. (1985) to generate positions and velocities consistent with the growing mode 

solution for different realizations of the n = 1, h = 0.5 CDM power spectrum given in Equation 19. Our 

simulation volume is a cube of size 180 h- 1Mpc, which corresponds to the largest volume in which we 

measured the IRAS power spectrum, namely cylinders of length and diameter 180 h-1Mpc. Like our full 

N-body runs described in §3, the simulations are unbiased (light traces mass) with 643 particles, while 

the potential is computed on a 1283 mesh. 

For each realization a single mock IRAS catalog is extracted using the procedure outlined in §4.1. 

The analysis of this section is based on 100 such catalogs. For each catalog, we compute the power 

spectrum in an identical manner as for the IRAS sample; in particular, the calculation is done in redshift 

space. The IRAS excluded zones are deleted and interpolated using the procedure of §4.1. In addition, 

the selection function is self-consistently computed for each catalog. We have computed the power in 

each of the 100 realizations at frequencies corresponding to the first five harmonics of the 180 h- 1 Mpc 



cylinder, i.e., at 21r/ k =180, 90, 60, 45, and 36 h- 1 Mpc. The 100 realizations are sufficient to accurately 

map out the probability distribution of the power at a given frequency. 

In order to compare the outcome of the simulations with the IRAS ?(k), we need to normalize 

the amplitude of the simulated CDM power spectra. Unfortunately, the Zel'dovich algorithm does not 

model the non-linear evolution accurately enough to allow the amplitude of the simulations to be matched 

to the non-linear portion of the IRAS power spectrum. We therefore adopt the following procedure to 

normalize the CDM simulations. We first note that the real space IRAS correlation function is given 

by e(r) = (r/3.79h- 1Mpc)1.57 (Saunders et al. 1992). This implies that the variance of IRAS galaxy 

counts in real space in a sphere of radius 8 h-1Mpc is given by Us = 0.7. (Recall that in redshift space 

Us =0.8; the two estimates differ due to the redshift distortions discussed in §3.3.) By normalizing the full 

non-linear power spectrum of our p3M simulations (determined from an FFT of all 643 particles in real 

space) to Us =0.70 we can determine the correct amplitude of real space power spectra in our Zel'dovich 

models, by matching them to the p3M simulations at large scales. Next we adopt a bias (which can 

be varied) and multiply the real space power spectrum by the redshift distortion factor, 1(0, b) given in 

Equation 16; this gives the correct amplitude of the power spectrum in redshift space on large scales. 

Thus, for a given choice of bias we can renormalize our 100 realizations to give the correct mean value of 

the power in redshift space on large scales. 

To compare with the IRAS ?(k), we convolve this power spectrum with the window function in 

Equation 14 for a cylinder of length 180 h-1Mpc. With this normalization, we can directly compare 

the power in our 100 realizations with the IRAS ?(k) determined in the same volume (cr., Figure 4a). 

Moreover, we can determine the consistency of the CDM model with the data as a function of the bias 

factor. The bias factor b used here relates the IRAS and dark matter distributions. On small scales 

the IRAS galaxies show somewhat weaker clustering than do optical galaxies (Lahav, Nemiroff, &, Piran 

1990; Strauss et al. 1992a; Fisher 1992), while on large scales the distribution of the two are consistent 

(Strauss et al. 1992a). Thus it is not straightforward to relate the bias factors discussed here directly to 

that relevant for optical galaxies. 

Figure 8 shows an example of the power distribution in our 100 catalogs in the form of a histogram 

for the first five harmonics of the 180 h- 1Mpc cylinder. The model in Figure 8 was normalized with 

a bias value of b = 1.0. The vertical dashed lines in Figure 8 show the observed values of the IRAS 

?(k) at the corresponding frequency, while the percentages listed are the fraction of the simulations 

having power equal to or in excess of the IRAS value. The mean and variances, as well as the two-sided 

confidence intervals about the median for the data in Figure 8, are given in Table 1. Also listed in Table 
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1 are the 95% confidence intervals for the power measured by 100 observers drawn from a single N-body 

realization; note that the power range is a factor of 1.4 smaller at the lowest frequency, demonstrating 

that dilute sampling is not the limiting error here. The very large spread in the distribution of power on 

the largest scales is entirely a result of the limited volume of the survey, whereas for the fourth and fifth 

harmonic, the dilute sampling noise appears to be the limiting factor. 

