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Preface 

In this work I have presented a non-traditional introduction to the theo­
ry of unification of weak and electromagnetic interactions. In contrast to 
the usual textbook treatments 1 describe here in detail a derivation of the 
standard model of electroweak interactions based on a straightforward app­
lication of the requirement of perturbative renormalizability. A necessary 
condition for perturbative renormalizability is the corresponding ("unitary") 
behaviour of the tree-level Feynman diagrams in high-energy limit (a techni­
cal term "tree unitarity" is commonly used for such a condition in current 

literature). 
It is well known that the contemporary standard model of eledroweak 

interactions has been formulated in 1960's by S. Glashow, S. Weinberg and 
A. Salam who employed the principles of non-abelian gauge invariance and 
Higgs mechanism. The road to the standard model described in the present 
text was discovered somewhat later (during the first half of 1970's) in the 
papers [11 - 14] and its most remarkable feature is that it demonstrates the 
necessity of the original principles if perturbative renormalizability of the 

S-matrix is to be achieved. 
It should be emphasized, however, that the requirement of perturbative 

renormalizability in fact does not represent an "absolute dogma" for con­
structing a realistic theorYi an experimental verification of predictions of a 
renormalizable theory only means that conceivable interactions of a non­
renormalizable type may playa role on a distant, so far inaccessible energy 
scale (for a discussion of the problem of renormalizability from a modern 
point of view sec e.g. ref. [72)). Actually, nowadays there seems to be a 
widespread belief that the Glashow-Weinberg-Salam (GWS) standard model 
is merely an effective theory (which is phenomenologically successful in an 
accessible energy region). In other words, it is most probably just a "low­
energy approximation" of a deeper theory. There are several alternatives (see 
e.g. [73 - 75]), yet the existing experimental data do not indicate any clear 

direction. 
Anyway, it is clear that the requirement of perturbative rellormalizability 

may now be regarded as a constraint of rather technical nature) played 
the role of an extremely useful heuristic principle in the theory of weak and 
electromagnetic interactions, since the GWS theory led to many highly non­
trivial predictions, a significant part of which have already been confirmed 

by experiments. Thus, one may say that regardless of a future development 
of our ideas (in particular concerning an essence of the Higgs mechanism) 
the GWS standard model will remain a relevant part of particle physics, 
not only as a phenomenologically successful effective theory valid in certain 
energy region, but also as a construction which is remarkable from a 
theoretical, methodical point of view. 

The present text originates from a series of lectures for graduate students 
specialized in theoretical physics and particle physics which I delivered in a 
period 1986 - 1992 at the Faculty of Mathematics and Physics of the Charles 
University in Prague (these lectures form a part of a one-semester course). 
The main reason for transforming my handwritten notes into this text was 
the fact that the diagrammatic derivation of the GWS standard model from 
the requirement of tree unitarity (i.e. of a decent high-energy behaviour of 
tree-level scattering amplitudes) is not covered by the existing textbooks and 
monographs in sufficient detail. At the same time this approach, which is 
consequently deductive and systematic, is also quite straightforward and in­
structive and thus it seems to be attractive even from the point of view of 
pedagogical clarity. The conventional formulation of the standard model as 
a non-abelian gauge theory with the Higgs mechanism is not given here, as 
it can be found in many textbooks such as e.g. [17), [21], [25], [36], [56], 
(77). The text is divided into five chaptersj the first four of them have in a 
sense preparatory character as there are discussed mostly the difficulties of 
provisional (non-renormalizable) models of weak and electromagnetic inter­
actions which' ultimately lead to the need for unification of both forces. The 
core of the whole work is Chapter 5 where the diagrammatic construction 
of electroweak unification (i.e. the above mentioned "non-standard deriva­
tion of the standard model") is described in detail. Our exposition in that 
chapter is close in spirit e.g. to the article of S. Joglekar [14] and also to 
the lecture notes of C. H. Llewellyn Smith [18) and R. Kleiss [39] (ref. [IS] 
has been particularly stimulating); however, it is essentially in<.iependent of 
these treatments and is also more detailed in some respects. The main text is 
supplemented by a series of technical appendices which should further mini­
mize a dependence of the whole work on external sources. The text should be 
thus digestible even for an uninitiated readeri a necessary prerequisite is 
an elementary knowledge of quantum field theory on the level of Feynman 
diagrams and also some familiarity with basic concepts of particle physics, 
including in particular the Fermi-Feynman-Gell-Mann V - A model of weak 
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iuteractions. I believe that the present work may also be useful for a more 
experienced reader familiar with the conventional formulation of the stan­
dard model; it turns out thaL details of the "diagrammatic!) derivation based 
on tree unitarity are relatively little known in comparison with the tradi­
tional approach. Section 5.6 devoted to the effeds of the Adler-Bell-Jackiw 
anomaly goes slightly beyond the basic framework of the main text (a rather 
detailed discussion contained there reflects to some extent the author's own 
predilection in the subject of anomaly). However, a detailed knowledge of 
the material of Section 5.6 is not necessary for understanding of the bulk of 
Chapter 5; what really matters for the first reading is just the simple for­
mula (5.119) which is also needed later in Section 5.7. Each chapter is also 
supplemented by exercises and problems. 

Finally, a remark Oil the cited literature is in order. I did not attempt to 
present a full list of literature concerning the standard model in the present 
context; only the works necessary for the purpose of references are included 
here. In this connection, the reader may find particularly useful the book 
[77J which contains, among others, an extensive list of relevant literature. 

At this place I would like to express my thanks to Dr. M. Jirasek for 
checking some of the exercises. My thanks are also due to Dr. P. Kolar for 
a valuable comment on the proof of the main statement of Appendix 1. I am 
also grateful to students and other participants of lectures and seminars at 
Prague University and the Institute of Physics of Czech Academy of Sciences 
for aU the discussions and comments which helped to improve the present 
text. The last but not least, I would like to thank Mrs. L. Hirslova for 
excellent typing of the manuscript. 

Prague, 1993 J. HorejSI 

Notation and conventions 

Unless stated otherwise, We always use the natural system of units in 
which Ii. = c = 1. 

Most of the other conventions correspond to the textbook of Bjorken and 
Drell [16]. The indices of any Lorentz four-vector or tensor take on values 0, 
1, 2, 3. The metric is defined by 

9,..11 = diag(+1, -1, -1, -1), 

so that e.g. the scalar product k.p is 

k.p = koPo - f.p 

Dirac matrices iI', P. = 0, 1,2,3 are defined by means of the standard repre­
sentation [16J. We also employ the usual symbol p= P,..i'" for an arbitrary 
four-vector p. We should particularly stress the definition of the if> matrix: 

i5 = iiOi1i'2i3 

Further, the fully antisymmetric Levi-Civita tensor C,../,IPI1 is fixed by the 
convention 

C0123 = +1 

(Let us remark that this convention differs in sign e.g. from that used by 
Itzykson and Zuber 

Conventions for Dirac spinors are described in Appendix B. Let us em­
phasize that the normalization employed here differs from [16] (it coincides 
e.g. with 

Finally, the Lorentz-invariant transition (scattering) amplitude MJj 

brevity usually denoted simply as M) has an opposite sign with respect to 
Bjorken and Drell [16] (the convention adopted here corresponds e.g. to [20]). 
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Frequently used symbols 

* 
t 
tjJ 

A" 
F"v 
lV,,­

w+ 
" 

wi, ZL 
wf, ZT 
7J 

E±, EO 

/ 

h, /R 

VI, iii 

e­ , e + 
V, ii 

u, c, t 
d, s, b 

'1 
GF 

complex conjugation (c.c.) 

hermitian conjugation (h.c.) 


Dirac conjugation (tjJ = ""t,o) 

four-potential of electromagnetic field 

tensor of electromagnetic field 

field of charged vector bosons involving annihila­

tion operator of the particle w-

field of charged vector bosons involving annihila­

tion operator of the particle W+ (it holds W: 

(W,,-}t) 

longitudinally polarized vector bosons W±, Z 

transversely polarized vector bosons 

neutral scalar (Higgs) boson or the corresponding 

field resp. 

heavy leptons of electron type, or the correspon­


ding fields 

arbitrary standard fermion (lepton or quark, or 

the corresponding field resp.}j exceptionally also 

a coupling constant 

left-handed or right-handed component of a fer­


mion / resp. (exceptionally also coupling con­

stants for heavy lepton interactions) 

charged lepton (l = e,l', T), or the corresponding 

field 

neutrino (antineutrino) corresponding to the lep­


ton I, or the corresponding field 

electron, positron 

neutrino (antineutrino) of the electron type, or the 

corresponding field 

quarks with charge 2/3, or corresponding fields 


quarks with charge -1/3, or corresponding fields 

photon 

Fermi coupling constant 


5 

e 

a 

9 

iJc 
VCKM 

iJw 

e¥), e~) 

VJ, aJ 

QJ 
u(p}, v(p) 

e(p}, e"(p} 

eL(p}, ei,(p} 
eT(p}, ej(p} 
VA"v(k, p, q}, 
VA"v( k, p, q} 
s, t, u 

Ec•m • 

E 
n 

electromagnetic coupling constant (positron charge) 


fine structure constant (a = e2/47r == 1/137) 

coupling constant for interactions of weak charged 

currents and W± 

Cabibbo angle 

Cabibbo-Kobayashi-Maskawa matrix 

parameter of interactions of weak neutral currents 

("weak mixing angle", "Weinberg angle") 


parameters of interactions of left-handed, or right­

handed components of neutral current corresponding 

to a fermion f 

parameters of interactions of vector or axial-vector 

components of neutral current corresponding to a fer­


mion/ 

charge of a fermion f in units of e 

Dirac spinor for a fermion or antifermion resp., with 

four-momentum p 

four-vector of an (arbi trary) polarization of vector bo­

son with four-momentum p 

four-vector of longitudinal polarization 

four-vector of transverse polarization 

interaction vertex WWZ or WW, 


Mandelstam kinematical invariants 

center-of-mass energy (Ec.m • = SI/2) 


typical energy of a considered process (e.g. Ec,m.) 

solid angle 
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Chapter 1 

Introduction 

One of the cornerstones of particle physics in the early 1960's was a phe­
nomenologically successful theory of weak interactions based on the original 

1
Fermi's idea [1] of a direct interaction of four spin-i fields. A decisive role j,:in formulating this theory can be attributed to Feynman and Gell-Mann [2]; 

,.!
an important improvement of the Feynman - Gell-Mann theory is due to 'I 

Cabibbo [3]. The corresponding interaction lagrangian may be written as 11 

if.c\w) = _ GF JP Jt (11)
mC P •J2 

where GJi' is the Fermi coupling constant determined from the measured 
lifetime of muon, GF == 1.166 x 1O-sGeV-2. The current JP has lepton and 
hadron parts, 

JP = J(,ePton) + J(hadron) (1.2) 

where (taking into account only the leptons e, Ve , 1', vI') 
i:.•. 

J(,epcon) = ve'YP(1 - 'Y5)e + vI'IP(1 - 15)1' (1.3) 

and the ha.dron part can be expressed in modern language by means of quark 
fields (if we consider also the c-quark beside the u, d, s) 

J(hadron) = u'YP(1 - 1'5)(dcos t? c + s sin {}c) ~,
+ c-yP(l - 'Ys)(-d sin {}c +s cos {}c) (1.4) 

where {}c is the Cabibbo angle ({}c R: 13°). (However, one should keep in j
mind that the relevance of the c-quark has been confirmed only in mid 1970's; 
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the original Cabibbo current was given, roughly speaking, only by the first 
term in (1.4).) 

In the commonly used terminology, the lagrangian (1.1) corresponds to an 
interaction of two "charged" currents; the technical term "charged current" 
simply means that in the expressions (1.3) or (1.4) resp. occur pairs of fields 
with different charge ((Ve, e), (u,d) etc.). (For example, the electromagnetic 
current is then " neutral" ,in the sense of this terminology.) From the point of 
view of space-time symmetries, the current (1.2) is of the type V -A, i.e. it is 
a Lorentz vector minus an axial vector (pseudovector). In other words, only 
left-handed parts of fermion fields (e.g. eL = !(1 - Is)e etc.) participate 
in weak interactions (this in fact was the original hypothesis proposed by 
Feynman and Gell-Mann [2]). This corresponds to a maximal violation of 
parity in the lagrangian (1.1): The parity-violating interaction (term V A 
and AV) and the parity-conserving'interaction (terms VV and AA) have an 
equal strength and this in turn leads to maximum parity-violating effects in 
observable quantities. 

The theory described by the relations (1.1) - (1.4) is usually called the 
phenomenological (or effective) V - A theory of weak interactions. The 
adjectives "phenomenological" or "effective" reflect the fact that this theory 
described well most of the relevant experimental data known in 1960's but 
the calculations of decay rates and cross sections of physical processes were 
only practicable on the level of tree Feynman diagrams (i.e. those not invol­
ving closed loops of internal lines ) since the higher-order contributions in the 
perturbation expansion were not renormalizable by means of the standard 
methods (in contrast with e.g. quantum electrodynamics). Moreover, it has 
also soon become clear that the approximation of tree diagrams can reaso­
nably describe weak scattering processes only for sufficiently low energies of 
the interacting particles; a typical order-of-magnitude estimate amounts to 

1 _1­
Ec•m • = SZ ~ GFl == 300GeV (1.5) 

where Ec•m • is the corresponding collision energy in the center-of-mass (c.m.) 
system. 

The above-mentioned difficulties of the four-fermion weak interaction 
theory (1.1) within the perturbative framework (i.e. the non-renormalizability 
of the closed-loop diagrams and the inapplicability of the tree approximation 
at high energies) had a purely theoretical character in 1960's. However, the­
se technical flaws indicated that such a model, though phenomenologically 
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successful practically until the early 1970's, did not provide a full theory 
of weak interactions and could only represent a certain approximation to a 
fundamental theory in the low-energy limit. 

The road to a more satisfactory (i.e. renormalizable) theory of weak 
interactions is remarkable in itself both historically and methodically, as it 
was based substantially on a development of new ideas and techniques in field 
theory. From the physical point of view, it is interesting mainly because it 
has finally led to a model which in a sense unifies weak and electromagnetic 
interactions and provides some highly non-trivial theoretical predictions, a 
part of which has already been verified experimentally. The history of the 
discovery of the renormalizable unified theory of weak and electromagnetic 
interactions has been described brilliantly by S.· Weinberg, A. Salam and S. 
Glashow in their Nobel lectures [4]. 

Glashow-Weinberg-Salam (GWS) theory [5, 6, 7] is based on the princip­
les of non-abelian gauge invariance (Le. the Yang-Mills field) [8] and Higgs 
mechanism [9]. The renormalizability of non-abelian gauge theories with the 
Higgs mechanism has been proved by 't Hooft in 1971 [10] and experimental 
evidence supporting the validity of the GWS model has been accumulating 
continually since the early 1970's (when the weak neutral currents have been 
discovered). In view of its phenomenological successes the GWS theory is 
now usually called the standard model of electroweak interactions (this term 
has become widely recognized during 1980's). A major triumph of the stan­
dard GWS model then has been the discovery of intermediate vector bosons 
Wand Z (in 1983) possessing the properties predicted by the theory. In a 
sense, a lI11ew era" in the physics of electroweak interactions has started in 
1989 in connection with launching the experiments on the electron-positron 
colliders LEP at CERN (Geneva) and SLC (Stanford, USA). These new 
precision measurements now make it possible to verify even the theoretical 
predictions of higher-order perturbative effects (denoted generally as "radia­
tive corrections"). It is expected that experiments on these. colliders and on 
the others now under consideration will make it possible to test ultimately 
the correctness of basic principles of the standard model, i.e. the non-abelian 
gauge symmetry and the Higgs mechanism, by the end of 1990's. 

In subsequent chapters we describe a road leading from the Feynman -
Gell-Mann model of the four-fermion V A interaction (1.1) to the GWS 
standard model. In contrast to most of the existing literature, in this text 
we present a derivation of the standard model based on the requirement 

9 

of "tree unitarity" (Le. an "asymptotic softness" of scattering amplitudes 
corresponding to tree-level Feynman diagrams in high-energy limit); such a 
requirement is in fact a necessary condition of the perturbative renormaliza­
bility in higher orders. This alternative approach is rather straightforward 
and instructive, and what is most important, it demonstrates the necessity 
of non-abelian gauge fields and also the inevitability of a scalar Higgs boson 
in renormalizable theory of weak interactions. Such a derivation of the stan­
dard model has appeared in the literature somewhat later than the original 
GWS construction (see [11 - 14]). In the present work we give a detailed 
treatment of this diagrammatic approach in a form which should (hopefully) 
be digestible even for an uninitiated reader unacquainted with the traditional 
"textbook" formulation of the standard model of electroweak interactions. 

10 



Chapter 2 

Difficulties of Fermi-type 
theory of weak interactions 

2.1 N on-renormalizability of perturbation expansion' 

Some technical background for this chapter may be found in the appen­
dices A-G. 

If one considers a general Feymnan diagram in a Fermi-type theory of 
weak interactions, i.e. in a theory of direct four-fermion interaction (exem­
plified by (1.1)), then the corresponding superficial degree of divergence (i.e. 
the ultraviolet divergence "index") is given by the formula (G.S) of Appendix 
G where the relevant index of the four-fermion interaction vertex is Wv = 6 

," 

(this is obtained by setting nF = 4, nB = 0, nD = 0 in the formula (G.9)). 
This indicates that a direct (contact) four-fermion interaction leads to non­
renormalizable perturbation expansion, since by iterating the four-fermion 
vertex in Feynman diagrams to a sufficiently high order one may expect ul­
traviolet divergent graphs to occur for an arbitrary configuration of external 
lines, i.e. one might encounter an infinite number of divergence types which 
in turn would require an infinite number of renormalization counterterms. A 
more detailed analysis indeed confirms such an expectation (see e.g. ref. [4]). 
It is also obvious that in the considered case the value of the index Wv =6 is 
closely related to the fact that the dimension of the Fermi coupling constant 
GF is M-2, in units of an arbitrary mass M (d. Appendix G, the discussion 
around the relation (0.11)). 
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2.2 Tree-level violation of unitarity at high energies 

In view of the inapplicability of standard methods of quantum field theory 
in higher orders of perturbation expansion, we may restrict ourselves to the 
lowest order only - i.e. to the approximation of tree diagrams. We shall 
consider the purely leptonic sector of the theory described by the interaction 
lagrangian (1.1), i.e. 

c(w) _._ GF JP Jt (2.1)(lepton) - v'2 (lepton) p(lepton) 

where the current Jrrepcon) is defined by the expression (1.3). Let us now inves­
tigate in more det8.l1 the elastic scattering processes lIee-+lIee and Vee -+ vee 

in the high-energy limit, i.e. for Ec•m • ::> me (in what follows the index e is 
usually omitted for brevity). It can be expected (and it is indeed confirmed 
by an explicit calculation - see Appendix D) that in such a limit one ma.y 
neglect me' Asymptotic behaviour of the corresponding amplitudes and cross 
sections may be then estimated on the basis of simple dimensional conside­
rations: In the system of units we are using (Ii. = c = 1) a cross section has 
dimension [cr] = M-2 (Le. (energy)-2) and in the lowest order, i.e. in the 
1st order of perturbation expansion with respect to the interaction (2.1), it 
must be proportional to G}. Taking into account that GF has dimension of 
(energy)-2 and neglecting the effects of masses of the interacting particles, 
the integr:al:crosssecqQn,Qjl.1l then only depend Qn the kinematical invariant s 

. (see App~~~ix A.,.defi.Bi~~~n (4-4)). It is clear that the only quantity with the 
dimension or a cross s~~l5'OB:~nd proportional::tb G} is (up to a dimension­
less constant) G}s. Thus one may expect that in the limit s-+ 00 the cross 
section of the process lie -+ lie behaves like 

cr(lIe -+ lie) ::::: const. x G}s (2.2) 

and similarly for ve -+ ve. The estimate (2.2) is confirmed by an explicit 
calculation performed in Appendix D which gives the results (see (D.13), 
(D.14)) 

. 1 
u(lIe -+ lie) = -G}s (2.3) 

11" 

1
cr(ve -+ ve) = -G}s (2.4) 

311" 
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if one neglects m (we always tacitly assume such an approximation unless sta­
ted otherwise). Analogous dimensional considerations lead to the conclusion 
that the corresponding scattering amplitudeMJi (which is dimensionless 
for binary processes - see Appendix C, formula (C.3)) behaves (for a fixed 
scattering angle) like GFS in the tree approximation. 

We thus see that in a Fermi-type theory of weak interactions the scattering 
amplitudes and cross sections calculated from tree diagrams rise linearly with 
S (Le. quadratically with the center-of-mass energy). 

However, such a behaviour leads for sufficiently high energies to an appa­
rent conflict of perturbative (tree-level) approximation with a general pro­
perty of the exact S-matrix, namely with unitarity. The explanation of such 
a remarkable statement is quite simple if we use a partial-wave expansion of 
the relevant amplitude or the cross section respectively (see Appendix E). 
Indeed, if a (tree-level) scattering amplitude M(s,O) depends linearly on " 
(like'GF") then an analogous unbounded growth for s -+ 00 may be expected 
for the corresponding partial-wave amplitudes as well (cf. (E.7)). Thus, for 
sufficiently large values of s (of an order " ~ G;l) the tree approximation 
will violate the unitarity condition (cf. (E.12)) 

IMW(s)1 ~ I (2.5) 

Let us now illustrate this simple qualitative consideration on a concrete 
example of the process ~e -+ ve. If we neglect the electron mass, a correspon­
ding scattering amplitude is non-zero only for the combination of helicities 

hi = h2 = h~ =h; =- ~ (2.6) 

{this is a consequence of the V - A structure of charged currents in the 
interaction (2.1)). From the result of the calculation performed in Appendix 
D (see the formula (D.5)) then immediately follows that for the helicities 
(2.6) one has 

= 4V2 GFS (2.7) 

Comparing (2.7) with the general formula (E.6) and taking into account the 
relation (F.4) from Appendix F we see that for such a combination of helicities ' 
the Jacob-Wick expansion is in fact an expansion in Legendre polynomials 
(as ,\ = hi h2 =0, ,\' = h~ - h~ =0) and the independence of (2.7) on the 

13 

scattering angle implies that only the partial wave with j 0 contributes. 
For the amplitude of this partial wave we then get immediately 

IM(O)(s)1 = 2V21 11" GF" (2.8) 

and for the cross section (corresponding to the combination of helicities (2.6)) 
one has 2 

0' =0'(0) = -G}s (2.9)11" 
The unitarity condition (2.5) (or (E.19) resp.) then gives the bound s ~ 
211"v'2 G;l, i.e. . 

211'v'2) !Ee•m • = Vs ~ G (2.10)( F 

The critical value Fo, for which the unitarity condition is saturated (Le. 
such that in (2.5) or (E.19) the equality holds) is usually called "unitarity 
bound" (see e.g. [15]) since for Ee•m • > ..;so the tree approximation (2.8) (or 
(2.9) resp.) violates a necessary condition of unitarity and thus obviously 
ceases to be a good approximation. In the considered particular case the 

corresponding value is (see (2.10)) ..;so = (211"V2)! GFi ~ 870 GeV. Of 
course, the value of a unitarity bound is process-dependent (see problems 2.2 
and 2.3 at the end of this chapter). 

It is in order to emphasize here that the violation of unitarity discussed 
in this chapter refers to the lowest perturbative order; the exact S-matrix (if 
we were able to calculate it) should of course be unitary as the hamiltonian 
is hermitian. 

It is easy· to understand that the S-matrix calculated to a finite order 
of perturbation expansion is not unitary, if one realizes that the unitarity 
condition SS+ =S+ S = I is nonlinear and thus it connects contributions of 
different perturbative order (see e.g. [16J, Chapter 8). Thus, in the consi- . 
dered case of the four-fermion interaction, the tree-level S-matrix is in fact 
not unitary for any value of the energy of interacting particles just because 
we are neglecting higher-order contributions. For sufficiently low energies 
(GFs <.: 1) the tree-level S-matrix differs little from a unitary matrix; a po­
ssible deviation from unitarity is of an order O(G}S2) and it is not possible 
to draw any conclusion from the simple criterion expressed by the inequality 
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(2.5) (this inequality is only a necessary condition of the unitarity). Howe­
ver, a unitarity violation is manifest for sufficiently high energies (such that 
GF3;;:: 1) when the condition (2.5) is no longer satisfied. One may then also 
expect that the deviation from unitary behaviour in the tree approximation 
is substantial, of an order 0(1). 

2.3 	High..energy behaviour and renormalizability 

It is important to realize that the inequality (2.5) is in general violated (for 
sufficiently high energies) even for tree-level scattering amplitudes of spinor 
electrodynamics, although in some particular cases the condition (2.5) may 'I 
accidentally be satisfied for an arbitrary energy (see the problems 2.4 and i 
2.5 at the end of this chapter). However, in contrast with the four-fermion 
weak interaction model, the corresponding amplitudes of partial waves in 
spinor QED grow at most logarithmically with energy; this turns out to be 
a behaviour typical for per~urbatively renormalizable theories (see e.g. [12], 
[17), [18]). (Let us also stress, in connection with the problem 2.5, that spinor 
QED is renormalizable even in the case that "photon" has a non-zero mass 
- see e.g. [17], [21]). 

As we have seen, applications of the perturbation expansion in a theory 
of Fermi type face two problems: 

1. Perturbation series is not renormalizable by means of standard methods. 

2. Scattering amplitudes corresponding to tree diagrams grow with energy 

like E:.m. and for .Ec.m. ;;:: G;t (i.e. for high, but still "terrestrial" 
energies) the tree approximation is manifestly inapplicable. 

We have already mentioned that these two problems are in fact closely 
related to each other. More precisely, a power-like growth 0/ tree-level ampli­
tudes with respect to energy implies non-renormalizability in higher orders 0/ 
perturbation expansion. This remarkable connection of two different aspects 
of perturbation expansion will be a subject of more detailed considerations· 
in subsequent chapters and at the same time it will serve as an important 
heuristic principle leading eventually to a realistic theory of weak interac­
tions. 

Of course, it is highly desirable to have a renormalizable model of weak 
interactions, i.e. to have a theory comparable with e.g. spinor QED. From 
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what we have already said it follows immediately that for this purpose one 
has to look for an adequate model of quantum field theory, in which tree-level 
scattering amplitudes do not exhibit a power-like growth with energy. Tree 
approximation will then also be applicable in a much wider range of energies 
than in the case of a Fermi-type theory. 

The model with charged intermediate vector boson described in the next 
chapter alleviates the problem of high-energy behaviour of tree-level scattering 
amplitudes only for some processes (e.g. for neutrino-electron scattering in 
particular); nevertheless, it is an important first step towards a renormali­
zable theory of weak interactions. 

Problems 
i 

2.1. 	Calculate cross sections of scattering processes Vee -+ Vee and Vee -+ Vee 
(in the lowest order of perturbation expansion) in the high-energy limit 
(Le. neglecting me) under the assumption that weak lepton current has 
the form vV - aA (i.e. it involves the combination of Dirac matrices 
')'p(v - a,),s», where a, v are real constants. Show that for an arbitrary 
combination a, v it holds, in the considered approximation 

0'(lIe)(3) < 3 
2 ~ 0'(l1e)(3) ­

2.2. 	Calculate "unitarity bounds" for processes Vee -+ Vee and e-e+ -+ veve 
within the framework of the Feynman - Gell-Mann (FGM) model of 
weak interactions with V - A currents. 

2.3. For.which lepton processes (admissible in the lowest perturbative order 
in FGM model) has the unitarity bound the maximum and minimum 
value respectively? 

2.4. Consider the process e- e+ -+ ,rp+ in the framework of spinor QED in 
the high-energy limit, i.e. for" :> m!. Which partial waves contribute 
to the corresponding tree-level amplitude in Jacob-Wick expansion? 
W4at restrictions are imposed by unitarity in this case? 
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2.5. Discuss the partial-wave expansion of the tree-level scattering amplitude 
for ep. -t ep. in high-energy limit. Assume that photon has a non­
zero mass. What role does the photon mass play in the calculation of 
partial-wave amplitudes? 

Chapter 3 

Intermediate vector boson 

3.1 Hypothesis of charged massive IYB 

A necessary technical background for this chapter may be found in Appen­
dixH. 

One of the important results of the preceding chapter is an observation 
that difficulties of the weak interaction theory of Fermi type are intimately 
related to the contact character (i.e. zero range) of the four-fermion inter­
action described by the lagrangian (1.1): It is just the assumption of direct 
interaction of four fermion fields which causes that the corrresponding coup­
ling constant (i.e. the GF) has dimension of a negative power of mass. 

Therefore it is natural to consider instead .of (1.1) an interaction descri­
bed by an "exchange" of another particle (which must then necessarily be 
a boson) in analogy with e.g. photon exchange in QED. (Such an idea has 
been probably formulated for the first time by O. Klein in 1938.) In its sim­
plest realization it means formally the passage from (1.1) to the interaction 
lagrangian which may be written as 

£~w) = ..!L(JPW+ +JtpW-) (3.1)m' 2J2 P P 

Here JP is the weak current defined by relations (1.2) - (lA) (we shall consi­
der only its lepton part in what follows) and W; is vector field corresponding 
to a "mediating" particle (with spin 1) which is therefore usually called inter­
mediate vector boson (IVB). Contrary to photon (which is actually an IVB 
of electromagnetic interaction), the IVB of weak interactions carries electric 
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charge (±1 ill units of positron charge); this, of course, is due to the fact 
that the weak current in (3.1) is "charged" in the sense defined in Chapter 
1. In (3.1) the notation is chosen so that the Wp- contains annihilation ope­
rators of negatively charged particles W- and, similarly, the W: involves 
annihilation operators of positively charged W+. The coupling constant g 
is now dimensionless (similarly to spinor electrodynamics) as one can easily 
see frolll.simple dimensional considerations (cf. Appendix G). The numerical 
factor (2..;2)-1 in (3.1) is introduced as a commonly used convention. 

3.2 Correspondence with Fermi-type theory 

The model of weak interactions defined by the lagrangian (3.1) must re­
spect an experimentally established fact that the effective Fermi-type theory 
(1.1) provides a good description of a considerable part of physical reality 
in the low-energy region. In the first place, this means that W* must have 
a non-zero mass (mw), so as the model (3.1) would indeed describe short­
range forces. (Let us remark that from negative results of direct search for 
W* it has long been known that if such a particle exists, it must be much 
heavier than e.g. muon.) The condition of an equivalence of the IVa theo­
ry (3.1) and the Fermi-type theory (1.1) in the low-energy limit leads to a 
formula relating parameters GF,g and mw which will be repeatedly used in 
subsequent chapters. We will now derive this important relation. 

Let us consider the muon decay J1 -+ ev";;,, as a typical example of a low­
energy weak process. In the theory with IVB (3.1) such a process is described 
in lowest (i.e. 2nd) order of perturbation expansion by the Feynman diagram 
shown in Fig. l(a), while in the Fermi-type theory the relevant diagram is 
that of Fig. l(b) (here the lowest perturbative order means of course the 1st 
order in GF). 

The decay amplitude corresponding to the diagram l(a) is given by the 
expression 

iMW i3 (2~)
2 

[u(khp(l -ls)u(P)] [u(phcr(l -'s)v(k')] x 

X 
per + -2 p cr 

-9 mwq q 
q2 - mw (3.2) 
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while the contribution of the graph l(b) is 

GiM~1 ::i:: -i
v2
:;[u(khp(l -,s)u(P)][u(phP(l -ls)v(k')] 

. 
(3.3) 

lr 

jJ 

e v, 
(a) 

Fig. 1. Feynman diagrams for the process J1 -+ evpv" (a) in the theory with 
IVB (b) in the Fermi-type theory. 

In (3.2) we have used the standard expression for the propagator of massive 
vector field (see (H.45) in Appendix H). Now we may let the second term in 
the numerator of the IVa propagator in (3.2) act on the matrix elements of 
fermion currents. Then using Dirac equation for the corresponding spinors 
and taking into account the conservation of four-momentum q =P-k =p+k' 
we obtain (assuming for simplicity that the neutrinos are massless) 

u(k)f(l-,s)u(P) = m"u(k)(l + Is)U(P) 
u(p)f(l -ls)v(k') = m"u(p)(l -,s)v(k') (3.4) 

From (3.4) it is clear that the contribution of the second term in the IVa 
propagator in (3.2) is suppressed by the factor m"mp/m'tv <: 1 and thus 
it can be neglected. Further, simple kinematical considerations lead to the 
following bounds on the squared four-momentum of the virtual W in the 
diagram 1 (b): 

m~ :s; q' :s; m! (3.5) 
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In view of what we have already said concerning the experimentally admissib­
le value of mw it is then also obvious from (3.5) that 

'q'J<:m~ (3.6) 

so the momentum-dependence of the denominator of IVB propagator in 
(3.2) may be ignored. Comparing the expression (3.2) (in which the above­
mentioned simplifications are taken into account) with (3.3) we get the desi­
red relation 

GF g2 
(3.7)V2 = 8m'tv 

It is interesting to notice that in the derivation of (3.7) the negative sign in 
the lagrangian of four-fermion interaction plays an important role; it is just 
this convention which then guarantees that GF > 0. if the Fermi-type theory 
is viewed as an effective low-energy approximation of the theory with IVB. 

3.3 Fermion scattering processes 

We will now investigate the behaviour of scattering amplitudes and cross 
sections of processes lIee --+ lIee and Vee --+ Vee in the high-energy limit, i.e. 
for s ::> m'tv (for s <: m'tv the effective Fermi-type theory is of course valid if 
the relation (3.7) is maintained). Feynman diagrams corresponding to these 
processes in the theory with IVB (3.1) (in tree approximation) are shown in 
Fig. 2. 

Amplitudes corresponding to the diagrams in Fig. 2 are given by 

iM(a) i3 (2~) 'J [u(p'hAI - ")'s)u(k)] [u(k'hlT(1 - ")'s)u(p)J XIi 

.• -2",p",1T 

(3.8) 

iM{b) i3 (2~) 'J [v(khp(1 - ")'s)u(p)] [u(p'h.,.(1 - ")'s)v(k')] XIi 

-2 pp PIT 

(3.9) 
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Let us now try to estimate the high-energy behaviour of the expressions 
(3.8) and (3.9) with the help of dimensional considerations. In contrast with 
Fermi-type theory, the relevant coupling constant g is now dimensionless. 
However, the IVB propagator contains a term proportional to mHli thus, as 
the scattering amplitude Mli is dimensionless, it might seem at first sight 
that it could grow linearly with 8 so as to compensate dimensionally the factor 
m-.J. In fact, the "dangerous" term in the IVB propagator in (3.8) or (3.9) 
resp. may be eliminated by using Dirac equation; lepton mass is factorized 
(el. (3.4)) and instead of a term behaving like s/m'tv one gets a damping 
factor m~/m'tv. Thus. amplitudes (3.8) and (3.9) are asymptotically constant 
in the high-energy limit. More precisely, in the case of the expression (3.8) 
it is 80 for an arbitrary scattering angle different from 0 or 1r resp. - this is 
obvious from kinematical structure of the denominator of the corresponding 
propagator. 

zI 
!-k 
I 

.p -k' 

Fig.!!. Processes (a) lIee --+ lIee and (6) Vee --+ Vee in the second order of 
•. ~. 

perturbation expansion in the theory with charged IVB. The relevant 

Mandelstam variables are q2 =u, p2 =s. 


In the high-energy limit (when one may set me = 0) the amplitude (3.8) 
is non-zero only for the combination of helicities hI = h2 = h~ = h~ =-l 
(d. (2.6))i this is due to presence of the factor 1 - ")'5 in charged weak 
currents. (In the case of the amplitude (3.9) the corresponding non-trivial 
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combination is hI = hi = +l, "2 = h~ = -I, if we denote by hi and 
hi helicities of the initial and final antineutrino.) Using the result (D.5) 
from Appendix D and repeating considerations similar to those which in the 
preceding chapter led to the relation (2.7), we obtain from (3.8) (for the 
above-mentioned combination of helicities and Cor m. = 0) . 

/M	 (4)/ '}. s 
Ii = 9 lu - m1vI 

2 2 1 (3.10) . 
9 1+cos 11 +2m1v/s 

where 11 is the neutrino scattering angle in the c.m. system. An exact (direct) 
calculation of the amplitude M~~) using explicit form of lepton spinors u(p) 
(as given in Appendix B) recovers just the expression on the right-hand side 
of eq. (3.10). This expression has (for any 11 #: 'If) a finite limit for 8 -+ 00 

(however, it behaves like 8/m'tv for" = 'If). 
The scattering amplitude for flee -+ flee given by (3.10) may be now 

expanded into partial waves. For the given combination of helicities we then 
have A=A' =0 in the formula (E.6), i.e. we are dealing with an expansion 
into Legendre polynomials (see (FA)). Amplitudes of partial waves may be 
then calculated by means of the formula (E.8). In the considered case the 
Jacob-Wick expansion involves an infinite number of partial waves owing to 
the dependence of the denominator in (3.10) 011 the angle 11 (d. the problem 
2.5 at the end of Chapter 2). The'lowest partial wave corresponds to j =O. 
The formula (E.8) gives for the corresponding amplitude the result 

11 2 
(0) 1 29 ()M (8) = 1 11 2 2 / d cos 11 

-1 +cos + mw S 

9
2 (8 ) (3.11)16')(' In m~ +1 

Imposing now unitarity condition (2.5) on the partial-wave amplitude 
(3.11) we get (for s/m1v ::> 1) the bound 

s~m!exp ( 71611') 	 (3.12) 

To assess now a numerical value of the "unitarity bound" defined by the 
expression on the r.h.s. of (3.12), let us e.g. assume that g2/4')(' ~ aQED, 
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where QQED ~ 1~1 is the electromagnetic fine structure constant. Then 
1611'/92 ~ 548 and the unitarity condition (2.5) is violated only at astro­
nomical energies, corresponding to s ~ 10238m~. (Let us remark that the 
present-day realistic value is about g2/41r ~ 0.032j the right-hand side of 
(3.12) is then approximately equal to 1055m1v.) In view of the functional 
form of the energy dependence of the partial-wave amplitude (3.11), such a 
case is usually referred to as a "logarithmic violation of unitarity" in tree 
approximation (note that a similar behaviour also exhibit e.g. partial-wave 
amplitudes in QED - see the problem 2.5 in previous chapter). 

