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Abstract 

, We deduce estimates of the statistical precision of analyses of CP-violating asymmetries 
in the Bo-Ef system via the maximum-likelihood method. In the case of BO decays to a CP 
eigenstate f the decay-time distributions have the form 

N:I:(t) = ~ e-'(l ± A sin zt), 

where N is the total number of decays to state f, A is the C P-violating parameter which is 
a simple function of parameters of the C-K-M matrix, z = !:1M/r is the mixing parameter, 
and +( - ) labels decays in which the B was born as a BOCH'). The estimated error on the, 
measurement of A can be written in terms of 'dilution factors' as ." ' 

1 

where 

D= z 


1 + z2 


for a time-integrated analysis; 

... " 

for a time-dependent analysis; 

z
D=Dt-

1 + Z2 

for an analysis based only on the shape of the decay distribution; and 

represents the effect of time resolution Uto Results are also presented for simultaneous analysis 
of the CP-violating parameter A and the mixing parameter z, and for analysis of the mixing 
parameter via decays to non-CP eigenstateso We end with an analysis of asymmetries 
appropriate for study of C P violation at an e+e- collider. 
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1 Introduction 

Following discussion at the mini-workshop on B physics at the sse Laboratory, June 29-30, 
1992, Milind Purohit pointed out that an optimum analysis of CP-violating asymmetries 
would be based on the maximum-likelihood method. This should yield greater statistical 
precision than the methods presented in refs. [1] and (2]. Here we deduce the size of the 
error on various asymmetries via the likelihood technique. 

The principal example we consider is the case of neutral-B-meson decay to a CP eigen
state f. Here we suppose that we have a sample of N decays of either a BO or 1f to state 
f in an experiment where there are equal numbers of Band B's produced. Then following 
eq. (26) of ref. (2] the time distribution of the observed decays can be written 

N±(t) = ~ e-t (1 ± Asiut), (1) 

where throughout this note time is measured in units of the BO lifetime, and A is a simple 
function of the parameters of the C-K-M matrix (in the Standard Model). The subscript + 
means that the decay occurred for a B that was a BO at t = 0, while subscript - means 
the B was a If at t = O. These initial conditions must be determined by observation of 
the second B in the event. For hadroproduction of B's the effect of tagging the second B 
factorizes from the analysis of the first and we do not consider the second B in this note 
(except in sec. 11 on e+ e- colliders). 

When A is nonzero there is C P violation, which manifests itself both in the difference 
between the shape of distributions N+(t) and N_(t), and in the difference between the total 
number of decays of each type: 

A Z ) (2)1 + ~2 • 

Eventually we will wish to consider the effect of the experimental resolution in time t on 
the analysis. It is felicitous that this has only a minor effect on the formalism, so we prepare 
the general case now. We designate (ft as the r.m.s. time resolution, which means that the 
observed decays distributions can be obtained by convolution [3]: 

N 100 e-(t-t')2/2(1'1 I • 

- ~ dt'e-t (1 ± ASlnzt')
2 -00 21['(ft 

= ~ e"UZe-t (1 ± Ae-"'~/2 sin a:(t - u:») 

::::: ~ e-t(l ± Ae-"'~/z sin a:t), (3) 

using integral 3.896.4 of ref. (4], and where the approximation holds well when (Ft <: 1 (i.e., 
when the time resolution is much better than a lifetime), as is expected to be the case when 
a silicon vertex detector is used. 

Hence an analysis of distributions of the form 

(4) 
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includes the effect of time resolution if we write 

with (5) 

where Dt is the 'dilution factor' associated with finite time resolution. 
We anticipate that an analysis of BO-If' mixing will be similar to that of CP violation. 