In the limit that the power distribution at a given frequency is dominated by the intrinsic variations 

10 the density field, the probability of measuring a value of the power between p and p + dp, at a 

wavenumber k characterized by a mean power P(k), follows a X2 distribution with II degrees of freedom 

in the variable 2pII/P(k). The number of degrees of freedom, II, is given by the number of independent 

Fourier modes at that frequency. Explicitly, 

f(p) =~ (-p-) " exp( -llp/P(k)) (23)
r(lI) P(k) p 

This is simply because the power is the average of the square of the real and imaginary Fourier coefficients 

of the density field which themselves are normally distributed with mean zero. Unfortunately, unless we 

are dealing with a periodic cubical sample (for which the window function in k-space is a delta function), 

it is difficult to count the number of independent Fourier modes. One does expect a rough scaling, 

however, II ex k(k + 1) for the kth harmonic in the box. 

If one makes the ansatz that Equation 23 is correct, then II is simply related to the moments of 

2 2the power distribution by lie!! = 2p2 / u where u is the variance of the distribution. The effective 

number of degrees of freedom computed in this way are listed in Table 1, and the resulting distribution 

functions are drawn as the solid curves in Figure 8. Equation 23 no longer adequately describes the power 

distribution when dilute sampling fluctuations are important. In this case the shot noise couples to the 

higher moments of the distribution in a complicated way that depends on the sample geometry. Note 

that the expected scaling for lie!! works reasonably well for the first three harmonics, but fails for the 

higher harmonics where lief f is less than predicted (Le., the distribution is wider than predicted by the 

scaling law). This is the domain where dilute sampling noise begins to dominate in this large box, and it 

is consistent with the similarity of the 95% confidence intervals listed in Table 1 for the power computed 

from 100 observers in a single realization with that for 100 observers in different realizations. 

For a given choice of bias, we would like to obtain an overall likelihood that the standard CDM 

model is consistent with the IRAS data. At each of the five frequencies considered, we can determine the 

fraction of the N-body catalogs with power equal to or in excess of the the observed IRAS P(k) at the 
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corresponding frequency. In order to quote an overall probability that the CDM model can produce power 

on large scales consistent with the [RAS data, one needs to know the covariance between the different 

frequencies. The cylindrical shape of the analysis volume leads one to expect little covariance between 

the different harmonics, because the modes are all orthogonal to each other, as we argued in § 2.3. We 

have checked this empirically by examining the scatter diagrams of the measured power (P(k.), P(kj » 
in the five different harmonics of the 100 realizations. Absolutely no covariance is detected; each plot 

was consistent with complete scatter. Thus the joint probability density 17 for measuring power with an 

amplitude consistent with the [RAS power at all five frequencies in a CDM universe with a given value of 

b is simply the product of the fractions at each frequency of the N -body observers having power equal to 

or exceeding the [RAS power. The probability of consistency with the CDM model is then given by the 

probability of observing a product of the five percentages less than the measured value. The individual 

percentages, f(kd, f(k2 ), etc. lie in the range {O, I}. The probability Pc that their product is less the 

observed value 17 = f(k 1 )f(k2 ) ••• f(k s ) is given by the volume in the five dimensional space spanned 

by f(kd, f(k 2 ) ••• , and f(ks ) and bounded by the level surface where their product equals PT. The 

resulting distribution is (Feller 1966), 

Pc =Pr ~ (-In(Pr))n (24)
L.,; n! 
n=O 

In Figure 9, the solid curve is the probability, Pc, that the standard CDM model is consistent 