For completeness, let us also calculate cross sections corresponding to the 
amplitudes (3.8) and (3.9) in the asymptotic region s ::> mlv. Summing 
over lepton polarizations (and averaging with respect to the initial electron 
polarization) one gets (d. (0.5), (0.6» 

/M(~)12 = ! .. ~ 	 (3.13)II 29 . A .­

IM(6)12 _ 1.. u 
2 

(3.14)." - 2'9 .-­
Employing the kinematical identity u = -8(1-y) (see (A.6» and the formula 
(C.13) for differential cross section and performing finally an integration over 
y from 0 to 1, we obtain 

G} 2 __8_
(ve) - -mW 2 	 (3.15)

U/VB - 11' S +mW 

- G} 4 __8 
(ve) - -mw( 2 )2 (3.16)

U/VB - 311' 8 - mW 

To express the cross sections (3.15), (3.16) in terms of GF, we have used 
the relation (3.7). Let us remark that while the result (3.15) represents a 
good approximation for an arbitrary s ::> m~, the expression (3.16) may be 
used either for s ::> m~ or m! -< s «: m~; this of course is related to the 
fact that in the case of process iiee -+ ii.e the W-exchange in the s-channel 
produces a pole in the corresponding propagator for s = m1v. This point will ,. 
be mentioned briefly later in this chapter (see also the problem 3.3). From 
(3.15), (3.16) it is immediately seen that in the case of the neutrino process 
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the corresponding cross section has a non-zero limit for 8 -+ 00 

(lie) I G} 2 
0'IVB.-co = -mW (3.17)

11" 

whereas the antineutrino cross section converges for 8 -+ 00 to zero like 1/8: 

0'~~11.-00 ~ G} mtv (3.18)311" -~8 

A technical remark may be in order here: Taking into account that both 
scattering amplitudes are asymptotically fiat, a naive guess based on the 
formula (C.13) might be that both cross sections should vanish for 8 -+ 00. 

However, it is easy to see that the non-zero value in (3.17) is due to the fact 
that the amplitude for ve -+ ve is asymptotically bounded by a constant for 
all directions except {) = 11" (see (3.10»; note also that the same feature of 
(3.10) is responsible for the logarithmic growth of partial-wave amplitudes 
{cf. (3.11». 

Preceding considerations concerning the high-energy behaviour of am­
plitudes of physical scattering processes in the IVB theory (3.1) may be 
summarized briefly as follows: From the technical point of view, the idea 
of massive charged IVB as an "agent" of weak interactions seems to be so­
mewhat problematic at first sight because of the longitudinal piece of the 
vector boson propagator involving the factor m~ which could, in principle, 
play the same role as the coupling constant GF in the Fermi-type theory. 
Nevertheless, an application of the equations of motion (i.e. Dirac equa­
tion) eliminates potential problems at least in the case of purely fermionic 
processes. The corresponding tree-level scattering amplitudes are asympto­
tically flat in high-energy limit and a violation of unitarity is described at 
worst by a logarithmic function of energy (contrary to the power-like grow.th 
of partial-wave tree amplitudes in Fermi-type theory). 

3.4 Process vii -+ wiwt 
The model with charged IVB thus represents in a sense a more satisfactory 

theoretical description (from the technical point of view) of purely fermionic 
scattering processes than the Fermi - Feynman - Gell-Mann model (1.1). 
However, this success is far from complete. Since we have introduced IVB as 
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a new object into the theory of weak interactions, it is natural to consider, 
beside processes involving a virtual IVB, also a direct production of physical 
W:f:. In doing this, it turns out that for some combinations of polarizations 
of external W:f: the amplitudes of the corresponding (tree-level) diagrams 
exhibit a power-like growth in high-energy limit. A classic example of such 
a process is the production of a pair of W:f: in the neutrino - antineutrino 
annihilation, i.e. 

vii -+ W-W+ (3.19) 

(In what follows, unless stated otherwise, we are working with electron-type 
leptons and the corresponding index e is systematically omitted.) The pro­
cess (3.19) has been first discussed in this context in the paper [24]. (It is 
a certain historical paradox that the paper [24] appeared only 2 years after 
the Weinberg's work [7] and that the Weinberg's paper is not even mentio­
ned in [24]. In contrast with the commonly accepted notation the authors of 
[24] use a symbol X for the charged IVB.) We will now derive the essential 
properties of the tree-level amplitude of the process (3.19) in the high-energy 
limit. The corresponding lowest-order Feynman diagram is shown in Fig. 3. 

I':···· 
II.v p 
i -:----'I I'; k , 
II 

e I'q r-~l 

r 

ii 

Fig.a. The process vii -+ W+W- in the second order of perturbation ex­
pansion in the theory with charged [VB. 

First of all, one has to realize that a possible source of "bad" high-energy 
behaviour of the diagram in Fig. 3 (i.e. a power-like growth of the corres­
ponding amplitude with energy) may reside in polarization vectors of the 
final-state W:f:. Indeed, components of the vector of longitudinal polarization 
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(corresponding to zero helicity) grow linearly with energy in the ultrarelati­
vistic limit (see Appendix H, eq. (H.25»: . 

1 mw
tt:(P) = -p" +0(-) (3.20) 

mw Po .. 

(Let us however stress that the n<?rmalization tL.tl = -1 is still maintainedl) 
The leading term in the longitudinal polarization (i.e. the first term in (3.20» 
is thus proportional to the corresponding four-momentum; the presence of the 
factor mHJ in this term will always playa key role in the estimates of the high­
energy asymptotics of tree-level amplitudes for processes involving real (i.e. 
physical) massive vector bosons, both here and in the subsequent chapters. 
Let us now consider the contribution of the diagram in Fig. 3 in the case 
that both final-state W's have longitudinal polarizations; in such a case one 
may expect the worst behaviour of the corresponding scattering amplitude 
in the high-energy limit. The character of the leading divergence for 8 -+ 
00 may be easily guessed: Taken together, the leading terms from EL(p) 
and tL(r) produce, according to (3.20), a factor of mKJ and for dimensional 
reasons (scattering amplitude of a binary process must be dimensionless) 
one may thus expect a quadratic dependence on energy for the leading term 
in the considered amplitude. Further, it is also obvious that it is just the 
combination of leading terms in both longitudinal polarizations which may 
yield expressions divergent for s -+ 00; all the other combinations may only 
contribute to the asymptotically constant (i.e. 0(1» terms in the limit s -+ 

00•. Taking into account the above remarks, the amplitude for the process 
vii -+ wtWi corresponding to the diagram in Fig. 3 may be expressed as 

iMli i3 
( 9M")2v(lh#,(1 :... "15b-~-1,,(1 - "1s)u(k)ti(r)tL'(p) = 
2v2 r- m 
92 1 rIA p'" . = -i-v(lh#,(1 - "(5)-J-"1,,(1- "(5)u(k)-- + 0(1)
S r- m mwmw 

(3.21) 

(the standard form of the electron propagator used in (3.21) of course repre­
sents the inverse matrix (;_m)-l; one should keep this in mind in subsequent 
manipulations ). 

The relation (3.21) may be further rewritten in the following way: We 
employ the energy-momentum conservation q =r-l (see Fig. 3), decompose. 

"artificially" the r as r=r-,+'= ; + , and use Dirac equation vel), = 0 
(we of course assume that m.. = 0). Then we obtain, after a simple algebraic 
manipulation 

g2 1 
Mli =--s2 v(I)(l +"(5);-j-;(1- "(5)u(k) +0(1) (3.22) 

mw r- m . 

In the last expression one may use again an artificial decomposition ; = 
; - m +mj by means of this simple trick and performing some additional 
standard manipulations we recast (3.22) as 

g2 
MI;, = --42 v(I);(l - "(5)u(k) 

mw 
g2 ;+m

-S2 mv(I)(1 + "(5)-2--2;(1 ....,. "(5)u(k)
mw q -m 

+ 0(1) (3.23) 

The first ferm on the right-hand side of (3.23), i.e. 
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M~~) = -4 2 v(I);(1 - "(5)u(k) (3.24) 
mw 

is, as expected, quadratically divergent for Ec.m. -+ 00 (let us recall that 
lepton spinors u(k), v(/) behave in the high-energy limit like EH'!. (i.e. 8 1/ 4) 

for the chosen normalization). In the terminology which we will use in what 
follows the term (3.24) represents the leading (or dominant) divergence of 
the considered tree-level amplitude. For a more detailed representation of 
this leading term as an explicit function of energy we refer the reader e.g. 
to the textbook [25] or the original paper [24]. However, we will not need 
such detailed formulae; expressions of the type (3.24) will be sufficient for 
our purposes. 

We will now examine the second term on the right-hand side of eq. (3.23). 
One might expect a priori that this expression contains a next-to-Ieading (in 
this case linear) divergence for Ec;m. -+ 00. However, the would-be linear 
divergence can be easily seen to vanish identically since 

(1 + "(5);p(1 - "(5) = 0 
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Thus, in the second term on the right-hand side of (3.23) the electron mass 
squared m2 is in fact factorized, which compensates the coefficient m'jJ co­
ming from longitudinal polarizations and the whole expression is therefore 
of the order 0(1) for 8 -+ 00. From the calculation that we have just des­
cribed it is also clear that the elimination of the linearly divergent term is 
a consequence of the assumption mil = 0, more precisely of the fact that 
the initial-state fermions (i.e. v, ii) are massless - for an illustration see also 
the problem 3.6 at the end of this chapter. (Such a connection will play an 
important role in the derivation of the standard model in Chapter 5.) For 
the tree-level amplitude of the process vii -+ WtWi we thus have the result 

M,i = MW +0(1) (3.25) 

where the leading term MW is given by the formula (3.24). Quadratic 
. growth of this term with energy means that perturbative S-matrix unitarity 

for the considered process is violated in the same way as it was the case for 
four-fermion scattering processes in the Fermi-type theory. . 

Some information concerning the behaviour of the considered model in 
higher orders of perturbation expansion is contained in the"effective index" 
of the corresponding interaction vertex which has been defined and calculated 
in Appendix G (see the formula (G.14)): 

w!'" = ~nF +2ns +nD 

(Let us recall that the coefficient 2 multiplying the number of boson lines 
ns involved in the interaction vertex is in this case a consequence of the 
ultraviolet behaviour of the canonical massive vector boson propagator.) In 
our case nF = 2, ns = 1 and nD = 0, so 

w!" = 5 

(let us remind the reader that in the Fermi-type theory one has Wv = 6). The 
value w!" = 5 > 4 indicates non-renormalizability in higher orders of pertur­
bation expansion and a detailed analysis has indeed led to the conclusion that 
the model of weak interactions described by the lagrangian (3.1) is not re­
normalizable within the framework of perturbation expansion (see [26], [27]). 
However, the following remark is in order here: One has to keep in mind that 
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the inequality w!" :$ 4 is in general not a necessary condition of perturbative 
renormalizability for a quantum field theory model. For example, in massive 
QED one also has w!JJ = 5, but this theory is still renormalizable as we have 
already stressed in the preceding chapter. Another important example of a 
theory which violates the condition w:JJ :$ 4 but nevertheless produces a 
renormalizable perturbation expansion for the S-matrix is just the standard 
GWS model. 

As we have seen, the theory of weak interactions with charged IVB is 
non-renormalizable and some scattering amplitudes corresponding to tree 
diagrams diverge severely in the high-energy limit (displaying a power-law 
behaviour). Thus, similarly to the case of the Fermi-type theory one may 
observe here a remarkable connection between two different aspects of the 
perturbation expansion mentioned at the end of Chapter 2: The power-like 
growth of tree-level amplitudes in the high-energy region (for real particles) 
implies non-renormalizability in higher orders of the perturbation expansion, 
i.e. an unacceptable behaviour of Feynm~n diagrams in the ultraviolet do­
main of four-momenta (of virtual particles) in dosed loops of internal lines. 
In the next chapter we will examine from this point of view the electrodyna­
mics of charged massive vector bosons. 

3.5 Lepton decays of the !VB 

To close this chapter we shall now discuss briefly lepton decays of the IVB. 
The processes we have considered in the IVB theory up to now corresponded 
to diagrams of at least second order in perturbation expansion. However, 
the theory described by the interaction lagrangian (3.1) also admits (for a 
sufficiently heavy IVB) processes of decay of W:I: into a lepton pair; the 
corresponding decay amplitude is non-zero already in the first order of per­
turbation expansion (Le. in the first order of g). AcCording to our conventions 
the first term in the lagrangian (3.1) describes the decay W+ -+ e+ +v while 
the second term yields 

W- -+ e- + ii (3.26) 

For definiteness we shall deal with the process (3.26). The corresponding 
tree-level Feynman diagram is shown in Fig. 4. 

The probability of the decay per unit time, i.e. the decay rate (or width) 
corresponding to the process (3.26) may be calculated by means of the for­
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mula (C.19) from Appendix C (we assume that all particles are unpolarized). 
For simplicity we will also neglect the electron mass mj takiQg into account 
tha.t m <: mw I it is' clear that such a simplification is in fact a very good 
approximation. A detailed calculation for m :f. 0 may be left to the interested 
reader as an instructive exercise (see the problem 3.8). 

Fig../.. The process W- -+ ev in the lowest order 0/ perturbation expansion. 

Before performing the formal calculation it is useful to realize that in the 
approximation m = 0 one may easily guess the dependence of the conside­
red decay width on the other relevant physical parameters, i.e. on 9 and 
mw: The decay width has dimension of a. mass in our system of units; the 
only mass which is now available is the mw and one must therefore have 
r '" mw. Further, the de~y amplitude is proportional to 9 (in the first 
perturbative order) and thus it must hold r '" g'. The considered decay rate 
must therefore necessarily have (for m =0) the form 

r(w- -+ ev) = Og'mw (3.21) 

where 0 is a numerical constant. 
We will now determine this constant by means of an explicit calculation. 

The contribution of the diagram in Fig. 4 is given by the expression 

M/i = 9ffl'u(Php(1 - "Is)v(k)eP(q) (3.28)
2y2 
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where EP(q) is the polarization vector of IVBj of course, it holds q = k +p. 
The calculation of the squared modulus of the invariant amplitude (3.28) 
and the summation over polarizations may be most effectively carried out in 
the following way: First we sum over polarizations of the decaying IVB by 
means of the formula (H.28) (se~ Appendix H) to get . 

g'
LIM/ii' 8" L [u(php(l - "Is)v(k)] x 
pol. lepC/mpol. 

1 
X [1i(kht1(1 - "Is)u(P)] ( -gpt1 + m-W qPqt1) (3.29) 

However, the term involving m;;qPqt1 gives zero contribution; this is imme­
diately obvious if we use Dirac equation (for m = 0 both vector and axial­
vector current is exactly conserved). From (3.29) then easily follows 

LIM/ii' -ig2Tr[hp~"IP(1 - = 
7'or. 

2l(k.p) = lm-:V (3.30) 

Averaging over the vector boson polarizations amounts to multiplying (3.30) 
by a factor of 1. Then using formulae (C.l9) and (C.22) we get finally 

1
r(W- -+ ev) = -lmw (3.31)

4811' 

The coefficient 0 in our preliminary estimate (3.27) is thus seen to be (4811")-1, 
For the rate of the charge conjugate process W+ -+ e+v we of course get the 
same result. Using the relation (3.7) the result (3.31) may be recast as 

r(W- -+ ev) = 1ffl'GFm~ (3.32)
611"y2 

Let us remark that the above calculation is not just an academic exer­
cise within the framework of a provisional theory of weak interactions; the 
lagrangian (3.1) in fact makes a part of the GWS standard model and the 
result (3.31) or (3.32) resp. thus holds (in lowest order) without any change 
even in the modern theory of electroweak interactions. Note finally that we 
could also take into account the hadronic part of the weak current in the 
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'\ lagrangian (3.1) and calculate the corresponding decay rate for hadron (Le. 
. quark) modes. We defer such a calculation to the last chapter devoted to the 
standard model where we also discuss the slightly more complicated pattern 
of mixing in the quark sector which seems to occur in the real world (see the 
problem 5.18 at the end of Chapter 5). 

For the current experimental value mw == 80.2GeV (see [28]) the decay 
rate for the electronic mode (3.32) is numerically equal to 

r(w- ~ eii) == 230MeV 	 (3.33) 

The value of this partial width thus shows that mean lifetime of the charged 
IVB is shorter than 10-23sec (which is a typical lifetime of hadron resonances, 
e.g. the meson p(770)). 

Coming back to the relations (3.14) or (3.16), we see that according to 
this theory, intermediate vector boson should manifest itself as a dramatic 
enhancement of the scattering cross section for iie -+ iie in the vicinity of 8 = 
mlv (an experimental verification of this undoubtedly correct prediction will, 
however, be out of reach of terrestrial facilities in a foreseeable future). The 
instability of the IVB (i.e. its finite decay width r) leads to a modification of 
the denominator of the corresponding propagator: The standard Feynman 
expression 

q2 _ m~ +it 	 (3.34) 

(corresponding to a stable particle) turns into a "Breit-Wigner form" 

q2 _ m~ + imwr 	 (3.35) 

\ 
Let us remark that in the GWS theory the passage from (3.34) to (3.35) may 
be formally accomplished by including higher-order effects, i.e. perturbative 
corrections to the propagator on the level of diagrams with (at least) one 
closed loop (see e.g. [39]). The modification (3.35) obviously regulates the 
original singularity (pole) in the IVB propagator, which would appear in 
scattering amplitude of the process iie -+ iie for 8 = m?v (d. (3.16)). As we 
have already observed, the corresponding cross section should rather display 
resonance behaviour with a maximum at 8 = mfv (in this context, see also 
the problem 3.3). 
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Problems' 

3.1. 	In the theory with charged IVB calculate the cross section of the process 
e-e+ -+ vii (in the tree approximation) in the limit 8 ::;» m!, i.e. 
effectively for me = O. Compa.re the result with the cross section of 
the process e-e+ -+ 1"- /1+ in QED for 8::;» m! (see (0.18) in Appendix 
D). 

3.2. 	Calculate amplitudes of the partial waves with j =1 and j = 2 (in the 
tree approximation) for the process ve -+ ve (set mil = 0). Show that 
partial-wave amplitudes for an arbitrary j grow logarithmically with 
energy. 

3.3. 	How many partial waves contribute to the Jacob-Wick expansion of the 
scattering amplitude for the process iie -+ iie? Calculate the correspon­
ding partial-wave amplitudes and the cross section (again for me = 0); 
take into account the effect of the finite width of W. What restriction 
is imposed by unitarity in this case? 

3.4. 	Examine the asymptotic behaviour of the tree-level amplitude for the 
process vii -+ WiW;, where the indices Land T denote the longitu­
dinal and transverse polarization respectively. 

3.5. 	Calculate the leading term in the cross section O'(vii -+ W-W+) for 
unpolarized W± in the high-energy limit. 

3.6. 	Examine the high-energy beha.viour of the tree diagram corresponding 
to the process e-e+ -+ Wiwt in the theory described by the lagran­
gian (3.1). Calculate also the leading asymptotic term in the corres­
ponding cross section for unpola.rized particles. 

3.7. 	Consider the process e-e+ -+ 11 in the case that photon mass is diffe­
rent from zero. What is the high-energy behaviour of the corresponding 
tree-level amplitude for longitudinally polarized "heavy photons"? 

3.8. 	Calculate the decay width r(W- -+ eii) for me =1= O. 

3.9. 	Calculate the decay width r(e- -+ W- +ve ) in a hypothetical world 
where me > mw (and mIl = 0). (Note that this rather academic 
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example is a prototype of the realistic process t -+ W+ +b, where t, b . 
are quarks from the third generation of fermions in the framework of 
the standard model.) 
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Chapter 4 

Electrodynamics of vector 
bosons 

I 

4.1 Interactions C?f W± with photons 

The intermediate vector boson of weak interactions carries an electric 
charge (as it is coupled to a charged fermionic current) and it is therefo­
re natural to consider also electromagnetic interactions of the particles Wi:. 
Electrodynamics of charged IVB is the subject of this chapter. As we will see, 
in contrast with the familiar "textbook" spinor electrodynamics (where the 
charged particles have spin l) the electrodynamics of massive vector bosons 
(i.e. charged spin71 particles) is non-renormalizable within the perturbative 
framework. More precisely, we will show here that amplitudes of some tree 
diagrams in this theory display an equally bad high-energy behaviour (Le. a 
power-like growth) as that we have observed in the model of weak interac­
tions described in the preceding chapter. The non-renormalizability in higher 
orders of perturbation expansion has been demonstrated in [26]. Electrody­
namics of charged massive vector bosons has been discussed in many papers 
published in 1960's (see e.g. [29-32} and other papers quoted therein); cf. 
also [18], [33] and for a recent reference see in particular [34]. 

An electromagnetic interaction of the IVB may be introduced (similarly to 
the case of charged spin -f fermions) by means of a suitable gauge invariant 
modification of the corresponding free lagrangian. The lagrangian of free 

36 



(non-interacting) fields W* is given by (see (H.47) in Appendix H) 

£0 = -~(8"W; - 8"W;)(8"W+" - 8"W+") + m:"W;W+" (4.1) 

The "minimal" electromagnetic interaction is defined by changing (4.1) into 

£(min.) _ -!(D W- - D W-)(D"·W+" - DI'·W+") + m' W-W+" (42) 
EM -:- 2 "" "" W " • 

where 

D" 8" + ieA"
D: = 8" - ieA" (4.3) 

(the coupling constant in (4.3) is e > 0). The lagrangian (4.2) is invariant 
under local gauge transformations 

W;'(x) e-iw(s)W;(x) 

W:'(x) = e+iw(s)W:(x) 

1 
A~(x) A,,(x) + -8"w(x) (4.4)

e 

Let us emphasize that gauge transformations (4.4) corrrespond, as in the 
spinor electrodynamics, to an abelian (Le. commutative) group U(I). 

One may add to the "minimal" lagrangian (4.2) another gauge invariant 
term 

£' = -ineW-"W+I'F"" (4.5) 

where 
(4.6)F"" =8"A" - 8"A" 

and n is an arbitrary (real) constant. If we require a general electromagnetic 
interaction to be described only by polynomials with canonical dimension not 
greater than four (so as not to spoil renormalizability a priori) and, moreover, 
if we assume the invariance with respect to discrete symmetries 0, P, T (a 
more detailed discussion see e.g. in [34]), then the most general lagrangian 
of electrodynamics of the spin-l charged vector bosons W:I: is obtained by 
summing (4.2) and (4.5): 

I" _ I"(min.) + 1"1 _ I" + I"(min.) + 1"1 
/."EM - /."EM /." - /"'0 /"'in! /." (4.7) 
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An alternative (and in a sense more general) approach to electromagnetic 
interactions of W:I: is discussed in Appendix I and in Chapter 5 (see Section 
5.4). Let us remark that adding the term (4.5) to the original minimal 
interaction incorporated in (4.2) corresponds physically to particles W:I: with 
an "anomalous" magnetic moment I'w == (1 +tc)e/(2mw) (the corresponding 
gyromagnetic factor is thus 9 == 1 + tc) and electric quadrupole moment 
Qw == tcemjil (see e.g. [17], p. 22 and also the papers [33], [34]). Let us 
recall that the gyromagnetic factor 9 == 2 for electron follows automatically 
from Dirac equation with minima.l electromagnetic interaction, while in the 
case of vector bosons the value of 9 = 2 corresponds to tc = 1 in (4.5). It 
is also useful to realize that both the minimal interaction £~:cin.) and the 
term £' in (4.7) have the same canonical dimension (equal to four) and thus 
there is no reason to prefer a priori any particular value of the parameter 
"i in this context, instead of "anomalous", perhaps a more correct adjective 
"ambiguous" is used for the magnetic moment of W:I: (see e.g. [18]). In 
spinor electrodynamics, an analogue of the non-minimal term (4.5) is the 
expression 1j,u"I',pF"", which has, however, dimension 5 and it would lead to 
a non-renormalizable perturbation expansion. 

Using (4.2), (4.3), (4.5) and (4.6) we may recast the interaction part of 
the lagrangian (4.7) as 

£jne =£~:in.) +£' == £WW7 +£ww.,.., (4.8) 

where for the term trilinear with respect to the fields W* and A" (photon) 
one gets, after a straightforward manipulation 

£WW7 = ie[A"(W.-v8"W: - 8"W;W+") 
+ W-"(nW+"8"A" - 8"W+"AI') (4.9) 

+ W+"(AV8"W; - n8"A"W;)1 

and the quadrilinear term is given by 

£ww.,.., = -e2(A"A"W;W+" - A"A"W;W:) (4.10) 

As we have already said, the value n = 0 in (4.9) corresponds to the minimal 
electromagnetic interaction. In what follows, the particular case " = 1 will 
play the most important role; the corresponding trilinear interaction (4.9) 
will be called the electromagnetic interaction of Yang-Mills type and denoted 
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as £{.;'~~ because in such a case, th~ expression (4.9) just corresponds to 
the situation where W; and A" form a. triplet of non-abelian gauge (i.e. 
Yang-Mills) fields (see [8] and [17], [18], [25] etc.). The expression (4.9) is 
remarl<ably symmetric for IC =1 (it is invariant w.r.t. cyclic permutations of 
W-, W+ and A) and it may be recast in a more compact form: 

I'(YM) _ .....ww.., - _ ie{A"W-Vaw w+ +W-"W+vA' A +W+"Av~ W-)" v . 0" " 0". v 
(411)

• 

The symbol iJ in (4.11) is defined in the usual way as, 

lli"g =1(8"g) - (8"J)g 

Interaction vertices corresponding to the lagrangians (4.9), (4.10) in momen­
tum representation are shown in Fig. 5. 

W­

(a) (b) 

Fig. 5. (a) Vertex W-W+'Y corresponding to the trilinear interaction (4.9); 
(6) Vertex W-W+'Y'Y corresponding to (4.10). 

The vertex in Fig. 5(80) corresponds to the expression 

Vl~,,(k,p,qllC) = eV""v(k,p,qllC) (4.12) 
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where 

V""v(k,p, qlll':) = {k - p)"g"" +(p - K,q)"g"v + (lI':q - k)"g"v (4.13) 

One has to keep in mind the Cour·momentum conservation in (4.13) 

. k+p+q=O (4.14) 

In Feynman diagrams involving vertices of the type WW'Y an incoming line 
of the W- with a four·momentum k is equivalent to' an outgoing line of the 
W+ with four·momentum -k etc. In the case of the interaction of Yang-Mills 
type (i.e. fot; IC =1) we will write simply 

~"v(k,p,q) = {k - p)vg"" + (p - q)"g"v + (q - k)llg"" (4.15) 

The general vertex WW'Y (4.13) may then be expressed as 

V""v(k,p,qlll':) =~"v(k,p,q) +(1- K,)(q"g"v - q"g"v) (4.16) 

The vertex WW'Y'Y in Fig. 5(b) is given by 

VIlVP O' = -e"(2g"vgpO' - g"pgvO' - gllO'gvp) (4.17) 

(in contrast with (4.13) the last expression is momentum-independent as the 
interaction (4.10) does not involve derivatives). 

The Yang-Mills expression (4.15) is invariant with respect to a simulta­
neous cyclic permutation of the indices A, 1-', v and of the momenta k,p, q, 
Le., it holds 

~"v(k,Plq) = Vllv,,(p,q,k) = V",,"(q,k,p) (4.18) 

and it satisfies an important relation 

P#V""v(k,p, q) =(-q'Jg"v +q"qv) - (_k2g"v +k"kv) (4.19) 

The relation (4.19) is sometimes called 't Rooft identity since it has probably 
first appeared in the paper [35}. The proof is left to the reader as an easy 
exercise (see the problem 4.1). 
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4.2 High-energy behaviour and the vertex; WW'1 

We will examine the high!energy behaviour of tree-level scattering ampli­
tudes of electromagnetic processes involving real (physical) vector bosons W:I: 
in the initial and/or final state. (Throughout the following text, we will em­
ploy the generic notation E for a relevant energy, e.g. E = Ee.",. = ..;s.) For 
a discussion of different variants of the trilinear interaction WW7 in (4.9), . 
the most interesting processes in this context are those involving two W's 
and two photons, i.e. for example W-W+ -+ 77, W-7 -+ W-7 etc., since 
the corresponding Feynman diagrams contain both external and internal W 
lines. For definiteness, let us first consider the annihilation of a W:I: pair into 
two photons. The diagrams corresponding to this process in the lowest order 
of perturbation expansion (i.e. in the 2nd order w.r.t. interaction (4.9) and 
in the 1st order w.r.t. (4.10)) are depicted in Fig. 6. 

W­ 7 1 W- t 

(a) 	 (c) 

Fig. 6. Tree-level diagrams/or the process W-W+ -+ 77 contributing to order 
e2 in the electromagnetic coupling constant. 

On the basis of simple considerations similar to those employed in the prece­
ding chapter one may guess that the high-energy behaviour of the diagrams 
(a), (b) will in general be worse than in the case (c). The reason for this is 
of course the factor of mHJ in the W propagator; it may cause, in princip­
le, that contributions of the diagrams (a), (b) grow like En+2 for E -+ 00' 

while the diagram (c) behaves like En for some n ;:::: 0 (according to (H.25) 
or (3.20), further factors of mKJ may arise from longitudinal polarizations 
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of the external W:I:, but these are common for all the diagrams (a), (b), 
(c)). Of course, such a behaviour of the diagrams (a), (b) would disqualify 
the electrodynamics of vector bosons W:I: a priori, as the above-mentioned 
leading divergences - if they are pr~ent - remain unmatched. 

A necessary condition for the absence of a power-like growth of the consi­
dered tree-level amplitude with energy is therefore an elimination of the lea­
ding divergences in the diagrams (a.), (b) themselves. Since a. genera.! WW7 
interaction defined by (4.9) (or (4.16) resp.) depends on an arbitrary para­
meter ", one may try to achieve the desired divergence cancellation by means 
of an appropriate choice of the ". To see how this can be done, we will inves­

I 	 tigate in detail the diagram (a) (the diagram (b) behaves analogously). Its 
contribution may be written as a sum of two expressions which correspond 
to the two terms in the W propagator (cf. (HA5)): 

Mil = M~l) + M~2) 	 (4.20) 

where M11
) corresponds to the diagonal ~erm of the propagator and M12) 

contains the factor mHJ (it corresponds to the longitudinal term). In view of 
what we have already said, it is just the second term which is essential for 
our discussion. The expression M12

) is equal to 

2 /J. v 
M~2) = . e 2 q q 2 	 VC1/J.,\(p, q, -kl,,)V,.,.v(r, -I, -ql,,)t'\(k)t"'(I)t*C1(p)t*P(r)

2 . mwq -mw 
(4.21 ) 

(the term M11
) in (4.20) may be obtained from (4.21) by replacing m»Jq/J.qV 

with _g/J.II and in the high-energy limit it behaves similarly to the diagram 
(c)). To work out the expression (4.21) we use the relations (4.16), (4.18), 
the 't Hooft identity (4.19) and simple kinematical relations q = k - p = 
r - I, P = 12 = mfy, p2 = r2= O. Thus we get first 

21' 
M(2) 

II 
e 	 e,\(k)e"'(/)e*C1(p)e*'(r) x

mfy q2 -mfy 

x [k,\kO' - P'\PI1 + (1 - ,,)(k.p 0'\11 - P,\QI1) +O(m~)] 
x [/.,.1, - r.,.r, +(1- ,,)(/.r g.,., +r.,.q,) +O(m~)] (4.22) 

where the symbol O(mfy) denotes the terms in which mfy is factorized (these 
terms thus cannot contribute to the leading divergence in (4.22)). Further, 
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in (4.22) we use orthogonality of polarization vectors to the corresponding 
four-momenta, i.e. k.e(k) == 0 etc. Thus we get finally 

e2 
M(2) 

II, -
-

-~X
mlvq2 -mlv 

x {(1- n)21(k.p)(e(k).e*(p» - (k.e;*(p»(p.e(k»] 

x l(l.r)(e(l).e*(r» - (l.e*(r»(r.e(l»] +O(m:V)} (4.23) 

Now it is easy to analyse the high-energy behaviour of the considered scattering 
amplitude in dependence on the value of n. First of all, it is seen that if at 
least one of the W's has longitudinal polariza.tion, the potential leading diver­
gence (quartic or cubic) vanishes for an arbitrary value of n. This statement 
can be immediately verified if we replace in such a case the polarization ve­
ctor eL(k) or eL(I) in (4.23) by the corresponding leading term k/mw or 
l/mw according to the by now familiar formula (H.25). The corresponding 
expression in square brackets is then equal to zero and thus the whole would­
be leading divergence in (4.23) is suppressed. If both vector bosons W:I: have 
a transverse polarization, the expressions in the square brackets in (4.23) are 
in general non-zero and the leading term in the amplitude M?), (which in 
this case would be quadratically divergent) vanishes just for n == 1. The 
results we have obtained may also be easily generalized to other binary pro­
cesses of the considered type (see in this connection the problem 4.3). We 
have thus arrived at the following remarkable statement concerning tree-level 
diagrams of binary processes within the framework of charged vector boson 
electrodynamics: 

Leading power divergences arising in the' high-energy limit in tree-level 
diagrams involving both external and internal lines of vector bosons W:I: are 
eliminated for an arbitrary combination of the W:I: polarizations if and only 
if the corresponding electromagnetic interaction is of the Yang-Mills type. 

Moreover, it can be shown that e.g. in the case of the considered process 
in Fig. 6 the resulting tree-level amplitude is asymptotically constant, i.e. 
it is finite in the high-energy limit for an arbitrary combination of W:I: po­
larizations if the vertex WW'"t is of the Yang-Mills type (i.e. the remaining 
non-leading divergences from diagrams (a), (b) are in such a case compensa­
ted by the diagram (c) - see the problem 4.4). Of course, the same result may' 
be obtained also for the "Compton scattering" process '"tW -+ '"tW. Thus, 
the electromagnetic interaction of the Yang-Mills type is "optimal" in the 
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W-" w- W­ W­

above-specified sense (with respect to the processes considered so far). 
It is important to realize that the above statement concerning the eli­

mination of leading divergences is only valid for the tree diagrams involving 
both externfJl and internal W lines. In the case of tree-level diagrams invol­
ving W's in the external lines only (combined with an internal photon line) . 
there is no general mechanism (within the framework of the electrodynamics 
alone) which would eliminate high-energy divergences arising from longitu­
dinal polarizations (though, as we will see below, in some particular cases an 
"accidental" suppression of leading asymptotic terms may occur - see also 
the problem 4.3). So e.g. the process WW -+ WW is described by the 
,tree-level diagrams shown in Fig. 7. 

,'-- W- W­W- w­

.. 

.(a) 

Fig. 7. Tree diagrams corresponding to the process WW -+ WW in the 
vector-boson electrodynamics. 

If all four external lines correspond to longitudinally polarized W's, one 
may expect in general that leading asymptotic terms in both diagrams will 
diverge like E", as each external line contributes a factor of mji} from the 
decomposition (H.25). If the interaction WW'"t is of the Yang-Mills type, 
then the anticipated quartic divergence indeed occurs; a direct calculation 
leads to the result 

M(YM) + M(YM) == ~(t2 +u2 - 2S2) + 0 (~) + 0(1) (4.24)
• "4mft, mlv 

where t = (k - p)2, U == (k - r)2. The expression for the next· to-leading 
quadratically divergent term O(E2) is rather complicated and we will not 
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need it now (see however Appendix J). The following remark is in order 
here: If we considered the minimal electromagnetic interaction (Le. K, = 0 in 
(4.13)) instead of the Yang-Mills WW-y interaction, then in the case when all 
the W's in diagrams in Fig. 7 have longitudinal polarizations, we get instead 
of (4.24) 

Mimin M1min
 
.) = 0(1), .) = 0(1) (4.25) 


i.e. for K, = 0 the expected quartic divergence is completely suppressed and 
contributions of the relevant diagrams are - in this particular case - asympto­
tically constant in the high-energy limit! However, such an elimination of di­
vergent terms only occurs in the case when both external lines in the vertex 
WW-y carry longitudinal polarizations; if e.g. transverse and longitudinal 
polarizations of external particles are combined in such a vertex (together. 
with an incoming internal photon line) some divergent terms in general re­
main for any value of the parameter K, in (4.13) (d. the problem 4.3). In 
Fig. 8 we have shown the configurations of lines entering the WW-y vertex 
in corresponding diagrams, for which a divergence cancellation occurs for the 
Yang-Mills and the minimal electromagnetic interaction WW-y respectively. 