In the case of mixing, we take N+(t) to be the distribution of decays in which the B was 
born as a BO and decayed as a BO (or was born as a If and decayed as a If'), while N_(t) 
is the distribution of decays in which the B was born as a BO and decayed as a If' (or was 
born as a If and decayed as a BO. For this we must be able to tell whether the particle was 
a BO or If at the time of decay, and so we cannot use the CP eigenstates discussed above 
unless there is C P violation, for which case the statistical precision will typically be greatly 
reduced, as discussed later. 

The mixing time distributions have the well-known form 

(6) 

leading to integrated numbers of events 

tN!.oo N( 1)N± = 2" ° e- (1 ± cos ~t) = 2" 1 ± 1 + ~2 • (7) 

As before, the effect of a time resolution Ut is readily included via convolution with a gaussian: 

N 100 e-(t-t')2/2fTl , 
-2 v'21r dt'e-t (1 ± cos ~t') 

-00 21T'Ut 

_ ~ eV: /2e-t (1 ± e-"'V: /2 COS:Il(t - /Tn) 

::::0 ~ e-t(l ± e-"'V: /2 cos :Ilt), (8) 

Hence a general mixing analysis will deal with distributions of form 

(9) 

which are closely related to those for CP violation given in eq. (4). 

The Maximum-Likelihood Method 

We recall the technique of data analysis via maximizing the likelihood by the example of N 
data points Zi. sampled from a gaussian distribution of mean a and variance u: 

e-(:r:-a)2/2cr2 

P(~, a) = v'21r . (10) 
21T'0' 
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The probability (or likelihood) of observing the data set {Zi} is then 

N 

C(a) = IIP(zi,a). (11) 
i=l 

The idea of the maximum-likelihood method is that C is approximately gaussian in the 
parameter a (whether or not P(:v, a) is a gaussian function of z), and hence the value of a 
that maximizes C(a) is the best estimate of a. Further, an excellent estimate of the error on 
the measurement of a follows from the second derivative of InC: 

N 

C II e-(:I:.-a)2/2tr2 
, (12)-

i=l 

_~t(zi-a)2InC - (13)
2 i=l (j 

2 ' 

dlnC ~ 2::Vi - a- (14)
2'da 2 i (j 

d2 ln C 1 N 
- -2:- = --. (15)

da2 . (1'2 (1'2, 
The maximum of C and for In C occur at the same value of a, namely a = Ei Zi/N as 
expected. We identify 

£PlnC 1 
(16)da2 - (1'2 

a 

to find that U a = (1'/v'N as expected. 
The method is readily extended to distributions that depend on multiple parameters. 

We will later consider two parameters, say a and b, for which the likelihood function C(a, b) 
formed from products of the probabilities P(:Vi, a, b) is expected to be gaussian in a and b: 

/"( b) {_~ (a - atrue)2 2(a - atrue)(b - btrue ) (b - btrue)2)} 
J.., a, ex: exp 2 2 + 2 + 2 2 • (17) 

(ja (1'ab (1'b 

Hence our estimates on the errors of the fitted values of a and b will be 

1 82 In C 1 82 In C 1 82 In C 
(18)-=--- (1'2 - 8b28a8b' b 

•8a2 ' 

3 Analysis of a Simple ASYIIlIIletry 

As a preliminary example of the maximum-likelihood method, we consider the case when 
the data can take on only two values, labelled + and -, with probability 

P± = 1±a, (19)
2 

where a is the asymmetry parameter. For an experiment in which N+ and N_ events are 
observed, we form the likelihood function 

(20) 
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The needed derivatives of In! are 

In.£: = N+ In(1 + a) + N_In(1 - a) +constant, (21) 
dIn.£: N+ N_ 

= -----, (22)
da l+a I-a 


d2 ln .£: N+ N_ 

= (23)

da2 (1 + a)2 (1 -a)2· 

On setting the first derivative to zero, we find the usual expression for the asymmetry: 

(24) 


From this we express N + and N _ in terms of a and N = N + +N _ to evaluate the error on 
the estimate of a as 

(25) 


using eq. (16). This agrees with the usual analysis based on the binomial distribution. 