with the IRAS P(k), as a function of the [RAS to dark matter bias factor. The standard CDM model 

is consistent with the [RAS data for low values of b. Values of the bias exceeding 1.5 are ruled out at 

the 95% confidence level, while values b > 2 are ruled out at the 99% confidence level. The dot-dashed 

line in Figure 9 shows the probability of consistency, Pc, derived from 100 catalogs drawn from a single 

realization of the CDM power spectrum. In this case the variance is due solely to sampling fluctuations 

and is consequently underestimated on large scales (Table 1). The inferred limits on the bias from the 

single realization are b < 1.2 (95% C.L.) and b < 1.5 (99% C.L.). Thus, using a single realization one 

would wrongly infer much more stringent constraints on the bias. 

We stress that our analysis only considers the quality of the fit between the IRAS and CDM power 

spectra for wavelengths> 36 h-1Mpcj with our Zel'dovich models we are unable to accurately model the 

small scale behavior of the clustering. The low values of the bias favored on large scales lead to excessive 

small scale power. This can be seen in Figure 10 which shows the full non-linear P(k) in real space for the 

N-body simulation described in §3j the spectrum has been normalized to the variance of [RAS galaxies 

in real space as inferred from e(r) (0"8 = 0.7). Also shown in Figure 10 is the [RAS P(k), converted 
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to "real" space by correcting the raw redshift. power by the distortion factor given in Equation 17 with 

n =1 and b =1. This corrected spectrum is then a good approximation to the IRAS power spectrum 

in real space if they are unbiased tracers of the mass distribution. It is apparent from the figure that 

while the CDM model fits the IRAS power spectrum well on large scales if IRAS galaxies are unbiased, 

it produces excessive power on small scales. This problem might simply be a reflection of adopting a 

linear biasing model. It remains to be seen whether the standard CDM model can be reconciled with 

large scale observations by invoking a non-linear biasing mechanism (cf., Babul & White 1991; Bower et 

al. 1992). 

The recent COBE detection (Smoot et al. 1992) of a large scale anisotropy in the microwave 

background implies that fixing COM's problems with non-linear biasing will be difficult at best. In Figure 

10, the box shows the large scale power spectrum allowed by COBE for a Harrison-Zel'dovich spectrum 

with {H =(5.4 ± 1.6)x10-6 (Wright et al. 1992). When normalized to the IRAS variance, the standard 

COM model has insufficient amplitude on large scales to be consistent with the COBE measurements. 

Conversely, the discrepancy with IRAS on small scales becomes worse if the normalization of the standard 

COM model is forced to match the COBE result. 

8. Discussion 

We have presented a technique for recovering the power spectrum in flux-limited galaxy catalogs, 

and have demonstrated with mock IRAS catalogs constructed from COM simulations that the technique 

works with observational samples of the size considered in this paper. The power spectrum of IRAS 

galaxies is consistent with a power law, P(k) ex: k- 1.4, for scales 21r/k.:s 100 h-1Mpc, while on larger 

scales it begins to flatten. Our results are consistent with recent measurements of large scale power from 

the angular correlation function of faint galaxies (Peacock 1991), and the power spectrum of galaxies 

in the CfA survey (Vogeley et al. 1992). These other studies all use independent data over only partly 

overlapping volumes of space. The self-consistency of these studies increases the credibility of their 

most striking conclusion: there is observed to be more power on wavelengths above .too h- 1 Mpc than 

predicted in a standard COM model normalized to the observed small scale fluctuations. On large scales, 

the standard adiabatic CDM model predicts a power spectrum which is very flat. By choosing a low 

value of the bias, the amplitude of the CDM spectrum can be made consistent with the IRAS P(k) on 

large scales. From our Monte-Carlo experiments, the value of the IRAS to dark matter linear bias must 

be b < 1.5 at the 95% confidence level and b < 2 at the 99% confidence level. Yet, when normalized 

to the amplitude of the IRAS power spectrum 011 large scales, models with such low values of the bias 
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produce excessive small scale power. Future investigations may show whether this discrepancy can be 

avoided by invoking a non-linear biasing mechanism. 