Salient points of the preceding discussion may be concisely summarized 
as follows: Electromagnetic interaction of the Yang-Mills type represents in 
a sense an optimal choice for the vector bosons W as it eliminates systemati­
cally leading high-energy divergences (Le. leading powers of E for E -+ 00) 
in tree-level diagrams involving both external and internal W lines. The 
minimal electromagnetic interaction leads to an "accidental" suppression of 
divergent terms in other cases, but only for special combinations of polari­
zations of external W's. However, within the framework of the pure electro­
dynamics of charged vector bosons there is no choice of the parameter K, in 
(4.13) which would guarantee a cancellation of the power-like divergences in 
all tree-level amplitudes of binary processes. . 

Thus, from the point of view of high-energy behaviour of the tree diag­
rams, the electrodynamics of charged massive spin-1 particles (Le. IVB's) is 
technically unsatisfactory in a similar way as the model of weak interactions 
described previously. As we have already mentioned earlier in this chapter, 
quantum electrodynamics of vector bosons is non-renormalizable in higher 
orders of perturbation expansion. This fact is suggested by the values of 
effective indices for interaction vertices WW-y and WW-y-y; in both cases we 
obtain Wv = 6 according to the formula (G.14) in Appendix G. In the case 
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of the Yang-Mills WW-y interaction some types of ultraviolet divergences 
(coming from different diagrams) cancel [27], but even this variant of the 
theory has ultimately proved to be non-renormalizable [26]. Electrodyna­
mics of IVB's thus provides another example of a connection between the 
"bad" high-energy behaviour of tree diagrams and non-renormalizability of 
perturbation expansion. 

!W- -y Wi 

(a) (b) 

Fig. 8. If the vertex WW-y in the configuration (a) is multiplied by the longi­
. tudinal part of the W propagator, mlv is factorized (which compensates 
the m;J from the propagator) Jor an arbitrary polarization of the exter­
nal W if and only if the electromagnetic interaction is of the Yang-Mills 
type. In the configuration (b) the leading asymptotic term for longitudi­
nally polarized W± (proportional to m;J) vanishes just for the minimal 
electromagnetic interaction. 

4.3 A naive electro-weak unification 

To close this chapter, we will now discuss some processes involving vector 
bosons W± and charged fermions. Both electromagnetic and weak interac­
tion contribute to these processes and thus it is natural to consider a straight­
forward unification of weak and electromagnetic interactions described by the 
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interaction lagrangian 
,de-til) =C~w) +C~em) (4 26) In' InC InC • 

where the first term in (4.26) is the weak interaction and the second term 
corresponds to electromagnetic interactions of charged leptons (here we will 
consider only the electron) and vector bosons W:i:, i.e. 

C~:~) = -ee,,,eA" +Cww.,. + Cww.,..,. (4.27) 

(see definitions (4.8) • (4.10)). Unless sta.ted otherwise, we always have in 
mind the WW, interaction of the Yang-Mills type (just for comparison, we 
will sometimes also refer to the minimal electromagnetic interaction of W's). 
We will use a provisional technical term "theory of electro-weak interactions" 
for the model (4.26) (the hyphen indicates a superficial nature of such a 
facile " unification"). Binary processes in which participate vector bosons W:i: 
and charged fermions are essentially of two types: ve -+ W, and e- e+ -+ 
W-W+. Let us first consider a process of the first type, for definiteness in the 
configuration iie ..... W-,. Tree-level diagrams for this process corresponding 
to the 2ud order of perturbation expansion with respect to the interaction 
(4.26) are shown in Fig. 9. 

e '1 p. I '1 

k 

Q = k_p'le 
I 

-I r 

ii w-; 
I. 

(a) (b) 

Fig. 9. 7ree diagrams 0/ the process iie ..... W-,. 

We will now investigate the high-energy behaviour of the corresponding 
scattering amplitude. First of all, from our previous results it is dear that 
if the final-state W- has a transverse polarization then the contributions 
of both diagrams in Fig. 9 are finite in the limit E -+ 00. Let us further 
consider the case when W- has longitudinal polarization. Qne may expect 
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that the contribution of the diagram (a) contains a term linearly divergent 
for E -+ 00. As regards the diagram (b), it is not difficult to show that its 
part involving the factor mw2 from the corresponding propagator is finite for 
E -+ 00 (to see this, one has to realize that in this part the electron mass is 
also factorized - cr. (3.4). However, the part corresponding to the diagonal 
term in the W propagator may yield a (linear:) divergence for E -+ 00. Using 
the standard high-energy decomposition of the longitudinal polarization vec­
tor (3.20), the contribution of the diagram (a) may be written as 

eg 1 1
M. = ./O-v(l)t(1 -,s)-d)-i*(p)u(k) +0(1) (4.28)

2y2mw ,.,-m 

With the help of tricks similar to those which in Chapter 3 have led to the 
realization (3.23) we get from (4.28) easily 

eg 1
M. = /O-v(I)¢*(p)(1 -'5)u(k) +0(1) (4.29) 

, 2y2 mw 

For the contribution of the diagram (b) one may write first 

eg 1 _gPV ,\.. 
M.=- ./O-v(I)lp(l-,s)U(k) 2 2 V,\pv(p,r,q)rl'c (p)+O(I)

2y2 m w q -mw 
(4.30) 

where the expression V'\l'v(p, r, q) is given by the formula (4.15). With the 
help of the 't Hooft identity (4.19), using relations p.c"'(p) =0, p2 = 0 and 
applying Dirac equation in the lepton matrix element, the expression (4.30) 
may be eventually recast as 

M. = - e~_I_v(l)t(P)(l -,s)u(k) +0(1) (4.31)
2y2 m w 

Thus, it is clear from (4.29) and (4.31) that linear divergences arising in 
diagrams (a) and (b) cancel each other and the full tree-level amplitude is 
finite for E -+ 00, i.e. . 

Ma+M" = 0(1) (4.32) 

The calculation we have just performed is the first and simplest example of 
a divergence cancellation between tree-level diagrams of different type (the 
diagram (a) represents a fermion exchange in t-channel, while (b) corresponds 
to the s-channel exchange of vector boson). The cancellation of divergences 
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.1 .' 

in this case does not give any restriction on coupling constants, as the con­
tributions of both diagrams are proportional to e g. In the next chapter we 
will encounter many similar examples in situations where the requirement 
of cancellation of high-energy divergences implies nontrivial relations among 
coupling constants. 

Let us now consider the process e-e+ -+ W- W+. Within the framework 
of the theory of electro-weak interactions (4.26) it iS~'described (in lowest 
order) by the tree diagrams shown in Fig. 10. The diagram (a) represents a 
"pure weak" and (b) "pure electromagnetic" contribution to the considered 
process. 

W­ e- W­e-

p k p;
r 

k 

/I 

r-l 

e+ W+ 


(a) 

Obr. 10. Tree diagrams corresponding to the process e-e+ -+ W-W+. 

The worst high-energy behaviour of the corresponding amplitudes may be 
expected in the case when both vector bosons W± have longitudinal polari­
zations; one may then guess, in the same way as in the preceding examples, 
that both diagrams in Fig. 10 may contain quadratically divergent terms for 
E -+ 00. (However, let us recall that if the WW -y vertex corresponded to 
the minimal electromagnetic interaction, quadratic divergence in the diag­
ram (b) would vanish - see Fig. 8.) In the case that only one of W's has 
longitudinal polarization, both diagrams (a), (b) yield linear divergences for 
E -+ 00 (for the Yang-Mills WW-y vertex as well as for the minimal elect­
romagnetic interaction). We will now examine in more detail the case when 
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'. both vector bosons W± have longitudinal polarizations. For the contribution 
of the diagram (a) we get, using '(3.20) and after usual manipulations 

g2 . (m )M ea =--42 v(l)p(1--Y5)u(k)+O -2E + (4.33)
mW mW 

As we have indicated in (4.33), the amplitude M. contains beside the leading 
quadratic divergence also a next-to-Ieading (linear) divergence for E -+ 00 

(cC. in this context the remarks concerning the relation (3.25) in previous 
chapter). Derivation of an explicit form of the linearly divergent term is left 
to the reader as an easy exercise {see also Appendix J, the formula (J.1). 
For the contribution of the diagram (b) one gets (by means of manipulations 
similar to those which have led from (4.30) to (4.31)) the result 

2e
Mb = -2v(l)pu(k) +O{l) (4.34) 

mw 
If we now compare (4.33) and (4.34) it is clear that one cannot accomplish 
a mutual cancellation of quadratic divergences in Mea and M. by any clever 
choice of the relative magnitude of the coupling constants e and 9 since the 
corresponding expression in (4.33) contains 1 -15 but (4.34) does notj it 
means that quadratically divergent terms in Mea and Mil depend differently 
on lepton polarizations. Beside that, in the expression (4.34) there is no 
linearly divergent term of the type O(mE/m-:V), in contrast with (4.33); of 
course, this is a consequence of the conservation of lepton electromagnetic 
current in the corresponding vertex of the diagram (b). We thus see that the 
full tree-level amplitude of the process e-e+ -+ W-W+ contains (if at least 
one of the W's has longitudinal polarization) terms diverging like a positive 
power of energy for E -+ 00. 

We will now summarize main results concerning the high-energy beha­
viour of tree-level amplitudes of binary processes, that we have obtained in 
this and the preceding chapter. The naive theory of weak interactions with 
charged IVB and the electrodynamics of IVB have similar problems with 
power-like growth of tree-level amplitudes for E -+ 00. Trivial unification 
of weak and electromagnetic interactions in the lagrangian (4.26) does not 
solve these problems. In the case of the process e-e+ -+ W- W+, a cancella­
tion between leading divergences coming from the weak and electromagnetic 
contribution respectively is not possible, because the weak interaction vio­
lates parity (via V - A currents) whi1e the electromagnetic interaction is 
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parity conserving. In other casses one has only a weak contribution (e.g. for 
vii -+ W-W+) or an electromagnetic one (e.g. for WW -+ WW) and the 
terms divergent for E -+ 00 cannot be eliminated trivially. It is obvious that 
the power~like high~energy growth of the above-mentioned tree amplitudes 
cannot be suppressed without introducing new particles and new interactions 
which represent the "missing links" of the naive model of electro-weak inter­
actions. Keeping in mind the remarks we have made concerning the process 
e-e+ -+ W- W+ one may guess that the necessary new interactions should 
in a sense "interpolate" between the original weak and electromagnetic in­
teractions ill (4.26). A detailed construction of the "missing links" of the 
unified theory of weak and electromagnetic interactions is the subject of the 
next chapter. 

Problems 

4.1. 	Prove the lt Booft identity (4.19). 

4.2. 	Prove the relation (4.24). 

4.3. Prove the statement ill the text of Fig. 8. 

4.4. Show that full tree-level amplitude of the process W- W+ -+ ,.,. is finite 
in the high-energy limit for an arbit.rary combination of W± polariza­
tions if the WW,. interaction is of t.he Yang-Mills type. Can there be 
a cancellation of non-leading divergences in diagrams (a)l (b), (c) in 
Fig. 6 in the case that the WW,. vertex is described by the expression 

with a parameter,. ::f 11 

4.5. Derive and (4.31). 

4.6. 	Calculate the leading term in the cross section of the process iie -+ W-,. 
for E -+ 00 in the approximation of tree diagrams in Fig. 9 (for 
unpolarized particles). 

4.7. Derive (4.33) and (4.34). 

4.8. Calculate the leading term in the cross section 	e-e+ -+ W-l-V+ for 
E -+ 00 in the approximation of tree diagrams in Fig. 10 (for unpo­
larized particles). What are separa.te contributions of the weak and 
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electromagnetic interaction resp.1 (see also problem 3.6). How are 
changed the corresponding results if we consider the minimal electro~ 
magnetic interaction instead of the Yang~Mills vertex WW,.1 
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Chapter 5 

Tree unitarity and electroweak 
interactions 

5.1 A criterion for perturbative renormalizability 

We have shown in preceding chapters that the naive hypothesis on the 
existence of charged intermediate vector boson of weak interactions leads 
eventually - despite partial successes - to similar difficulties as the original 
Fermi-type theory. Moreover, the introduction of an electromagnetic inter­
action of IVD's modifies substantially the properties of quantum electrody­
namics: Contrary to the familiar spinor QED, electrodynamics of charged 
massive spin-I particles is non-renormalizable (and, at the same time, some 
tree-level amplitudes display a "bad" high-energy behavioul)' In this chapler 
we will demonstrate that a non-trivial unification of weak and electromagne­
tic interactions (which necessitates postulating extra particles and a host of 
new terms in the interaction lagrangian) is able to cure simultaneously the 
difficulties of the old provisional models of W:!: interactions, i.e. of both the 
electrodynamics and weak interaction theory. 

Let us now specify our goal more precisely. We wish to construct a phy­
sically realistic theory of weak and electromagnetic interactions (i.e. such 
that it describes correctly experimental data e.g. for muon decay, Compton 
scattering etc.) and we require that the model would be renormalizable 
within the framework of perturbation expansion. The following remark is 
in order here: The requirement of perturbative renormalizability is in fact 
of technical nature and it is not clear at present whether it is indeed phy­
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sically relevant in its full extent. Nevertheless, this technical requirement 
proved to be an extremely valuable heuristic principle which has led to many 
non-trivial physical predictions (some of which have already been verified 
experimentally) . 

However, a direct search for a renormalizable model of weak and elect­
romagnetic interactions would be a tremendous task: It would amount to 
a systematic analysis of ultraviolet divergences in Feynman diagrams invol­
ving at least one closed loop and to finding conditions of a cancellation of 
non-renormalizable divergences descending from different diagrams. From 
the technical point of view, it is much easier to employ a connection between 
perturbative renormalizability and the high-energy behaviour of tree-level 
diagrams which has been observed in the discussion of the models described 

. in preceding chapters. We willllow formulate the relevant necessary condi­
tion for perturbative renormalizability in detail (cr. the end of Chapter 2) 
and at the same time we will introduce a terminology commonly used in the 
literature (see [111 - [14]). 

The experience gained from various quantum field theory models suggests 
that a necessary condition for the renormalizability of perturbation expansion 
is "asymptotic softness" of tree-level scattering amplitudes [14] or, in other 
words, "tree unitarity" [11 - 14]: Such a condition means that an arbitrary 
n-point tree-level amplitude M~;1e (i.e. the amplitude of a process 1 + 2 -+ 

9 + 4 + ...+ n in the approximation of tree diagrams) behaves (for fixed 
non-zero scattering angles) in the limit E -+ 00 at most like 

M ~;~e = O(gl-n) (5.1) 

(d. relation (C.3) for the dimension of M(n»). In particular, for binary 
processes the condition (5.1) means that the corresponding (dimensionless) 
amplitude is asymptotically fiat at high energies, i.e. 

Mi~~e =0(1), (5.2) 

for the amplitude of a process 1 + 2 -+ 9 + 4 + 5 in the limit E -+ 00 one 
should have 

(5) (1)M'ne = 0 E (5.3) 

etc. In the subsequent discussion the condition (5.2) (which we have already 
mentioned in preceding chapters) will be applied in a detailed manner to 
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many particular processes and finally we will also mention an application of 
the condition (5.3). 

As regards the high-energy behaviour of the full amplitude M(n) in a 
renormalizable theory (to an arbitrary fixed order of perturbation theory) its 
power-law charactcr expressed by (5.1) is modified in higher orders at most 
logarithmically (cc. (131), i.e. 

M(n)ls....co =O(E4- n Ink E) (5.4) 

where k;:: o. 
The term "tree unitarity" of course docs not mean that e.g. a four-point 

scattering amplitude satisfying the condition (5.2) also fulfills exactly the 
unitarity condition (see (E.12) or (E.15»i one has to keep in mind that in 
a fixed order of perturbation expansion, unitarity of S-matrix is in general 
always viola.ted. The technical term we a.re using refers to the fact that 
fulfilling the condition (5.2) for E -+ 00 implies, in a sense, a "minimal" 
uniLariLy violation in the tree approximation: Partial-wave amplitudes in tbe 
Jacob-Wick expansion grow in such a case at worst 101lgaritlllnically for E -+ 

00 (d. the examples in Chapter 3). An equivalent term" asymptotic softness 
of tree-level amplitudes" (I4} is more straightforward and thus perhaps more 
instructive, but it is not commonly used in the literature. 

The tree unitarity (5.1) thus represents a definite criterion for perturbati­
ve rellormalizability which is particularly valua.ble in the case of interactions 
of charged massive vector bosons. This criterion seems to be generally accep­
ted but olle has to stress that it is 110t completely rigorous. It is based on the 
observation that in all known rellormalizable models of quantum field theory 
the condition (5.1) is satisfied a.nd, moreover, there is a plausible intuitive 
argument in its favour. We will now give this argument, which is obviously 
superficial but still rather instructive (cr. [13] and also [18]). 

Higher-order diagrams (i.e. those involving at least one closed loop) are 
obtained, in a. sense, by means of an iteration of tree diagrams: The imagi­
llary part of a one-loop graph may be expressed, roughly speaking, in terms 
of an appropriate tree-level amplitude squared, from tree-level and one-loop 
graphs one may get imaginary part of a two-loop diagram etc. Such an itera­
tion procedure of course corresponds to unitarity conditions for the S-matrix 
wiLirin the framewol'k of ]>crturbaLion expansion (see e.g. [161, [20J, [21]) and 
one examt>le of this kind is depicted schematically in Fig. 11. Thus, if the 

tree-level amplitude of some binary process behaved for E -+ 00 as E', whe­
re 0 > 0, then the imaginary part of a one-loop amplitude (corresponding 
in general to a different, appropriately chosen process - cc. Fig. II) would 
behave like E26, i.e. it would grow faster than the tree approximation in 
the limit E -+ 00. From the imaginary part of a diagram one may calcu­
late the full amplitude via a dispersion relation (see e.g. (16], [20], [21]); in 
doing this, one has to perform appropriate subtractions in order to suppress 
(ultraviolet) divergences. The essential point is that - as we have already ob­
served - the power-like growth of one-loop amplitudes is in gelleral"worse" 
than that encountered on the tree level. In further iterations (i.e. for more 
complicated diagrams) the power behaviour of the corresponding imaginary 
parts is getting worse, which necessitates introducing more subtractions in 
dispersion relations; this in turn corresponds to an infinite number of re­
normalization counterterms, i.e. to the perturbation expansion which is not 
renormalizable in the usual sense. On the other hand, if the tree-level am­
plitudes of binary processes satisfy the condition (5.2), the imaginary parts 
of one-loop diagrams in general behave for E -+ 00 in the same way as 
the tree-level amplitudes and there is a priori no manifest reason to expect 
that the character of the power behaviour would be substantially changed in 
higher orders. In fact, however, it may happen that (as a consequcnce of the 
integration in a dispersion relation) the high-energy asymptotics of the real 
part of a one-loop amplitude is different from that of the imaginary partj 
in such a way one may encounter a situation in which the condition (5.2) is 
fulfilled but some one-loop amplitudes grow like a positive power of energy 
for E -+ 00 (i.e. the relation (5.4) is then violated). To be more specific, the 
envisaged situation is known to occur owing to the presence of the famous 
Adler-Bell-Jackiw (ABJ) triangle anomaly [40]; this remarkable phenomenon 
will be discussed in more detail in Section 5.6 (see also (I 7]). 

The intuitive arguments which we have given thus indeed indicate that 
the tree unitarity expressed by the relation (5.1) is a necessary condition 
for perturbative renormalizabilitYi however, one may find explicit examples 
showing that it is not a sufficient condition. 

let us remark that the condition of tree unitarity may also be 
pragmatically understood (apart from its deep connection with renormali-· 
zability) as follows: If (5.1) holds, then the tree approximation is not in an 
obvious conflict with the general requirement of S-matrix unitarity in a "ma­
ximal" el!ergy range (which corresponds to at worst logarithmic growth of 
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partial.wave amplitudes), Le. the tree approximation is then applicable for 
all "terrestrial" energies. 

The exposition of the following paragraphs is conceptually very close to 
refs. 114], !is] and [39] (the influence of the classic lecture notes (l81 was 
particularly stimulating) but in fact it is independent of these sources. 

IJ 	 v I~ I-:r 2 

e , 	 LI e 	 e
0( 

interm ed'tate states 
IV-W+ ii w-

Fig. 11. A connection between the imaginm'Y IJa1'l of a one·loop diagram for 
lhe pl'ocess vii -+ vii and the tree-level amplitude of the process vii -+ 

w- W+ in the naive model of weak interactions with cluL1ged IVn. 

5.2 	MechanislTIS of divergence cancellations and 
neutral vector boson 

Let us now consider again the process e- e+ -+ lV- W+ in the case when 
both vector bosons ~V± have longitudillal polarization. If one wants to eli· 
minate the leading (quadratic) divcrgences arising in the limit E -+ 00 in 
the weak and e1ectrolllil.gnctic cOlltributions to the corresponding tree-level 
amplitude (see Fig. 10 and the relations (4.33), (4.34)), one obviously has 
to postulate the exisLence of a new particle and correspollding interactions. 
We will a JJ7'iof'i restrict ourselves to particles with a lowest possible spin, 
i.e. 0, l or I and we will consider only the interaction terms satisfying the 
condition (see Appendix 

dim Lint $ ,1 	 (5.5) 
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so as not to introduce any other potential source of a non-renormalizable be­
haviour of Feynman diagrams in higher orders of the perturbation expansion; 
in other words, we will only solve the problems due to the presence of 
massive vector bosons. 

First let us consider postulating a (neutral) spin·O particle as an attempt 
to cure the quadratically divergent terms in the expressions (4.33) and (4.34). 
We will denote the corresponding (real) field as 1]. In order to be able to draw 
a Feynman diagram involving an exchange of the spin less particle contribu­
ting to the amplitude of the process (see Fig. 12), one has to introduce 
interaction terms of the type WW'1 and ee'1. It is not difficult to realize that 
the only possible choice preserving the condition (5 ..5) (as well as the Lorentz 
invariance) is thcn 

c 

11 

Fig. 12. The lowest·order Feynman diagmm fOl' e-e+ -+ W-W+ involving 
the exchange of a neutral spin·O padicle. 

(5.6) 

and 

Le~" ::: g~~"erel1 

where r is in general a comhination of the 15 and the unit maLrix and 
gWW'/l gee., are the corresponding coupling constants. It is important to 
notice that the coupling constant gWIV" is not dimensionless (contrary to the 
gee,,); one obviously has (d. Appendix G) 

LIVIV" 

[9WIVt)] = M 	 (5.8) 
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in units of an arbitrary mass. As a consequence of this, the diagram in Fig. 
12 can diverge at most linearly for E -+ 00 in the case of longitudinally 
polarized vector bosons, since the coupling constant gWW" compensates one 
of Lhe factors of m,J from W± polarizations; the contribution of Fig. 12 thus 
behaves at worst like O(gww'lE/mlv) in the limit E -+ 00. An exchange of 

pa,rticle is therefore not sufficient for the desirable compensation of 
divergences in (4.33) and (4.34). (Howeve!', such an exchange 

is able to suppress linear divergences which Illay eventually occur and it will 
play an important role laLer.) 

l~ w-

EO 

c+ w+ 

Fig. 13. l1te exchange of a hYJIothetical neutmi heavy in the process 
e-e+ -+ W-W+. 

As another alternative, let us now consider instead of Fig. 12 an exchange 
of a neutral spil1-~ particle, i.e. of a hypothetical "heavy lepton" EO. The 
corresponding diagram is shown ill Fig. 13 (d. the analogous Fig. 
The most interaction term producing the diagram in Fig. 13 is 
by 

£!~) = (hE~/JJCL+JRE~/I'Cn)W: +h.c. 

where the index L or R denotes the left-handed or right-handed component 
of the corresponding fermion field respectively and h.c. means the hermitian 

In contrast with the preceding case, the contribution of Fig. 13 
for longitudinally polarized vV± does contain terms quadratically divergent 
in the high-energy limit. The requirement of a compensation of quadratic 
divergences in the expressions (4.33) and (4.34) then yields the followill!1' 
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conditions for the coupling constants IL, JR (sec also 

e l _ -lfi 2 

1 

fh e l (5.10) 

The first relatioll ill (5.10) thus leads to a constraint for relative strength of 
weak and electromagnetic interactions, namely 

9 $ e..f2 1) 

One can see from (5.10) that the interaction of the heavy lepton EO "interpo­
lates" between the original weak and electromagnetic interaction (as we have 
anticipated in the preceding chapter) and in this sellse a unification of the 
Lwo forces is indeed realized. The condition (5.11) guarantees the existence 
of a r:eal solution of eq. (5.10) and thus it is natural to call it a "unification 
condition". An interesting consequence of the inequality (5.11) and of the 
general relation m?v = g2(4GF'V2t' (see (3.7)) is an upper bound for the 
W± mass: 

1roV'i) l 
mw $ GF 53GeV (5.12)(

In this way we could proceed ill eliminating systematically the diverging 
terms for all relevant scattering processes. It turns out that t.he alternative 
of heavy leptons leads indeed to the desired goal (without introducing new 
massive vector bosons)j within the indicated scheme one would thus arrive at 
a "minimal" rellormalizable model of this type which was originally invented 
by Georgi and G1ashow [41J and formulated as the corresponding non-abelian 
gauge theory with Higgs mechanism. However, such a model is - as we shall 
see later - in striking disagreement with experimental facts. The scenario 
of heavy leptons, though theoretically plausible (and even appealing) thus 
obviously docs not correspond (at least in its simplest version) to the real 
world. For this reason we will not consider this scheme furt.her, although from 
a technical point of view it. represents a remarkable and instructive example 
of a renormalizable model of the unification of weak and electromagnet.ic 
int.eractions (the interested reader may find further details in t.he 
paper [41J and also in [15J and 

Finally, we shall examine the last remaining alternative, i.e. the case whe­
re the "compensation" diagram for the considered process e- e+ -+ vV- ~,V+ 
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corrresponds to an exchange of a neu tral spin-l particle with nOll-zero mass 
exchange of a massless particle would lead to a new type of long-range 

force which is not observed in nature); this neutral vector boson will be 
denoted as Z. The corresponding diagram is depicted in Fig. 14. 

7'k 

Fig. 14. The exchange of a 7leutral vector boson in lhe process e-e+ ­
W-W+. 

LeL us first estimate the asymptotic behaviour of the contribution of 
14 for E _ 00 in the case when both vector hosons W± have longitudinal 
polarizations. The worst divergence might obviously arise from the term 
involving tlte longitudinal part of the Z propagator, i.e. from the part pro­
portional to ql'q". In the limit E 00 tltis term behaves in general like 
O(mz2mi1?mE:l) because one of the factors ql" ql' acts Oil the lepton ver­
tex and an application of the Dirac equation leads to a factorization of the 
electron mass (d. (3.4)). Thus, in contrast to the quadratically diverging 
expressions (4.3:3), (4.34), the contrihution of Fig. 14 may in general con­
tain a cubic divergence for E - 00. We have already encounLered a similar 

in the framework of the electrodynamics of charged IVB (d. the 
discussion around Fig. 6 in the preceding chapter). The leading divergent 
term in the contribution of Fig. 14 (and in a.1l the ollter diagrams which one 
must consider as a consequence of introducing the interaction H'WZ) can 
be eliminated by means of an appropriate choice of the interaction vertex 
\,VW Z in complete analogy with the case of the electromagnetic interaction 
WWi. Namely, the following statement is valid: 

potllcl'-like divergences an'sing in the high-ene7-gy limit in tree­
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level diagl'ams involving interaction vertices of the type WWZ vanish for an 
arbitrary combination of polar'izations of external W± and Z if and only if 
the trilinear vector-boson interaction WWZ is of the Yang-Mills type, i.e. if 
the corresponding interaction lagrangian has the form 

Cwwz = -igWwz(Zllw-Vallw: +W-IiW+vBIlZI' +w+I'z"a"W;) (5.13) 

where gwwz is a (real) coupling constant. 
A proof of this statement is briefly sketched in Appendix 1. However, for 

completeness let us add that e.g. in the considered case of the diagram in 
14 the would-be leading divergence is in fact suppressed not only for 

(5.13) but also for a wider class of WWZ interactions. (As we have seen 
in the preceding cha.pter, a similar situation occurs in some particular cases 
also for the electromagnetic interaction WWi.) The essential feature of 
the WW Z interaction of the Yang-Mills type is that this option eliminates 
potential leading divergences (which could not be compensated by another 
diagram) in all cases. In what follows we shall therefore consider only the 
W~'VZ inLeraction (5.13). 

Similarly to the electrodynamics of vector bosons W±, the interaction 
lagrangian (5.13) leads to the Feynman rule for the WWZ vertex in Fig. 15 

= gwwz V,\".,(k,IJ,Q) 

where the expression I), q) is defined the relation 

Fig. 15. Vertex corresponding to the trilinear interaction WWZ. 
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As we have already stated, the would-be cubic divcrgence in the conLri­
buLion of Fig. 11 can be made to vanish, so now we may consider a 
compensatioll of tile quadratically divergenL terms in (4.33) and (4.34). In 
the next paragraph we will formally define the corresponding inLeractions 
of the ncuLml vedor boson Z wiLh leptons ali(I we will investigate in deta,il 
Lhe cOIHlitions for e1illlination of Lhe leading power-like divergellces ill the 
expressions (/1.33), (1.:.H) alld also in tree-level diagrams for oLher processes. 
As we havc already indicated in preceding chapters, a systemat.ic elimination 
of the terms violating the tree-unitarity condit.ion (5.1) will ultimaLely lead 
to recovering the sLandard GWS Illodel [5, 6, 7] of eledroweak interactions; 
introducing a neutral IVD is all important step in this direction. 

5.3 	Electroweak iuteractions of the neutral ivector 
boson with leptons 

Before a detailed discussion of the process e- e+ -+ w-W+ I we will first 
come back to a simpler case mentioned in Chapter :3, namely to the process 
llii -+ w- W+. Let us consider (lgain longitudinally polarized vector bosons 
W±. We will attempt to compcnsate the quadraticallv (Iiw..."'pnt 

in the (3.25) for Fig. 3 by mcans of a 
exchange of the neutral massive vector boson Z in 
Uoth l'elevant tree diagrams of the process vii -+ W- W+ are shown in 
16 (for convenience we have also reproduced here Fig. 3). The 
ill Fig. 16 corresl>ollds to a new interaction (ill addition to 

type 
(",,,z = 9vvz ih1"II L Zit 	 (5.15) 

where gvvz is Lhe corresponding coupling cousta,nt (we still assume, for 
city, that lIeutrillo is massless and thereforc only the left-handed component 
of the corresponding field is introduced). Using (5.14), (H.25) and other 
standard rules one may write for the contribution of Fig. 16 

iMb i 3 ~gwZ 911'IVZ v(l}tp(l - 'Ys)lt(k) X 

_gPIJ +m-2qPq" p>' ,.1' 
X 2 Z1. l/"I,>.(q,r",l')---­

q tHz mWTnIV 

+ 0(1) 	 (5.16) 

G3 

w+ 
" kk l' 

c 
IJ 

T 
,/ \ r 

ii w­

(a) 

Fig. 16. (aJ The for vii -+ W- W+ c01.,.esponding f.o naive weak 
inlet'actio" with cha1yed I VB. (b) The "comJ}ensaiion 

eXChange of tlae neutral 

10ngu.U(Jlnal term from the Z propagator (i.e. the part proportional to 
does not contribul,e at all, irrespectively of the form of the WWZ 

interaction (Lhis is all automatic consequence of the assumption m", 0 and 
of Dirac equation). Using further the 't Hoon identity (4.19), the relation 
(5.16) may be easily recast as 

Mb 	 -2 
1 

2 g""z 9WlVZ v(l)p(l - 'Ys)u(k) +0(1) ( 5.17) 
111W 

A corresponding relation for the contribution of the diagram (a) in Fig. 
16 has been derived in Chapter 3 (sce (3.24) and (3.25)); one has 

2
9

.I\;fa 	 --2v(l)p(l -1's)u(k) +0(1) (5.18)
4mw 

Comparing the expressions (5.17) and (5.18) one immediately gels a condition 
for the compensation of power-like (quadratic) high-energy divergences in the 
tree-level amnlitude of the process vii -+ wiwt in the limit E -+ 00: 

+9wz gwwZ = 0 
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It is not difficult to verify that the condition (5.19) guarantees a compensation 
of power-like divergences in the amplitude of the considered process for any 
combination t>f W± polarizations (i.e. including the case when one of the 
final-state W's has longitudinal polarization while the second one is polarized 
transversely). 

e 

J. 

IJ 

w-
]J k 

l' 
l' 

e+ w+ 

(c) 

Fig. 17. The process e-e+ ---+ W-W+. (aJ The cOlltriblltion 

Cllrrent intcl·action. (bJ Elcctl'Omagnctic contl'iblltion. 

the nClllmllVB. 


\Ve will now examine in detail the tree-level amplitude for e- e+ ---+ 

w- W+. For convenience, all diagrams considered up to now (see Fig. 10 
and Fig. 14) are reproduced in Fig. 17. The "compensation diagram" ill 
Fig. 17(c) corresponds to a new interaction (in addition to (5.13)) of the type 
eeZ. For obvious reasons, we will parametrize the corresponding intcraction 
lagrangian by means of two cOllPlin!! constants which we denote for 
as 9L and gn: 

LeeZ = (gLh"'/'eL +gnen'1"en)Z" (5.20) 

As we have already stated earlier, asymptotic behaviour of thc contributions 
of Fig. 17(a), (a) ill the limit E ---+ 00 can be expressed by means of the 
formulae (see (4.33) and (4.34)) 

g2 m 
M" = --1-2v(l)p(1 - ,s)u(k) +0(-2 E) +0(1) (5.21) 

'mlV 1H,v 
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2e
Mb = -2 ii(I)pu(k) +0(1) (5.22)

7nw 

Using standard procedures (see Appendix J), from (5.20) one obtains easily 
the leading (quadratically divergent) asymptotic terms ill the contribution of 
the diagram 

1
A1c - 2m2 gwlVz gLv(l)p(l - ,s)u(k) 

tV 
1 

-21 gwwz gnv(l)p( 1 +:2 
nw 

(5.23)+ 0 (-;-E) +0(1)
1HW 

cxpressions for lhe next-lo-Ieading (i.e. linearly divcrgent) tcrms 
contained in (5.21) and (5.23) are given ill Appendix J and we will deal with 
them laler. From (5.21) - (5.23) onc immediately gets conditions for the 
compensation of leading divergences for E ---+ 00: 

+ e2 9L gwwz = 0 

e2 gn 9wwz = 0 (5.25) 

(Fulfilling these relations means that the would-be quadratic divcrgences va­
nish for any combinatioll of polarizations of the initial-state e- and e+.) 

The relations (5.19), (5.24) and (5.25) represcnt three equations for the 
four unknown coupling constants gwlVZ, 9""z, 9L and 9n if the e and 9 are 
assllmed to be known (these arc thc parameters of the origina'inaivc theory of 
clectro-weak interactions). However, now one can also consider the process 
;ie ---+ W- Z; in the 2nd order of perturbation expansion (with respect to 
the interaction terms iutroduced so far) it is described by the trce diagrams 
depicted in Fig. 18. 

For contributions of thc dia.grams in Fig. 18 OIlC gets (we givc here ex­
plicitly ouly the leading terms, quadratically divergcnt for E ---+ 00; for the 
sublcadin!! (linear) divergences see Appendix J). 

ggL I
Ma = - ro--v(l)p(1 - 1's)u(k) + +0(1) (5.26)

2v2 mw m z 

GG 



Mb = ggl/IIZ 1 - (5.27)2v'2 7nw z v(l)p(l -/s)u(k) +O(E) +0(1)
ln 

gglVlYz 1 _ ') ( ) Me = -~--v(l)p(l -')'s)u(k) + O(L~ +0 1 (5.28) 
'J.v2 mw 7lt z 

('.(~ 
Z w­

7'
k 11 

(. 

117'-I 

ii w­
(a) (b) (c) 

Fig. 18. Thc tliagmms of the process iie - W- Z. 

The requiremcnt of a cancellation of quadratic divergences in the sum of the 
expressions (5.2G) - (5.28) gives imllledialely tile conditioll 

- 9L +9wz - !/WWZ = 0 (G.29) 

As rega.rds the next-to-Ieadillg (linear) divergences, the results given in 
Appendix J show clearly t.ha.t thcse cannot be elimiuatcu in the case of the 
process e- e+ - WJ~wt by any pa.rticular choice of the relevalJt coupling 
constants. Indeed, the corresponding amplitude contains terms proportional 
to ii(l)u(k) and ii(l)')'su(k) (see (.J.1) and (J.5)), which for obvious reasons 
should be eliminated separately. A term of the first type (contained on­
ly in the contribution of Fig. 17(a) - see (5.1)) has an overall coefficient 
-g2m(4m~v )-1 which of course cannot be zero. Thus it is seen that in this 
case it will bc necessary to introduce an additional compensation diagra.m 
illvolvillg an exchange of a new (neutral) particle to tame such residual next­
to-leading divergences; as we have ~.lrcady relllarked earlier in this chapter, a. 
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spin-O particle is sufficiellt for such a purpose (d. the discussion around Fig. 
12). We will return to this illIportant problem in Section 5.5. In the case 
of the process lie - Wi ZL, all the linearly divergent terms in the corres­
pondillg amplitude are proportional to the expression ii(l)(l + /5)u(k) (see 
(.J.G), (.J.7) and (J.13)) and one may try to eliminate them by means of an 
appropriate choice of the ratio m~v/m1 (see (.1.13)) as a function of coupling 
constants. Such a cOJllpelJsatiolJ would be highly desirable since our aim is 
to construct a "minimal" model of weak and electromagnetic interactions 
satisfying the condition of tree unitarity. We have already observed in the 
previous example that. olle call not avoid introducing a lJeW lIeutral spin-O 
particle; if the linear divergence in the amplitude of lie - Wi Z[. did not 
valJish owing to a suitable relatiolJ among coupling constallts alJd masses, it 
would be necessary to illtroduce an extra spin-O particle (which would have 
to be charged in this case). 