Time-Integrated Analysis of CP Violation 

After these lengthy preliminaries, we turn to the analysis of 0 P-violating asymmetries, 
beginning with the case where the data in integrated over time to yield the total numbers 
of events given in eq. (2). In this case we study a simple asymmetry related by 

z 
a = Al 2 = ADt - int , (26)

+z 

where A is the OP-violating factor introduced in eq. (1), and we define 

z 
int = (27)D t - 1 + z2 

as the dilution factor due to time integration. 
From eq. (25) we estimate the error on the measurement of A as 

(28) 


where the approximation holds for small values of ADt - int • 

The error on A is large for both large and small values of the mixing parameter z. The 
minimum error as ·a function of z occurs if z = 1, for which O'A = 2/v'N. As z ~ 1/v'2 for 
the B~ meson, a time-integrated analysis is rather effective in this case. 
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5 Time-Dependent Analysis of CP Violation 

We now determine what additional statistical power can be expected ifwe perform an analysis 
of the time-dependent CP-violating decay distributions given in eq. (1). The likelihood 
function is then 

.c = II e-ti (1 + A sin zti) II e-tj (1 - A sin zt;), (29) 
i ; 

where subscript i labels events in which the B was born as a BO, and j labels events in 
the the B was born as a If. This form of the likelihood function is normalized to include 
information both on the shape as well as the integral of the decay distributions. 

According to eq. (16) we estimate the error on the measurement of A as 

1 tP In.c " sin2 zti "sin2 ztj 
O"~ = dA2 = ~ (1 + Asinzti)2 +7 (1 - A sin zt;)2 . 

(30) 

We estimate the sums by integrals according to 

N /.00:E f(t) ~ -2 dte- t (1 ± Asinzt)f(t), (31) 
i(;) ° 

which leads to 
2

1 N /.00 dte-t sin zt N /.00 dt -t . 2 2z2N -= ~ e slnzt= , (32)
O"~ ° 1 - A2 sin2 zt ° 1 + 4Z2 

where we ignore the time-varying term in the denominator for small A, and we have used 
integral 3.895.1 of ref. [4]. 

The full integral can be expressed as an infinite series on expanding the denominator in 
a Taylor series. Keeping the first correction we find that 

1 /.00 t 2 2 2Z2 N ( 12A2z 2 ) (33)0'1 ~ N ° dte- sin zt(1 + A2 sin zt) = 1 +4Z2 1 + 1 + 16z2 • 

Thus even for A = i the correction is at most 8% for any value of z. . 
We summarize the result (32) by writing 

1 
(34)O"A ~ ----= with 

Dt-dep.JN 

The time-dependent dilution factor Dt-dep is larger than the time integrated factor (from 
eq. (27)) for any value of z, and consequently the time-dependent analysis is always more 
powerful statistically, as is to be expected. 

In particular, the time-dependent analysis remains very powerful for large z, where a 
time-integrated analysis yields no information. Indeed, for the time-dependent analysis, 

ITA::::; # for large z. (35) 

This result also compares favorably with that reported in refs. [1] and [2], where it was 
argued that the effective dilution factor at large z is the average of sin zt over a half-cycle, 
namely 2 (rr, leading to O".Ii ~ 7r j2.JN. 
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6 Analysis of the Shape of the Time Distribution 

M. Purohit has noted [5] that one could also perform an analysis of C P violation based 
only on the shape of the decay distributions, ignoring the OP-violating asymmetry in the 
integrated decay rates. Such an analysis would be the only one possible if the experiment 

-0
consisted of B's born only as BO (or only as B ). 