This discrepancy can be removed by considering CDM models with lower values of Oh. In 

particular, we find that a CDM model with 0 = 0.2, h = 1, and OA = 0.8 provides an excellent fit 

to the data. However, low values of 0 are not consistent with the IRAS velocity field comparisons 

(Strauss et al. 1992bj Dekel et al. 1992). The isocurvature CDM model provides a good fit to the data 

but the model violates current upper limits in the microwave background anisotropies. The isocurvature 

baryon power spectrum is in excess of the data on large scales, while the string model predicts too little 

power on large scales and too much power on small scales. Finally, the texture model in a CDM universe 

agrees well with the data and merits further attention. Unlike the low-O CDM model considered above, 

the texture model predicts a non-Gaussian density field even on linear scales; future work will test this 

aspect of the models against the data (d., Nusser & Dekel 1992). 

Our measured power spectrum is consistent with and complements previous analyses, but we 

believe the IRAS catalog has several important advantages. Our sample probes a larger volume, albeit 

with sparser sampling, than does the CfA analysis by Vogeley et al. (1992), and our survey geometry 

is full sky, rather than a complex cone in redshift space. Thus our window function is rather simple, 

and leads to little smearing of the measured power spectrum. This allows us to work with orthogonal 

plane waves in cylindrical volumes, giving us a direct measure of P(k) with essentially no covariance 

between modes. This in turn allows a very direct statistical assessment of the likelihood of consistency 

with any given model. The CfA survey, with it.s denser sampling, is better suited than our IRAS sample 

for determining P(k) on small wavelengths although the agreement on all scales is excellent. 

In spite of our large survey volume, the error in the determination of the large scale power is 

still too large to convincingly measure an approach to the primordial Zel'dovich spectrum. For standard 

CDM, this happens on wavelengths of,..,.. 150 h-1Mpc, and for Oh = 0.2 CDM, the scale is 2.5 times 

larger. Such a measurement would require at least a tenfold increase in sample size and survey volume 

over those currently available. Such projects are currently in the planning stage. If future surveys are to 

lead to improved measures of the power spectrum on scales of ~ 200 h-1Mpc, it is essential that they 

be designed with careful attention given to the shape and sampling density. 

We have computed the amplitude of small scale fluctuations in the CMB expected in a universe 

with fluctuations given by our measured power spectrum; these results will be reported in due course 

(Fisher 1992), and are of direct interest t.o the current generation of CMB isotropy experiments. 
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TABLE 1 

Confidence Levels for CDM Monte-Carlo Simulations for b =1.0 

CDM (P(k))/(21r)3 (h Mpc)3 IRAS (P(k»)/(21r)3 (h Mpc)3 

21rh/k Mpc mean stn. dev. veIl 6S% C.Lt 95% C.L.tt 99% C.L. P(PIRAS)tft 

ISO 20.0 13.4 2 6.4-30.1 2.7-54.9 (3.4-39.7) 1.6-61.7 36.1 0.13 
90 20.1 7.S 6 12.6-27.7 S.I-42.2 (S.I-33.9) 4.0-44.5 27.9 0.16 
60 17.4 5.6 9 11.8-23.4 7.S-29.2 (S.8-27.S) 7.0-35.4 17.1 0.52 
45 14.S 3.9 14 10.2-19.0 S.2-20.7 (6.2-25.0) 6.0-2S.2 13.6 0.61 
36 11.4 3.4 10 8.4-15.2 5.1-19.7 (5.6-18.4) 2.9-20.5 11.1 0.51 

t Two-sided confidence intervals. 