At this point one could also naturally ask what is the situation in the 
case of other similar proccsses of the considered type, in particular e.g. 
e-e+ _ ZLZL or e-e+ - ZL'Y. We will discuss these problems ill more 
detail in Section 5.5; here let us only remark that the divergences arising in 
the corresponding tree-level amplitudes are at most linear (see e.g. (5.78)) 
and thus it is not necessary to introduce new direct interactions of three vec­
tor boson fields (this favourable circumstance is of course closely related to 
the fact that Z and 'Y a.re nClllml particles). 

For convenience, let tiS now summarize the equations for conpling con­
stants of the inicra.ctions WW Z, eeZ ami VIIZ, which follow from the requi­
rement of cancellations of the leading power-like (quadratic) divcrgences in 
the limit E - 00 ill the tree diagrams of processes vii - Wi IVt, e- e+ ­
Wi:'lY! and iie - Wi:' ZL. vVe have obtained four equations for the four 
unknowns 9IVWZ, gVllz, gL and gil (see (5.19), (5.24), (5.25) and (5.29)): 

-21 
g 

2 +gvvZ glVWZ o 
1 2 2-"2g + e - gL glVWZ o 

2 
e - gil 9IVWZ o 

-gL +gllllz - gwwz o (5.30) 

Moreover, the condition of a supposed compensation of linearly divergent 
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terms in the amplitude of the process ve -. Wi" ZL is (see (J.G), (J.7), (J.13)) 

m2) (5.31)9n - 9""Z +9wwz (1 - 2mt = 0 
First we will deal with solving the system of equations (5.30). From the 

first, the second and the fourth of them one can obtain easily 

l- e
2 = 9~vwz (5.32) 

An important constraint follows immediately from (5.32), namely (d. (5.11)) 

e<9 (5.33) 

(let us emphasize that the strict inequality must hold, since for e = 9 there 
is no solutioll of the system (5.30)). An interesting consequence of the in­
equality (5.33) and the relation (3.7) is a lower bound for W± mass (d. on 
the other hand (5.12)): 

tnw > ( 7rQ ) tG V2 ~ 37GeV (5.34) 
F 

The inequality (5.33) is a necessary condition for the existence of a real 

solution of the system of equations (5.30) and it is therefore natural to call 

it a "conditioll of unification" (of weak alld electromagnetic interactions) in 

analogy with the relation (5.11). The inequality (5.33) thus represents a 

coudition specific for the model involvillg a neutral IVB. If (5.33) holds, it 

is easy to find out that the system (5.30) has just two solutions which differ 


. trivially by an overall sign; however, such a difference does not lead to any 

physical consequences and thus we conventionally choose the solution for 

which (see (5.32)) 9wwz = +v'92 - e2 • Theil one has 

29wwz ../92 - e

9
2 

9""Z 2~ 
-tg2 + e2 

9L v'g'l - e2 

2e
9n (5.35) 
~ 
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In the expressions (5.35) (similarly to (5.10)) a "unification of weak and 
electromagnetic interactions" is manifest, in the sellse indicated at the end 
of Chapter 4: The coupling constants for interactions of the neutral vector 
boson Z are non-trivial functions of the e and 9, i.e. of the parameters corres­
ponding to the original electromagnetic and weak interaction in (4.26). Thus 
it seems natural to introduce the term "electroweak interactions" (which by 
1l0W is standard) for such a unification of weak and c\ectromagnetic interac­
tions; this term was originally coined by A. Salam in 1980 and we will use it 
hereafter. 

The solution (5.35) may also be parametrized in a somewhat different 
way; in view of the validity of (5.33) it is possible to introduce an angle t?w 
(the Weinberg angle or the "weak mixing angle") such that 

e 
sint?w=- (5.36) 

9 

and 0 < t?w < I. The coupling constants in (5.35) may be then expressed 
in terms of 9 and t?1\': 

9wwz 9 cos t?w 
1 9 

9""z 2 cos t?w 

9L 
9 1 2

--(--+sin t?w) 
cos t?w 2 

9n 
9 .--t?-Slll2 t? 

W (5.37) 
cos W 

One should emphasize that the results (3.35) or (5.37) resp. are identical with 
the expressions obtained for the corresponding coupling constants within the 
framework of the standard formulation of the GWS model (where these follow 
from the principle of non-abelian SU(2) x U(I) gauge invariance) . 

It is in order to introduce here the usual terminology: The expressions 
(5.15) and (5.20) obviously represent interactions of the neutral IVn with 
"weak neutral currents" (in contrast to the original weak interaction of char­
ged IVB with charged currents (:3.1 )). As we have remarked earlier, the 
electromagnetic current is in this sense also neutral. In what follows we will 
commonly use the standard term "neutral currents" just in connection with 
interactions of the type (5.15) and (5.20). 
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Let liS remark that. some experimenta.l evidcnce for the neutral currents 
has been firsl observed in 1973; their properties predicted by the GWS theory 
have been confirmed decisively in 1978 and repeatedly in the following years 
(see [42]). For some aspects of the neutral-current phenomenology sce also 
UIC problem 5.16. 

We shall IIow examine ill more detail the condition (5.31). Substituting 
for the coupling constants ill (5.31) the corresponding expressions (5.35) or 

resp., one finds that there exists indeed a l,osilive solution for m~v/m~ 
existellce of which has not been obvious a priori): 

2 2 

7HiV 1 - =- (5.38) 
92m~ 

or, uSlIlg (5.36) 
ntw =cost?w (5.39)
mz 

The result (5.38) or (5.39) resp. just represents the famous relation for the 
(VB masses, first derived by Wcinberg [7]. The standard derivation [7] is 
based on .Ui applica.tion of the Iliggs mechanism HO} within the framework 
of the corresponding non-abelian gauge Lheory. III the (by now conventional) 
formulatioll [7] one has to introduce specific interactions of spin-O fields and 
the rclatioll (5.39) follows from tI. "minilllal" realization of the Higgs medla­
nisll1 (which leads to the existence of a single physicailleutral scalar particle). 
The derivation of the relation (5.39) presented here is remarkable in that for 
its pll1'pose it has 1I0t been necessary to illtroduce any scalar particle and 
the corresponding interactiolls. Frolll our point of view, the relation 
is a consequence of the rcquirelllcllt of complete c1illliuatioll of power-like 
divergences ill the tree-level amplitude of the process lIe -+ W Z in the limit 
E -+ 00; in particular, it follows from a condition of the compensation of 
some ncxt-to-Ieading (linear) divergcnces, provided that one wauts to avoid 
introducing physical charged spin-O partides also e.g. [11]). 

From (3.7), (5.36) and (5.39) One gets easily the standard formulae [7} for 
masses of the tv and Z: 

'Ira ) ~ 1 mw -- --- (5.40)( GpV2 sin t?w 

7Hz 
'Ira )~_ 

( GpV2 sinl1wcost?w 
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The relations (5..10) and (5,41) dearly show that admissible values of IVD 
masses are bounded from below; we have already mentioned the lower bound 
{or "'IV earlier (5.34» and from (5.41) we get one for the 7Hz: 

mZ>2(~)l . (5.42)GpV2 = 74 GeV 

It should be stressed that the formulae (5.40), (5.41) give a predictioll for the 
l'V and Z masses, siBce the parameter t?IV may be determined experimentally 
e.g. from a study of fcrmion scattering processes mediated by neutral current 
interactions of the type (5.15) and (5.20). In this context, the essential point 
is that one only has to know the data for relatively low energies (i.e. for E « 
m/vB). The experimelltal value of the parameter sia2t?w is approxima.Lely 

si1l2 t?w == 0.23 (5.43) 

From (5.40), (5.41) and (5.43) then follow predictiolls 

tnw == 77 GeV 7Hz == 88 GeV (5.44) 

The experimental dctermiuatioll of the sin2t?w and precise predictions for 
IVll masses are discussed ill detail e.g. in [,12] (see especially the review 
by R. Peccei). The experimental discovery of the particles W± and Z with 
predicted properties (see {43J) was a triumph of the GWS theory. 

Let us now briefly summarize the results we have a.chieved up to now. 
The starting poillt of our road tuward a theory of clectroweak interactions 
may be written as (cf. (4.26), (4.27» 

I' I' ,+(em) r I' + 
J....illl = J....cc + -'-'lcplo.1 + -'-'ww.., + J....ww..,.., .•. (5.45) 

where LCC is the lagrangiall of the original wea.k interaction (the symbol CC 
stands for charged currents), the other three terms in (5,45) correspond to 
electromagnetic interactions and tlIC sYll1bol )) ... " represellts the envisaged 
"missing links" of the e1ecLroweak theory. Instead of (5.'15) we can now write 

[, [, dent)
int:::: CC + [,

NC + lepton + + [,wwz + ['ww..,.., + ... (5,46) 

where [,NC is the interaction of weak neutral lepton currents (i.e. the sum 
of expressions (5.15) and (5.20» aud the interactioll term [,\Vwz is given 
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by the expression {5.13)j the relevant coupling constants are given by (5.36) 
and (5.37). The symbol" ...n in (5.'16) indicates that it will be necessary to 
introduce further iuteraction terms for suppression of a "bad" high-energy 
behaviour of some tree-level amplitudes; for example, in the amplitude of the 
process e- e+ ---.. wiwt there still remain some next-to-leading divergences, 
namely the terms growing linearly with E ---.. (x). Furthermore, as we have 
seen ill Chapter 4, severe problems with power-like growth at high energies 
show up in the electromagnetic contribution to the WW ---.. WW scattering 
amplitude. Now we may also consider a contribution of the Z-exchange 
to this process and, moreover, one has to consider processes of lhe type 
WW ---.. ZZ and WW ---.. Z, where one may expect highly divergent high­
energy behaviour as well. Interactions in the sector of vector bosons are 
discussed ill tlte next section. 

5.4 Sector of vector bosons 

First we shall examine in detail the tree-level scattering amplitude for 
WW ---.. WW. As we have already noticed in the preceding section, in a 
theory with the interaction lagrangian (5.46) olle has to consider, beside tIle 
electromagnetic cOlltribution (Fig. 7), also the diagrallls shown in Fig. 19. 

w- w­ w- w­

1) 

" 
w- \111- W- W­J 

(a) (b) 

Fig. 19. T,'ee diagmms o/the p1'ocess WW ---.. WW involving the Z exchange. 
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We will discuss the ca.''1e where all the external lV's have longitudinal pola­
rizations. For a general WW Z interaction, contributions of the diagrams in 
Fig. 19 might behave like mw"mz2 E6, since each longitudinal polarization 
contributes a factor of m lv1 through its leading asymptotic term and the lon­
gitudinal part of the Z propagator contains a factor of mz2

• However, in 
Section 5.2 we have already fixed the interaction term LwwZ in (5.46) to be 
of Yang-Mills type (sec (5.13), (5.14)). Using the't lIoofL idcntity (4.19) it is 
then easy to show that the contribution of longitudinal part of the Z propa­
gator vanishes identically even for an arbitrary combination of polarizations 
of the external W's. (For completeness let us add that the above-mentioned 
would-be leadilig divergence is in fact suppressed in the considered particu­
lar case WLWL ---.. WL WI, for a broader class of WW Z interactions - d. the 
discussion aronnd the relation (4.23) in Chapter 4 a.nd see also Appendix I.) 
A non-trivial contribution of the diagrams in Fig. 19 thus comes only from 
the diagonal part of the Z propagator and the result is thus ana.logous to the 
case of electromagnetic interaction (i.e. to the photon exchange in Fig. 7). 
For the contribution of Fig. 19 one may thus write (d. (4.24) and Appendix 
J) 

Mf) +MiZ
) 

1 
1 2.5 2)+0(£,2)+0(1) (5,4 7) grVIVZ- (l2+u2 

41/lw 

Within the framework of a provisional theory described by tile lagrangian 
(5,46), the full tree-level amplitude for WLWL ---.. WLWL is of course obtaine(1 
by summing the electromagnetic all(1 Z-exchange contributions, Le., it is 
given by the sum of (4.24) and (5.47). Using the first of the relations (5.35) 
(see also (5.32)) one gets for the full contribution of Fig. 7 and Fig. 19 

1 2Mh,Z) l-4-(t2+u 282 
) +0(E2) +0(1) (5.48)

4mw 

Now it is obviolls that within a model described by (5.'16) the leading quartic 
divergence in (5.48) could be eliminated ollly by a trivial choice g = 0 (which 
is lInacceptable). Thus we mllst add new iuteractions to the terms already 
present in (5,46), which would give a non-trivial tree-level contribution to 
the scattering amplitude of WLWL -t WLWL, diverging like E't in the high­
energy limit and cancelling the leading divergence ill (.'5,48). It is not difficult 
to realize that the only possibility is to introduce a direct self-interaction of 
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four vector fields W (an interaction of vector bosons with a scalar field is of 
no use here, as it is not sufficient for the suppression of quartic divergences). 
Imposing the constraint (5.5), it is clear that terms involving derivatives of 
vedor fields are not admissible. The most general interaction of required 
type must obviously have tlte form 

CWWIVIV a(IV/~W+/')(W;W+") +b(IV,~W-/I)(lV:W+II) (5,49) 

where a and b are real constants. III the first order of perturbat.ion expallsion 
the interaction (5.'19) yields a contribution to the scattering amplitude or the 
process H'/)V1, -+ WdV", which for E -+ 00 lIlay be written as (see the 
problem 5.3) 

2M(HV) = a_ 
l
_
1 

(t2 + u ) +b~S2 + O(J~2) +0(1) (5.50)
2mw tnw 

Now 	it is obvious that the leadin,g high-energy divergences in (5.48) and 
(5.50) llIutually Cltllccl if and olliv if 

1 2 1 1 
a = -"29 , b 29 	 (5.51) 

and the sought lagrangian for a direct interaction of four W's thus has the 
form (sec (5.'19), (5.51)) 

12 2 +2 12 .cwwww 29 (W-) (W) "2 9 ptV- (5.52) 

(in (5.52) \lie of course lise the standard shorthand notatioll for a Lorentz 
scalar product and for the square of a four-vectorj such a notation will be 
used frequenLly in similar expressions in .what follows). It is interesting to 
notice that coupling constants in the contact interaction of four W's (5.52) 
are proportional to li one should keep ill mind that the 9 is originally 
the coupling COllsta.llt for the interaction of the ltV wiLh charged fermion 
currents (which do Hot play any role in the considered process WW -+ WW). 
This remarkable and at first sight rather unexpected correspondence between 
two completely different interactions is of course a technical consequence 
of repeated application of divergence cancellation conditions for tree-level 
scattering amplitudes of several distinct processes. Within the framework of 
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the traditional approach such relations arise naturally from the structure of 
non-abelian gauge theory (see e.g. [25} etc.). 

Tree-level Feynlllan diagrams of the process WW -+ WW in Fig. 7, 
Fig. 19 alld tile diagram corresponding to the contact interaction (5.52) are 
collected in Fig. 20. For the full contribution of these diagrams (involving 
longitudinally polarized W's) olle gets after a rather tedious calculation (see 

Lhe problcm 5.4 and Appendix J) the resulL 

Mcs +M6 +Me -l-4 +0(1)S1 	 (5.53)
tnw 

It is obvious that the remaiuing divergence in (5.33) cannot be eliminated 
without adding a new term to thc interaction lagrangianj takiug into account 
th;Lt this divergence is ollly quadratic, one could attempt to compellsate it 
by means of an additional diagram involving the exchange of a (lleutral) spin 
- 0 particle, i.e. by introducing a new interaction of the vector field W with 
a scalar ficld. We have encollntered an analogous problem in the preceding 
section ill the case of a different process (d. the discussion following the 
relation (5.29)). The problem of suppressing such "residual" divergellces 
in (5.53) and in the other tree-level amplitudes will be treated in detail ill 
Section 5.5. 

w- w­W- w­
l' 

)' 	 " 
w-w-w- w­w­

(a) (b) 	 (c) 

Fig. 	 20. Tree-level tliagmms for WW -+ l"'W corresponding to the tri­
li71car inlemclious W IV '"1, WW Z and the direct contact inleraction 
WWWW. 
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"Ve willllow discuss other binary processes in the sector of vector 
i.e. processes of the type \II V2 -+ V3 114, where \Ii, i 1, ... , 4 generally denote 
W±, Z or i. If we take into account the interactions introduced up to now, 
then on the tree level there occur only processes WW -+ ii, l-V\,y -+ ZZ 
and WW -+ Zi (the first of them has been discussed in detail in Chapter 4). 
First let us consider the process W-W+ -+ ZZ. Relevant tree diagrams are 
shown in Fig. 21. We will consider again the case that all four external vector 
bosons have longitudinal polarizations. Similarly to the case of diagrams in 

19 it is easy to show that the leading (quartic) divergence comes only 
from the contribution of the diagonal term in the HI propagator. In the 
high-energy limit we then obtain for diagrams in Fie:. 21 

] 2 1 2 2 2 (2) ()M It +Mb --gIVIVZ-2--2 (t + tt - 28 ) +0 E +0 1 (5.51) 
,. 1H t7I

lV Z 

w- Z w- z 
p 

l' 

w+w+ Z 

(b) 

Fig. 21. T,'ee-levcl diagmms for the process l-V-IV+ Z Z m'ising lhe 
trilinear' iuleraclion WWZ. 

where the coupling constallt gwwz is of COIlJ'SC given (or ([;.37) 
For a compensation of the leading divergence in we introduce 

a new contad illteraction of four vector fields 

CIVIVZZ = c(W; ZI')(lV,; Z") +d(WI~W+I')(Z"Z") 
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where c, d are real constants; the option (5.55) obviously represents the most 
general interaction lagrangian with required properties. In the first order 
of perturbation expansion the interaction (5.55) gives rise to the Feynman 
diagram shown in Fig. 22. For the contribution of this graph in the limit 
E -+ 00 one then gets (see the problem 5.5) 

M WWZZ 1 1 [( 2 +2ds 2] +O(E2) + (5.56)= --2--2 C I +
41nw 1nz 

lJ!+ 

Fig. 22. The lowest-order diagram for w- W+ -+ Z Z cor1'esponding to the 
dil'ecl interaction of fotH' veclor fields. 

The condition of mutual compensation of divergences ill the ex­
pressiolls (5.54) and (5.56) is thus c(fuivalent to 

2 
C gWI\'Z, d -9f"wz (5.57) 

We have th1ls fixed another piece of the necessary direct interaction of four 
vector bosons, namely 

LWWZZ g~l'wz[(W-. Z) (W-. (5.58) 

However, introducing the interaction term (5.58) is not enough to suppress 
also quadratic divergences ill the tree-level amplitude of wiwt -+ ZLZLi 
as in all nl'eViOllS cases, we defer this problem to Section 5.5. 
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w- "( w- z 

,w+ Z W+ 

(a) 

Fig. 23. Tree-level diagrams oJ the l)roccss W-W+ ~ Zi adsiug b'om 17'ili­
neal' interactions WHIZ and WWy. 

we shall examine the scattering amplitude of the process W-l'V+ ~ 
Z"(. The relevant tree diagrams corresponding to trilinear interactions of the 
corresponding vector fields are shown ill Fig. 2:J. Similarly to the preceding 
cases let liS consider a configuration ill which all massive vector bosons W± 
alit! Z have longitudinal polarizations. The leading divergelltterin appea­
dug ill t,he corresponding scattering amplitllde for B ~ 00 then 'behaves like 
miiim:z1E3 and it comes from the diagonal part of the W propagator; its 
longitudinal part llIay only conLribute to a ncxt-to-le<1I;,1ing (Iinea.r) divergen­
ce, as one lllay easily find by means of the 't lIooft identity (4.19). A direct 
evaluation of Lhe diagrams in Fig. 23 leads to the 

M(1 +Mb gWIV"'/gWIVZ-
1
-ls(l'.c·(p)) - (l.l·)(k.c·(lJ») - (k.r)(l.c·(,J))]21/tw7nz . 

+ O(E) +0(1) (5.59) 

wherc We have used the symbol gWIY., ror the e1ectromaghetic coupling COll­
slant e and c(I)) stands for a photon polarization (which is transverse, of 
course). To compensate the leading divergence ill (5.59) we havc to introdu­
ce another cOllt~d interadion of the [our vedor bosons W±, Z and ,; the 
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most general form of such an interaction satisfying the usual requirements is 

.cWIVZ., J(W;W+P)(Z.,A") 

+ g(W; Z")(W.,+ A") (5.60) 

+ ll(W; A"')(W.,+ Z") 

wllcrc J, 9 and It arc real constants. 
In the first order of perturbation expansion the interadion (5.60) yields 

the Fcynman diagram shown in Fig. 24. 

W+ 

Fig. 2,(. The lowest-order diagram oJ tile pl'ocess W-W+ ~ Z, correspon­
ding Lo a direct inlemclioll oJ the Jow' VCct07' fields. 

Its contribution to t.he scattering amplitude of the process wiwt ~ ZL, 
may be written in the high-encrgy limit as 

M(IVIVZ.,) -/- [-2
1 

Js(l'.c*(p)) +g(k"')(l.c*(p») + h(l.,')(k.c*(p))]
7n lVmz 

+ 0(E)+0(1) (5.61) 

Leading divergences in (5.59) and (5.61) thus cancel each other if and jf 

J -291V1V.,9WWZ, 9 = It = gWIV.,gWWZ (5.62) 
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The needed "compensating" direct interaction WWZ1 is thus described by 
the lagrangian 

£wwz.,. gww.,.gwwz[-2(W-. W+)(A. Z) + (W-. Z)(W+. A) 
+ (W-. A)(W+. Z)J (5.63) 

It can be shown that by adding Fig. 24 to the diagrams in Fig. 23 the non­
leading high-energy divergences are in fact cancelled as well; more detailed 
comments on this remarkable fact will be given in the next section. 

The following remark concerning the interaction WW11 is also in order 
here: In Chapter 4 we have obtained a direct interaction of this type auto­
maticallyas a part of the U(1) gauge invariant electromagnetic interaction of 
charged vector bosons W± (see (4.8), (4.1O))i from the considerations presen­
ted in this section it is clear that the corresponding term £wwn could also 
be derived from the requirement of divergence cancellations in the diagrams 
shown in Fig. 6. 

Our results concerning the direct (contact) interactions of four vector 
bosons W±, Z or 'Y may be summarized as follows: According to (4.10), 
(5.52), (5.58), (5.63) and using the relations (5.36), (5.37) w~ have 

.cww.,..,. 

.cwwww 

.cwwzz 

.cwwz.,. 

-lsin2t?w [CW-. W+)A2 - (W-. A)(lIV+. A)] 

~g2 [(W-)2(W+)2 - (W-. W+)2] 

_g2cos2t?W [(W-. W+)Z2 - (W-. Z)(W+. Z)] 

g2 sin t?w cos t?w[-2(W-. W+)(A.Z) + (W-. Z)(W+. A) + 
+ (W-, A)(W+. Z)J (5.64) 

The expressions (5.64) may be conveniently rewritten in the following com­
pact form: Denoting by .cvvvv the sum 

.cvvvv = .cwwww +£wwn + .cwwzz +£wwz.,., (5.65) 

then it holds 

£vvvv _g2[~(W-.W+)'l _ ~(W-)2(W+)2 + (WO)2(W-.W+)_ 

(W-. WO)(W+. WO)], (5.66) 
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where we have also introduced a new shorthand notation for the relevant 
combination of neutral vector fields: 

w:: = cos t7wZ" +sin t?wA" (5.67) 

Now it is also possible to recast the trilinear interactions of vector bosons in 
a more compact form; defining £vvv as the sum 

£vvv = £ww.,. +£wwz (5.68) 

then using (4.11), (5.13), (5.36), (5.37) and the definition (5.67) one has 

£vvv -ig(WO"W-1I8"W: + W-"W+1I8"W~ + W+"Wov 8"W;) (5.69) 

Instead of the interaction lagrangian (5.46) one may thus write 

.cinl = .cee + .cNe +.c1:;:;ln +£vvv +.cvvvv +... ,(5.70) 

The symbol" ... " in (5.70) means the remaining "missing links", i.e. the 
interaction terms which we will have to introduce for a compensation of non­
leading high-energy divergences which still occur in some tree-level amplitu­
des, as e.g. in (5.53) etc. These residual divergences and their elimination is 
the subject of the next section . 

5.5 Residual divergences and neutral scalar boson 

Let us return to the formula (5.53) which expresses the contribution to 
scattering amplitude of the process WL WL -t WLWL corresponding to the 
diagrams in Fig. 20. As we have already indicated in the preceding section, 
we will now try to eliminate the remaining quadratic divergence in (5.53) by 
introducing a new interaction of the W's with a neutral scalar field (which 
we denote here by 71). It is not difficult to realize that the only possible choi­
ce (satisfying our standard requirements) is represented by the interaction 
lagrangian 

.cWW'1 =gWW" W;W+"7} (5.71) 

(cf. also (5.6)). Tree diagrams for the process W-W- -t W-W- corres­
ponding to the interaction (5.71) are shown in Fig. 25. As we have already 
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stated earlier, the coupling constant gWW'1 in (5.71) must have dimension of 
mass (see (5.8). Then it is also obvious that the contribution of diagrams 
in Fig. 25 to the scattering amplitude of WiWi ..... WiWi may involve 
at most quadratic divergence in the limit E ..... 00. Indeed, a corresponding 
asymptotic term may be estimated in this case as g~W'1mW'"E2. Direct eva­
luation of the diagrams in Fig. 25 for longitudinally polarized W's leads to 
the result (see the problem 5.7) 

w- W- W-, W­
~ 
k·· 	 I lJ · 

I 
I 

71 	 I 
I 
I 
~ 

W­W­w- W-

Fig. !25. Tree-level diagrams of the process W-W- ..... W-W- involving the 
exchange of a scalar boson TJ. 

M('1) + M('1) =g~w _s_ + 0(1) (5.72) 
II b "mtv 

From (5.53) and (5.72) it is clear that the desired cancellation of residual 
quadratic divergences ill the scattering amplitude of WiWi -p WiWi 
occurs if and only if 

gwW'1 = gmW 	 (5.73) 

This result is another remarkable example of the fact that offending high­
energy divergences arising in the individual diagrams may indeed be cancelled 
in the full tree-level scattering amplitude if the relevant coupling constants 
are judiciously chosen; at the same time it is also obvious that within our 
"minimal strategy" such a choice is essentially unique. Eq. (5.73) represents 
a new non-trivial relation among coupling constants and masses in different 
sectors of the model we are building; the existence of many such relations is 
a typical feature of the theory of electroweak unification. 
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From what we have already said earlier in this chapter it is obvious that 
the new interaction term (5.71) will also play an important role in scattering 
amplitudes of some other binary processes. In particular, we shall now return 
to the process e-e+ ..... Wiwt. For the total contribution of the diagrams 
that we have considered up to now (see Fig. 17) we obtain (using (5.21), 
(5.22), (5.23), (J.l), (J.5) and (5.36), (5.37)) the expression 

g2
Mea +Mb +Me = --42 mv(l)u(k) +0(1) (5.74) 

mw 

(where the relevant four-momenta are of course denoted according to Fig. 
17). It is interesting to notice that terms proportional to v(1}1&u(k), occurring 
in the individual diagrams (a) and (c) (see (J.l), (J.5)) cancel in their sum 
as a consequence of the relations (5.36), (5.37). Now we may try to elimi­
nate the remaining linear divergence in the expression (5.74) by means of a 
"compensation" diagram involving an exchange of the scalar boson "I which 
we have already discussed briefly in Section 5.2 (see Fig. 12 and the conside­
rations following the relation (5.8)). Of course, for this purpose one also has 
to introduce an interaction of e* with the scalar field "Ii from the structure 
of the residual linear divergence in (5.74) it is seen that it is sufficient to 
consider an interaction of the type (d. (5.7)) 

(5.75)Cee '1 = gee"eeTJ 

In the case of longitudinally polarized W's one then gets for the contribution 
of Fig. 12 a result (see the problem 5.8) which in the high-energy limit may 
be written as 

1 
(5.76)= - 2m~, gee"gWW'1v(l)u(k) + 0(1) 

where gww" is of course defined by (5.73). Required cancellation of the 
linearly divergent terms in the sum of (5.74) and (5.76) then occurs if and 
only if 

9 	m (5.77)gee" = -2";; 
The results (5.73) and (5.77)) reflect one remarkable common feature of tri­
linear interactions of the scalar field '1: A corresponding coupling constant 
is always proportional to the mass of the particle interacting with the 1]. 

Within our approach, such a dependence is obviously related to the fact that 
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interactions involving the scalar field are introduced to compensate non­
leading high~energy divergences, which in comparison with leading terms con­
tain extra factors of M or M2 resp. where M is a mass. (Let us remark that 
within the framework of a gauge theory of electroweak interactions a simple 
alternative interpretation of the above-mentioned relations follows naturally 
from the Higgs mechanism, which generates masses of vector bosons and fer­
mionsj this traditional formulation can be found in any standard textbook 
or monograph see e.g. [17], [21J, [25J etc.) 

We shall now examine other binary processes for which there are still 
power-like high~energy divergences in the corresponding scattering amplituo 

des. In Section 5.3 we have already mentioned that the tree-level scattering 
amplitude for e+e- -+ ZLZL contains a linear divergence if one takes in­
to account only the diagrams shown in Fig. 26(a), (b). Indeed, a direct 
computation of the diagrams (a), (b) gives the result (see the problem 5.9) 

Ma +Mb = -CgL - gR)2 n: v(l)u(k) +0(1) (5.78) 
mz 

Z ee Z e­, 
~ k It ~P k\ !Pj 

11 
e , h \.----­

-I -~ 
e+e+ Z 

(a) (b) (c) 

Obr fJ6. Tree-level diagrams for e+ e- -+ Z Z. 

where gL,gn are coupling constants for the interaction of the Z and neutral 
currents, given by the corresponding expressions (5.35) or (5.37) resp. Let us 
emphasize that quadratic divergences contained in the individual diagrams 
(a) and (b) automatically cancel in their sum (the very existence of the 
crossed graph (b) is of course due to the fact that Z is neutral); such an effect 
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is in a sense analogous to the mechanism of divergence cancellations in the 
electrodynamics with a "heavy photon" - cf. the problem 3.7. We may now 
try to compensate the linear divergence in (5.78) by means of the diagram 
(c) in Fig. 26. One vertex of this diagram corresponds to the interaction 
(5.75) while an appropriate interaction producing the other vertex has yet to 
be introduced. It is clear that in analogy with (5.71) one may write for the 
corresponding lagrangian generally 

.czz., =gZZ.,Z~Z~" 

For the contribution of the diagram (c) in Fig. 26 one then gets easily 
the problem 5.10) 

1
Me = -geeflgZZ'I/-2 v(l)u(k) +0(1) (5.80) 

mz 

where the coupling constant is of course given by (5.77). Using (5.37) one 
gets 

g2 
(5.81)= 4cos2 t?w' 

and one thus finds immediately that linear divergences in and (5.80) 

1 
gzz = ---gmz (5.82) 

'I 2cost?w 

(in deriving (5.82) we have also used the relation mw = mz cos t?w - see 
(5.39». 

Let us note that lhe interaction term (5.79) we have just introduced 
should now also lead to a compensation of residual quadratic divergences 
e.g. ill the scattering amplitude of the process Wiwt -+ ZLZL discussed 
in the preceding section (d. the considerations following eq. (5.58)); more 
precisely, such an automatic cancellation of divergences would be highly de­
sirable in order not to have to introduce further interaction terms. One may 
verify directly that the above-mentioned elimination of quadratic divergences 
indeed occurs. However, the corresponding (rather tedious) calculation will 
not be performed here; instead of that we shall comment on this remarkable 
fact from a more general point of view later in this section. 
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Introduction of the scalar field 7} and the corresponding interactions may 
of course lead to new power-like divergences in the limit E -+ 00, i. e. 
one may anticipate divergent terms in tree-level scattering amplitudes of 
processes which we have 110t considered so far. Indeed, one also pas to 
investigate processes involving real scalar bosons ill the initial or final state 
(note that in the diagrams considered up to now the '1 always entered as a 
virtual exchanged particle); it is clear that for the tree diagrams involving 
external lines of scalar bosons and massive vector bosons one may in general 
expect - as a consequence of the by now familiar mechanisms a divergent 
behaviour in the limit E -+ 00. In particular, we shall now examine the 
process of production of a pair of scalar bosons in the annihilation of a 
of longitudinally polarized ~V's, i. e. the process Wi~Vt -+ 1111. In such 
a case the interaction term (5.71) leads to the tree diagrams shown ill Fig. 
27 (a), (b). For the total contribution of the diagrams (a), (b) in the limit 
E -+ 00 one may then write (see the problem 5.11) 

w- 11 w­ 1/ 11-.,....-­ I /
1) \ f{ p /"p:

/ .\ / 
\ / / 

X '­/ \
/ , " '- l'\1' 4.,-..,..--l' 

1/ 1/ w+ 11w+ w+ 
(a) (b) (c) 

Fig. 27. Tree-level diagrams of the p1'Ocess W-W+ -+ '/11. 

g'l­
M o+Mb=--42 s+O(I) (5.83) 

mw 
For a compensation of the quadratic divergence in (5.83) one has to intro­
duce a new interaction term; obviously, the only possibility (satisfying usual 
conditions) is represented by the expression 

(5.84)CWW"" = 
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which in the lowest order of perturbation expansion produces the diagram in 
Fig, 27(c). In the case of longitudinally polarized W± it is easy to get for 
the contribution of this diagram 

1
Mc=gWWrlfl-28+0(1) (5.85) 

mw 

The requirement of divergence cancellation between (5.83) and (5.85) is the­
refore equivalent to 

1 :I (5.86)gww"" = 4'g 

;)lIllHarly one may consider the process ZLZL -+ '111 ; for a compensation 
of quadratic divergence in tree-level diagrams descending form the trilinear 
interaction (5.79) it is necessary to introduce a direct contact interaction 
ZZ'17} , 

CZZ"" = 9ZZ'I'IZ/lZ"7}2 (5.87) 

and the requirement of divergence cancellation ill the corresponding diagrams 
(which can be obtained from Fig. 27 by replacing all W's with Z's) yields, 
using (5.82), the following relation for the coupling constant gZZ'l'l: 

1 g2 
(5.88)gzz"" = 8' cos2 'l?w 

Now it is in order to summarize briefly the results we have obtained so far. 
Dy means of a systematic elimination of high-energy power-like divergences 
ill tree-level scattering amplitudes of some selected binary processes we have 
arrived at the interaction lagrangian 

Cint CeG +CNG +C~:;;n +CVVV +CVVVV +CWW" 

+ CZZ'l +CWW"I/ +CZZ'l'l +Cu." +... (5.89) 

(see (5.70), (5.71), (5.75), (5.79), (5.84) and (5.87) where the coupling con­
stants of the newly introduced interactions (i.e. of those which are new with 
respect to (4.26» are intertwined via many remarkable relations (see (5.36), 
(5.37), (5.73-), (5.77) etc.). The symbol " ... " denotes again further possible 
terms which should eventually be included, for the theory of electroweak inte­
ractions to be complete (Le. so that it would satisfy the condition (5.4) or at. 
least the tree-unitarity criterion (5.1) in all cases). It should be emphasized 
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that some terms, which a priori are not excluded by the requirement of Lo­
rentz invariance and by the condition dimCint ~ 4 (see (5.5», are manifestly 
absent in the lagrangian (5.89). For example, in the Cvvv there is no ZZZ 
term and similarly the Cvvvv does not incorporate any term of the type 
ZZZZ. Within our approach, the absence of such terms is related to the 
fact that for some processes, certain divergences cancel automatically (e.g. 
for e-e+ -+ ZLZL or e-e+ -+ ZL"/ - see (5.78) and the problem 5.12) and the 
above-mentioned "exotic" interaction terms are simply not necessary. (Let 
us remark that the absence of a ZZ"/ term is of course also completely na­
tural from the physical point of view, as its existence would mean a direct 
electromagnetic interaction of the neutral Z.) Potentially interesting (Le. 
potentially"dangerous") binary processes which we have not considered in 
detail and the corresponding tree-level scattering amplitudes will be discussed 
later in this section; the above remarks are pointing toward a preliminary 
conclusion that for the elimination of unacceptable high-energy behaviour 
of tree diagrams of binary processes suffice the terms given explicitly in the 
lagrangian (5.89). 