The analysis is based on a likelihood function in which the decay distribution is nor
malized to one (using the notation of eq. (29) and assuming equal numbers of BO and 11' 
initially): 

c = II e-ti (l + As;nzti ) II e-tj(l- A s;n ztj) . (36) 
i 1 + A 1+z2 j 1 - A 1+:r:2 

Approximating the sums in the second derivative of In {, by the appropriate integrals, and 
again neglecting a factor in A2 in the denominator, we have 

1 z 
UA ~ --~= with (37)Dshape = 1 + Z2 

Dshapem 

This result is, of course, poorer than the full time-dependent analysis (eq. (34», but ap
proaches the same accuracy for large z where only the shape matters. The shape analysis 
is less powerful than the time-integrated analysis (eq. (28» for z < .j2, which includes the 
case of B3 mesons. 

The full time-dependent analysis of the previous section can be considered as the proper 
combination of the time-integrated and the shape analyses. We readily verify the validity of 
this by noting that 

1 1 1 
(38)

u 2( time-dependent) = u 2 ( time-integrated) + 0"2(shape)' 

on comparing eqs. (28), (34), and (37). 
As a numerical example, we consider the case of z = 1/../2, as holds approximately for 

B3 mesons. We then have 

( . d d ) fa 1.73 ( .. d) 3 2.12 
u tIme- epen ent = VIi = ...;N' (T tIme-Integrate =. tn'iT = r;:;'

v2N vN 
3 

u(shape) = m' (39) 

It is remarkable that the time-dependent analysis is only 20% better than the time-integrated 
analysis, while the former requires a costly silicon vertex detector. 

7 The Effect of Time Resolution 

In sec. 1 we noted that the effect on the analysis of a time resolution (Tt is well approximated 
by a dilution factor Dt = e-z2

(Tl/2 multiplying the 0 P-violating parameter A (see eqs. 3)-(5». 
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Thus the full-time-dependent analysis including time resolution will yield 

(40) 

The effect of time resolution is only noticeable for zt ;(: 1, i.e., for large z, in which case 

(large :c). (41) 

8 The Effect of a Cut at Short Times 

M. Purohit has also pointed out [5] that in a realistic analysis based on decay times recon
structed with a silicon vertex detector there will be a loss of events for times t less than 
some small time to, when the secondary vertex cannot be distinguished from the primary. In 
this case the full time-dependent analysis proceeds as in sec. 5, except that when estimating 
sums by integrals we now use 

N1°OE f( t) ~ -2 dte-t (1 ± A sin :ct) f( t), (42) 
i(j) to 

which leads to 

1 N 100 d -t • 2 e-to N (1 2z sin 2zto - cos 2:cto) 
-2 ~ te SIn:ct = -2- + 1 2 ' (43) 
CTA to + 4:c 

using integral 2.663.1 of ref. [4]. As CT ~ 320 pm is the B decay length, and the typical 
resolution of silicon vertex detector is less than 20 pm, the condition to -< 1 lifetime will 
likely be satisfied. Then for small :c we can write 

(z < 1), (44) 

which implies a very small correction. For large :c we have 

1 N 
"""2 ~ -2 (1 - to), (:c > 1), (45) 
CTA 

which indicates that the correction for the cut at small times is small but perhaps notable 
in this case. 

9 Simultaneous Analysis of Parameters A and x 

In all of the proceeding we have tacitly assumed that the value of the mixing parameter z is 
known from other studies. This might not be so for B~ mesons. 

Here we consider the time-dependent likelihood function (29) to estimate the errors on 
measurement of both A and :c according to the procedure of eq. (18). The effect of time 
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resolution is included as the dilution factor D t to parameter A. With the same approximation 
of sums as integrals we find 

1 2z2e- z 'D"1 N z2
1 ,....., A _Z2D": N 100 dt -tt· t t _ Ae- D"1 N sin(2 tan-1 2z)-:::::::---- -2-""'" e e sIn z cos z - 2(1 4 2) ,

0"1 1 + 4z2 0"Az 0 + 0 

1 2 '100 , 2 ( cos(3 tan-I 2Z»)- ~ A2e-z 
D"t dte-t t 2 cos2 zt = A 2 e-a: D"t N 1 + (46) 