tt Limits in parentheses are for 100 IRAS catalogs drawn from a single realization of CDM density field 

tft Percentage of models with power equal to or exceeding the IRAS power 

27 



References 

Albrecht, A., & Stebbins, A. 1991, preprint 

Allen, B., & Shellard, P. 1990, Phys. Rev. Lett., 64, 119 

Babul, A., & White, S.D.M. 1991, MNRAS, 253, 31P 

Baumgart, D. J., &. Fry, J. N. 1991, ApJ, 375,25 

Bennett, D., &. Bouchet, F. 1990, Phys. Rev. D, 40, 973 

Bertsch inger, E., &. Juszkiewicz, R. 1988, ApJ, 334, L59 

Bouchet, F. R., Davis, M., &. Strauss, M., proceedings of the DAEC workshop, March 91, 
In press 

Bower, R.G., Coles, P., Frenk, C.S., &. White, S.D.M. 1992, preprint 

Cen, R.Y., Ostriker, J.P., Spergel, D.N., &. Turok, N. 1991, ApJ, 383, 1 

Davis, M., Efstathiou, G., Frenk, C.S., & White, S.D.M. 1985, ApJ, 292, 371 

Davis, M., Fisher, K.B., Strauss, M.A., Yahil, A., &. Huchra, J.P. 1992, in preparation 

Davis, M., &. Huchra, J.P. 1982, ApJ, 254, 437 

Davis, M., &. Peebles, P.J.E. 1983, ApJ, 267,465 

Davis, M., Strauss, M.A., &. Yahil, A. 1991, ApJ, 372,394 

de Lapparent, V., Geller, M.J., &. Huchra, J.P. 1988, ApJ, 332,44 

Dekel, A., Bertschinger, E., Yahil, A., Strauss, M.A., Davis, M., &. Huchra, J.P. 1992, in 
preparation 

Efstathiou, G. 1991, in Physics of the Early Universe, eds. J.A. Peacock, A.F. Heavens, &. 
A.T. Davies (Edinburgh: SUSSP), p. 361 

Efstathiou, G., &. Bond, J .R. 1986, MNRAS, 218, 103 

Efstathiou, G., Davis, M., Frenk, C.S., &. White, S.D.M. 1985, ApJS, 57,241 

Efstathiou, G., Ellis, R.S., &. Peterson, B.A. 1988, MNRAS, 232,431 

Efstathiou, G., Sutherland, W. J., &. Maddox, S. J., 1990a, Nature, 348, 705 

Efstathiou, G., Kaiser, N., Saunders, W., Lawrence, A., Rowan-Robinson, M., Ellis, R.S., 
&. Frenk, C.S. 19906, MNRAS, 247,10 

Gramann, M. &. Einasto, J. 1991, MNRAS, 254, 453 

Feller, W. 1966, An Introduction to Probability Theory and its Applications, Vol. II, (New 
York: John Wiley & Sons, Inc.) 

Fisher, K.B. 1992, PhD. thesis, Universit.y of California, Berkeley 

Fisher, K.B., Strauss, M.A., Davis, M., Yahil, A., & Huchra, J.P. 1992, ApJ, 389, 188 

Frenk, C.S., White, S.D.M, Efstathiou, G., &. Davis, M. 1990, ApJ, 351, 10 

Gooding, A.K., Spergel, D.N., &. Turok, N. 1991, ApJ, 372, L5 

Gorski, K., Davis, M., Strauss, M.A., \"'hite, S.D.M., &. Yahil, A. 1989, ApJ, 344, 1 

Hamilton, A.J.S., Kumar, P., Lu, E., &. Matthews, A. 1991, ApJ, 374, L1 

Haynes, M.P., &. GiovanelJi, R. 1988, in Large-Scale Motions in the Universe, eds. V.C. 
Rubin &. G.V. Coyne, S.J. (Princeton: Princeton University Press), p. 31 

28 



Huchra, J., Davis, M., Latham, D., & Tonry, J. 1983, ApJS, 52,89 

Kaiser, N. 1987, MNRAS, 227, 1 

Kaiser, N. 1991, preprint 

Lahav, 0., Nemiroff, R.J., & Piran, T., 1990, ApJ, 350, 119 

Maddox, S.J., Efstathiou, G., Sutherland, W., & Loveday, J. 1990, MNRAS, 242, 43P 