However, we are still not at the end of our road. We may also consider the 
remaining two interaction terms of renormalizable type (Le. satisfying the 
condition (5.5», namely a cubic and a (lUartic self-interaction of the neutral 
scalar field 71: 

(5.90)C""" = g"",,1}3 


C"""" =g""",,77
4 


(Let us recall that the coupling constant in (5.90) then has dimension of a 
mass, while the coupling constant in (5.91) is dimensionless.) Obviously, the 
interaction terms (5.90) and (5.91) need not be introduced for a compensation 
of power-like high-energy divergences in tree-level scattering amplitudes of 
binary processes. However, they play an important role in some processes 
of the type 1 + e -+ 3 + 4 + 5 (this remarkable fact was first noticed 
by Cornwall, Levin and Tiktopoulos [11]). The' corresponding calculil-tions 
are technically rather complicated, so here we only recapitulate the essential 
results [11] very briefly. First one has to recall generally that in the case of 
a process involving 5 particles the corresponding scattering amplitude has 
dimension [M-I] in units of an arbitrary mass (see (C.3» and the condition 
of tree unitarity (5.1) requires in the high-energy limit a behaviour of the 
type (see (5.3» 
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(5.92)M 1+2-3fHS ~ E 

where E is a typical energy of the considered process (e.g. E = VS'). In 
the paper [111 (d. also [39]) the processes ZZ -+ ZZ71 and ZZ -+ 71",,,, (and 
also the corresponding processes involving charged vector bosons) have been 
investigated from such a point of view. Basic types of tree-level diagrams 
contributing to the scattering amplitudes of these processes are shown in 
Fig. 28 and 29. (As an instructive exercise we recommend the reader to 
draw all the tree diagrams derived from the basic types in Fig. 28, 29 and 
verify that e.g. in the case of the process Z Z -+ 711}71 the total number of 
graphs is 25.) 

