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Using quantum Monte Carlo techniques recently developed (1], we have 
studied the thermodynamic properties of a .model of interacting bosons on 
a. three-dimensional spatial lattice. The proposed model [2] is interesting in 
that it exhibits gas, liquid, and solid-like phases together with an assortment 
of first-order and second-order phase transitions. The structure of the result­
ing phase diagram, in many ways, resembles that of He4 at low temperatures. 
The Hamiltonian for the system is taken to be 

11. = ~ I: <.p: - .pj)<.pi - .p;) - v I: n,n; + to I: n.n,nk 
<iJ> <iJ> <i,;,Ic> 

where the sites i form a cubic lattice with periodic boundary conditions and 
where the boson field operators ,pi are related to the site occupation number 
operators ni according to ni = ,p:,p.. To effect a hard-core repulsion, we 
restrict the occupation numbers to be 0 or 1. The v-term (v > 0) represents 
nearest neighbor attractions; while the to-term (to > 0) represents three­
body repulsions for bosons located on three adjacent colinear sites. This 
latter term is included so as to break the symmetry between ft. and (l-fit). 

The model for to = 0 is actually equivalent to the anisotropic Heisenberg 
spin model and has been studied in mean field theory by Matsubara and 
Matsuda [3] and by Zilsel [4]. Their studies indicate: (1) for v < 1, first­
order transitions are not present but two distinct second-order transitions do 
occur at each temperature below leT). = 1.5; and (2) for v > 1, second-order 
transitions are not present but a single first-order transition does occur at 
each temperature below IeTc = 1.5v. In fact, we have carried out extensive 
Monte Carlo simulations [5] of the anisotropic Heisenberg model and have 
found these mean field theory results to be qualitatively correct (although the 
simulation's values for leT). and IeTc are substantially lower than the mean 
field values). The conclusion that the phase diagram for fixed v contains 
either first-order or second-order transitions, but not both, stems from the 
Heisenberg model's symmetry between low density (ni < ~) and high density 
(n; > ~). Our introduction of a. three-body interaction is a particularly 
simple way to break this symmetry and permit a. much more elaborate phase 
structure. 

Our mean field theory analysis for the case to 1: 0 suggests that the model 
has a rich phase diagram with both first-order and second-order transitions 
occurring among gas, liquid, and solid-like phases. For v > 1 and to small 
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compared to 11, solid-like phases are absent but gas and liquid phases sep­
arated by a first-order transition are present. In addition, a second-order 
transition line separates two distinct phases of the liquid. For large values of 
'W, solid-like phases emerge at high densities. Preliminary results of our sim­
ulation studies indicate that, once again, the mean field theory predictions 
are qualitatively correct. 

The Monte Carlo method we use replaces the original quantum problem 
on a three-dimensional L3 lattice by an equivalent classical problem on a four­
dimensional L3 x M lattice, where M denotes the number of "time slices" 
[1, 6, 7]. The effects of using finite L and finite M have been examined by 
considering different size lattices with L = 8, 12, 16 and M =12, 24, 48. For 
example, the thermodynamic quantities we compute have the form A+BM-'1. 
for large M, so that the required M --+ 00 limit can easily be extrapolated. 
The simulations have been done primarily in the grand canonical ensemble. 

The evidence for a first-order transition comes from measuring the av­
erage number of particles <N> as a function of chemical potential p. and 
observing a significant jump in < N> in the vicinity of some critical value 
of p.. Moreover, at this critical p., the sweep-by-sweep time evolution of the 
number of particles in the system indicates the coexistence of two distinct 
phases having very different number densities. Figure 1 (for 11 = 2.0 and 
'W = 0.0) and figure 2 (for 11 = 6.0 and 'W = 2.7) depict such a two-phase 
coexistence. 