Nusser, A., & Dekel, A. 1992, preprint 

Park, C. 1991, ApJ, 382, L59 

Park, C., Gott, R. J., & da Costa, L. N. 1992, ApJL, submitted 

Peacock, J. A. 1991, MNRAS, 253, 1P 

Peacock, J. A., & Nicholson, D. 1991, MNRAS, 253, 307 

Peebles, P. J. E. 1980, The Large-Scale Structure of the Universe, (Princeton: Princeton 
University Press) 

Peebles, P.J.E. 1987, Nature, 327,210 

Saunders, W., Frenk, C.S., Rowan-Robinson, M., Efstathiou. G., Lawrence, A., Kaiser, N., 
Ellis, R.S., Crawford, J., Xia, X.-Y., & Parry, I. 1991, Nature, 349,32 

Saunders, W., Rowan-Robinson, M., & Lawrence, A. 1992, MNRAS, in press 

Saunders, W., Rowan-Robinson, M., Lawrence, A., Efstathiou, G., Kaiser, N., Ellis, R.S., 
& Frenk, C.S. 1990, MNRAS, 242, 318 

Smoot, G.F. et al. 1991, ApJ, 371, L1 

Smoot, G.F. et al. 1992, preprint 

Strauss, M.A., Davis, M., Yahil, A., & Huchra, J. P. 1990, ApJ, 361,49 

Strauss, M.A., Davis, M., Yahil, A., & Huchra, J. P. 1992a, ApJ, 385,421 

Strauss, M.A., Yahil, A., Davis, M., Huchra, J.P., & Fisher, K.B. 1992b, ApJ, in press 

Turok, N. 1991, in proc. Nobel Symposium # 79, eds, J.S. Nilsson, B. Gustafsson, & B.-S. 
Skagerstam, Physica Scripta, T36, 135 

Vogeley, M.S., Park, C., Geller, M.J" & Huchra, J.P. 1992, ApJL, 395, L5 

Wright, N. et al. 1992, preprint 

Yahil, A., Strauss, M.A., Davis, M., & Huchra, J.P. 1991, ApJ, 372, 380 

Yahil, A., Tammann, G.A., & Sandage, A. 1977, ApJ, 217, 903 

Zel'dovich, Y.B. 1970, A&A, 5, 84 

29 



Figure Captions 

Figure 1. The mean power spectrum from the ten mock IRAS catalogs constructed from our 
CDM simulations. The power spectrum is computed in six different volumes corresponding to right 
circular cylinders of length a) 180, b) 143, c) 113, d) 90, e) 60, and f) 30 h- 1Mpc. The solid and 
open symbols in each panel are the power spectrum computed in real and redshift space respectively. 
The dotted line in each panel is the shot noise contribution (cf., Equation 10). Errors are the standard 
deviation of the measurements from the ten mock IRAS catalogs. 

Figure 2. The power spectra in Figure 1 for all the volumes considered in a) real space and b) 
redshift space. Note the consistency between the various volumes despite the effects of the convolution 
in Equation 14. 

Figure 3. Final average estimate of the power spectrum in a) real and b) redshift space for our 
mock IRAS catalogs. The solid curve in a) is the power spectrum obtained from a FFT on the entire 
simulation in real space. The curve in b) is the real space FFT power spectrum modified by the redshift 
space distortion factor given in Equation 16. c) Points are the ratio of the redshift to real space power 
spectra given in a and b for the ten mock IRAS N-bodyobservers. The upper dashed line corresponds 
to the linear theory value of 28/15 derived by Kaiser (1987) while the lower dotted line corresponds to 
unity. The solid curve is the empirical fit described in the text. 

Figure 4. Estimate of the IRAS power spectrum for six volumes corresponding to right circular 
cylinders of length a) 180, b) 143, c) 113, d) 90, e) 60, and f) 30 h- l Mpc. Dotted lines in each panel 
represent the shot noise contribution to the power (cr., Equation 10). Errors are taken from the CDM 
Monte-Carlo spectrum (cr., Figure 3). 