zZ Z z 	 z z 

~~~ 
I 
I 
I 

" 
11 

I 
I 
I 

71 
."./ 

I 1)
1---- ­
I 

~~ ~ 
z Z z z z z 

(a) 	 (c) 

28. 	 Basic types of tree-level diagrams of the process ZZ -+ ZZ",. All 
the other graphs correspond to appropriate (topologically distinct) per­
mutations of external lines and vertices. 
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Z Z 	 Z'I 

'" 

'I 	 '1,-­,, 
'I'I 

z 'I Z 'I z 'I 

(c)(a) 

Obr. 	 129. Basic types oJ tree-level diagrams oJ the pmcess Z Z -+ 1]1]1]. All the 
other gmphs are obtained by appropl'iate (topologically distinct) permu­
tations oJ external lines and vertices. 
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In what follows we are going to discuss only the case of longitudinally po­
larized Z's in the considered processes. Then the diagrams of the type (a), 
(b) in Fig. 28 (Le. those in which the cubic self-interaction (5.90) is not in­
volved) give a contribution whose leading term behaves in the limit E -+ 00 

as a constant independent of Ei this asymptotically constant term (coming 
from the diagrams of the type (a}) may be estimated (up to a numerical 
factor) as mz"mz29izlJm~, where 9ZZIJ is the coupling constant (5.82). The 
contribution of diagrams of the type (c) (Le. those which involve the self­
interaction (5.90)) also contains an asymptotically constant term which may 
be estimated (up to a factor) as mz"ih'l9'11J1J' Since the whole tree-level am­
plitude of the process ZL,ZL -+ ZLZ/,1] should exhibit the" good" high-energy 
behaviour (5.92), one has to achieve a cancellation of the above-mentioned 
asymptotically constant terms by means of an appropriate choice of the coup­
ling constant 91J1111' An explicit calculation [II) then leads to the conclusion 
that desired cancellation of unwanted constant terms occurs if and only if 

1 m:1 

-igm; 	 (5.93)9f/f/f/ = 

It is interesting to notice, among others, that in this connection it was ne­
cessary to consider explicitly for the first time a non-zero mass of the neutral 
scalar boson 1], i.e. the parameter mlJ i- O. In the case of the process 
ZLZL -+ 1]711] the condition of a compensation of asymptotically constant 
contributions from diagrams of the type (a) - (d) in Fig. 29 by similar terms 
coming from graphs of the type (e) (Le. from those involving the quartic 
self-interaction (5.91)) amounts to fixing the coupling constant g,,'l'l'l: 

1 :1 m~ 
91/1Jf/T/ = -32g -2 (5.94)

Jnw 
Similarly to (5.93), it is essential here that mT/ i- OJ however, the preceding 
considerations do not imply any constraint for the value of mT/ (in contrast 
to masses of vector bosons W± and Z which have been accurately predicted 
by the theory of electroweak unification - see (5.40), (5.41». 

Let us summarize the results which we have obtained up to now in con­
structing a theory of electroweak interactiolls. We have arrived at an inter­
action lagrangian which now has the form (cf. (5.89)) 

£inf £00 +£NO +£1:;;!n +£VVV +£VVVV +£WWT/ 

+ £ZZ'I +£WWT/T/ +£ZZ'I'I +£t:t:T/ +£f/T/T/ + £f/'I'IT/ +... (5.95) 
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where the last two terms in (5.95) are given by the expressions (5.90), (5.91), 	 vii -+ ZZ 
(5.93) and (5.94). The interaction terms written explicitly in (5.95) are 

L ZZ -+ ZZ 
necessary for suppressing the bad high-energy behaviour of individual tree­ i,
level diagrams corresponding to the given model. For fixing the correspon­	 .\ Of course, the processes (5.97) are most intriguing in the case of longitudinal­

\;ding coupling constants we have employed only a limited number of physical 	 ly polarized external vector bosons (note that we have already investigated ;;
scattering processes and in the construction (5.95) we have used up all the 	 1, the reaction iie - W-, in Chapter 4). One may show, by means of an ex­

riinteraction terms which had to be taken into account within the framework of 	 ~ I plicit calculation, that in tree-level scattering amplitudes of processes (5.97) 
the "minimal" strategy adopted. More precisely, we have employed tree-level 
scattering amplitudes of the following processes (in each case for a particular 
combination of helicities of the incoming and outgoing particles): 

vii - IV-W+ 

e-e+ - lV-W+ 

iie - W-Z 

e-e+ - ZZ 

W-W+ - II 
W-W­ - W-W­

W-W+ - ZZ (5.96) 

W-W+ - Z, 

W-W+ - tl.,., 

ZZ - .,.,Jl 

ZZ - ZZ.,., 

ZZ - .,.,.,.,.,., 

It is not clear a priori whether the desirable divergence cancellations occur 
also in the tree-level scattering amplitudes of the other physical processes 
which we have not considered yet (this uncertainty is expressed by the symbol 
" ... " in (5.95)). In particular, if we restrict ourselves to binary processes, then 
beside (5.96) there are several other cases which are potentially interesting 
(i.e. potentially "dangerous") from the point of view of the high-energy 
behaviour of the relevant tree diagrams, namely 

iie - W-.,., 

e-e+ - Z, 

e-c+ - Z.,., (5.97) 
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the high-energy divergences cancel automatically, owing to the structure of 
the interaction lagrangian (5.95). The corresponding calculations are left 
to the interested reader as an instructive exercise (see the problem 5.12). 
Beside that, the possible remaining non-leading divergences in scattering 
amplitudes of some processes (5.96) which we have considered earlier (such 
as W- W+ - ZZ or W-W+ - Z,) can be shown to vanish as well. The 
above-mentioned automatic divergence cancellations in tree-level amplitudes 
of the processes (5.97) etc. represent a remarkable fact in itself - these indi­
cate that the lagrangian (5.95) is at least a viable candidate for a reasonable 
theory of electroweak interactions. However, it is not at all clear whether 
the corresponding cancellations of unwanted terms for E - 00 occur in 
scattering amplitudes of all physical processes. In other words, the following 
two questions arise naturally: 

1. 	 Does the model (5.95) satisfy the condition of tree unitarity? 

2. 	 Does the model (5.95) satisfy the stronger condition (5,4), i.e. is the 
corresponding perturbation expansion renormalizable? 

The answer to the first question is yes while the second question is to be 
answered in the negative. This statement (which we have already foresha­
dowed at the end of Section 5.1 but still may sound somewhat surprising) 
deserves a more detailed commentary. In the first place, one has to note that 
for technical reasons it is virtually impossible to verify directly the validity of 
the tree-unitarity condition for all (n-point) scattering amplitudes by means 
of the elementary methods employed so far. Fortunately one may proceed 
in a completely different manner. The interaction lagrangian (5.95), which 
we have deduced through a systematic elimination of high-energy divergen­
ces in some selected tree-level Feynman diagrams, is in fact identical with 
the original Weinberg model [71 of the unification of weak and electromag­
netic interactions of leptons. Of course, the Weinberg model [7} has been 
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formulated as a non-abelian gaqge theory with the Higgs mechanism (the 
vector bosons W:l:, Z and 1 correspond to the four gauge fields of the group 
SU(2) X U(l) and '1 is the Higgs boson; the lagrangian (5.95) represents 
tbe particular choice of gauge condition used originally by Weinberg [7] - the 

. so-called unitary or U-gauge which is characterized by absence of unphysical 
fields). For a detailed investigation of properties of a theory described by the 
lagrangian (5.95) one may therefore employ the powerful formal apparatus of 
gauge theories (see e.g. [15], [17], [25] etc.). Let us remark that the complete 
tree-level unitarity in a theory of such a type has been first proved by J. S. 
Bell who followed an earlier work o( S. Weinberg (see [44]). 

As to the stronger condition (5.4), it is violated at the level o( one-loop • 
diagrams. That is to say, one may find an example of a binary process, (or 
which the corresponding scattering amplitude in the one-loop approximation 
(more precisely, its real part) grows linearly with energy, although imaginary 
parts of the relevant grapbs (which of course are fully determined by the 
corresponding tree-level amplitudes) are asymptotically constant for E -+ 
00 (d. the discussion related to Fig. 11 in Section 5.1). The reason for 
such a "patbological" behaviour is the famous Adler-Bell-Jackiw (ABJ) axial 
anomaly in a triangular closed fermionic loop (the (ermions are leptons in 
our case) [40], [45], [46]. This remarkable phenomenon will be discussed in 
more detail in the next section. Here we restrict ourselves to the (ollowing 
three closing remarks. 

i) The above-mentioned linear growth of some one-loop scattering am­
plitudes for E -+ 00 implies non-renormalizability o( the perturbation 
expansion 011 the level of two-loop diagrams. 

ii) 	The effect of the ABJ anomaly demonstrates that the tree unitarity is 
o,lly a necessary, but not sufficient, condition for perturbative renor­
malizability (as we have already indicated in Section 5.1). 

iii) Despite the fact that subtle effects of the ABJ anomaly violate per­
turbative renormalizability of the theory described by the lagrangian 
(5.95), in fact we have almost reached our objective (as (5.95) represents 
precisely the original Weinberg model [7]); in the (ollowing sections 5.6 
and 5.7 we shall see that effects of the anomaly are removed "miracu­
lously" (and at the same time very naturally from the physical point 
of view) if one considers, beside electroweak interactions o( leptons, 

also the corresponding interactions of quarks [45], [46] (in building a 

realistic theory of electroweak unification we are of course obliged to 

include likewise the quark sector, in view of the phenomenologically 

well-established (orm of the weak charged current-in (1.1) - (1.4». 


5.6 Effects of the ABJ axial anomaly 

To illustrate a violation of the condition of "perturbative unitarity" ·(5.4) 
at the level of one-loop Feynman graphs, we shall consider, as an example, the 
process e+ e- -+ 11 (which is completely innocuous at the tree level). The 
diagrams leading to an "anomalous" behaviour of the corresponding one­
loop scattering amplitude in the high-energy limit (in the sense indicated at 
the end of the preceding section) are shown in Fig. 30. Before examining 
these graphs in more detail, the following remark is in order here: Within 
the framework of tbe theory described by the interaction lagrangian (5.95), 
there are of course many other one-loop graphs contributing to the scattering 
amplitude of the considered process beside those depicted in Fig. 30, but all 
o( them already exhibit a "normal" behaViour in the high-energy limit (i.e. 
obey the law (5.4)). This fact can be best explained using the formalism 
of non-abelian gauge theories with Higgs mechanism and therefore we will 
refrain (rom discussing it here. 

We will now examine in more detail the contribution of the diagrams in 
Fig. 30(a), (b). The corresponding scattering amplitude may be written as • 

M.6 =: Mil +M, = 
= i (+)2acQ!e2v(l+h,,(vc _ ae1s)u(L) X 

COSllW 

_9"0: +m-2 q"qO: 
X 2 Z2 To:",,(k,p)e*"(k)e*"(p), (5.98)

q -mz 
where the notation employed in (5.98) has the following meaning: Coupling 
constants (or the interaction of weak neutral current with the Z correspond 
to formulae (5.37); here we have only introduced extra symbols for a vector 
and axial-vector interaction constant (indicating explicitly the lepton type) 

1 9 
-2(9L +9R) = --.II-VII! 

cos llW 
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1 _ -g-a (5.99)-(gL - 9R) - cos"w e2 

i.e. (see (5.37)) 

Ve = + sin-~ 2 "w 
1 

ae = (5.100)
4 

.A 

7 

(a) , (b) 

Fig. 30. The one.loop diagrams of the process e+e- -+ 77 in which an effect 
of the A BJ axial anomaly is manifested. Internal lines' in the closed 
fermion loop correspond to a lepton (e.g. electron). 

In the expression (5.98) the coupling parameter ae is factorized, since in 
the vertex of the triangular fermion loop attached to the Z propagator only 
the axial-vector part of the corresponding neutral current can play' a role; 

;::.' the contribution of the vector part vanishes identically as a consequence of
"f the well-known identities for traces of Dirac 7-matrices (the so-called FUrry 

theorem· see e.g. [20], [21)). FUrther, for each electromagnetic interaction 
we have singled out explicitly a factor Qe (Qe = -1), i.e. the charge of . 
the fermion in the closed loop in units of e (this is useful with regard to a 
later discussion of the quark sector). Finally, the expression Tap.,(k,p) is the 
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contribution of the closed loops in Fig. 30(1.), (b) which is formally given by 
. the integral 

. J d"r 1 1(. 1 )
Tap.,(k,p) = (2x,)"Tr t-~-m7Pt-m7v +p_ 7a75mt 

+ [(k,p) .... (p,v)] (5.101) 

(it is easy to verify that the reversed orientation of the closed loop in the 
diagram (b) with respect to (a) just corresponds to the symmetrization in­
corporated in eq. '(5.101)). . 

The integral in (5.101) is apparently (linearly) divergent in the ultraviolet 
region and thus it is' an ill-defined object by itself; one should therefore add 
to the formal expression (5.101) a prescription giving it a precise meaning. It 
is well known (see [40], [471, [481) that one can do so either with the help of an 
appropriate regularization procedure or by imposing a physical requirement 
of absence of "longitudinally polarized photons" in the final state, Le. by 
imposing the identities 

kPTap(k,p) = 0, p"Tapv(k,p) =0 (5.102) 

Let us remark that in the standard language of quantum field theory the 
relations (5.102) are usually called in this context "vector Ward identities" 
and they also express conservation of vector (electromagnetic) currents in the 
corresponding vertices o{ the considered Feynman graph. The construction of 
a finite quantity Tapv based on the constraints (5.102) was first performed by 
Rosenberg [49] and it has been employed later by Adler [481 in his pioneering 
investigation of the triangle anomaly. However, a more detailed discussion of 
various defini~ions of the Tap., goes behind the framework of this introductory 
treatment of the electroweak unification; beside the literature we have already 
quoted, one may find an elementary introduction to the anomaly problem in 
the textbooks [21], [25], [36] and also in the review article [50]. 

As regards the high-energy behaviour of the amplitude (5.98), its poten­
tially "dangerous" part obviously corresponds to the second term in the Z 

2propagator (because of presence of the factor mz). Using the qA from this 
term to multiply the 7A in the first neutral-current vertex, the electron mass 
m is factorized (through an application of the Dirac equation), which com­

lpensates one factor of mz• Multiplying by the qa the axial-vector vertex 
of the triangular fermion loop, a naive calculation (in a sense described in 
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detail e.g. in (50]) would lead to the conclusion that the expression qClTClPv is 
equal to 2mTp", where Tp" is the contribution of the corresponding fermionic 
loops in which '1a'15 is replaced by '15 (such a result would correspond to a 
classic relation for the divergence of the axial-vector current). However, in 
[act (using a mathematically correct calculational procedure), the amplitude 
Tap" subject to constraints (5.102) satisfies an axial-vector Ward identity 

qOrTOrp,,(k,p) = 2mTpv(k,p) + 2~2Ep"PO'kPp(l', (5.103) 

where the second term on the right-hand side of eq. (5.103) is just the 
celebrated Adler-Bell-Jackiw (ABJ) axial anomaly. Since the fermion mass 
is not factorized ill this anomalous term (a factor of m only appears in the 
first term on the right-hand side of (5.103)), there remains an uncompensated 
[actor mzl in the contribution of Fig. 30(a), (b) and the corresponding 
amplitude thus grows linearly with energy for E --+ 00. . 

It should be emphasized (as we have already indicated in the preceding 
section) that the imaginary (or "absorptive") part of the contribution of 
diagrams in Fig. 30{a), (b) is finite in the limit E --+ 00. (The following 
technical remark is in order here: The terms "imaginary" or "absorptive" 
part are commonly used in an equivalent sensej a non-zero absorptive part 
corresponds to a discontinuity on a cut which in the considered case exists 
on the real axis of the variable s = q2 for s > 4m2 • A general discussion of 
such singularities and analytic properties of scattering amplitudes and Green 
functions in quantum field theory see e.g. in [21] where one may also find 
a formulation of the standard Cutkosky rules [or computing the absorptive 
part of a Feynman graph.) The finiteness of the absorptive part of the 
diagrams in Fig. 30 in the high-energy limit may be easily understood if 
one realizes that this can be expressed by means of a product of amplitudes 
of tree diagrams corresponding to processes e+ e- --+ e+e- and e+ e- --+ 1, 
(see Fig. 31{a), (b». These tree-level graphs are of course finite in the 
limit E --+ 00: In the case of the diagram for e+e- --+ e+e- involving the Z 
exchange, a factor m2 is produced in the potentially offending term (when 
the Dirac equation is applied ill both vertices) which compensates the m:z2 

from the Z propagator; the "good" behaviour of the tree-level graph for 
e+e- --+ "is manifest. In calculating the contribution of Fig. 31(a), (b) one 
must of course also integrate over the phase-space volume for the electron­
positron intermediate states; such an integration, however, does not change 
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qualitatively the estimate inferred from the behaviour of tree-level graphs of 
the intermediate processes. 

1 

k ., 


(a) (b) 

Fig. 31. Absorptive part of the diagrams from Fig. 30. The permutation 
of the external photon lines in the graph (b) is equivalent to reversing 
the orientation of the closed fermion loop in Fig. 30(b). The usual 
notation is used, such that the "cut" internal lines correspond to real 
particles, i.e. the corresponding propagators are replaced by a-functions 
according to the Cutkosky rules. 

It is instructive to demonstrate the difference between asymptotic behaviour 
of the diagrams in Fig. 30 and of their absorptive part (Fig. 31) in terms 
of explicit formulae. For the amplitude of the considered fermion triangular 
loops TOrp" (see (5.101» satisfying the conditions (5.102) one may write a 
tensor decomposition (for a detailed discussion see e.g. [50 - 52]) 

TOrp,,(k,p) = Fl(S)qaEp"PQ'kPpO' + 
+ F2{S)(p"Eappcr - kpcOr"PO')kPpO' (5.104) 

where we have used the notation s = q2j for the validity of (5.104) it is 
essential that k2 = p2 = O. The invariant amplitudes (formfactors) Fl and 
F2 may be expressed as integrals over Feynman parameters 

1 z 
1 11 1F1{s) =-- dx - dy--xy (5.105) 

m211"2 0 0 - xys - Jc 

100 



'.r: 
y' 

t: 
H 
~ 
1 
~ 
'I 
I 

r- III ~·1 
F2(S) = ~ r dx dy x(l- x - y? 

m2 
(5.106) :j 

. 11'2 Jo 10 - xys - Ie 
~i 

In the first place one may now verify the anomalous Ward identity (5.103): !i
From (5.104) it follows immediately t 

qaTap" = 8Fl(s)ep"fH'klptr I 
J. 

and from (5.105) one gets 
~ 

1 1t 
" 

11-~ m 
2 

1sFt(s) = dx dy 2 • + -22 (5.107) 
o 0 m XYS -Ie 11' 

where the first expression on the right-hand side of (5.107) corresponds to 
the "normal" term in (5.103) (which vanishes for m -+ 0) and the second 
term reproduces the ABJ anomaly. On the basis of (5.107) one may also 
easily estimate the asymptotic behaviour of the function Fl (s) in the limit 
s -+ 00 (i.e. pro s :> m 2

): 

1 1 (m2 s)FI(S) = --+0 -In- (5.108)
m2211'2 s S2 

The absorptive (Le. imaginary) part of the amplitude Tap" which we de­
note as Aa ,." may be written in the form analogous to (5.104) where the 
formfactors Ft and F2 are replaced by the corresponding imaginary parts 
Aj 1m Fj, i = 1,2. A calculation of the At and A:a using the formulae 
(5.105), (5.106) is straightforward and yields the results 

A (,,) = _.!. m\n 1 + VI - 4m
2 /s (5.109)t 

11' s2 1 - VI - 4m2/s 

2 2 2
A2(s) = ~ (V1- 4m /s _ 2m In1+ VI - 4m /s) (5.110) 

211' " S2 1-Vl-4m2/s 

(let us remark that the formula (5.109) has been first used in connection with 
the ABJ axial anomaly by Dolgov and Zakharov [53]). From (5.109), (5.110) 
one gets easily the corresponding asymptotic expressions valid for " -+ 00 

(Le. for s :> m 2
): 

(m2 s)
At(s) = 0 ~lnm2 (5.111) 
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1 1 (m2 8)A2(s) = --+0 -In- (5.112)
m221r S S2 

From (5.108) and (5.111) it is obvious that the \high-energy behaviour of the 
real part of the formfactor Ft differs substantially form the asymptotics of 
the corresponding imaginary part: While the imaginary part decreases for 
8 -+_ 00 like l/s2 (up to a logarithmic factor) the real part only falls off like 
1/8. 

The following technical remark is in order here. Formulae (5.105), (5.106) 
are obtained by a direct computation of the amplitude Ta ,." and from these 
one may derive the expressions (5.109), (5.110) for the corresponding imagi-' 
nary part Aa ,.". However, one may also proceed in a reversed order: Using 
the well-known Cutkosky rules (see e.g. [21]) one may first calculate the 
absorptive part Aa,." (let us stress that this is given by convergent integrals) 
and the full formfactors Ft , F2 may be then defined by means of dispersion 
relations (which in the considered case converge without subtractions). The 
above-mentioned difference in the power behaviour of the At (s) and Fl (s) 
for S -+ 00 can be then traced, technically, to the integration in the corres­
ponding dispersion relation 

1100 
A ( ')FI(S) - _l_s_ds' 

1r 4m2 S' - 8 

(this is just the effect we have mentioned in a preliminary discussion in the 
introductory Section 5.1). However, a fundamental reason for this effect is, as 
we have also noticed earlier, the ABJ axial anomaly; within the framework of 
the dispersion relation approach (which in this case obviates completely the 
problem of ultraviolet divergences) the anomaly is a consequence of special 
properties of the invariant amplitude AI, in particular, of the fact that the 
integral of the Al taken along the cut (4m2, 00) is non-zero. Indeed, for the 

2function Ads; m ) given by the formula (5.109) one has (for an arbitrary 
value of m) a "sum rule" 

1 12)_.00 A1(Sj m = - 211' (5.113) 
4m2 

(It is interesting to notice that a dominant contribution to the integral (5.113) 
comes from the region of small s, i.e. from the vicinity of the threshold 
So = 4m2

• As we have already indicated earlier, such an interpretation of 
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the ABJ anomaly has been first formulated in the paper [53]; a brief review 
of the method as well as further details can also be found e.g. in [51], [52].) 

After this rather technical exposition we are going to discuss again the 
part of the contribution of diagrams in Fig. 30 or Fig. 31 resp., which 
corresponds to the longitudinal term in the Z propagator. From what we have 
already said it may be easily seen that the considered part of the scattering 
amplitude (which we will denote as M~») behaves in the high-energy limit 
(i.e. for s :> mi) like (see (5.98), (5.104) and (5.108» 

M~) ~ v(l+hsu(L) ~ !tPIlpc1kPpl1 e·"(k)e·lI(p) (5.114) 
mzs 

(i.e. it grows linearly for E -+ 00 as we have already stated earlier). For the 
absorptive part of the M~) we obtain an asymptotic estimate 

2 

Abs M~) ~ v(l+h5u(L) f~ m In-;'tp" Pl1 kPp"~.P(k)e·lI(p) (5.115)
2mzs m 

i.e. Abs M~) falls off like 1 IE for E -+ 00. 

As regards the diagonal term in the Z propagator and the corresponding 
part of the contribution of diagrams ill Fig. 30 (we shall denote this part by 
M.~» one may easily estimate on the basis of the above-mentioned ~elations 
that in the limit E -+ 00 one has 

M~) ~ 0(1) (5.116) 

and also 
Abs M~) ~ 0(1) (5.117) 

(the last estimate follows from the fact that Abs M~) gets a contribution 
from the invariant amplitude A2 which according to (5.12) decreases for 8 -+ 
00 as lis). . 

Let us supplement the preceding discussion with the following remark: 
A preliminary semi-quantitative estimate of the asymptotic behaviour of the 
Abs Ml\, based on considerations about tree-level graphs of the intermediate 
processes in Fig. 31 which we have formulated earlier in this section, can be 
made more precise with the llelp of a formula for the absorptive part of the 
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relevant triangle diagram (d. e.g. [54]) 

2i AaplI(k,p) = -3211f21~1 L Jd1l[ii(P,shai5 V (PI,S/)] X

.,.' 
IX [v(P , s'h" (J--~2+_:2ipU(P, 8)], (5.118) 

which may by derived either directly from S-matrix unitarity or with the 
help of Cutkosky rules. The relation (5.118) is written in the c.m. system 
of the pair of photons in the final state. The four-momenta P, pI are of 
course on the mass shell, i.e. they satisfy conditions p 2 = p I2 = m'; one 
has further (P + PI)2 = (k + p)2 = sand P = _pI, so Po = P~ = E = 
h!8, IPI = '!v's - 4m2• The factor IPI/E = y'1- 4m2/s in (5.118) comes 
from the phase-space volume of the two-particle intermediate state e+e- and 
the angular integration is carried out over directions of the P. From (5.118) 
one then immediately gets an appropriate relation for Abs Ml\ which enables 
one to verify the corresponding statements made earlier. 

As a conclusion let us emphasize the main result of this section, namely 
the observation of a linear growth of the considered amplitude Ml\ with 
energy in the limit E -+ 00. It is important to realize that the relevant 
numerical coefficient in the corresponding leading asymptotic term is (if we 
consider only a dependence on properties of the fermion in the anomalous 
triangular loop in Fig. 

c(e) Q'
anDmal1/ = a e e (5.119) 

The origin of (5.119) is obvious from the discussion around (5.98) and (5.103). 
From (5.119) it is obvious that the linear divergence of the amplitude Ml\ 
for E -+ 00 cannot be compensated or removed if we take into account only 
the electr~weak interactions of leptons; a neutrino loop of course does not 
contribute to the considered process and all the standard charged leptons (as 
e.g. muon) give a contribution identical with (5.119), since for an arbitrary 
charged lepton lone may obviously repeat the procedure described in Section 
5.3 and arrive thus at the result (cr. (5.100)) 

a, 4 (5.120) 
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course, one always has Qf = I). The condition (5.4) is thus violated and 
the model described by the interaction lagrangian (5.95), which incorporates 
only leptons in its fermionic sector, is therefore not renormalizable. Let us 
remark that (as we have already indicated at the end of the preceding section) 
non-renormalizable ultraviolet divergences will appear in diagrams involving 
at least two closed loops (this of course is closely related to the power-like 
growth of thecorresJlonding anomalous one-loop graphs for E -+ (0). An 
explicit example of a 2-100p graph leading to a non-renormalizable ultraviolet 
divergence is given in Fig. 32 (for a more detailed discussion see e.g. [46]). 
In the following section we will show, among others, that the contribution 
of anomalous triangular loops made of quark fields can cancel the lepton 
contribution completely (see the original papers [45], [46] and also e.g. [21] 
and [25]). 

, e-

e 

, e+ 

Fig. 32. An eXamlJie of a 2-loop diagmm of lhe process e- e+ -+ e- e+ in 
which the ABJ anomaly induces a non-renormalizable ultraviolet diver­
gence. 

As an epilogue to this section let us finally add that within the framework 
of gauge theories with Higgs mechanism one encounters other possible ma­
nifestations of the ABJ anomaly, as e.g. a gauge-dependence of physical 
scattering amplitudes (at the one-loop level) or a violation of unitarity of the 
S-matrix (at the two-loop level); for a more detailed discussion of these effec­
ts, see e.g. [46] and also the textbook [17]. However, it should be stressed 
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again that all the "destructive" effects of the ABJ anomaly manifested in 
the perturbation expansion in fact disappear when both leptons and quarks 
are incorporated in the fermion sector of the standard model of electroweak 
interactions and the resulting theory is then perturbatively renormalizable. 

5.7 Interactions in the quark sector 

Now we will investigate weak and electromagnetic interactions of had­
rOllS; it is natural (and physically well substantiated) to describe these as 
interactions of fundamental quark fields, i.e. the fields of elementary fer­
Illions with fractional electric charges (fractional with respect to the charge 
of electron or muon). In Chapter 1 we have already given a form of the 
weak charged quark current (i.e. the current constructed from fields carrying 
charges differing by one unit) expressed in terms of fields of the four quarks 
u, d, s, c (see (lA)). (Needless to say, U = "up", d = "down" I s = "stran­
ge", c = "charm".) The starting point of our discussion in this section will 
be the original weak current of the Cabibbo type, corresponding to the first 
line in the expression (1.4) (which involves only u, d and s). That is, we 
will not assume a priori the existence of a c-quark (which indeed has been 
confirmed only after a corresponding theoretical prediction) and we will show 
that one may arrive naturally at the concept of an extra quark field through 
considerations concerning the high-energy behaviour of some tree-level diag­
rams, supplemented with some well-known facts about phenomenology of 
weak processes. In other words, within our general approach based on an 
investigation of tree-level amplitudes of elementary binary processes we will 
ticrivc the structure of the weak charged current involving the c-quark 
the second line in (1.4)). The expression (1.4) corresponds to a realization 
of the familiar Glashow-Iliopoulos-Maialli (GIM) mechanism [55] (see also 

[56], [57)), i.e. to a suppression of weak neutral currents non-diagonal 
with respect to "flavours" of the type UI d, s or c (let us stress that the weak 
charged current (1.4) is n071-diagonaQ. The meaning of such a mechanism 
will be clarified in the subsequent discussion. 

Let us first consider the interaction of the quark current of the Cabibbo 
type with the field of charged intermediate vector bosons described by the 
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lagrangian 

"(",11.,3) 9 - (1 )(d.<1 • ) +I...ee = 2y'2U;P -;:; cos 1Ie +ssm 'I1e W P+h.c. (5.121) 

In the tree approximation we shall examine the scattering amplitude of the 
process 

d§ --t W-W+ (5.122) 

Within the model described by the iuteraction lagrangian (5.121) there is a 
single diagram corresponding to the process (5.122), namely that depicted in 
Fig. 33 (in this case the electromagnetic interaction does not contribute as 
the e1ectrolllagnetic current is flavour-diagonal). We are going to discuss the 
high-energy behaviour of the tree· level ampliLude of the process (5.122) in 
the case that both final-state vedor bosolls have longitudinal polarizations. 
Using the by now familiar arguments one may then guess immediately that 
the contribution of the diagram in Fig. 33 diverges quadratically for E --t 00. 

Let us denote the corresponding scattering amplitude by M(u) (to indicate 
t.he u-quark exchange ill Fig. 33)i an explicit. calculation (which is completely 
analogous to procedlll'es used earlier in the lepton sector) yields the result 
(see the problem 5.13) 

W-d 


k 
 ]1 

u 

l'-I 
s W+ 

Fig. 33. Tree-level diagram. of the process d§ --t W- W+ in a model of weak 
intcmctions involving a quaf-k charged CWTcut of the Cabibbo type. 

M(U) --4 ;s)u(k)1'l gudYu3v(l) P(1
ffiw 
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1 
m'4----,-9ud9u, v

fI1.w 
- ;:;)u(k) 

+ 0(1)­ (5.123) 

In (5.123) we have introduced a natural notation (d. (5.121» 

gud =9 cos '11 0 , 911.3 = 9 sin 110 (5.124) 

The first term on the left-hand side of (5.123) represents the leading (quadra­
divergence and the second term corresponds to a next-to-leading (linear) 

divergence in the limit E --t 00. (It is important to notice that none of the 
divergent terms in (5.123) depend Oil m u , i.e. even the non-leading divergen­
ce is independent of the mass of the exchanged u (luarkj this circumstance 
will play an essential role in the divergence cancellation mechanism working 
in the high-energy limit for the considered scattering amplitude.) 

We might attempt to cancel the quadratic divergence in (5.123) lm ana­
logy with the case of the process e+e- --t W+H'- etc.) by means of a tree 
diagram involving an exchange of the neutral vector boson Z in the s-channelj 
to this end one would have to introduce a direct interaction of the type Cd3Z, 
i.e. an interaction of the Z with a weak neutral strangeness-changing current. 
The corresponding coupling constant would then have to be of an order of 
(d. (5.124) and (5.37)) 

Yd.Z ~ Y sin {le cos {leI cos vw (5.125) 

However, the existence of such an interaction would lead to a phenomenologi­
cal disaster, in the sense that it would be clearly incompatible with common 
experimental data: Strangeness-changing (~S =F 0) decay processes in which 
the hadron charge is conserved (~Q = 0) would be predicted within such a 
theory to occur in the lowest perturbative order, so the corresponding decay 
rates would have to be comparable with those of the commonly observed 
processes for which ~Q I: 0, ~S =F 0 (let us recall that the allowed decays 
obey the empirical selection rule ~S ~Q). In fact, the data show that 
the weak processes in which ~Q = 0 and ~S =F 0 are strongly suppressed in 
comparison with the cases ~S =F 0, ~Q =F O. Thus, e.g. the relative decay 
rate (branching ratio) of the process J(- --t 1r°e-ve (i.e. s --t ue-ve on the 
quark level) is (see 

DR (1(+ --t 1r°e+ve) == 0.0·18 
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whereas ill the case of the decay 1(- -+ 1I"-e+e- (which corresponds to 8 -+ 

cle+e- on the quark level) one lIas [58] 

DR (f(- -+ 1I"-e+e-) 2.7 x 10-7 

There are other examples of such a type, so one may conclude that introdu­
cing a dired interaction of the Z with a strangeness-changing neutral current 
is phenomenologically unacceptable. 

As regards the other conceivable mechanisms for suppression of power-like 
high-energy divergences in (5.123) (within the general scheme delineated ill 
Section 5.2) it is also clear that an exchange of a scalar p<trticle is not suffi­
cient for the compensation of the quadratic divergence (d. the discussion 
around the relations (5.6) - (5.8» and thus we are left with the last alterna­
tive: One may attempt to cancel the offending terms in (5.123) by adding 
to the diagram in Fig. 33 a similar one, in which instead of the u-quark ex­
change another spin-~ fermion is involved. For this purpose (and within our 
"minimal strategy") we are going to introduce another quark (denoted as c) 
with the sallle charge as the u (i.e. Qc = Qu = 2/3) and the corresponding 
interaction with d, s and with vector bosons W± will be assumed to have a 
form analogous to (5.121), i.e. (d. the notation (5.124» 

dc,d,,,) 1 [_ ( ]cc = 2J2 C"(p 1 /'S)(9cd d+9C8 S) W+p +h.c. (5.126) 

where 9cd and 9c" are the corresponding (in general complex) coupling COll­

stants which must be determined. The tree diagram for the process ds -+ 

W-W+ corrresponding to the iuteraction (5.126) is shown in Fig. 34. For its 
contribution (which we denote as M(c» in the case of longitudinally polarized 
W± we get immediately, using (5.123) 

M(c) --412 9cd9;lIv(/) P(1 -/'s)u(k)
7nw 

m6~9cd9;6 V (/)(1 -/'s)u(k)
4mw 

+ 0(1) (5.127) 

109 

w-d 

k jJ 

c 

,.-I 

s w+ 

Fig. 3-/. The diag"am of the l'rDCess ds -+ W-W+ involving an exchange of 
the c-quark which compensates the divergwt behaviour of Fig. 33 in 
lhe high-energy limit. 

Quadratic divergences in (5.123) and (5.137) cancel each other if <l.nd only if 

gudgu. +9cd9;. = 0 (5.128) 

It is gratifying that the condition (5.128) automatically guarantees even a 
cancellation of linear divergences iu (5.123) and (5.129); so we need not worry 
about any extra strangeness-changing neutral scalar exchange (which would 
be phenomenologically unacceptable). Of course, the observed automatic 
cancellation of linear divergences is due to the fact (whicb we have empha­
sized earlier) that these terms do 110t depend on the mass of the exchanged 
quark in diagrams in Fig. 33, 34. 

The relation (5.128) gives one constraint for two unknown coupling con­
stants 9cd, ge,- However, now one may also consider the process 

.uC-+ W-W+ (5.129) 

which in the lowest order ill (5.121), (5.126) proceeds via the diagrams shown 
ill Fig. 35. 
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u w+ tt w+ 

d s 

c w- c w­
(a) 

35. 	 Tree-level diagmms of the process He -+ W- W+ involving a d- and 
s-quark exchange. 

As before, we are going to discuss the case of longitudinally polarized W's. 
Following essentially the same steps which previously have led to (5.128) one 
finds that the 'cancellation of high-energy divergences in diagrams (a) and 
(b) in Fig. 35 is equivalent to 

gud ged +gu, gc" = 0 	 (5.130) 

(similarly to the relation (5.128), the condition (5.130) guarantees an elimina­
tion of quadratic as well as linear divergences in the corresponding tree-level 
scattering amplitude). It should be emphasized that fulfillment of (5.130) is 
also important from a phenomenological point of view, since recent experi~ 
mental data show that the existence of a direct interaction of the type C"cz 
(i.e. an intera.ction of the corresponding neutral current and the Z) is equally 
implausible as the C,dZ which we have discussed earlier (see [58]). 

Equations (5.128), (5.130) for the unknown coupling constants ged and 
ge, can now be solved easily. After a simple manipulation one gets first 

gurt 

gu" (5.131) 
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and using (5.124) we may wrile 

gcd 9 sin 110 exp (iCed) 


gc" 9 cos {)O exp (icc,,) (5.132) 


where the phases Ced, oe. are real numbers. Substituting (5.132) and (5.124) 
into eq. (5.130) we obtain 

exp (iCed) = -exp(ioe,,) 	 (5.133) 

The general solution of the system of equations (5.128), (5.130) is thus 

ged -g sin {)0 exp (io) 


gc. 9 cos {)o exp (5.134) 


where C is an arbitrary real number. 
If we now employ the result (5.134) in the interaction lagrangian (5.126), 

it is easy to see that the phase C is in fact irrelevant as it may be eliminated 
means of a suitable redefinition of the c-quark field (in other words, the 

phase factor exp(ic) from the coupling constants may be "absorbed" in a de­
finition of the dynamical variable of the c-quark field). The "compensation" 
lagrangian (5.126) may be thus written, without loss of generality, as 

C(t;,d,,,) 9 - (1 )( .00 = 2-/2C"'(P - is -d sm {)o +s cos t?o) w+p +h.c. (5.135) 

The preceding considerations may be summarized as follows: Starting 
from a phenomenological model of weak interactions of the three quarks u, 
(I, s involving non-trivial Cabibbo mixing (5.121), it is necessary to postulate 
the existence of another quark if one wants to respect the tree unitarity 
and to avoid, at the same time, flavour non-diagonal neutral currents. The 
requirement of tree unitarity also determines uniquely the structure of the 
relevant c-quark interaction (5.135): The corresponding charged current must 
contain a combination of the fields d and s which is "orthogonal" with respect 
to the original Cabibbo combination in (5.121). 

The result (5.135) has been first obtained by Glashow, Iliopoulos and 
Maiani [55] within the framework of gauge theory of weak and electromag­
nelic interactions based on the standard gauge group SU(2) x U(l). The 
suppression of unwanted effects of non-diagonal neutral currents, following 
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from (5.135), is therefore called (as we have already noted earlier in this 
section) the GIM mechanism. Introducing the c-quark is also very natu­
ral from an "a.esthetical" point of view, more precisely from the point of 
view of a lepton-quark symmetry, since the four quarks u, d, 5, C are then 
natural partners of the four leptons Ve , e, v"" p.. Such a symmetric scheme 
was in fact originally proposed by Bjorken and GIashow as early as in 1964 
[59] without anticipating its possible dynamical consequences. It should be 
stressed that the theoretical prediction of the c-quark [55], [59] has been re­
markably successful since it has been experimentally .. confirmed (in a. rather 
unexpected way) in 1974 as the "hidden charm" in the J/t/J particles (see 
[60)); a number of experiments performed in subsequent years then repea­
tedly demonstrated both the existence of charmed hadrons (i.e. the "overt 
charm") and various aspects of the GIM mechanism (see e.g. [25], [61], [62]). 
(In this context one should also recall that we did not have to discuss any 
analogy of the GIM mechanism in the lepton sector because we have not 
considered a priori any mixing between leptons of the electron and muon 
type; at present there is indeed no clear-cut experimental argument for in-" 
troducing a phenomenological parameter analogous to the Cabibbo angle 
into leptonic weak interactions - see [58].) 

The full lagrangian describing weak interactions of the four quark fields 
H, d, 5, C mediated by charged vector bosons may be denoted as C~~M): 

C~~M) = C£;;;··) +£.~;#.•) 
2~ [u')'p(1 - ')'s)(dcos 11e +5 sin 11e) 

+ Cyp(1 - ')'s)(-d sin 11e +5 cos 11e)] W+ p+h.c. (5.136) 

With regard to some future considerations it is convenient to recast the last 
expression in a matrix form as 

C~~M) = 2~(u, c)-yp(l ,),S)VGIM(:)W+P +h.c. (5.137) . 

where VG1M is the real orthogonal matrix 

cos11e sin 11e)VG1M = '_0 (5.138)( -SlOve cos 11e 
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For completeness we should now recall further well-known empirical facts 
'about the spectrum of elementary fermions. In 1975 a new charged lepton 

. has been discovered [63], which has been denoted as T, with the rest mass 
of about 1.8 GeV/c2 (this of course does not coincide with 8. hypothetica.l 
"heavy lepton" mentioned in Section 5.2; the tau lepton is in 8. sense just a 
"copy" of the electron or muon and it carries a new conserved lepton charge). 
A corresponding neutrino v has not been observed (in contrast to the Ve or 
v",) directly so far (i.e. the corresponding scattering experiments with the V1' 

have not been performed yet); however, in view of a lot of convincing indirect 
evidence, the existence of a V1' is genera.lly assumed to be established (see 
[58]). Moreover, in 1977 there have been published the first experimental 
data pointing toward the existence of another quark species, denoted as b 
("bottom"),with charge Q. = -1/3 (a brief review of the corresponding 
experimental results may be found e.g. in [61]). Assuming quite generally 
the above-mentioned lepton-quark symmetry, a natural counterpart of the 
six leptons (ve, e, v"" p., Vn r') should then be the same number of quarks; 
beside the experimentally established species ("flavours") u, d, 5, c, b there 
should therefore exist another quark, commonly denoted as t ("top"), with 
the charge Qt 2/3. A direct evidence for the t-quark (Le. an experimental 
detection of processes related to its existence) is generally expected to appear 
during the 1990's (a present experimental lower bound for the corresponding 
"rest mass" is about mt ~91 GeV/c2 [65]; for comparison, mb == 5 GeV/c2 

and me == 1.5 GeV/c2 - see e.g. [61]). However, the reason for such an 
expectation is not only an "aesthetic" aspect of a quark-lepton symmetry. 
Indeed (as we have already indicated at the end of Section 5.6), such a 
symmetry of the spectrum of elementary fermions within the framework of 
the sta.ndard model of electroweak interactions plays an important role in 
cancella.tion of the triangle ABJ anomalies; we will deal with this remarkable 
fact in more detail somewhat later. Moreover, there are compelling' (though 
indirect) experimental arguments in favour of existence of the t-quark [68] 
(if we assume validity of the' basic principles of the theory of electroweak 
unification). Let us recall at least one of them: If we consider a model of 
the interaction of charged currents and vector bosons W± involving 3 quarks 
with charge equal to -1/3 (i.e. d, 5, b) and only 2 quarks with charge 2/3 
(i.e. u, c) then in caSe of a non-trivial mixing among d, tI, b (which is 
indeed confirmed by experiments - see [66], [67] and the review [68]) the 
condition of tree unitaritY,in annihilation channels with initial states ds, db 
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and sb would force us to introduce the corresponding neutral currents and 
interactions of the type £oI.~Z and £..z· respectively; an existence of such 
interactions is however unacceptable phenomenologically (see [69] and the 
review [68]). Flavour non-diagonal neutral currents may be avoided if we 
assume the existence of a t-quark with due properties; in this context, the 
role of the '-quark is analogous to that played by the c-quark in the GIM 
mechanislll. A discussion of technical details of the indicated considerations 
is recommended to the reader as an instructive exercise (see the problem 
5.14). The charged-current interactions in a model involving six quarks are 
then parametrized by means of elements of a unitary 3 x 3 matrix which is 
now usually called the Kobayashi-Maskawa, or Cabibbo-Kobayashi- Maskawa 
(CKM) matrix [70] (see also [58], [68D, and we thus get a generalization of 
the GIM interaction lagrangian (5.137) 

.clfcKM) = 2~(il' C, Ih,(1 -1')VCKM (n W+' +h.c. (5.139) 

where VCI(M is the above-mentioned unita.ry matrix 

"","i Vu, Vu~)
VCKM = Vcd Vc, Vc6 (5.140)

(. Viol. Vi, v,~ 

Let us remark that the matrix VCKM can be described in terms of four physi­
cally relevant real parameters (if one employs a suitable redefinition of phases 
of the quark fields in (5.139)), viewed as three angles and one phase (which 
may be related to GP violation [70j). In [58] one may find a "standard" para­
metrization of such a type (see also [68] and the original papers [71]) as well 
as numerical values of matrix elements in (5.140). Methods of experimental 
determination of the matrix VCKM (more precisely, its first two rows) are 
reviewed e.g. in [68]. One more terminological remark is in order here: In 
connection with the empirical structure of the spectrum of elementary fer­
Illions which is suggested by experiments (a.nd which is also corroborated by 
the renormalizable tbeory of electroweak interactions), the notion of fermion 
I)generations" has become customary in particle physics: Fermions of the fir­
st generation are Ve, e, u, d, to the second generation belong V"' p, c, sand 
the third generation (incomplete as yet because of the missing top-quark) is 
defined to comprise v.,., T, , and b. 
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Problems of the GIM 'mechanism and its generalization to a model in­
volving six quarks (i.e. three generations of fermions) within the usual fra­
mework of non-abelian gauge theory with Higgs mechanism are treated in 
considerable detail e.g. in [25], [56], [57], [62) and [68]. For simplicity, in 
what follows we are going to discuss a model involving four quarks (i.e. two 
generations of fermions); a generalization of the relevant considerations to 
the realistic case of three generations is straightforward. 

Thus, let us return to the GIM interaction lagrangian (5.136) or (5.137) 
resp. Now' we are going to consider the "diagonal" processes of the type 
qij -t W- W+, where q is a quark (u, d, s or c). In analogy with the results 
obtained in Section 5.3 for the electroweak interactions of leptons one may 
expect that in the quark sector one will also have to introduce (diagonal) 
neutral currents and the corresponding interactions mediated by the neutral 
vector boson Z. First we will examine tree-level diagrams of the process 
uu -t W+W-. Contributions of the weak charged-current interaction (5.136) 
and of the electromagnetic interaction are depicted in Fig. 36. 

W+ u 

k 7" , 

~ __7~~_/ 
d,s 

I'-I 
UU W­

(a) 

Fig. 36. Tree-level diagrams of the process UU -t W+ W- corresponding to 
weak charged current interactions (a) and the electromagnetic interac­
tion (6). ' 

Let us suppose that both final-state W's have longitudinal polarizations. 
In the same way as .e.g. in the case of the process e+e- -t wtwi, one 
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has to add further diagrams to Fig. 36 if the tree unitarity is to be satisfied 
for the considered uu annihilation process. The diagrams necessary for a 
cancellation of quadratic and linear high-energy divergences arising in the 