O"! 0 (1 + 4z2)3/2 ' 

using integrals 3.944.5 and 3.944.6 of ref. [4]. 
These complicated results are perhaps best illustrated by considering the limits of small 

and large z. For small z: 

1 2 1 
-~20 N -~2AzN (small z). (47)

2 ' 2 ' O"A 0"Az 

The result for O"z suggests that surprisingly good resolution in z can be obtained even when 
the mixing oscillations are almost indiscernible. However, one must note the correlation of 
the errors in 0 and A. More properly we should report the error in z as the the extreme 
value of the 1-0" error ellipse (from eq. (17)): 

On requiring dz/dA = 0 in this we find that the extreme value satisfies z - AO"~z/0"1. 
Inserting this into eq. (46) we must evaluate to sixth order to find 

0"..( eft'ective) R:: Jrrm. (49)
Az2 112N 

So indeed for small z it is very difficult to determine z from studies of 0 P violation. 
For large 0 eq. (46) becomes 

ez2D"1/2 
(large 0). (50)

U z ~ AV/i' 

As zO"t -+- 1, which may well hold for the B~ meson, the resolution in both A and z deteriorate 
rapidly. It will be advantageous to have determined z in a separate measurement. 

10 Analysis of BO-If Mixing 

As it will be advantageous to deduce the mixing parameter z for the B~ meson from other 
than OP-violation data, we consider now the statistical power of such an analysis. This is 
based on eq. (6), or eq. (9) when time resolution is included. We form the likelihood function 

c = IT e-ti (l + acoszti) II e-ti (l - acosztj), (51) 
i j 
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where a = e-:e2 
a-f/2 is the effect of time resolution, and subscript i(j) refers to events where 

the B is born as a BO and decays as a BO(1f) (or where the B is born as a If' and decays 
as a Jf(BO)). 

Again, approximating sums as integrals in the second derivative of In £, we find that 

(52) 

so that 
1 

(53)U:e = .J'2N 
if :et <: 1 so that time resolution may be ignored. 

When time resolution is significant we find 

(54) 

This integral can be bounded by either considering the denominator to be 1 or sin2 :et, leading 
to 

e-:e2a-f N (1 _ cos(3 tan-
1 

3:e )) :::::: e-:e2 a-f N < .!... < 2e-:e2a-f N (55)
(1 + 4:e2)3/2 - u~ - , 

using integral 3.944.6 of ref. [4], and the approximation holds for large :e. This implies 

(56) 

holds for any :e and Uto Furthermore, when one is not restricted to the use of decay modes 
leading to 0 P eigenstates the total number of events N may be much larger than in (50). 

The effect of a cut at a small time to is readily considered, as in sec. 8. For small :e the 
correction is fifth order in to, while for large :e it is third order. That is, the correction is 
unimportant. 

11 Analysis of CP Violation at an e+e- Collider 

As is now well known, when B's are produced are part of a Bo-1f pair with definite ~harge 
conjugation, the analysis of 0 P violation is more intricate. In particular, if the B's are 
produced in a C(odd) state, as from T(4S) decay, then a time-integrated asymmetry van
ishes. However, good statistical power can be recovered by an analysis of time-ordered decay 
distributions. 

Both B's of a produced B-B pair must be observed in the OP analysis. We label Bl 
as the (neutral) B that decays to the CF eigenstate j,"and B2 as the (charged or neutral) 
B that decays to a state 9 =F 9 that permits us to determine whether B2 was a particle or 
antiparticle at the moment of its decay. We can accumulate four time distributions, where 
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·, 
one B decays at 	time to. and the other at time t" with to. < t,,: 

I: r BI-J(t,,)rB2-9(ta), 

II: 	 - J(ta)rB2 _ 9(t,,),r B1 (57) 
III: rBI-J( t,,)rB,-g(ta), 

IV: r B1-J( ta)rB,-j(t,,). 