At a second-order transition, the fluctuation in the particle number as 
a function of < N> has a maximum, the height of which increases as the 
spatial volume L3 is made larger. Figure 3 (for 11 = 0.5 and w = 0.0) 
clearly indicates such second-order behavior at one low-density value as well 
as at the symmetrically-located high density value, when leT equals 0.7. In 
contrast, the relatively smooth behavior in figure 4 (also for 11 = 0.5 and 
'W = 0.0) shows that the second-order transition has disappeared when leT 
has been. increased to 1.0. One should note that the first-order transition 
of figure 1 and the second-order transitions of figure 3 necessarily occur for 
different values of the parameter 11 with w = O. Figures 5 and 6 (both for 
11 = 6.0 and 'W = 2.7) give preliminary indications of a high-density second­
order transition at low temperature (leT = 0.4) and the absence of such a 
transition at high temperature (leT = 0.8). One should note that the first­
order transition of figure 2 and the second-order transition of figure 5 occur 
for the same value of the parameter 11 and the same non-zero 'W. 
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Our preliminary simulation results for the lattice model with v = 6.0 and 
w = 2.7 can be summarized in the phase diagram of figure 7. The axes of 
this diagram indicate temperature and average number density. A first-order 
transition line (full line) separates a pure phase from a coexistence region, 
while a second-order transition line (broken line) serves as the boundary 
between two contiguous phases. The simulation results (data points with 
connecting lines as a guide for the eye) are shown together with the mean 
field theory predictions. 

For sufficiently larger values of w, mean field theory suggests the existence 
of additional transitions to solid-like phases. We have searched for such 
solids by measuring the site-number correlation < n.n; > as a function of 
the separation between sites i and j. Figures 8 and 9 (both for v = 6.0 
and w = 4.0) show results for kT = 1.0 and 4.0, respectively. The periodic 
structure at the low temperature of figure 8 indicates the formation of a solid­
like phase. At the higher temperature of figure 9, the periodicity is absent 
and the correlation function has the behavior typical of a liquid. 

We are now beginning a systematic survey of the thermodynamic proper­
ties of our model over a large range of v and w values. The rich assortment of 
phases with their first-order and second-order transitions when w is non-zero 
makes this an interesting model to study. 
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Fig. 2. The time e'9Oiution of particle number iD. & MC 1"IUl showing the 
coexiaience of gu azui liquid phuel for all 8' X 12 la&iice, v = 6.0,
'" =2.7, JeT =1.5, &Dei '" :: -7.56. 
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Fig_ 3. The puticle number iu.ctuation plotted agaiDat the &'ftIl'I.F puti­
cle number. The two peab iudicaCe the praeac:e of. two leCOD.Ii-order 
traIIIitioaa. The d&t.a an for sa x 12 ami 1&' x 12 1&tticea, v =0.5, 
ur - 0.0, and. leT =0.7. 
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Fig. 4. The puticle number iuctuaiicm piattec:l ..aiDat the a~ particle 
number. The smooth behavior iadiclia the abMace of. aDJ' seamd­
order phue trauitioD. The data &Ie for aD sa x 12 lattice, v =0.5, 
ur '= 0.0, &lid. leT = 1.0. 
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F"II. 5. The particle number fiu.ctuaUcm. plotiecl agai:aai the average panicle 
ll1IID.ber. There ia preUmjnvy ewidace for a MiCGIId-orc1er traaiuOIl at 
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' iT =0.4. 
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Fig. 6. The particle number fluctuation plotted. against the average particle 
number. The smooth behavior indicate. the abaence of my secxmd. 
order phaae tnimiiiol1. The data are for m 8.1 x 12 lat.tice, 11 = 6.0, 
UJ =2.1, and leT =0.8. 
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Fis. 7. The phue diagram for v =6.0 and 111 = 2.7 from Me aimula.­
tiOll and me&Il field theory. The fim-order 1iDe (full1iDe) sepan.ta a 
pure phue from a coexiatence regiOll, while a teCGDd-order 1iDe (broken 
line) separates the two COD.tisuOUI phuea. The.imul&t.ion resulb (data 
point. with coDDectiDg lines u a pide for the eye) are shown together 
with the me&Il field theory predictiou. 
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F"II_ 8. Conelaiioa. fa:a.ctioll. for & tolid.-lib pu. for &II 8 x 12 lattice, ' 
v - 6.0, tD = 4.0, J:T = 1.0, &JUi " = 0.53. 
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F".. 9. Correlation iw:&ctioll. for & 1iuid phue for & 16 X 12 laitice, v = 6.0,' 

tD =4.0, J:T =4.0, md n =0.58. 