Figure 5. Panel a) shows the final variance weighted estimate of IRAS power spectrum. 
The solid curve in a) represents the power law power spectrum which is consistent with the real space 
IRAS two-point correlation function (P(k) ex: k- l .4) convolved with the cylindrical window function (cf., 
Equation 14). The dashed curve is the same power law modified by the non-linear redshift distortion 
factor given in Equation 15 with at) =200 km S-I. The solid curve in panel b) is the Fourier transform of 
the IRAS power spectrum in a). The triangles in b) are the redshift space two-point correlation function 
of the 1.2 Jy sample (Fisher 1992). 

Figure 6. Comparison of the IRAS power spectrum with previous results in the literature. 
a) Solid curves denote P(k) as determined by Peacock (1991), who fit a model spectrum to the APM 
w(O). The two curves span the quoted uncertainties in the fit. Peacock's P(k) has been convolved 
with the cylindrical window function in Equation 14 and normalized to the observed lRAS variance in 
redshift space, a~ =0.64. b) Solid curve is the best fit power spectrum of the CfA sample from Vogeley et 
al. (1992). As in a, the CfA P(k) has been convolved with the cylindrical window function and normalized 
to the observed IRAS variance. c) Solid line is the predicted IRAS counts in cells determined from IRAS 
P(k) using the prescription of Peacock (1991); dashed lines represent the predicted counts when by the 
IRAS P(k) is increased or decreased by the errors determined from the N-body simulations. The stars 
represent the counts in cells from the 1.2 Jy survey (Bouchet et al. 1992), while triangles represent the 
counts in the QDOT survey (Efstathiou et al. 1990). Error bars are the 95% confidence limits. 

Figure 7. Comparison of the IRAS power spectrum, P(k), with various linear theory models. 
All models have been convolved with the cylindrical window function in Equation 14 and normalized 
to the IRAS variance (in redshift space) in a sphere of radius 8 h- 1Mpc. Frequencies corresponding to 
A =20 - 180 h- l Mpc are plotted. Power spectra are described in the text. 

Figure 8. Power histograms for the Zel'dovich Monte Carlo simulations of standard CDM. The 
histograms show the distribution of the power computed in 100 mock IRAS catalogs for the first five 
harmonics of the 180 h- 1 Mpc cylinder normalized to b = 1.0. The dashed lines in each panel represent the 
observed value of the IRAS P(k) for the same wavenumber. The solid curves represent the expected X2 

distribution if the scatter in the power is due strictly to the fluctuations induced by different realizations. 
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Figure 9. Probability that the standard CDM model can produce power of sufficient amplitude 
on large scales to be consistent with the IRAS p( k) as a function of the adopted linear bias. The solid 
curve is derived from 100 independent realizations of the CDM power spectrum, while the dot-dashed is 
the probability derived from 100 catalogs drawn from a single realization of the CDM spectrum. 

Figure 10. Solid curve is the power spectrum of the full non-linear CDM N-body simulation 
(as in Figure 3) normalized to the real space variance of IRAS galaxies (0'8 =0.7). The points are the 
IRAS redshift space P(k) from Figure 4, rescaled by Equation 17 with n =1 and b =1; this is then an 
approximation to the power spectrum of IRAS galaxies in real space on large scales if the IRAS galaxies 
are unbiased. The box indicates the power spectrum inferred from the COBE DMR measurements, 
assuming a n = 1 spectral index and fH = (5.4 ± 1.6)xl0-6 (Smoot et al. 1992; Wright et al. 1992). 
The box is drawn over the wavelength range of 3000 h-1 M pc (corresponding to the horizon size) to 
1000 h-1Mpc (- 100 on the sky). Note that when the CDM model is normalized to the IRAS variance, 
it produces excessive power on small scales while s~multaneously failing to produce sufficient power on 
large scales to match the COBE results. 
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