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Abstract 

Studying the topology of large-scale structure as a way to better understand the ini­

tial conditions which produced it has become more widespread in recent years. Studying 

topology in redshift space produces results compatible with the real topological characteris­

tics of a survey (rvlelott, 'Veinberg, and Gott 1988). However, with non-periodic boundary 

conditions~ the use of smoothing must result in the loss of information at survey boundaries. 

In this paper, we test different methods of smoothing samples with non-periodic boundary 

conditions to see which best preserves the topological features of the real distribution. We 

find that a smoothing method which sums only over cells inside the survey volume produces 

the best results among the schemes tested. 



I. Introduction 

The topology of large scale structures in the universe is becoming an increasingly 

accessible and interesting problem (for a review, see Melott 1990). With the ability to 

probe and survey ever deeper into the universe around us, galaxy surveys are approaching 

the level at which the topology of the galaxy distribution can be more reliably determined. 

Three distinct types of topology have been discussed as possible evolutionary results for 

Gaussian initial conditions. Hierarchial, or "Meatball", topology consists of isolated high 

density regions surrounded by voids which span the sample space, resulting in high density 

islands surrounded by a low density ocean. This type of topology has been modeled by 

Soniera and Peebles (1978). Cellular, or "bubble", topology is the inversion of Meatball 

topology, resulting in a high density continent spanning the survey with isolated low density 

lakes. This topology has been suggested for deep sky surveys (for example, see Joeveer 

and Einasto 1978). Finally, the third type of topology discussed is that of a Gaussian, or 

"Spongy", distribution. This topology can be mistaken for either of the previous two in two 

dimensional slices, but in fact has a unique signature. In a survey with this type of topology, 

the high density land masses are interconnected, and are the low density seas, resulting in 

both regions being able to span the survey (Gott, lVlelott, and Dickinson 1986). Each of these 

topological distributions can occur through the nonlinear evolution of a Gaussian field with 

different physical initial conditions (lVlelott, Gott, and Weinberg 1988). It is also possible that 

the Universe had non-Gaussian initial conditions. By using gravitational instability theory 

to simulate the formation of large scale structures and analyzing them topologically, we can 

hope to learn a great deal about the initial perturbations which created currently observable 

large scale structures. Our topological analysis involves an algorithm which determines the 

characteristic genus of selected "boundary surfaces". These surfaces separate, by density, the 

highest x% of the cells from the lowest (100-x)% of the cells for several values of x between 

zero and one, defining a genus curve (the genus of the boundary surface plotted against 

the corresponding value of ;v). The genus can be thought of as the number of holes in the 

isodensity contour, as holes in a pretzel. For a general introduction to the concepts used 

in this 'work see Melott (1990). An algorithm called Contour3D is used in conjunction with 

smoothing to study models and data. The theory of the genus of a Gaussian field has been 

discussed by Hamilton, Gott, and Weinberg (1986). They demonstrate that the form, not 

the amplitude, of the genus curve is the important feature determining the characteristics 

of the underlying distribution. Gott et. al. (1989) discerned the topology of real data (CfA 

surveys) with non-periodic boundary conditions, and found the sample to be compatible 
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with a spongy topology (Gaussian initial conditions with random phases). They padded the 

exterior of their data with a constant density equal to the mean of the sample space. To 

determine the error in the determined topology, they padded with a poisson exterior having 

an equivalent number density. Gott et ale (1989) studied a variety of available redshift data 

using mean density padding to evaluate signal and poisson padding to evaluate noise. In all 

cases, the data was smoothed before determining the genus curve. Smoothing is achieved by 

convolution with a Gaussian by Fourier transform. Usually the survey volume is embedded 

in a much larger volume, the large volume being filled with "padding" such as a Poisson 

distribution, and the entire larger volume is then treated as periodic and smoothed before 

the survey is used. This can introduce error at the boundary of surveys, since surveys are non­

periodic. This error comes from the convolved value being dependent on neighboring density 

cells, roughly within La, the smoothing length. Thus, smoothing allows the exterior padding 

used in analyzing the survey to influence the survey in cells near the boundary, which distorts 

the characteristics of the density distribution at the boundaries. The question then arises as 

to how can one minimize the loss or distortion of information when smoothing samples with 

non-periodic boundary conditions. Could the type of padding, the amount of smoothing, 

or the sample size affect the topological character of real data? We attacked this question 

and tested several known methods of padding samples to produce periodic boundaries. We 

then analyzed the samples by smoothing them with the padding, and then extracting the 

original sample area. The original sample area is then analyzed with non-periodic boundary 

conditions in an effort to determine what type of padding can best minimize the loss of 

information at the boundaries caused by the necessity of smoothing discreet data sets. 