contribution of Fig. 36 are shown in Fig. 37. 
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(a) (b) 

Fig. 37. The diagrams compensating the bad high-energy behaviour of the 
contribution of Fig. 36. 

The diagram in Fig. 37( a) contains a vertex corresponding to an interaction 
of quark neutral current with the Z. Taking into account the result (5.37) 
derived earlier for leptons, it is convenient to parametrize such an interaction 
for an arbitrary fermion f as follows: 

£JfZ = +(c~)h'"YI.JL +C~)/R'"YI.Jn)Z/J (5.141) 
cos v w 

The constants c~k, (which characterize separately the strength of the inter­
action of left-handed or right-handed fermions resp. with the Z) may be now 
determined for the u-quark from the requirement of a cancellation of quad­
ratic divergences arising in the limit E --+ 00 from the individual diagrams 
in Fig. 36, 37. Thus we obtain the following equations (d (5.24), (5.25)): 

1 2 2 _I) 1 2 . 2_I) Q 2' g (u)
-29 cos vc + -29 Sill vc - ue - --_-QcL 9wwz = 0 (5.142) 

COSVW 

117 

- Que2 - ~{}C~)gWWZ = 0 (5.143) 
cos w 

The relations (5.142) and (5.143) are written in a form which should make 
the origin of the individual terms obvious. We will only add several technical 
remarks: The last term on the left-hand side of eq. (5.142) (which comes 
from Fig. 37(a)) has an opposite sign with respect to the first two terms 
(which come from Fig. 36(a)) while in an analogous equation (5.24) the 
corresponding terms (i.e. the first and the last one) have an equal sign. 
Such a difference is due to the interchange of the external W± lines in Fig. 
36(a) as compared to Fig. 17(a), which of course is related to the values 
of the relevant quark chargesj in this sense, a natural counterpart of the 
process uu --+ W+W- in the lepton sector is vii -+ W+W- (d. Fig. 16 and 
eq. (5.19)). In the electromagnetic contribution in (5.142), (5.143) we have 
made explicit the charge factor Qu (for a comparison with (5.24) and (5.25) 
let us remember that Qe = -1). If we now use the relations 

gwwz g cos {}w 

e g sin {}w 

(see (5.36) and (5.37)), the solution of equations (5.142), (5.143) is obtained ­
immediately: 

(u) 1 2 
cL 2" - Qu sin {}w (5.144) 

(u)
cn -Qu sin2 {}w (5.145) 

After the elimination of quadratically divergent asymptotic terms in the 
diagrams in Fig. 36 and 37(a) there still remains (similarly to the case of the 
process e+e- --+ wtwi) a linear divergence: 

2 

M(d) +M(') +Mb) +M(Z) = -~muv(l)u(k) +0(1) (5.146)
4mw 

(the notation in the left-hand side of eq. (5.146) should be. self-explanatory). 
The linearly divergent term in (5.146) is cancelled by the contribution of 
the diagram in Fig. 37(b). This graph contains a vertex corresponding to a 
Yukawa-type interaction, which for an arbitrary fermion f will be written as 
(d. (5.75)) 

(5.147)£"" = g""lf11 
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By means of manipulations analogous to those which in Section 5.5 have led 
from (5.74) to (5.77) one then finds that the required cancellation of linearly 
divergent terms occurs if and only if 

9 mu 
9uuf/=--- (5.148)

2mw 

Oue may proceed in a similar way for other processes of the considered 
type. An analysis of the trcc diagrams for the process dd -+ Wi wt thus 
leads to the result (cf. (5.144), (5.145» 

(d) 1 2 
EL -2" - Qu sin {)w (5.149) 

(.I) 
en -Qtfsin2t7w (5.150) 

The different form of (5.149) as compared to (5.144) (Le. the difference in the 
sign of the numerical constant 1/2 in both expressions) is explained by the 
remark following the relation (5.143) (a I'Ileptonic counterpart" of the process 
dd -+ W-W+ is just e-e+ -+ W-W+ - d. the result for the 9L in (5.37)). 
From what we have already said it is also clear that for the 8-quark neutral­
current interaction one gets a result completely analogous to the d-quark 

f' case, i.e. the relations (5.149), (5.150), ill which Qd is replaced by Q, (of 
course, Qd Q, = -1/3 anyway). Similarly, for the e-quark we obtain the 
same formulae as in the u-quark case (i.e. (5.144), (5.145) with Qu replaced 
by Qc). These results can be easily generalized to the case of six quarks; 
for all the quarks with charge -1/3 (i.e. d, $, b) one obviously gets formulae 
of the type (5.149), (5.150), and for quarks with charge 2/3 (i.e. u, c, t) 
formulae of the type (5.144), (5.145) are valid. Instead of the parameters e:~h 
it is often convenient to employ their combinations v" al which characterize 
respectively strengths of the interaction of the vector or axial-vector part of 
the neutral current with the Z. We will define the parameters Vf, al for an 
arbitrary fermion in an immediate analogy with {5.99)j comparing it with 
(5.141) we define 

~ (E(I) +E(I»)VI 2 L n 

al ~(ef) -E~») . (5.151) 
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Using the preceding results it is easy to find that (see (5.144), (5.145), (5.149), 
(5.150)) 

1 Q . 'Lo 
VI =+4' - I 8m 11 W for f = u,e,t (5.152) 

1 Q . 2{)vI =-- - Ism w for f= d,s,b (5.153)
4 

1 
al =+4' for f = u,e,t (5.154) 

al =-4'
1 

for f = d,s,b (5.155) 

Let us recall that (see (5.37) and (5.100» the formulae (5.153) and (5.154) 
are also valid for any'neutrino, i.e. for f = lit, I = e, po, T (in this case 
of course QI = 0) and the formulae (5.153), (5.155) hold Cor an arbitrary 
charged lepton I =e, po, T (in such a case Ql =-1). 

Finally, in all considered cases the coupling consta.nt of the relevant Yu­
kawa. interaction (5.147) is given by (d. (5.148)) 

9 ml (5.156)911'1 = -2mw' 

As regards other binary processes involving quarks, which are "potentially 
dangerous" from the point of view of the high-energy behaviour of the corres­
ponding tree diagrams, such as e.g. ild -+ Wi" ZL, ild -+ Wiq, uil-+ 
ZLZL etc., it is not difficult to realize that the formulae (5.152) - (5.156) 
together with (5.39) and the "universall'l formulae for 9wwz, 9WWf/, 9ZZf/ 
(see (5.37), (5.73), (5.82)) already guarantee the tree unitarity to hold in 
the quark sector on the basis of mechanisms completely analogous to those 
discussed in detail in the case of leptonic interactions. 

Now we are in a position to discuss the last problem which remains to be 
solved, which however is of fundamental importance for. the renormalizable 

. theory of weak interactions: One has to find out what is the contribution 
ofclosed quark loops to the ABJ triangle anomaly which we have examined 
in Section 5.6 using a particular example within the framework of leptonic 
sector of the theory. We have indicated earlier that the quark and lepton 
contributions to the anomaly cancel each other; now we are going to prove 
this statement directly at least for the particular configuration of interac­
tion vertices in the anomalous triangular fermion loop corresponding to the 
process discussed in Section 5.6. 
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Thus, let us consider the contribution to the' ABJ anomaly coming from 
triangular closed loops in Fig. 30 in the case that their internal lines corres­
pond to an arbitrary fermion I. It is clear that the relation (5.119) giving a 
relevant numerical coefficient in the contribution of the electron loop to the 
anomaly may be immediately generalizedj namely, for an arbitrary fermion 
lone may write 

C!~~II/" = aJQ~, 	 (5.157) 

where QJ is the corresponding charge factor and aJ is an axial-vector neutral­
curent interaction constant (see (5.151) and (5.154), (5.155». We will now 
calculate the total contribution of quarks and leptons to the anomaly, accor- . 
ding to (5.157), separately for each fermion generation (since the relevant 
properties of generations repeat themselves, it is easy to see that we always 
get the same result for different generations). With the help of (5.100), 
(5.154) and (5.155) we then get from (5.157) e.g. for the first generation of 
fermions (ve , e, u, d): 

c(leptoR) _ -! (5.158)IIRoma/1I - 4 

c(qullrk) 1 2 	1 2)
IIRoma/1I = ( 4"Qu - 4"Q., Nc 

(5.159)= i·[(~)r-(-~r]·3=i 
where Nc = 3 is the number of quark colours. Let us recall that the term 
"colour" refers to an extension of the number of quark types - each flavour in 
fact corresponds to a triplet of quark fields distinguished by a " colour" . Such ' 
a degree of freedom is irrelevant for the dynamics of electroweak interactions 
and that is why we have not considered it so far (it is however essential in 
the strong interaction dynamics - see e.g. [25]). Nevertheless, when adding 
contributions of the corresponding closed loops, one has to take into account 
all types of fermion fields and thus one has to include additively also the 
quark colour. From (5.158) and (5.159) it is seen that 

C (tePtoR) C(quark) -	 0 (5 160) 
. IIRom1l11l + IIRomlltll - , 	 • 

i.e. thrlntributions of quark and lepton loops to the ABJ anomaly cancel 
each 0 her and such a cancellation occurs separately lor each generation. 
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Our earlier statement is thus proved. It is also interesting to notice that 
an essential point in the proof of eq. (5.160) is that the number of colours 
Nc = 3. This number is of course well substantiated experimentally in other 
situations (see e.g. [25]) and it is thus gratifying that results from different 

\: 	 areas of particle physics sustain each other. We will also show that eq. (5.160) 
is equivalent to a remarkably simple identity for charges of the fermions 
belonging to the same generation. To this end, let us include formally in the 
lepton part the (vanishing) neutrino contribution as well; we thus get first 

C(/eptoR) +C(qullrk) = 
aRomal" IIRomal" 

1 2 1 2 (1 	 2 1 2)= 4"QII-4"Qe+ Nc 4"Qu-4"Q., 

i[(QII - Q.)(QII+ Qe) + Nc(Qu - Q.,)(Qu + Q.,)] (5.161) 

However, it holds 
QII-Qe=Qu-Q.,=1 (5.162) 

and from (5.161), (5.162) it is obvious that eq. (5.160) is equivalent to the 
identity . 

QII +Qe +Nc(Qu +Q.,) = 0 (5.163) 

(which is obviously valid if Nc =3); or 

LQJ=O 	 (5.164) 
J 

where the sum in (5.164) means a summation over all fermions belonging to 
the same generation, i.e. including quark colours. It is important to reali­
ze that the anomaly cancellation condition, equivalent to (5.164), represents 
the only theoretical argument correlating properties of quarks and leptons,· 
i.e. it implies a lepton-quark symmetry which is very natural from an aes­
thetical point of view (let us emphasize that the arguments for introducing 
the c-quark or the t-quark resp. to implement the GIM mechanism or its 
generaliza.tion resp. concern the quark sector only, and they tell us nothing 
about a quark-lepton symmetry). 

So far we have proved the absence of the ABJ anomaly in one particular 
case, namely for the configuration in which there are two photon lines and 
one Z-line attached to the corresponding vertices of relevant fermion loops. 
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However, there are several other configurations where the ABJ triangle ana. 
maly could play a role. If we denote the corresponding configuration by 
means of the triplet of vector bosons whose lines are attached to vertices 
of an anomalous triangular fermion loop, then we have - apart from the 
configuration Z'Y'Y discussed earlier - the following additional possibilities: 
ZZ'Y, ZZZ, ZWW, and 'YWW. Moreover, it is well known (see e.g. [17], 
[21], [25], [48]), that the ABJ anomalies occur in triangular fermion loops of 
two types: 

- VVA (two vector vertices and one of the axial-vector type), 
- AAA (three axial-vector vertices). 

Of course, in the configuration Z'Y'Y considered up to now only the VVA 
fermion loops playa role (and the same is true in the ZZ'Y case) but in 
configurations ZZZ and WWZ one has to consider both the VVA and the 
AAA fermion loops. ' 

One may demonstrate that the ABJ triangle anomalies vanish (i.e. can­
cel) in all the above-mentioned caseSj again, the mechanism described in the 
case of the Z'Y'Y configuration plays an essential role. In other words, the 
contributions coming from quark and lepton anomalous triangle loops cancel 
each other owing to the jdentity (5.164) (absence of some anomalies is how­
ever trivial). A proof of the complete cancellation of anomalies within the 
standard electroweak theory is left to the interested reader as an instructive 
exercise (see the problem 5.15). 

It is remarkable that a complete cancellation of the ABJ anomalies occurs 
automatically, as a consequence of properties of the electroweak interactions 
of quarks and leptons (which have been deduced from the requirement of the 
tree unitarity) and of a choice of the quark charge spectrum which is very 
natural from a physical point of view. Anyway, the elimination of anomalies is 
technically the last crucial step in the construction of an internally consistent 
model of electroweak interactions. ' 

Now we have come to an end of our road to the renormalizable theory 
of weak and electromagnetic interactions. The last "missing link" in the 
electroweak lagrangian (5.95) is the interaction of charged and neutral quark 
currents with the vector bosons W:I:: and Z described by the expressions 
(5.137) (or (5.139) resp.), (5.141), (5.151) - (5.155) and the Yukawa inter­
action of quarks with the scalar field 7J (see (5.147),(5.156)) and of course 
a standard electromagnetic interaction of quarks. The final result of our 
construction just corresponds to the lagrangian of the standard model of 
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electroweak interactions which is currently (together with quantum chromo­
dynamics) one of the cornerstones of the modern particle theory (see [25]). 
The full interaction lagrangian which we have obtained is for convenience 
summarized in Appendix K. The method of deriving the standard model of 
electroweak interactions, which we have described in this chapter, relied sub­
stantiallyon the criterion of tree unitaritYj as we have seen, the elimination 
of anomalies is then an automatic consequence of a physically realistic choice 
of the quark sector of the model. The absence of manifest sources of un­
desirable divergences in perturbation expansion indicates that the model we 
have obtained is renormalizable (cf. the discussion at the end of Section 5.5). 
It turns out that such a guess is indeed correct: Now we have an interaction 
lagrangian which leads to a renormalizable perturbation expansion for the S­
matrix. However, a proof of such a statement is by far not straightforward; 
for carrying out the corresponding proof to all orders of perturbation ex­
pansion it was necessary to reformulate non-trivially the whole theory and 
to apply some remarkable new techniques and methods of quantum gauge 
field theory (see [10)). A technical discussion of these problems can be found 
in many textbooks and review articles (see e.g. [15], [17], [21], [25)). 

The derivation of the standard model of electroweak interactions descri­
bed in this chapter is remarkable in particular because it demonstrates the 
necessity of introducing vector bosons and interactions of the Yang-Mills type 
(this corresponds to the principle of non-abelian gauge invariance in the tra­
ditional GWS formulation) and at least one elementary scalar boson (which 
corresponds to the GWS realization of the Higgs mechanism) if one wants to 
arrive at a renormalizable theory of weak and electromagnetic interactions. 
In other words, and in a more detailed way: After the formulation of the 
GWS theory [5 - 7] one might naturally contemplate the question of whether 
one could do without the Higgs scalar boson (whose presence is somewhat 
"uncomfortable" - see below). The systematic deductive approach [11 - 14] 
described in some detail in the preceding section shows that the ingenious 
GWS construction based on principles of broken symmetry in fact represents 
the only realistic possibility for a renormalizable electroweak unification, if 
at the same time we restrict the number of possible new particles (i.e. if 
we have in mind a "minimal" model); let us recall again that in comparison 
with the naive "electra.weak" theory (4.26) we had to introduce (within such 
a minimal strategy) one extra neutral vector boson and one neutral scalar 
boson. 
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As we have already mentioned, the assumed existence of a neutral scalar 
Higgs boson is somewhat uncomfortable; by that we mean, in particular, that 
the standard model does not predict any specific value of a mass for such a 
particle (in contrast to the case of an IVB). On the other hand, we have also ' 
mentioned that the requirement of perturhative renormalizabiIity is, from a . 
modern point of view, a restriction of rather technical nature (see e.g. [72]) 
and its physical relevance is not, strictly speaking, quite clear. The problem 
of the "Higgs sector" of electroweak interactions thus represents one of the 
most interesting open questions of the contemporary particle physics (see e.g. 
[73), [74]). One may expect that this intriguing problem will be elucidated 
by the planned experiments on LEP 200, LHC and SSC which, moreover, 
should also verify whether the self-interactions of vector bosons are indeed 
of the Yang-Mills type. It is supposed that the corresponding tests of these 
fundamental aspects of the standard model will be feasible in a foreseeable 
future - bv the end of this (or at the beginning of the next) millenium. 

Problems 

5.1. Derive 

5.2. Prove the statement following the relation (5.19). 

5.3. Derive (5.50). 

5.4. Derive in detail {5.53} (a sketch of the proof is given in Appendix J). 

5.5. Derive {5.56}. 

5.6. Derive (5.59), (5.61) and (5.62). 

5.7. Derive (5.72). 

5.8. Derive (5.76). 

5.9. Derive (5.78). 

5.10. 	Derive (5.80). 

5.11. Derive (5.83) and {5.85}. 
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5.12. 	Prove that scattering amplitudes of the processes (5.97) corresponding 
to the interaction lagrangian (5.95) satisfy the condition of tree unita­
rity. 

5.18. 	Derive (5.123) and (5.127). 

5.14. 	Show that in case that there exist five quarks 11., d, 8, c, h, a sixth quark 
t with charge 2/3 is also necessary if one wants to suppress bad high­
energy behaviour of all relevant tree-level scattering amplitudes and, at 
the same time, to avoid non-diagonal neutral currents. Prove that the 
matrix VCKM on (5.139), (5.140) must then be unitary. How can one 
arrive at a parametrization mentioned in the text following (5.140)1 

5.15. 	Prove that the ABJ triangle anomalies vanish (for an arbitrary fermion 
generation) also in configurations ZZ1, ZZZ, ZWW and 1ltVW (in 
the sense defined at the end of Section 5.7). In doing this, neglect the 
mixing of different generations in quark sector. How does a non-trivial 
mixing influence the cancellation of anomalies? 

5.16. 	Calculate (in tree approximation) cross sections of elastic scattering 
processes IIpe --+ IIpe and iipe --+ iiiJe.Discuss separately the low-energy 
and high-energy regions. Explain bow could one determine, from a 
measurement of cross sections O'(lIpe --+ lIiJe} and O'(iipe --+ iipe) in 
low-energy region (i.e. for s <: G'FI) the neutral-current parameter 
sin2t?w and how could one verify validity of the Weinberg relation 
mw /mz = cos t?w (predicting thus the values mw and mz without a 
direct detection of Wand Z). 

5.17. 	Calculate (in tree approximation) cross sections of processes lice --+ lIee 
and iiee --+ iiee. 

a) In the low-energy region compare the obtained results with Feynman­
Gell-Mann theory (see Appendix D). 

b) Does it hold O'(lIee --+ lIee) = O'(iiee --+ iiee) in the limit s --+ oo? 

5.18. 	Calculate (in tree approximation) 

a) total decay width of the W 

b} total decay width of the Z 
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c) 	 the decay width r(q -+ JJ) where q is the Higgs scalar boson a.nd 
Jis an arbitrary fermion (such that 2m, < mf/)' What is the ratio 
of lepton and hadron (Le. quark) widths in the case of W, Z and 
q decays assuming that mf/ = 300 GeV and m, = 120 GeV7 

d) 	 For the value of m., considered above calculate a.lso the decay 
widths r(q -+ W-W+) and r(q -+ ZZ). For what value of m'l is 
the decay width of the scalar boson q comparable with its mass? 

5.19. 	Let us imagine that the electromagnetic interaction is switched off, i.e. 
e = 0 (in such a hypothetical world an electron differs from the corres­
ponding neutrino only by its rest mass). Is it possible to construct in 
such a case a renormalizable theory of weak interactions incorporating 
the original naive model with Wbosons? Does an anomaly cancellation 
condition lead to a restriction on the fermion spectrum? How can one 
interpret a role of unification of weak and electromagnetic interactions 
in constructing a corresponding renormalizable theory in the realistic 
case e :/= 01 
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Appendix A 

Kinematics 

In this appendix we have summarized some formulae of relativistic kinematics 
which are needed in the main text. 

For a binary reaction 1 + 2 -+ 3 + ../ let us denote the four-momenta 
of particles 1,...../ (with rest masses m1! ...,m..) consecutively as k,p,k',p', so 
that it holds 

k+p=k'+p' 	 (A.l) 

and 

\ ' 
k'.l = m~, p2 = m~, k'2 = m~, p'2 m! (A.2) 

If one defines the standard Mandelstam variables (kinematical invariants) as 

s (k+p)2 
(k - k')2 

u (k-

then the following familiar relation holds: 

.. 
s+t+u= I:mJ 	 (A.4) 

'j=l 

The identity (A.4) is most easily proved as follows: 
According to the definition (A.3) and using the four-momentum conserva­

tion (A.I) one may write 

1
.5+t+u = 2[(k+p)2+(k'+p')'.l+(k- +(p- +(k - p')2 + (k'­
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= p +p2 + k'2 +p'2 + !(k +P _ k' _ p/):1
2 

From the last expression and from (A.1), (A.2) then immediately follows the 
result (A.4). Let us recall that" = E~.m., where Ec.m. is the total energy of 
colliding particles in the center-of-mass (c.m.) system. 

Further, we will introduce a dimensionless variable 

p.q 
(A.5)y = p.k 

where we have denoted q = k - k'. This kinematical variable is particularly 
useful in cross-section calculations in situations when one may neglect rest 
masses of particles. Namely, in a massless case the following relations hold 
(we leave a corresponding proof to the reader as a simple exercise) 

-8Y 
U -8(1- y) 	 (A.6) 

Moreover, the variable y is in such a case simply related to the scattering 
angle in the c.m. system: 

1 
y = 2"(1 - cos 17) 	 (A.7) 

where 17 is defined as the angle betw~n momenta k and k'. A proof of (A.7) 
is easy if one takes into account that upon neglecting masses one"has in the 
c.m. system 

ko = Ikl = po =1P1 = k~ =Ik'i = p~ = 1111 = E = ~.;s 
Then 

p.q = p.k - p.k' 

= 	 p.k - [E2 - E2 cos(1r - 17)] 
1 

= p.k -	 4',,(1 + cos 17} , 

However, one also has p.k = i" and from the definition (A.5) we thus imme­
diately obtain (A.7). It is also obvious from (A.7) that if one neglects masses, 
the variable y takes on values from 0 to 1. 
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We will now give two frequently used formulae. The first of them expresses 
the momentum of particles colliding in the c.m. system, as a function of the 
kinematical invariant" and of the relevant rest masses ml, m2: 

-4 1=[A(8,m~,mn]11Pc.m. 48 	 (A.S) 

where 
..\(x, y, z) = x2 +y2 +Z2 - 2xy - 2xz - 2yz (A.9) 

The proof of (A.S) is straightforward. Total energy of the two particles in 
the c.m. system is (using the shorthand notation Pc.m. = P) 

-jfil + m¥ +Jfil +m~ = .;s (A.tO) 

Solving eq. (A.lO) with respect to 1P1 we get first 

1P12 + m~ = ( Vi _ ..j1P12 + m~) :I 

from where (A.S) follows after a short manipulation. 
The second frequently used formula gives the magnitude of relative ve­

, locity of 2 particles in a collision (in an arbitrary reference frame). Let the 
two colliding particles with rest masses ml, m2 have antiparallel velocities 
Vh V2' Then it holds 

IVI - V2! = [(Pl.P2)2 - m~m~]t {A.ll}
EIE, 

where Pi = (Ei,Pi), i =1,2 are four-momenta of particles 1,!!, i.e. p~ =m~. 
The proof of (A.ll) is easy: Under given conditions one has 

/'111 - v21 _ V(i1I ::: i1:S~ = \/ (ipli + 1P21)2
El E2 

EIl~ J(EIE, + lid. b>, !)2 - m~m~ 

{the last identity becomes clear if we use IPiI = JE1- mn. However, in the 
considered configuration of the particle momenta one may write 

PI·P2 =El E, +IpdIPiI 
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and the relation (A.II) is thus proved. The formula (A.Il) may be also recast 
in terms of the function ..\(s,m~,m~) introduced in (A.9). Indeed, from the 
definition (A.3) it follows 

1 ( :. :.PI·P2 = 2' s - m1- m:.) 

and substituting this to (A.ll) we get immediately 

I... _ .... 1- ..\l(s,m~,m~) (A.12)
VI v:. - 2EIE2 

Finally, using (A.S) one may also write 

slIPc.tn.1 (A.13)IVI - v21 = E1E2 
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Appe;ndix B 

Dirac spinors and free fields 

External lines of Feynman diagrams corresponding to spin-l fermions repre­
sent graphically solutions of Dirac equation in momentum representation (for 
a four-momentum p we always take PD = +v'p':r+ruf ): 

(p-m)u=O, (p+m)v=O (B.1) 

The u, v in (B.1) is a shorthand notation for u(p, s), v(p, s), where s is a 
polarization' which takes on 2 possible values. The symbol p in (B.1) is 
defined as p= PII:rll where ,II, P. = 0, 1,2,3 are standard Dirac matrices. 

In diagrams, a factor of u (or u resp.) corresponds to a particle, and simi­
larly v (or ii resp.) stands for an antiparticle. From (B.1) it follows immedia­
tely that for conjugated spinors u, ii one has (recall that u= ut,o, ii = vt,o) 

u(p-m) 0, ii(p+m)=O (B.2) 

The functions u, v are normalized by 

uu 2m, iiv = -2m (B.3) 

1£ we use the convention (B.3), an expansion of a free Dirac field in plane 
waves may be written as

""J d,'Jp . ..,p(x) = L" ,~ ,L~ ,1 [b(p,s)u(p,s)e-'PZ + d+(p,s)v(p,s)e'PZ01 
:1:.. - ""J +.d,'Jp ..,p(x) = ~ (2'lr)~(2Po)![b (p,s)u(p,s)e,pzo+d(p,s)ii(p,s)e-t"ZO] 

(BA) 
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where 6 (6+) is an annihilation (creation) operator for a particle and d (d+) 
correspond to antiparticles. Let us remark that the annihilation and creation 
operators in (BA) satisfy anticommutation relations 

{b(p,s),b+(p's')} = {d(p,s),d+(p',s')} = 6",63(p- p) 

etc. which correspond to the normalization of one-particle states defined by 

< p,slp,s' >= 6",63(p - iI) 

It is in order to emphasize here that, instead of the convention (B.3), 
another normalization is frequently used in the literature, namely iiu = 
1, vv = -1 (see e.g. [16], [21]). An advantage of the option (B.3) is that the 
relevant formula for a scattering cross section or a decay rate has then the 
same form both for bosons and fermions (see Appendix C, formulae (C.I) or 
(C.14) resp.) and that a Lorentz-invariant scattering amplitude M/; for an 
arbitrary 	binary process is dimensionless (cf. (C.3)). 

For the functions u, v normalized according to (B.3) one has further 

L u(p,s)ii(p, s) = P+m 	 (B.5) 
:1:1 

L v(p, s )v(p, s) =p- m 	 (B.6) 
±. 

Finally, let' us specify an explicit form of the functions u, v satisfying (B.I), 
(B.3). We will denote u(p,s) == u(r)(p), Le. the polarizations ±s are labelled 
by an index r = 1,2. Solutions of (Rl) with polarizations corresponding 
to definite projections of the spin onto the z-axis in the rest frame of the 
considered particle (we assume m =F 0) are given by 

X(r) ) 
u(r)(p) =VE +m iJ.p (r) (B.7)

( 
E+mX 

iJ.p (r») 
v(r)(p)=±VE+m E+mX. (B.S)

( X(r) 
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In (B.7), (B.S) we have denoted 

X(l) = (~), X(2) = (~) 

and iJ are Pauli matrices. The upper sign in (B.S) refers to r = 1, the lower 
sign corresponds to r = 2. The signs ± in (B.S) are chosen so that the 
operation of charge conjugation would turn a function u into a v, assuming 
that a phase of the charge-conjugation matrix is fixed conventionally (C = 
i7270). 

It is important to notice that in the ultrarelativistic limit (i.e. for E :> m) 
the u and v behave like VB; this fact is frequently used in estimates of high­
energy asymptotics of scattering amplitudes represented in terms of Feynman 
diagrams. 
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Appendix C 

Formulae for cross sections 
and decay rates 

If we fix our conventions so that the Dirac spinors u, il, 'Il, V corresponding to 
external fermion lines in Feynman diagrams are normalized according to the 
(B.3), then a general formula for the differential cross section of a process 
1 +e-+ 9 + -I ... + n reads (ef. 

1 1 1 I 12 .(.{ ", ~ d3Pa dlp~
do- = IVI _ v212E 2E2 M Ii (211") 0 (PI +P2 - ka pj) (211" )32E ... (211" )32En f(

1 a 
(C.1) 

regardless of whether the particles l,e,,,. n are bosons or fermions. In the 
formula (C.1) we ha.ve denoted by Vl! V2 velocities of the initial particles l,e 
(we take them to be parallel and of opposite directions), the Ph j = 1, ... , n 
are on-shell four-momenta and Ej denote the corresponding energies, i.e. 

E; = Vii +mJ for j =1, ... , nand J( is a combinatorial (statistical) factor, 
which is different from 1 only in a case that some of the final-state particles 
.1,.",n are identical, namely 

k 1 
J( =II n ! (C.2) 

r=l r 

where nr is the number of identical particles of the r-th kind in the final state 
(of course, it holds ni +... +nk = n - 2). The M Ii is a relativistic invariant 
scattering amplitude which in practice is calculated as the contribution of 
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Feynman diagrams relevant for the considered process. Let us remark that 
owing to the employed normalization of one-particle states (corresponding 
to (BA» the M/i is connected with the corresponding S-matrix element via 
the relation 

1 
Slj = on + (211"),'o"(PI - P,)(iMli) IT. (211")3/2(2EJ,i . 

I .' 
where PI or H resp. is the total four-momentum of the final or initial par­
ticles resp. The convention used by Bjorken and Orell [16] differs from our 
definition by replacing iM/i -+ -iM/i. 

Using the formula (C.1) one may determine easily a dimension of the 
amplitude M/i. The dimension of the left-hand side of (C.1) is 

[do-] =M-2 

where M is an arbitrary mass and on the right-hand side of (C.1) one has 
(recall that the dimension of the four-dimensional delta function is M-"I) 

M- 1 ,M-1[lMbI 2].M-".(M2),,-2 = [lMliI2].M2n-lo 

Thus, for the dimension of MI; we obtain the equation 

M-2 = [lMliI2].M2n-lo 

from where we get immediately 

[M/il =M"-n (C.3) 

In particular, (C.3) implies that a scattering amplitude of an arbitrary binary 
process 1 + e -+ 9 + -I (i.e. for n = 4) is dimensionless (let us stress again 
that the normalization convention (B.3) is crucial for such a statement to be 
valid). This simple fact is frequently used in the main text for estimates of 
high-energy behaviour of scattering amplitudes of weak and electromagnetic 
processes. 

For the relative velocity IVI - v21 in (C.1) we may use formulae (A.ll) or 
(A.12) from Appendix A and obtain thus commonly used equivalent alter­
natives to (C.1) in which the factor 

IVI - v21-1(2EI t 1(2E2)-1 
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is replaced by 
1 
i[(Pl'P2)2 - m~m~t! 

or by 
1 _l( 2 2)
-). J s,m.,m2
2 

respecti vely. 
Further, we are going to derive a practically useful formula for the diffe­

rential cross section of a binary process with respect to the scattering angle 
in the center-of-mass system of colliding particles. Let us consider a process 
1 + f-+ 3+ 4in thecenter-of-mass (c.m.) system, i.e. take,1. = -,12 = ,1c.m. 
and E. +E,. = Vi (the I(Pc.m.1 is of course given by the formula (A.S) - see 
Appendix A). We will assume that the particles 3, 4 are not identical; in the 
opposite case we would just have to include a combinatorial factor J( = t. 
From the general formula (C.1) we then get first (see also (A.13)) 

dO' = 1 .Is! IM/il~(21(")40'(p. + P2 - P3 - P.. )(2~~E3 (2~:;E.. (CA) 

The relation (CA) may be now integrated to eliminate the 6-function; in 
doing this, we will still use the same symbol dO' for the integrated cross 
section. First of all, one may integrate trivially over ~P4 to get 

1 
dCT 64 2~IMli126 (.../liTI2 +m~ + .../liTl2 +ml- Vi) X 

1(" IPc.m.ls 

~p' (C 5) 
x v'lir l2 +m~v'liTI2 +ml . 

where jI =it.J = -P4; in (C.5) we have also set El +E2 = ..;s. A direction of 
the jI may be described by spherical angles 1), rp (the axis 3 of the coordinate 
frame is defined by the Pdirection) and one may then write 

~fI = IflI2dlflidO IflI2dlpi sin {)d{)drp 

Let us now integrate (C.5) with respect to Ivl (in the limits 0 and (0); thus we 
get rid of the o-function corresponding to energy conservation. For brevity, 
let us denote Ivl = z. Using such a notation, (C.5) reads 

2 
dCT - _l___l_IM '126[/(z)] z dzdO (C.6)

-641("21-0 11 11 ~+2 ~+Pc.m. ~J V z- T m3V z- T m4 
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where 
I(z) = v'Z2 +m~ +v'Z2 +ml-..;s (C.7) 

The equation I(zo) = 0 has a single positive solution zo, namely (see (A.8)) 

%. = lP:m.l = [A("r;:,mllt (C.S) 

The 6-function in (C.6) is then equivalent to 

1 
6[1(z)1 = 1I'(zo)1 6(z - zo) (C.9) 

From (C.7) it follows easily 

'() Zo Zo zoVsI Zo = + =--:::==~=== (C.lO)
v'z~+m~ v'~+ml v'z~+m~v'z~+m~ 

Substituting (C.9) and (C.10) into (C.6), an integration of (C.6) with respect 
to z is trivial and by using (C.8) we obtain finally 

dO' = _1_~IP:.m.IIMI'12 (C.ll)
dO 641("2 S IPc.m.1 I 

Obviously, the formula (C.11) may also be recast as 

dCT = 1 1 .xt(s, m~, m~) 1M il2 (C.12)
dO 641("2 8 At(s, mf, m~) I 

In a case where one may neglect particle masses it is useful to work with 
differential cross section (of a binary process) defined with respect to the 
Lorentz invariant dimensionless variable y defined in Appendix A (see(A.5)). 
If the IM/il2 depends only on the angle {) then using (A.7) one gets from 
(C.ll) or (C.12) resp. a simple formula 

dO' 1 1 2 - = --IMld (C.13)
dy 161(' 8 

In practical calculations, the Mandelstam invariants t, u in 1Mlil2 may be 
then expressed in terms of sand 11 (see (A.6)). The integral cross section is 
then obtained by integrating (C.13) over the y from 0 to 1. 
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Let us now consider a two-p~rticle decay of a particle with mass M in its 
rest frame; masses of the decay products will be denoted as ml, m2' The 
differential decay probability per unit time is given by (d. [16]) 

1 I 12()" " ) cf3Pl cf3P2 (C.14)dw = 2M M/i ~11' 6 (P - PI - P2 (211')32EI (211')32E2 K 

where M /i is the corresponding relativistic invariant decay amplitude (de­
termined by the relevant Feynman diagrams), P is the four-momentum of 
the decaying particle, i.e. (in the rest system) P = (AI, 0, 0, 0), PI = (El, it) 
for i = 1,2 are four-momenta of the final·state particles 1,e and ]( is the 
combinatorial factor defined in (C.2). In what follows we will consider for 
simplicity the case 1 :f:. e, i.e. K = 1. 

The phase-space integration of the differential decay rate (C.14) (i.e. an 
integration over the momenta of the final-state particles 1,e may be perfor­
med in analogy with the previous derivation of the formula (C.Il). If we 
denote the integrated element of the two-particle phase volume correspon­
ding to a solid-angle element dO by a symbol d(LI PS2) (where" LIPSI) is 
an acronym for "Lorentz Invariant Phase Space") we thus obtain 

1 f dlPI dlP2 " d(LI PS2 ) = --0 (P - PI - P2)
2E12/h 
00

dO 1 z2dz x 
o vlZ2 +m~v'z2 +m~ 

X 5(vlz2+m~+vlz2+m~-M) = ~1~~2 (C.15) 

where IPI is the magnitude of three-momentum of a decay product (remember 
tha~ Ip.! = Ip21 = 1P1). The IPI is of course given by (d. (C.7), (C.8)) 

Ip;;'! = _1_)J(M2 m 2 m 2) (C.16)!112M 'II 2 

Note that using the definition (A.9), the expression '\(M2, m~, mD may be 
rewri t ten as 

'\(M2,m~,m~) [M2 - (ml +m2)2][M2 - (m} - m:J)2] (C.17) 

Thus, in a case where it makes sense to consider an angular distribution 
of the decay products (e.g. if the decaying particle is polarized) we have a 
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general formula for the corresponding differential decay rate 

dw = 2~ IM/iI2d(LI PS2) (C.18) 

where the element of the phase space is given by (C.15). If the initial and 
final-state particles are unpolarized, the quantity 1M/i12 summed over pola­
rizations does not depend on the angles n == (t1,<p) and the relation (C.18) 
may be integrated triviallYi we thus get a useful formula for the integral 
decay rate (decay width) r: 

1-­
r = 2MIM/iI2LIPS2 (C.19) 

where the symbol IM/il2 indicates, as usual, summing and averaging over 
polarizations and the phase-space factor is 

~IPILIPS2 411'M 
~. /r"1-_-(':'""m-I-+-m----:2)-,-2 . /1 _ (ml - m2)2 

(C.20)
811' V M2 V M2 

. The last expression follows easily from the relations (C.15) through (C.17). 
For completeness we give finally two frequently used particular cases of 

the formula (C.20): 
i) If ml = m2 = m we get from (C.20) 

l.~ 
LIPS2 Iml=m2=m = 811' Vi - W (C.2l) 

ii) For mil m2 <: M we have a very simple approximate formula 

. 1 
LIPS2Iml,m2<M == 811' (C.22) 
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Appendix D 

Neutrino-electron scattering in 
Feynman - Gell-Mann theory 

As an illustration of the considerations presented in Chapter 2, in this appen­
dix we will perform a detailed calculation of cross sections of the elastic 
scattering processes lIee -+ lIee and Vee -+ Vee in the lowest perturbative 
order within a Fermi-type model of weak interactions. More precisely, we 
will employ the model of direct four-fermion interaction ot the type current 
x current, with currents V - A {see (2.l)), i.e. the classic Feynman - Gell­
Mann theory {2]. The relevant Feynman diagrams are shown in Fig. 38. The 
Lorentz-invariant scattering amplitudes M/i corresponding to the diagrams 
(a), (b) in Fig. 38 are given by 

iMW = -i~[U{P')-y'(l -,s)u(k)] [u{k')-y,(l -,s)U(P)] (D.1) 

iM~) = -i~[v(k)-y'(l -'S)U(P)] [u(p')-Y,(l -'5)v(k')] (D.2) 

((or the sake of brevity, polarizations are not marked explicitly in the Dirac' 
spinors in (D.1), (D.2)). Throughout our calculations the neutrino is taken to 
be massless, but we will keep me # o. We will also use a shorthand notation II 
instead o( lie and m instead of me' First let us consider the process lie -+ lie. 
From (D.l) it follows easily ((or all arbitrary combination of polarizations) 
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pI.' 

(a) 	 (b) 

Fig. 	38. Feynman diagrams corresponding to the elastic scattering processes 
a} lIee -+ lIee and (b) vee -+ Vee in the lowest order of perturbation 
expansion in a Fermi-type model. 

m
IMWI2 .{ [u(p')-y'(l-,s)u(k)] [u{k)-ycr(l -IS)U(P')] x 

x [u(k')-y,{l -'s)u{P)] {u(p)-yq(l -15)u(k')1 
m . 
.{Tr[u(p')u(p')-y'{l -'5)u(k)u{k)-y"(1 -15)1 x 

x Tr[u(k')u(k')-y,{l '-ls)u(P)u(p)-ycr(l -'s)] 

Summing in the last expression over polarizations (with the help of (B.5)) 
we get (using also the relation (1 -15)2 =2(1 -15) and other well-known 
properties of Dirac matrices) 

LIM Wl2 

pol. 

2~Tr[(p' +mh'~lcr(1-'5)]Tr[r,,(p+m)-yq(1-'I1)] 
2G~Tr[p'I' ~,·-t(l -ls)]Tr[~/"hq(l -15)] (D.3) 

(Notice that the terms involving m do not contribute in the last expression, 
since the trace of a product of an odd number of Dirac matrices vanishes.) 
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The spinor traces in (D.3) may be evaluated most efficiently by using the 
following identities: 

Tr(~"I''''l')Tr(hp~''I(f) = 32[(aoc)(b.d) + (a.d)(b.c)] 
Tr(~"I'h'''Is)Tr(h,~''I.''Is) = 32[(a.c)(b.d) - (a.d)(b.c)] 

Tr(~"I'h')Tr(~"I,~"I."I5) = 0 (D.4) 

Let us remark that the identities (D.4) follow easily from the standard for­
mulae (remember that we adopt the convention t:0123 = +1) 

Tr("I,,"III"I,"I.) = 4(g,."g,. - g",gll' +g".gll,) 
Tr("(p"lIl"l,"I.,s) = 4it:PIl" 

Using now in (D.3) die formulae (D.4) we get the result 

L IMWI2 = 128G~(k.p)(k'.p') 
pol. 

which may be rewritten in terms of the Mandelstam variable 8 (see (A.3» as 

L IMWl2 =32G~(8 - m 2)2 (D.5) 
pol, 

In the case of the process iie -+ iie, the starting point is the expression 
(D.2)j the corresponding calculation is completely analogous to the preceding 
case and it leads to the result 

L IM)bJpl =32G~(u - m2)2 (D.6) 
pol, 

where u is the Mandelstam variable defined in (A.3) (Le. u = (k - P'J2). The 
expressions (D.5) and (D.6) are thus related by the replacement 8 H u, as 
it was to be expected on the basis of the "crossing symmetry" (see e.g. [20], 
§66). 

Cross sections of the considered processes may be now calculated by 
means of the formula (C.ll) (let us recall that for an elastic scattering one 
always has IPc.m.1 = IK""D. For the angular distribution of the final-state 
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particles in the c.m. system we thus get (averaging in (D.5), (D.6) over the 
electron polarizations) 

do-eve) G} (8 - m2)2 
(D.7)dn = 4?r2 " 

do-COt) G} (u - m2)2 
(D.S)dn = 4?r2 " 

Thus, the angular distribution or scattered particles in the process lie --t lie 
is manifestly isotropic (in the c.m. system) according to (D.7). In order to 
express the right·hand side of (D.S) in terms of the scattering angle in the 
com. system we may use the relation u =2m2 

-" - t (see (A.4» and (owing 
to mv =0) 

t == (k - k')2 = -2kk' = -2IPc.m.12(1- cos.?) 

Using (A.S) for the IPc.m.l, after a simple manipulation one gets 

2 
2 2 [ 8 - 711 ]U - m = -(8 - m) 1 - ~(1 - cos t?) (D.9) 

Of course, for m 0 is (D.9) reduced to u = -t(1 +cos t?) = -8(1 - y) as 
expected (cr. (A.6), (A.7)). 

Substituting (D.9) into (D.S), we have the following result for the diffe­
rential cross section of the process iie --t iie w.r,t. scattering angle in the 
c.m. system: 

2 ] 2 do-(iie) _ G} (8 m2)2 [1 _~(1 _cos t?) (D.10)dn - 4?r2 8 28 

Let us now calculate the corresponding integral cross sections. The an­
gular integration is trivial for the process lie -+ lie; from (Do7) we get imme­
diately 

o-(lIe --t lie) = G~ (8 - m
2

)2 (Doll) 
?r 8 

The integration of the differential cross section (DolO) leads to 

[m2 ]o-(iie --t iie) = -L(sm - m2) 1 _ (_)3 (D.12)
3~ 8 

144 



In the high-energy limit, i.e. for 8 ;:» m 2 , the relations (D.ll), (D.l2) yield 
approximate asymptotic formulae 

m
u(ve -+ ve)l,:>m2 ~ 28 (D.13) 

'lI" 

m 
u(iie -+ iie)I,:>m2 ~ 3:8 (D.14) 

For completeness let us also give a simple formula for computing numeri­
cal values of the cross sections (D.13), (D.14). Since we employ a system 
of units in which Ii = e I in all relevant formulae, in order to express 
the cross sections in units [cm2] one has to use the conversion constant 
lie == O.197GeV1m (where 11m = lO-13cm). Further, taking into account 
that GF == 1.166 x 10-5 GeV-2, then e.g. from (D.13) one gets 

u(ve -+ vel == 1.7.s[GeV2] x lO-38cm2 (D.l5) 

If one wantS' to express the numerical value of (D.15) as a function of the 
neutrino energy· Ell in the laboratory frame (i.e. in the rest system of the 
electron), one may use an approximate relation valid in high-energy limit 
(i.e. for Ell ;:» m), namely 

s ==2mEII (D.l6) 

Since m == O.5MeV, one gets from (D.15) and (D.16) 

u(ve -+ ve) == 1.7Ell [GeV] x lO-41 cm2 (D.17) 

An unbounded growth of the cross sections (D.13), (D.l4) for s -+ 00 

means, roughly speaking, that weak interactions in a Fermi-type theory be­
come "strong" in the high-energy limit. In this context (and for an elucida­
tion of the term "weak interaction") it is instructive to compare numerical 
values of the cross sections (D.13), (D.14) with the cross section of a typical 
electromagnetic process (e.g. e- e+ -+ Jl.-I'+) for various energies. Let us 
recall that for s ;:» m! one has, in the tree approximation (i.e. in the 2nd 
order of perturbation expansion in QED), tbe approximate formula 

- + - +) . 4'l1"a 
2

• 86.8 b (D 18)
u(e e -+ Jl. Jl. = a:;- = s(GeV2)n . 

where Inb (= 1 nanobarn) = lO-33 cm2 (a is the fine-structure constraint, 
a == 1/137). 
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Appendix E 

Jacob-Wick expansion and the 
unitarity condition 

In this appendix we present some basic relations and formulae concerning 
the expansion of a relativistic scattering amplitude (given in momentum and 
helicity representation) into partial waves (characterized by values of the total 
angular momentum), i.e. the so-called Jacob-Wick expansion [19]. Within 
the framework of such a formalism we then discuss the condition of unitarity 

. of the S-matrix. A more detailed exposition and a derivation of the Jacob­
Wick expansion may be found either in the original paper [19] or in the 
textbooks,[20], [21]. A very useful survey of this method is also contained in 
an appendix of the paper [22]. 

First we will consider a process of elastic scattering of particles 1, f; 
throughout our dicsussion we are working in the center-of-mass system. The 
initial and final states of both particles are characterized by their momenta 
(they are plane waves) and belicities. The axis 3 of the coordinate frame will 
be identified with the direction of an initial-state particle momentum. For 
the scattering amplitude normalized so that its square is just equal to the 
differential cross section, i.e. 

du 1112 (E.1)
dO 


one may write a partial-wave expansion (Jacob-Wick expansion [19]) 


Ih'''(.s,O) = L:(2j + 1)I!!l(8)1)~~(O) (E.2) 
j 
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where h == (h tt h2), and h' == (hi,h~) are the initial and final helicities re­
sp., n == (t7,IP) defines a direction of the momentum of scattered particles 
and V~~(n) are Wigner functions (known also from the theory of angular 
momentum as the matrix elements of finite rotations - see e.g. [23]). The 
indices A, N are given by 

A= h1 - h2, A' =h~ - h; 

Some basic properties of the Wigner V-functions are summarized in Appen­
dix F. A coefficient f(i} in the expansion (E.2) is the amplitude of the partial 
wave corresponding to the total angular momentum;. The sum in (E.2) runs 
over all nOll-negative integer or half-integer values of the j resp. depending 
on whether the set of particles 1, ! contains an even or an odd number of 

WI) and sl{t is S-matrix element 

fermions resp. The amplitudes of partial waves have the form 

n
f,,;,,(3) 

1 W= 2ilP1(S"." -1) (E.3) 

where p is the momentum of colliding particles in the c.m. system (for 
elastic scattering we of course have 1P1 = 
for scattering in a state with total angular momentum; and for given initial 
and final helicities hand h'). The essential point is that s~l belongs to 
a unitary matrix. This immediately implies an important bound for the 
partial-wave amplitude f(j)(s) (here and in what follows we usually omit the 
indices h, h') 

1 
If(i}(s)15 1P1 (EA) 

Let us recall that 1P1 can be expressed in terms of s as (see (A.8)) 

~ _ Al(s,m~,mnIPI - 1 
2S2 

The expansion (E.2) may be rewritten for the Lorentz-invariant scattering 
amplitude M which we usually employ in our calculations (which is defined 
directly as a contribution of Feymnan diagrams). Indeed, comparing the 
formulae for scattering cross section (E.l) and (C.ll) one gets (equating 
phases of f and M) in general, i.e. including an inelastic scattering case, 
where IPI =F 1P'1 

M=811" st(IP1)!f (E.5)
Ivl 
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The partial-wave expa.nsion for the amplitude M may be written as 

M",,,(s,n) = 1671' 2::)2; + I)M~~(s)V~~(n) (E.6) 
j 

(the coefficient 1671' in (E.6) is chosen conventionally for a convenient norma­
lization of the amplitudes MW - see below, the relation (E.12)). From an 
orthogonality relation for the Wigner V-functions (see (F.6) in Appendix F) 
we obtain for partial-wave amplitudes in (E.6) a general formula 

M(j)(s) =_1_ jM(s n)v·~j)(n)dn (E.7)1671' ).U 471' 

In the particular case where N = A = 0 (Le. for hI = h2 , hi = h~) the V­
functions are reduced to Legendre polynomials (see (FA)) and the formula 
(E.7) then ·becomes 

1 11MW(s) = 3271' _I M(s) t7)Pj(cost7)d(cos t7) (E.8) 

In all elastic scattering case, the relation (E.5) simplifies to 

M =871'.fSf (E.g) 

From (E.3) and (E.g) we thus get 

MW(s) = -(i (SW - 1)
4'1P1 

(E.lO) 

and unitarity of the matrix S(i) then yields the bound 

IM(j)(s)l5 ~ (E.ll) 

In high-energy limit or for massless particles one has IPI ~ t.fS and instead 
of (E.ll) we may write a simpler inequality 

/M(j)(s)1 $ 1 (E.l2) 

In the case of an inelastic process 1 + ! -+ 9 + -lone may also write a 
partial-wave expansion in the form (E.2) or (E.6) respj however, in such a 
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case only the purely non-diagonal S-matrix elements are involved. Instead 
of (E.3) and (E.9) we then have (d. also [231, where the case of spin-zero 
particles is discussed) 

1 (j)n ) ! Sinel• (E.13) 
.fi~el.(a = 2i IPI! IP'I 

or 
. a! (j)

M~J) (a) 'I~I Sinel. (E.14)
mel. 41 p 

where the symbol S~!,. again represents collectively elements of the relev~nt 
unitary matrix and the index "inel." denotes the inelastic channel 1 + e-+ 
3 + ../. In high-energy limit, the relation (E.l4) implies the bound 

(j) 1 (E.15)IMined S 2" 