The four distributions can be combined to form asymmetries in various ways: most 
relevant for C(odd) states is 

(58) 

For C(even) states we should consider 

(59) 

The third variation of such asymmetries turns out to vanish and is not considered further: 

I+III-II-IV 
(60)As(ta,t,,) = I +II +III + IV' 

For the case that mesons 1 and 2 are of the same type the four time distributions take 
the form 

r I ( ta,t,,) oc e-(t.+tr,) [1 ± A sin ~(ta ± t,,)], 

r II( ta,t,,) oc e-(t.+tr,) [1 + A sin ~(ta ± t,,)], 
(61)

rIII(ta,t,,) oc e-(t.+tr,)[l Asin~(ta ± t,,)], 

rIV(ta,t,,) oc e-(to;+tr,)[l_ Asin~(ta ± t,,)], 

where A the CP-violating factor introduced in eq. (1), and the lower sign in the distributions 
holds for C(odd) states IBI )IB2) - IB1 )IB2 ). 

Inserting the time distributions into the forms for the asymmetries we have 

= { A sinz(t.. - tb), C(odd),
At 

0, 	 C(even), 

C(odd), (62)
{ 0, A2 

- A sin ~(ta + t,,), C(even), 

As = o. 

Clearly the asymmetry Al will be useful at an e+e- collider where only C(odd) states are 
produced. 
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We first present a time-integrated analysis of these asymmetries, as discussed in ref. [1]. 
Because of the time ordering in the definition of the distributions I-IV, the form of the 
integrals is 

C(odd), 

C(even). (63) 

Thus we can write 
x ' 

C(odd), (64)D1,t-int = 1 + X 2 

2x 
A2 = D2,t-intA with C(even). (65)D 2,t-int = (1 + x 2)2 

The above results can be improved upon with a maximum-likelihood analysis. We label 
events in distributions I, II, III, and IV by indices i, j, k, and 1, respectively, to form the 
likelihood function 

£, = nrI(tai, tfn) nrII(ta;, tb;) nrIII(tale, tble) nrIV(tah tw). (66) 
i ; Ie l 

We again approximate the sums in the second derivative of InC via sums as 

etc., (67) 

l

for a total sample of N events, noting eq. (63). Ignoring the term in the denominator in A2 
the integrals are similar to those encountered previously: 

cc lCC 00 l CC 
t 2t2" ~ 2N dtae- t

• dtbe- " sin2 X(ta±tb) = 2N1 dtae- • dse- 8 sin2 x(s+ta±ta),1 
(J'A 0 ta. 0 0 

(68) 
where 's = ta - to. We characterize the results of the time-dependent analysis via the dilution 
factors 

f2;2 v'8x4 +6x2 

D1 ,t-dep = VJ.+4;i' C(odd), and D2,t-dep = 1 + 4x2 ' 
C(even). (69) 

The dilution factors from the time-dependent maximum-likelihood analysis are larger than 
those for the time-integrated analysis, and are the best possible. For large :c the time
dependent analysis is particularly advantageous. 

As was mentioned in sec. 5, the dilution factors for the case of large asymmetry A can 
be expressed as infinite series, the first terms of which are given in eq. (69). These series 
have been given in notes by Frank Porter [6]. 

The effect of time resolution (J't on the analysis can be calculated as in eq. (3), and can 
be characterized (for small A) by the dilution factor 

1
in the relation (70)

(J'Al,2 = D D 'N' 
1,2 tV.lY 
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As both B's must be time-resolved in this analysis the dilution factor Dt is the square of that 
encountered in the single-B analysis. Viewed another way, since two times are measured for 
each event at an e+e- collider the error on the sum or difference is y'2O"t. Using this in 
eq. (5) we also arrive at eq. (70). 
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