II. Procedures 

a) The Simulations 

We used dynamical simulations of 1283 particles in three dimensions evolved by an 

established Particle-Mesh code, evaluated by the Cloud In Cell (CIC) method on a 643 den­

sity mesh. Two types of simulations were specifically selected, each with different topological 

characteristics. The P ("Pancake") and H ("Hierarchial") simulations have power law initial 

conditions with the same power law index, n = 1. However, each has a different cutoff of low 

scale power in the power spectrum k, P(k) ex: kn, where Po(k) = 0 for k > ke: ke = 4kJ for 

P and ke = 64kf for H, where kJ = 2{, with L being the side of the simulation square. We 

studied three realizations of each model. We also studied a Gaussian, n = -1 pure power 

law, "hand made", non-evolved model having no cell with p < O. These files will be referred 
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to as the "samples". Thus we used "spongelike" (Gaussian), "meatball" (Hierarchial) and 

"bubbly" (Pancake) topologies as our samples (Melott et al. 1988). 

b) Smoothing Techniques 

To discuss how to best preserve the intrinsic topology of a sample with non-periodic 

boundary conditions, we performed several tests with the simulated samples described above 

("bubbly" topology (P), "meatball" topology (H), and spongy topology (Gaussian)). To 

find the "true" or "real" topology of the samples, each was analyzed with short smoothing 

(L, = 1/64) and periodic boundary conditions, revealing the "true" signal of the sample. For 

our tests, each sample was "padded" separately in four different ways to test non-periodic 

boundary conditions. The samples were binned on a mesh of 643, and were always generously 

padded to a mesh of 1283 • We note that there is no need to duplicate the shape of any red shift 

surveys, since we are measuring the intrinsic effect of boundaries. However, our results can 

be immediately applied to real redshift surveys. 

The first method, which we termed "mean", involved padding the sample with constant 

density exterior to the sample equal to the mean density of the sample (p = 1 in all cases). 

The entire array (sample and padding) was then smoothed on a short scale (L, = 1/64), 

and the sample was then taken back out of the padded and smoothed array. Smoothing was 

performed by Fourier convolution with a Gaussian 

(1) 

where Ls is the smoothing length in units of the mesh size. Ignoring non-interior vertices, 

the characteristic genus curve of the extracted sample was determined using the Contour3D 

algorithm (for a listing see Melott 1990). 

The same procedure was followed for the second test, which we labelled as "Poisson", 

but the sample was padded instead with a Poisson exterior having the same number density 

of particles as the sample. The Poisson padding used was generated individually for each 

sample according to the number density of the sample to be padded, with particles distributed 

randomly, binned by CIC, and no dynamical evolution. 

The third time through, called "Gaussian", the padding was a pure Gaussian (See 

part a)) with the same rms fluctuation amplitude as the sample. The Gaussian file used 

for "padding" and was created so that the density values had a pure Gaussian distribution 

with the same dispersion about the mean density of the samples. This means that some 
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cells exterior to the sample will have negative densities when using this distribution. After 

smoothing, any negative densities which may have been produced by the pure Gaussian 

exterior were set to zero. 

The fourth type of padding involves surrounding the sample with zeroes for padding, 

then creating another 1283 density array in which the space covered by the sample in the 

first array is set to a constant density of p = 1 in the second array. Both were convolved 

with the same Gaussian to produce smoothing. After smoothing, the array containing the 

original sample array is then "corrected" by dividing it by the smoothed second array, cell 

by cell. vVe labelled this as the "Ratio" test. It serves to smooth the interior of the sample 

without adding exterior noise through the convolution and was considered to be the most 

promising method from the outset. 

III. Results 

To choose the best smoothing method, we compared the result of subsequent analysis 

by the "isolated system" version of Contour3D with the result obtained when the same 

(periodic) simulation is smoothed periodically with the same smoothing length and analyzed 

with the periodic version of Contour3D. 

The Rl\'IS difference between the two results is an appropriate measure. However, the 

result should be sensitive only to the relative error, and that error must also be compared 

with the intrinsic fluctuations in the model itself. Let 0"(11) stand for the standard deviation 

of g(1I) due to fluctuations from one realization to another. In reality this was evaluated at 

discrete values of 11 which we will call O"i. Then our measure of error 

€= (_1_t...:..-(1_i-_R_i.:.....-?)1/2 (2) 
n - 1 i=l O"i Pi 

where Ii is the result from evaluation as an isolated system and Pi is the actual value, 

obtained by using periodic boundary conditions. It may be noted that this measure strongly 

weights fluctuations in the region where Pi is small. However, the position of the zero 

crossings of the genus curve is one of the best ways to discriminate various topologies, so 

this is an appropriate emphasis. 

Each simulation was treated in two ways. In the above treatment, a smoothing length 

La = 1 cell was used to preserve the maximum amount of information - to have the purest 

possible test of the affect of boundary conditions. 
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However, we cannot treat observational data in this way. Previous work has shown that 

discreteness noise dominates the signal unless the data is smoothed with L, equal to about 

the mean intergalaxy separation. We wished to model the situation in realistic samples 

in terms of the sampling rate and smoothing. Since the mean intergalaxy separation is 

about equal to the galaxy correlation length, we sampled each model by randomly selecting 

particles to that density. The models were then studied and compared exactly. as before, 

except for the use of smoothing lengths L, = 2.28 for Hand L, = 3.45 for P. 

III Table I we show the results. Due to the large number of comparisons in this table 

we also list the Figure numbers in which the reader can see a comparison of the "true" genus 

curve with the one obtained by the specified smoothing procedure. The Gaussian padded 

by Poisson is excluded because the former was generated by direct Fourier transform and 

included no particles. 

It can be seen that the "ratio" method is by far the most consistent performer. This is 

understandable in that contamination near the boundaries originates not from the padding 

bu t from near by parts of the signal. Since mass (or galaxies) are correlated, there is a high 

probability that this contamination will closely resemble the signal. 

\Ve noticed a systematic effect in our best method: consistently the results show a 

small reduction in amplitude from the true signal. By examination of detailed slices of each, 

we determined that this amplitude reduction is caused by a tendency of structures near the 

boundaries to merge. This can be understood as due to an increase in the effective smoothing 

length near the boundary due to effective summation over fewer cells. 

We confirmed that we could partially correct for this effect by multiplying the result 

by a constant: L3/(L - L/J)3. This is the ratio of total volume of the box to the volume not 

within L/J of a boundary. This improved the fit as shown in the scaled results in the last two 

rows of the table. (Of course, for differently shaped volumes, the geometrical factor would 

be different.) 

It might be argued that these results are inapplicable to real red shift surveys, which 

have differently shaped volumes and variable sampling rates in magnitude-limited samples. 

However, our methods are not dependent on the shape of the survey volume. All finite 

surveys have boundaries, and there is no evidence that periodic boundary conditions are 

applicable to the universe. For magnitude-limited surveys, the ratio of surface to volume 

will be large; the effects we examine here will be even more important. 
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IV. 	Conclusions 

We have conducted a systematic study of various methods of smoothing finite samples 

to recover the topology (Gott et 0.1. 1989). We conclude that the so-called "ratio" method, 

described below, produces the most nearly correct results: 

The survey should be embedded in a cube so that no part is close to a face (a few 

smoothing lengths). Areas outside the survey are assigned value zero. The resulting array 

is smoothed by Fourier convolution with a Gaussian of the appropriate scaling (usually the 

mean intergalaxy separation). 

Another cube is prepared with entries 1 inside the survey volume and 0 outside, and 

smoothed with the same smoothing length. The result of the first smoothed cube (above) is 

divided cell-by-cell by the entries in the second cube. 

After analysis of the survey by Contour3D (interior boundary conditions), the ampli­

tude of the genus curve is multiplied by the ratio of the survey volume to that part of the 

volume not within one smoothing length of the boundary. 

This method produces a more reliable result than any used to date, and can be rec­

ommended for future work. We hope that within a decade surveys will be available which 

are so large that one can afford to ignore regions near the boundary. 
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Table 1 

A summary of the values of E as defined in equation (2) and the Figure numbers which 

display the results. 

Padding Method 
~Iodel Type 

Gaussian 

Pancake (P) 

Hierarchial (H) 

Pancake Sparse 

Hierarchial Sparse 

Pancake Sparse Scaled 

Hierarchial Sparse Scaled 

Mean 

0.68 (Fig. 1) 

10.5 (Fig. 4) 

3.4 (Fig. 8) 

9.4 (Fig. 12) 

2.2 (Fig. 16) 

9 

Poisson 

-

6.9 (Fig. 5) 

3.4 (Fig. 9) 

9.4 (Fig. 13) 

2.4 (Fig. 17) 

Gaussian Ratio 

0.31 (Fig. 2) 0.22 (Fig. 3) 

54. (Fig. 6) 0.50 (Fig. 7) 

12.3 (Fig. 10) 0.48 (Fig. 11) 

0.41 (Fig. 14) 0.50 (Fig. 15) 

0.17 (Fig. 18) 0.43 (Fig. 19) 

0.41 (Fig. 20) 

0.18 (Fig. 21) 
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