The constraints for partial-wave amplitudes following from S-matrix uni­
tarity can also be easily converted into inequalities for partial cross sections 
(i.e. for cross sections corresponding to the individual partial waves). From 
(C.ll), (E.G) and using the orthogonality relation (F.G) for the V-functions 
in the expansion (E.G) we get, after performing the angular integration (for 
a given set of the initial and final helicities) " 

0'(3) = L 0'(;)(8) (E.IG) 

where 
( ') IG1\" (')' 20' J (8) = -(2j + I)IM J (a)1 (E.I7) 

, 8 

In the case of elastic scattering, the inequality (E.ll) then implies a bound 
for the partial cross sections (E.17), namely 

(') 41\"0' J (8) S (2j +1)- (E.I8)
11i1' 

which in high-energy limit becomes 

C') IG1\"
0' 1 (8) S (2j +1)-' (E.19) 

a 

, 1,.9 

In the case of an inelastic process it is easy to derive analogous inequali­
ties; in high-energy limit (or for massless particles) one gets from (E.17) and 
(E.l5) 

(j) ( , 41\" 
O"'IIel, 3) :5 (2J + 1)- (E.20)

3 
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Appendix F 

Wigner V-functions 

In this appendix we summarize some important properties of the Wigner 
V-functions which enter the Jacob-Wick expansion described in Appendix 
E. A 	more detailed review may be found e.g. in [20] or 

In what follows, the symbol 11 denotes, as ever, a pair of spherical angles 
a direction in the 3-dimensional space. Wigner V·function appearing 

in the expansion (E.2) or (E.6) resp. is defined 

'OW (11) - illl'PdU) (,,,) 	 (F.I)fIl'... - ,../me 11 

Indices tn, m' may only take on values -i, -i+ 1, .··,i and the functions 

d!~!tn (t?) arc gi ven by the general formula. 

, I 
1 _ -1 1-11t X(.) . , () +m)., ] i 

dfn'm(t?) - () [22iU m')!U +m)!U - m)! 
m 

+O~(I - O_rn'," Ur ' [(1 +0;+'"(1 - 0;-"'] (F.2) 

where e cos 17. 
Some special properties of d~~m(t?): 

(i)
([""m( -t?) d!~~tl' (17) 

d~!~fn (t?) d~:n_tn,(17) (F.3) 

d~~t,(O) 
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In the case m = m' = 0 it holds for an arbitrary integer I ~ 0 

'012(11) = P,(cos t?) (FA) 

where P, is Legendre polynomial. , 
Examples of explicit form of the functions d~!m(t?) for j = I: 

= 	 d(l) = ~(I +cos t?)
-1-1 2 

d~ cos t? (F.5) 
1

(l~~l (L I1 = '2( I - cos t?) 

d(l) _d(l) = d(l) = -d~l)O ~ sin t? 
10 01 0-1 v2 

j 
An orthogonality relation: 


V"(JI) (11)V(j~) (11)d11 = -._1-6;'j/ifnlfll2 (F.G)
m;fnl tn2fn2 411" 2)1 + I 
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Appendix G 

Index of Feynman diagram 

In this appendix we derive, for completeness, a standard formula for the "in­
dex" (or "superficial degree of divergence") of an arbitrary Feynman diagram 
within the framework of a general model of quantum field theory described 
by a polynomiallagrangiall (see also [21]). We discuss separately the case of 
interactions involving a spin-I boson field with a non-zero mass (M) which 
is not treated in sufficient detail in [21]: If we use in such a case the cano­
nical propagator of tlie massive vector field which behaves in the ultraviolet 
(UV) region like a constant::::! M-2 (see (HA5) in Appendix Il), then the 
standard formula for the index of a Feynman graph 0[21] should be modified 
in a simple way, as we will show in the sequel (see also [25], [26]). 

First we are going to discuss a "standard" case where all boson pro­
pagators (in momentum representation) behave in UV region as k-2 • The 
contribution of a FeYllman graph involving L closed loops (i.e. L independent 
momenta of internal lines) may be written as 

J\1(G) =Jd4 k) ...d-lkL .1(kJ, •.• ,kLi l)ezt,) (G.1) 

where kl' ... , kL are relevant internal (loop) momenta and the symbol Pe:r:t. 

denotes collectively external momentaj in (G.1) we have neglected a possible 
dependence on masses of particles corresponding to the internal lines (i.e. 
propagators) since a non-zero mass in a propagator obviously does not in­
fluence the convergence properties of the integral (G. I ) in the UV region 
!:j ---+ 00, i I, ... , k. The iutegrand in (G. 1 ) is thus a homogeneous func­
tion of the variables k), ..., kL in the UV region. We then define the index of 
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the graph G as the degree of homogeneity of the complete expression behind 
the integration sign in (G.l) (Le. including d"k) ... d4kL ) and denote it as 
w(G); this means that when rescaling the loop momenta according to 

ki ---+ Alq, 1, ... ,L (G.2) 

the expression behind the integration sign in (G.1) (where all the masses 
are neglected) is multiplied by the factor A",(G). It is easy to realize that 
w(G) < 0 corresponds to a convergent integral (G.l) (which however may 
contain UV-divergent subgraphs) and for (superficially) UV-divergent graphs 
one has w(G) ~ 0 (such an UV divergence is logarithmic for w(G) = 0, linear 
for w(G) = I, quadratic for w(G) = 2 etc.). Let us stress that in such a 

estimate of the degree of divergence of a Feynman graph based on a 
straightforward power cOllnting in (G.l) we have of COllrse igllored allY sub­
tle details of the considered dia.gram which ill particular cases may cause an 
"accidental" cancellation of some of the potential UV divergences. A tenni­
nological remark is perhaps also in order here. In the literature, the w( G) is 
often called "superficial degree of divergence" or "overall degree of divergen­
ce" of a graph. We employ here the term "index" (which is frequently used 
e.g. in Russian literature) mostly for the sake of brevity and terminological 
simplicity, taking into account that later we will also introduce the notion of 
an "index" or "effective index" of an interaction vertex. 

In order to calculate the w(G) one has to realize that under the scaling 
transformation (G.2) in the UV region, each fermion propagator is multiplied 
by a factor A-I, each boson propagator yields (according to our assumption) 
a factor A-2 and a derivative f)'om the interaction lagrangian (acting on 
an internal line) gives a factor of Aj finally, the volume element in (G.I) 
contributes a factor X4L. Putting this together we get 

w( G) = 4L - IF - 21B +L 0" 

where IF is the number of internal fermion lines of the considered graph, IB 

is the number of internal boson lines and 0" is the number of derivatives from 
interaction lagrangian acting in a vertex v on the internal lines and the sum 
in (G.3) runs over all vertices of the graph G. The number of closed loops 
L may be easily expressed in terms of the total number of internal lines (I) 
and total number of vertices (V): 

L=I-V+I (GA) 
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Of course, olle has 1 = IF +1B and (G.3) may be thus rewritten as 

w(G) - 4 =3TF +2lB - 4V +L: 6v (G.5) 

The number of internal fermion or boson lines rcsp. may be expressed as 

1 
IF = 22:lv 

11 

1 
18 = 22:bv (G.6) 

11 

where Iv or bv resp. is the number of internal fermion or boson lines resp. 
attached to the vertex v. Further. one has 

Iv = 1W;t> - EF", 

bv llB;II - EB;v 

bv tlD;v - ED", (G.7) 

where EF;v is the number of external fermion lines attached to the vertex v, 
the EB;v has the same meaning for boson lines and ED;v denotes the number 
of derivatives from the interaction term corresponding to the vertex v which 
act on external lines. Similarly, the symbols 1I.F;u a.nd 1tB;v in (G.7) denote 
the total numbers of fermion and boson lines attached to the vertex v (i.e. 
the total numbers of fermion and boson fields occurring in the corresponding 
term of the interaction lagrangian) and nD;t> is the total number of derivatives 
in the corresponding interaction term. Using (G.G) and (G.7), the relation 
(G.5) may be recast as 

3 
-4 = I)wt> 4) (2EF + E8 + 6) (G.8) 

where we have introduced the notation 

3 
Wv = 211F;v +"8;v +llv;v (G.g) 

and 

EF LEF;v 
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EB I:EB;v 

6 Ev1v (G.lO) 

The EF (EB) is thus the total number of external fermion (boson) lines of 
the considered Feynman diagram and 6 is the total power of external mo­
menta factorized in the contribution of the graph as a result of the action 
of derivatives from interaction terms on the external lines. The number w" 
defined by eq.{G.9) is usually called the index of the vertex v and it cha­
racterizes a corresponding term in the interaction lagrangian. The values of 
Wv for individual interaction terms (i.e. for individual vertices of diagrams) 
in a sense determine, according to (G.8), the structure of UV divergences of 
Feynman graphs in a given model of quantum field theory and indicate thus 
renormalizability or non-rellormalizability of the perturbation expansion: If 
there is Wv > 4 for at least olle interaction vertex in the considered model, 
thcn on the basis of (G.8) one may in general expect an infinite number of 
types of UV divergences (i.e. there is an infinite number of combinations of 
EF and EB for which one may get a UV-divergellt graph in a sufficiently 
high order of perturbation expansion) and such a field theory model is then 
"suspect" of being non-renormalizable (however, there may operate a spe­
cial additional mechanism cancelling the offending UV-divergences 50 that 
the perturbation expansion may turn out to be renormalizable despite an 
"unfavourable" power-counting result). If for any vertex one has Wv $; 4, 
there may be only a finite number of types of UV-divergent graphs (here one 
should emphasize that in (G.8) one of course has EF:::::' 0, EB :::::. 0 and 6 :::::. 0) 
and the perturbation expansion is thus renormalizable bv means of a finite 
number of coulltertenns. 

In this cOllnection, it is also useful to notice that the value of Wv given by 
(G.9) is e(Jual to the dimension of the corresponding interaction term £~:! 
(i.e. of the corresponding monomial ill relevant fields, without a coupling 
constant) in units of an arbitrary mass AI: Indeed, the dimension of a fermion 
field (i.e. the correspollding power of M) is equal to ~ and the dimension of 
any boson field is equa.l to 1, as one may find easily from the corresponding 
free lagrangiansj the dimension of a derivative is of course equal to 1. The 
formula (G.9) may be thus recast as 

Wv = uF;vdim1fJ +1tB;vdimB + tlD;v dimo (G.ll) 
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and the right. hand side of the last expression is just equal to dim'c~:~. (The 
symbol dimX has of course the same meaning as the notation [Xl used for 
a canonical dimension in other places of this text.) Let us remark that the 
formula (0.11) is generally valid in an n·dimensional space for n i 4, if we 
nse the appropriate values of diml/J and dimB; such a generalization of the 
relation (G.Il) is left to the interested reader as an instructive exercise. 

Let us now consider a model of quantum field theory where all the boson 
fields have spin 1 and a non-zero mass and take the corresponding propaga­
tors to have the canonical form (11.45) (an example of such a model is the 
theory of weak intera.ctions with a charged IVB described in Chapter 
such a case the boson propagators behave in the UV region as a non-zero 
constant and the preceding calculation of the index of a Feynman graph is 
modified in a simple way: In the basic formula (G.3) one has to replace the 
term -2IB by zero. Further steps in the computation of w(G) are not chan­
ged and the above-mentioned modification of eq. (G.3) thus imolies that 
instead of the previous results (G.8), (G.9) now one gets 

3 
w(G) 4 = I:(w:1J. - 4) - (2EF +2EB +6) (0.12) 

v 

where we have denoted 

3 
W"fl. -UF'v +2UB'v + nD;v (0.13)

v 2' , 

All preceding considerations may be easily generalized to the case of a field 
theory model involving boson fields both of the type 1 (with the propagator 
~ k-2 in the UV region) and of the type 2 (with the propagator ~ const. in 
the UV region): In such a case, the formulae (G.9) and (G.13) are combined 
to 

3
W~f f· = -nF'v + +2n~!v, +nDjv (G.14) 

v 2' 

where n~:v or u~:u resp. is the number of the type-lor type-2 boson lines 
resp. attached to the vertex v and the second term ill (0.8) or (0.12) is 
modified analogously. 

The number w!ff. appearing in (G.12), (0.13) or (G.14) resp. will be 
called an "effective index" of the interaction vertex v. The adjective "effecti­
ve" should reflect the fact tllat the formulae (0.13) or (G.14) resp. describe 
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a structure of the UV divergences assuming that one employs the canonical 
propagator (HA5) for massive vector fields; the value of w!ff· thus provides 
an information on potential UV divergences arising as a combined effect of 
the structure of the corresponding interaction term and a II bad" high-energy 
behaviour of the propagator (lIA5). It is in order to remark here that the 
above-mentioned canonical description of a massive vector field is not always 
mandatorYi generally speaking, one may use a formalism involving a type ­
1 vector propagator and an auxiliary unphysical spin-zero field (see e.g. 
paragraph 3.2.3). Internal consistency of such a formalism (i.e. the fact 
the unphysical auxiliary field does not influence physical quantities) must 
in each case be verified separately. Thus, e.g., in spinor electrodynamics 
with a massive photon, such a formalism is internally consistent and the 
same is true for non-abelian gauge theories with the lIiggs mechanism; the­
se theories are renormalizable (although the relevant effective indices w!ff. 
calculated from (0.13) or (0.14) suggest non-renormalizability of the per­
turbation expansions). In both of these cases, a gauge symmetry (abelian in 
QED case) is essential. However, the above-mentioned alternative formalism 
for the description of a massive vector field cannot be consistently used e.g. 
in the model of weak interactions with a charged [VB described in Chapter 3 
or in the electrodynamics of charged vector bosons (Chapter 4). The difficul­
ty is that in both cases one gets a non-unitary S-matrix in higher orders of 
perturbation expansion (see e.g.!26J, [291). Within the framework of the ca­
nonical formalism, both these models are non-rellormalizable, in accordance 
with an estimate based 011 the formula (G.l3) or (G.14). 

In any case one may say that a value of the effective index w!1f. > 4 in 
models involving interactions of massive vector bosons is signalling poten­
tial problems with UV divergences in high orders of perturbation expansion 
which, however, may be ill fact sometimes suppressed by means of more sub­
tle special mechanisms. A physically relevant example of such an interest­
ing situation is just the standard model of electroweak interactions descri­
bed in Chapter 5. All the interaction terms of course satisfy the condition 
dim'c~:! $ 4. 

From what we have said up to IIOW it should be clear that it makes sense 
to distinguish between the effective index w~ff. defined by (G.l3) or (G.l4) 
resp. and the index Wv which may be always defined as the dimension of 
the corresponding interaction term (d. the formulae (0.9) and (G.lI)). Of 
course, in some particular cases the equality Wv = w!ff. may hold trivially (as 
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e.g. in a Fermi-type theory, i.e. in a model of direct four-fermion interaction). 

Appendix H 

Massive vector field 

In this appendix we summarize some basic properties of a massive vector 
field, i.e. the field corresponding to massive spin -1 particles and we derive .. 
here some important relations which are used frequently in the main text in 
the description of processes involving intermediate vector hosons. Further 
details may be found e.g. ill the textbooks [21] (§3.2.3), [36] (§2.8 and §4.5). 

Let us first consider the relativistic wave equation for a free particle with 
spin 1 and a non-zero mass which has been originally formulated by Proca 
(see e.g. [36], [37]): 

2 BVfJIlFIl" +m = 0 (11.1) 

where 
Fil" = fJIlB"- a"BIl (11.2) 

represent, in a sense, a straightforward generaliza­
. )Us (which correspond to massless photons). The 

corresponding one-particle wave function is described here by four (in ge­
neral complex) functions of space-time coordinates BIl(x) (p. = 0,1,2,3) 
which are components of a four-vector w.r.t. Lorentz transformations and 
the parameter m =f. 0 in (H.l) has dimension of a rUass. (The presence of 
a mass term of course causes that Proca equations are not invariant under 
gauge transformations.) 

Substituting (B.2) into (H.l) one gets 

(0 +7n2)B" fJ"(fJIlBIl) = 0 (H.3) 
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Acting on eq. (B.3) with a" (i.e. calculating the four-divergence of (B.3)) 
then on the left-hand side only th~ expression m'2a"B" remains and thus we 
get immediately 

a"B" = 0, (HA) 

i.e. a "Lorentz condition" follows automatically from Proca equations (II.l), 
(B.2). The essential point in derivation of (H.4) is, of course, just that 
m :f 0, i.e. that the original equation (Il.l) contains a mass term. (In the 
case m = 0 we get by means of the same procedure only a trivial identity; 
this corresponds to the well-known fact that the Lorentz condition does not 
follow from Maxwell equations but rather represents an appropriately chosen 
subsidiary condition.) 

The result (lI.4) means that Proca equation (lI.3) for the four-vector B" 
is equivalent to the pair of equations 

(0 +m'2)B'" = 0, a"'B,.. = 0 (1-1.5) 

That is, individual components of the wave function B'" satisfy the Klein­
Gordon equation (and describe thus indeed a particle with mass m) but they 
are not independent since the four-divergence of the B" vanishes. The equa­
tions (1-1.4) physically mean that the number of independent components of 
the wave fuuction is thus reduced (in a covariant manner) to three, which 
just correspond to a spin-l particle. The independent components are conve­
niently chosen to be Bj, j = 1,2,3 and BO may be then expressed in terms 
of Bj using (1-1.4). (Let us remark that (11.4) in fact represents the only con­
ceivable Lorentz-covariant condition linear in B'" which eliminates just one 
degree of freedom in the considered four-component wave function.) 

We will now examine solutions of equations (H. 1), (H.2) or the equivalent 

equations (11.5) resp., corresponding to a given momentum k. Such a plane­
wave solution may be writtcn as 

B,..(x) = N(k)e,,(I.:)e- ikz (H.6) 

where 1.:'" = (ko, k), and from the Klein-Gordon equation in (H.5) immediately 
follows 

k2 = 1.:; _ P = m 2 (B.7) 

i.e. I.: is the four-momentum of a particle with mass m. (A remark: Here and 
in what follows, if we write components of a four-vector without denoting 

IGI 

them explicitly we always have in mind upper Lorentz indices, i.e. the con­
travariant components.) The N(k) in (B.6) is a normalization factor whose 
specific value is inessential at present and e,..(k) represents the wave function 
in momentum space; in this sense it is e.g. a direct analogy of the functions 
u(k), v(k) in Dirac plane waves (cf. Appendix B). At the same time, the 
e,..(k) may be interpreted (similarly to the case of solutions of Maxwell equa­
tions) as a polarization vector corrcsponding to the plane wave (I1.6). Such 
a dual role of the four-vector e,..(k) is of course specific just for the descrip­
tion of a spin-l particle. (In what follows we will also clarify a connection 
between polarization and helicity for plane-wave solutions of the type (11.6).) 
The second equation in (I1.5) yields immediately 

k.c(k) = 0 (H.8) 

where k.e(k) = l.:"'e,..(I.:). In order to find all linearly independent solutions of 
eq. (H.8) it is instructive to consider first the corresponding solutions in the 
rest frame of the vector particle, i.e. for k = k(O) = (m, 0, 0, 0). Eq. (H.8) 
then implieseo(I.:(O)) = 0; the space components ej(k(O)), j = 1,2,3 may 
be arbitrary. There are 3 linearly independent (in general complex) three­
dimensional vectors i(!), i ('2), i (3) which may be chosen to be orthogonal, 
i.e. satisfying conditions 

i('\).i('\')· = oU' (H.9) 

for >., >.' = 1,2,3. In the rest frame one may thus write 3 linearly independent 
solutions of eq. (H.8) 

e(.\) = (0, i('\)), >. = 1,2,3 (H.lO) 

which just correspond to three possible spin states of a massive vector partic­
le. An obvious explicit example of a solution of the type (I-I.10) is the triplet 
of real vectors 

e(l) (0,1,0,0) 
e(2) (0,0,1,0) (11.11 ) 
e(3) (0,0,0,1) 

It is useful to notice that the conditions (H.9) may be rewritten in terms of 
Lorentz-invariant scalar product for the four-component objects (II. 10) as 

e('\).c('\')· = -0,\,\1 (11.12) 
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If we require that the E:('\) in (H.lO) transform as four-vectors, a triplet of li­
(k2 2nearly illdependent solutions of eq. (H.8) for an arbitrary k m ) may 

be obtained from (H.lO) by means of the corresponding Lorentz transforma­
tion. Denoting three linea.rly independent soluLions of eq. (H.8) as e:(k,~) 
(where again ~ == 1,2,3), the normalization condition (H.12) imposed in the 
rest frallle then also implies 

e:(k, ~).c·(k,~') = -0).)., (B.13) 

for ~,~' == 1,2,3. Vectors c(k, ~) for a given momentum k can be easily 
found directly from eq. (H.8), without performing the above-mentioned Lo­
rentz transformation. To this end, one may choose 3 real vectors e(k, ~), ~ = 
1,2,3 such that the first two of them are mutually orthogonal and also or­
thogonal to k, and the E(k, 3) is directed along the k, i.e. 

k 
(H.14)E(k,3) = a,kl 

where a > O. A solution of eq. (H.8) may be then written as 

E:(k, 1) := (O,i(k,l» 

c(k,2) (O,e(k,2» (H.15) 


a 

The normalization condition (H.13) is satisfied if we take the e (k, 1) and 
e(k, 2) to be unit vectors and in the expression for E:(k, 3) we set a = ko/m. 
Vectors E:(k,~) thus correspond to (linear) trausverse polarizations for ~ = 
1,2 and longitudinal polarization for)' = 3. In the following we will employ 
the usual symbol E:L(k) for the longitudinal polarization; according to the 
preceding discussion, its components are given by 

Ikl k)E:~(k) = c:" (k,3) = ( -;-' m Ikl (H.16) 

It is perhaps ill order to emphasize that the existence of three nontrivial 
polarization vectors, i.e. of three space-like four-vectors satisfying (H.8) is 

lG3 

obviously related to non-zero rest mass of the considered vector particle; it 
can be best seen from the discussion of the corresponding solutions in the 
rest frame, whose very existence is guaranteed just by the fact that m =J. O. 
It is easy to prove that for a massless particle there is 110 space-like vector 
satisfying (B.8) which would correspond to longitudinal polarization. 

For completeness we will now clarify a. connection of the polarization 
vectors (H.15) wit.h states characterized by a definite helicity. Orientations 
of the unit vectors E(k, I). e(k,2) may be chosen such that 

iixE(k,I)==E(k,2) (li.l7) 

where ii = k/lkl is the unit vector along the direction of k. From then 
also immediately follows 

it x ((k,2) == 1) 

The relevant hermitean 3 x 3 matrices representing spin components are 
generators of rotations in three-dimensional space around the corresponding 
coordinate axes, i.e. 

( 
(0 i) 

(
0 0 0) 0 0 -i 0)

SI = 0 0 -i , S2 = 0 0 0 Sa = i 0 0 (Il.19) 
o 0 -i 0 0 000 

The helicity operator for a spin-l particle carrying a momentum k is thus 
represented by the matrix 

-nJ n2)
it( k) = ii.S i ( 1~J o -HI (1I.20) 

-U2 HI 0 

arbitrary vector E (viewed for convenience as a 
one-column straightforward to derive the formula 

with 

i(1' xi) (B.21) 

Using (11.21), (H.17) and (H.18) we then get for the polarization vectors in 
(H.15) or (H.16) resp. 

it(k)e(k,l) if (k, 2) 

il( k)E (k, 2) == -ie(k,l) (H.22) 

il(k)fL(k) o 
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If we define complex vectors 

i (k, +) = ~ [e ( k, 1) + ii (k, 2)1 

i{k,-) = ~[i{k, 1) -ii{k, (11.23) 

(passing thus from linear to circular polarizations), the relations (H.22), 
(11.23) immediately yield 

h(k)e(k,+) i(k,+) 

iL(k)i (k, -) -i(k,-) (H.24) 


Thus, (H.24) together with the last equation in (11.22) make it clear that the 
vectors i (k, ±) and i'L(k) represent states with helicitics ±1 and O. 

Now we are going to derive an important relation concerning the asympto­
tic behaviour of components of the vector of longitudinal polarization in 
high-energy limit (i.e. for Ikl :> m), which reads 

e~(k) = ..!..kll +0 (m)
m ko 

The proof of (H.25) is easy. Using (H.W) one gets for the difference of the 
four-vectors elik) and kim first 

e~(k) ..!..k'" = (Ikl-"- ko ko -Ikl k) (I'I.26)m m.' -m-Ikl 

However, it holds 

ko Ikl 1 k~ Ikl2 m (m) (II.27)
-n-1,- =;;; ko +Ikl = ko +Ikl = 0 ko 

and from (11.26), (11.27) thus immediately follows (H.25). 
The relation (H.25) shows that the individual components of the four­

vector of longitudinal polarization grow unboundedly in the high-energy limit 
since they behave like components of the corresponding four-momentum; let 
us emphasize, however, that the normalization cL(k).cL(k) = -1 still holds 
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for an arbitrary k as it is defined by means of the indefinite Minkowski-space 
metric. 

We will exhibit one more relation for polarization vectors of a massive 
vector particle which is frequently used in practical calculations, namely 

3 1 
Le",{k,'\)c:(k,'\) = -9",,, + m2k",k" (H.28) 
'\=1 

(Notice that (H.28) is in a sense an analogy of the formulae (B.5), (B,6) 
valid for a Dirac particle). A proof of (H.28) is most easily perfotmed in the 
following way. Since the c(k,'\) are four-vectors, the sum over polarizations 
on the left-hand side of eq. (11.28) must be a 2nd rank tensor depending on 
a single four-vector k. Denoting the considered polarization sum as P",,,(k) 
one lllay therefore write 

P",,,(k) = Ag",,, +Bk",kv 

m 'lwhere A, n are constants (because P = ). Now it is sufficient to use a 
concrete form of the polarization vectors (which should be as simple as po­

ssible) for aconveniently chosen four-momentum k, e.g. for k = (k~o,O,O,lkl) 
(then one may employ e.g. the first two expressions from (1I.1]) and the 
corresponding particular value of (H.16». With such a choice we obtain 
Pll{k) = 1, P03(k) = -kolklm-2 and using this in (H.29) we get immediate­
ly A-I, B = m-2 and eq. (H.28) is thus proved. 

So far we have considered the Proca equations (II. 1), (H.2) or (11.3) re­
spectively as equations for the wa.ve fUllction of a relativistic massive 
particle. These equations may of course be also employed for the description 
of a corresponding classical free field. For simplicity we shall first consider 
the case of a real field (which corresponds to neutral particles upon quantiza­
tion). The equations of motion (1I.3) may be derived in a standard manner 
as the Euler-Lagrange equations corresponding to the lagrangian density 

1 1
£. = --F F,lii +-m2 B B'"4 1111 2 '" 

where F",,, a",BII - avRil' The classical field described by the lagrangian 
(H.30) can be quantized canonically; in doing this, one has to keep in mind 
that the relevant independent dynamical variables are the space components 

166 



Bb j = 1,2,3. Details of the procedure of canonical quantization of the 
Proca field can be found e.g. ill [21], [36], [38]. For the quantized field B,. 
one may write an e~pansion into' the the plane waves.(H.6) 

B,,(z) =J(2~)3/~~ko)t/2 t[a(k, A)t,.(k, A)e-,b + a+(~, >.)e;(k, >.)eikc
] . 

~=I 
(11.31) 

where the polarization vectors s(k, >.) satisfy the conditions (H.B), (H.13) 
and the normalization factor N(k) in (H.G) is chosen so that the canonical 
commutation relations for Bj(z) and the corresponding conjugate momenta 
imply the following commutation relations for the annihilation and creation 
operators in the decomposition (11.31): . 

[a(k,A), a+(k', =6~~163(k - k') (H.32) 

Now we are going to calculate the corresponding Feynman propagator. 
One may start with its usual representation in terms of time-ordered product 
of a pair of field operators, i.e. define 

iV,,,,(x - y) =< OIT(B,.(x)B,,(y))IO > (R.33) 

where 

. T(B,.(x)B,,(y)) = t?(zo - yo)B,.(x)B,,(y) + - xo)B,,(y)B,.(x) (H.34) 

To compute the expression on the right-hand side of (B.33) one employs 
the decomposition (H.31), commutators of the type (H.32) and the formu­
la (1l.2S). Standard manipulations then lead to a result for the propagator 
V,... (x - y) which contains, among others, also non-covariant terms propor­
tional to gOllgo,,64(x - y) (see e.g. [21], §3.2.3, §5.1.7 and (38)). In general, 
one may expect such contact terms to be present in the propa.gator, becau­
se the time-ordering operation T in (11.33) is not, a priori, strictly defined 
for Xo Yo; the t?-Cunction in the conventional definition (H.34) has unique 
meaning as a generalized function but relativistic covariance of (H.34) is not 
manifest. Let us however remark that the above-mentioned problem does 
not occur in the massless case (Le. for the electromagnetic field). It is clear 
that in view of the above-mentioned amqiguityof the massive vector-boson 
propagator Cor x = y one has to postulate an additional requirement of re­
lativistic covariance (it is usually formulated as replacing the symbol T in 
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(H.33) by an appropriate covariant time-ordering T* - see e.g. [21}). On the 
other hand, the Feymnan propagator of a massive vector field may also be 
viewed as the causal Green function of the Proca equation (H.3); a practical 
computation of the covariant propagator function 'D,.,,(z) is performed most 
easily just by utilizing this connection. Thus, one bas to solve the equation 

(0 +m2)~(z) - 8"(8~'D;(z» =g:04(Z) (H.35) 

(a solution of (H.35), if it exists, is automatically a 2nd rank tensor w.r.t. 
Lorentz transformations). Performing in (11.35) Fourier transformation, i.e. 
introducing the function D",,(k) defined by 

'D,.,,(:c) = J(~~4eibD"..(k) (H.36) 

one gets from (H.35) the system of algebraic equations 

(_k2 +m2)D~(k) + k"k~D;(k) = g= (11.37) 

or 
L~D~ =g~ (H.38) 

where 
L~ = (-k' +m2)gr + k"k>. (R.39) 

The DPI1(k) is a 2nd rank tensor (depending one a single four-vector k) and 
thus it may in general be written as 

DPI1(k) = DT(k2)P;I1(k) +DL(k')P;:(k) (HAO) 

where 

kPkl1 

pfHI PI1 

k

g-
P kl1 

T 

pfHI (HAl)L k' 

Denoting as PT and PL the ma.trices with elements given by the mixed com­
ponents of the tensors (H.4l), it is easy to find that 

. -. 
pi =PT, pi =PL, PTPL =PLPT = 0, (HA2) 
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Le. the matrices PT and PL are orthogonal projectors - this is a substantial 
advantage of the parametrization (HAO). The matrix L defined by (H.39) 
may be decomposed in an analogous way: 

L = (_k2 +m2)PT +m2PL (HA3) 

Employing the relations (H,42) together with (HAO) and (H,43) it is now easy 
to solve the matrix equation (H.38)j since the unit matrix in its right-hand 
side may be written as PT +PL one gets readily (for k2 '# m2

) 

DT= -,-,,-
1 
..., DL= m 2 

(H,44) 

The ambiguity corresponding to a potential singularity at k2 m2 is removed 
by defining the causal Green function in a standard way, i.e. by the familiar 
replacement m2 -+ m2 -ie. According to (HAO), (H,41) and (H,44) one thus 
gets the final result for the Feynman propagator of the massive vector field 
in momentum space: 

D ... (k) = -91'''' +m-2kl'k... (HA5)I' k2 _ m 2 + if: 

In closing this appendix let us also remark that for a classical complez 
vector field one has to write the corresponding free lagrangian as 

c = -i(OI'B... - 8... BI') (01' B...• 0'"BI'·) + m 2BI'BI'* (H.46) 

or for a quantized non-hermitean field (i.e. a field corresponding to charged 
particles), in the form 

c -!(o B- - 0 B-)(ol'B+'" - 0'"B+I') +m 2 B-B+I' (H,47)2 1'... ... I' I' 

where the B; and Bt are related by means of hermitean conjugation. The 
change of coefficients in (H.46) in comparison with (H.30) is of course due to 
the fact that in the case of a complex field, the Bj and Bj are independent 
dynamical variables. In the case of a charged vector field one also has to 
modify plane-wave decompositions of the type (H.31) (cr. e.g. the expressions 
(BA) for a Dirac field). The formula (HA5) for the Feynman propagator 
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(which in the case of charged vector bosons is defined by means of time­
ordered product of the fields B;(x) a.nd B;(y)) is not changed. Thus, in 
practical calculations of Feynman dia.grams involving charged intermediate 
vector bosons of weak interactions, an internal IVB line labelled e.g. by W­
corresponds to the same propagator as that labelled by W+ and the relevant 
expression is always given by (HA5). 
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Appendix I 

Interactions WWZ and WW"y 

We are going to prove first a basic statement on the direct interaction of 
three vector bosolls W:I:, Z set forth in Section 5.2, namely: 

Leading divergences arising in the limit E -t 00 in tree-level diagrams (of 
binary processes) involving interaction vertices WWZ vanish for an arbitrary 
combination of polarizations of the external W:I: and Z if and only if the 
interaction WW Z is of the Yang-Mills type, i.e. the vertex in Fig. 15 is 
given by the expression (see (5.14), (4.15» 

(YM)() v:(yM)(k)V'\P'" k,p,q = gwwz Ap" ',p,q (1.1) 

where 

vl;...M)(k,p, q) = (p - q),\9/l'" +(q - k)p9)w +(k - p)"g,\p (1.2) 

and gwwz is a (real) coupling constant. 
Further, at the end of this appendix we will show how one can genera­

lize the corresponding statement concerning the electromagnetic interaction 
WW, of the Yang-Mills type which we have derived in Chapter 4. 

A proof of the first part of the above assertion (stating that the Yang-Mills 
structure (5.2) is a sufficient condition [or an elimination of the corresponding 
divergences) is based on applications of the 't Hooft identity (4.19). Since 
we have already used such a technique in several particular examples in the 
main text, we leave a formulation of a proof of the first part of our statement 
to the reader. 

Now we are going to prove the more difficult part of the statement, namely 
that the Yang-Mills structure (1.2) of the WW Z interaction is a necessary 
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condition for an elimination of the leading high-energy divergences in the 
corresponding tree graphs. Of course, in doing this we will only consider 
interaction terms satisfying the constraint (5.5), Le. 

dimCwwz S 4 (1.3) 

It is obvious that a Lorentz-invariant interaction of three vector bosons 
fulfilling the condition (1.3) must involve just one derivative of a vector-boson 
field (the corresponding coupling constant is then of course dimensionless). 
In momentum space, this means that the interaction vertex shown in Fig. 15 
represents a linear polynomial with respect to the four-momenta k, P, q. In 
fact only two of these four-momenta are independent as it holds k+p+q = O. 
Choosing e.g. the k and p to be independent variables, the most general li­
near polynomial representing the interaction vertex WWZ may be written 
as 

VAp... (k,p,q) = 

(Ak,\ +Bp,\)gp... + (CkjJ +Dp,.)g,\... + (Ek... +Fp,,)g'\jJ 


+ GEAjJ...,kP +HE'\jJ""P' (1.4) 

For comparison, the expression for the Yang-Mills vertex (1.2) may be written 
(using the four-momentum conservation q = -(k +p)) as 

vl~~)(k,p, q) = (k +2phgjJ" + (-2k - p)jJg,\... + (k - p)...g'\jJ (1.5) 

On the general interaction vertex (104) one may now impose constraints. 
following from the requirement of a suppression of the leading high-energy 
divergences in relevant tree-level Feynman diagrams. For this purpose we 
will consider 3 different configurations of the vector boson lines W:I:, Z, such 
that the Z, W+ or W- label consecutively an internal line outgoing from 
the WWZ vertex in a Feynman graph (with the other two vector bosons 
corresponding to external lines). These 3 configurations correspond e.g. to 
processes e+e- -t W+W-, iie- -t W- Z and ve+ -t W+ Z (see Fig. 39). 

a) First we shall examine leading power-like divergences arising in the 
limit E -t 00 from the diagram in Fig. 39(a). Obviously, the worst di­
vergence comes in any case (i.e. for an arbitrary combination of the W:t 
polarizations) from the longitudinal part of the Z propagator which is pro­
portional to mz'qaq.... Acting with the qa on the leptonic vertex, the electron 
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mass m is factorized, which compensates one factor of mil; however, there 
remains another a priori uncompensated factor mzl which may cause that 
the degree of divergence of the diagram (a) for E -t 00 is in general higher 
than that of any other tree graph contributing to e+e- -t W+W-. (Such 
an argument may be used in all the considered cases, i.e. for the diagrams 
(b) and (c) as well, and we will keep it in mind implicitly in what follows in 
estimating high-energy behaviour of the leading divergent 

'I 

pkk 

(a) (c) 

Fig. 99. Tre.e. diagrams of processes (a) e-e+ -t W-W+ (6) ile- -t W- Z 
£Ie+ -t W+ Z involving the. interaction vertex WWZ. 

Thus, for an arbitrary combination of polarizations of the final-state W's 
the leading divergence in question resides in the expression 

mz1q"VAIII' (k, p, q}c·/J(p)c·A(k) (1.6) 

the general parametrization (104) and using the conserva­
tion law q = -(k + p), then after a simple manipulation one gets for the 
leading term contained in (1.6) 

mzl [ 	 (B +O)(k.c·(P))(l).c·(k)) 

(E + F)(k.p)(c·(k).c·(l))) 

+ (G IJ)CA""Pklllc·A(k)c·"(P)] (1.1) 

113 

deriving (1.1) we have of course also utilized the relations P' m'fv, p2 = 
m'tt" k.c·(k) = 0, p.c·(p) 0 and we have neglected non-leading terms 
in which m'iv is factorized.) The requirement of an elimination of leading 
divergences in the diagram (a) thus means that the coefficients of all the 
independent kinematical structures in (1.7) should vanish. So we get the 
conditions 

B+C=O (1.8) 

E+F=O (1.9) 

G-lI=O (1.10) 

b) We will now examine the diagram ill Fig. 39(b). In this case, a 
potential leading divergence comes from the expression 

m;-Jp/'VA,,"(k, p, q)c·A(k )c· lI (q) (1.11) 

Substituting (1.4) into (1.11) and using p = -(k +q), then similarly to the 
preceding case we obtain for the leading term contained in 

mM} (B E +F)(k.c"(q))(q.c·(k)) 

+ (-0 +2D)(k.q)(c"(k).c·(q)) 

+ GCA"vpk"qPc"\k)c""(q)] (1.12) 

The requirement of an elimination of leading divergences in the diagram 
thus yields the conditions 

B E+F=O (1.13) 

o+2D = 0 

G=O (1.15) 

c) Finally, for the diagram in 39(c) the corresponding leading diver­
gence comes from 

mlJ eVAIlV(k,p, q}c""(p}c· lI (q) (1.16) 

Substituting (1.4) into (1.16) and using k = -(p +q), then in an analogous 
manner as in the preceding cases we get for the leading term involved in 
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... 


" 


(5.16) 

mu! (0 +E - F)(p.c*(q»(q.e*(p» 

+ (2A - B)(p.q)(c*(p).e*(q» 

+ lIeAP"pp~qPe*P(p)e·"(q)] (U7) 

The requirement of an elimination of leadillg divergences in the diagram (c) 
thus yields the conditions 

C+E-F 0 (1.18) 


2A-B 0 (1.19) 


II = 0 (1.20) 


Thus, in the first place we see that two of the eight unknown parameters in 

(1.4) must vanish if one wants to suppress all leading high-energy divergences 
in the diagrams in Fig. 39, namely (see (LlO), (1.15), (1.20» 

G=H 0 (1.21 ) 

In other words, the two terms ill the expression for the WWZ interaction 
vertex involving the Levi-Civita tensor e>.,Ulp are identically zero. For the 
remaining six unknowns A, .'" F we have obta.ined a system of six conditions 
(1.8), (1.9), (1.13), (1.14), (1.18) and (1.19). For convenience, let us summarize 
these equations here: 

B+C 0 

E+F = 0 
B-E+F 0 

-C+2D = 0 

O+E-F = 0 

2A - B = 0 (1.22) 

It is easy to find that the solution of the system (1.22) is unique, up to a one­
parametric freedom in choosing arbitrarily one of the unknowns (e.g. A), 
namely 

B = 2A, C = -2A, D = -A, E A, F =-A (1.23) 
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Tbe result (1.23) means that the most general expression (1.4) constrained 
to satisfy our conditions has the form 

VA,w(k,p, q) = A [(k +2p)Ag,W +(-2k - P),.gAV + (k 2P).,gA,.] (1.24) 

with A being an arbitrary constant. This, however, is just the interaction 
vertex of the type (l.5) and A = gwwz in the notation of (1.1). Thus we see 
that the necessary condition for eliminating the leading high-energy diver­
gences in the particular graphs in Fig. 39 is that the WWZ interaction be 
of the Yang-Mills type; the more it is a necessary condition for suppressing 
unwanted divergences in a general case. Our statement is thereby proved. 

The following comment on the obtained results is in order: In the general 
expression ,(104) we have started from, it has not been necessary to assume 
a priori that the parameters A,... ,II are real; however, from (1.24) it is clear 
that the parameter A must be real (and, according to (1.23), the same is then 
true for the rest) for the corresponding interaction lagrangian to be hermitean 
(d. (5.13), (5.14». Thus, according to (1.21) and (1.23), the solution of the 
considered problem admits only real values of the parameters in (1.4). 

To close this appendix, we will make an important comment concerning 
the electromagnetic interaction WW'Y. In Chapter 4 we have derived the 
Yang-Mills structure of the corresponding interaction vertex, starting froIl) 
the electromagnetic interaction (4.7) involving one free parameter r;, (we ha­
ve used then a priori also some restrictions which follow from imposing the 
discrete symmetries 0, P and 1'). A question arises naturally, as to whether 
it would be possible to derive the Yang-Mills interaction WW'Y in a man­
ner analogous to that employed here in the WWZ case. The answer to 
this question is yes: The procedure described in this appendix may be easi­
ly generalized and used almost without any change for the electromagnetic 
interaction WW,. To this end it is sufficient to consider a general para­
metrization of the type ,(1.4) and diagrams analogous to those in Fig. 39 
with the Z lines being replaced by photons; one has just to realize that for 

, a diagram of the type (a) (involving an internal photon line) a correspon~ 
argument has to be reformulated: In such a case one has to require an 

elimination of the longitudinal part of the photon propagator on the basis 
of electromagnetic gauge independence (mind that the longitudinal part of 
photon propagator may depend on a gauge-fixing parameter) and not becau­
se of suppressing an offending high-energy divergence. (Strictly speaking, for 
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the considered graph the required effect occurs automatically owing to the 
current conservation in the leptonic vertex; thus, in order to draw indeed a 
non-trivial constraint for WW, from electromagnetic gauge-independence, 
one should instead consider e.g. tree diagrams involving two WW, vertices 
- an obvious example is provided by elastic WW scattering.) Thus, although 
a physical origin of the relevant condition formulated for an electromagnetic 
diagram of the type (a) (in a broader sense) is different from the case of the 
WW Z interaction, it is clear that technically such a condition leads to the 
same equations for parameters in an expression of the type (1.4), i.e. we thu8 
recover the relations (1.8), (I.9) and (1.10). For photonic diagrams of the type 
(b) or (c) resp. the corresponding conditions are formulated in the same way 
as in the case of WWZ interaction (i.e. by requiring a suppression of the 
would-be leading high-energy divergences). The above remark concerning 
lhe {-VlY, interaction thus provides an interesting non-trivial generalization 
of the arguments used in Chapter 4. 
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Appendix J 

High-energy behaviour of some 
tree diagrams 

In this appendix we summarize formulae for the leading and next-to-leading 
asymptotic terms corresponding to the limit E -t 00 in contributions of some 
important tree-level Feynman diagrams discussed in the main text. In more 
complicated cases we give a brief derivation as well. 

1. The process e+e- -t WtWi 

(a) 	The contribution of the diagram in Fig. 17(a) may be written as 

g2 
Ml7a --v(l)p(l­

4miv 

92 

-42 mv(l)(1 Is)u(k) +0(1) (J.1 )
Tnw 

A derivation of this result is left to the reader as an easy instructive 
exercise (see the problem 3.6 in Chapter 3). 

(b) 	The contribution of Fig. 17(b) contains only a quadratically di­
verging term (see (4.34) or (5.22) resp.). 

(c) 	The contribution of Fig. 17(c) will now be worked out in more 
detail. A starting point of OUI' calculation is the expression 

'M '3 -(I) ( I 15 1+(5 ) ( )1 	 170: = a gwwzv gLIP-2- + gRIP-2- u k x 
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_gPIl + rnz~qPqll ,\ p 
X Z z V,\plI(p,r,q)e:L(p)c:L(r) (J.2) 

q -mz 

(here and in what follows we take into account that the vector of 
longitudinal polarization is real· see (H.l6)). Employing cyclicity 
of the V'\/w(T', r, q) (see (4.lti)) and 't IIooft identity (4.19) it is easy 
to show that the longitudinal part of tlte Z propagator does not 
contribute (this is even true for an arbitrary combination of W:I: 
polarizations). Using further the standard decomposition (H.25), 
(J .2) may be rewritten as 

I .. ( ( II 1 - IS II 1 +IS)MJ7c gWWZ-z v I) 9L"{ -2- +DRI -2- u(k) x 
1nw 

1 
X --2V'\plI(,J, 7', q)p.\,." +0(1) (J.3) 

s-mz 

where s = q2 = (k +l)2. Using in (J .3) again the 't Hooft identity, 
we get, after a 

1 _ ( II 1 - 15 II 1 +15)
MJ7c -gwwz mrv vel) gL"{ -2- +9RI -2- u(k) X 

x Iv" +21qll ) +0(1) 	 (JA) 

An application of Dirac equation in finally leads to the result 

1 
M 17c - -2z 9wwz9LV(I)p(1 -/s)u(k) 

mw 
1 

-2z 9wwz9Rv(l)p(1 + 
mw 
m 

+ -2'2 9wWZ(9L - 9R)V(l)/su(k) + 0(1) (J.5) 
rnw 

2. The process tie -t Wi ZL 

(a) The contribution of Fig. is given by 

9 1 
,1\118(1 = 2../29L mwmz v(l)p(l - ,s)u(k) 

+ ~ m_
2../29R mw z v(I)(l + Is)u(k) +m
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(b) For the diagram in Fig. 18(b) one has 

9 1 
M l8 2../291111 Z rnwrnz v(l)p(l ,s)u(k)" 

9 m 
2../2gwZ mwmz v(l)(l + Is)u(k) +0(1) (J.7) 

A deri vation of the formulae (J .6) and (J.7) is straightforward and 
we leave it to the reader as an instructive exercise. 

(c) 	The evaluation of Fig. 18(c) is slightly more complicated and we 
will therefore indicate here at least its most important steps. As 
a starting point, let us lake the basic expression 

iM 18c i3 2~gwwzv(l)/p(1 -/s)u(k) x 

-gPI! +m-'2qPq l! 

X 2 ~~ V'\PII(,J, 7', q)c:Z(p)c:i.(r) , 
q mw 

that is 
MISe =Mi~~ +M1!~ , (J.9) 

where the M~~~ and M1!~ respectively correspond to the diagonal 
and longitudinal parts of the W propagator in (J .8). First we will 
compute the M1!~. Employing (4.18) and (4.19) one may show 
easily that 

r, q)e:i(p)c:i.(7·) = (m~v - m~)e:LCl))·e:LCr) (J .10) 

Using also Dirac equation and the decomposition (H.25), then 
after a short, manipulation we get from (J.8) and (J.10) 

99wwz ~ (1 m1 )"v(I)(l + Is)u(k) +0(1)
4../2 mwtnz m1v 

(J.1t) 
From the last expression it is dear that the M~!~ contains terms 
at most linearly divergent for E -t 00. The calculation of the 
part M~~c is analogous to the case of Fig. 17(c). We use again 
the decomposition (H.25), the 't Hooft identity (4.19) and Dirac 
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w 

equation and after simple algebraic manipulations we obtain the 
result 

M(I) 99wwz 
18c 2V2 

+ 99wwz 
4V2 

+ . 0(1) 

:I 	 According to (J.9), (J.11) and 
contri bu tion of Fig. lS(c) 

ggwwz 1 

1 
mwmz v(l)p{1 1'1S)u(k) 

m _ 
mwmz v{I)(1 +1's)u(k) 

(J.12) 

we thus have for the whole 

M 18c = 2V2 mwmz v(l)f(1 

+ ggwwz m ( m2)
2V2 mwmz 1 - 2mt v{l)(l + 

(J.13)+ 

3. The process Wi Wi -+ Wi Wi 

We shall examine here contributions of the diagrams in Fig. 7 (photon 
exchange), Fig. 19 (Z exchange) and Fig. 20(c) (direct interaction of 
four vector bosons) and prove the relation (5.53). All these diagrams 
are summarized in Fig. 20. (There are of course also contributions of 
neutral scalar boson exchange (see Fig. 25); the corresponding calcu­
lation is relatively simple and we leave it to the reader as an exercise ­
see the problem 5.7). 

(a) 	 Let us first consider the contribution of Fig. 7(a). The correspon­
amplitude is given 

pa 
iM 7a. i 3e2V""p(p, q) -~ Va'Tw( -q, r,-l) x 

q 

x ei(p)e~{lc)eI(r)eL(l) 	 (J.14) 

The photon propagator in (J.14) corresponds to the Feynman gau­
ge and for the WWl' vertices we have used the rule that an in­
coming W- is equivalent to an outgoing W+ with opposite four­
momentum (see Chapter 4, the remark following eq. (4.14)); in 

lSI 

each case one has to maintain an order of the momentum variables 
in the function Vand of the corresponding indices (1'W- W+ or an 
arbitrary cyclic permutation resp.). For the vectors of longitudinal 
polarizations one may write according to (H.25) 

1 
mw P" +6"(p) (J.15) 

etc. where the remainder 6"(p) is of the order O(mw / E). Sin­
ce it holds p.edp) == 0 and p2 == m?Vl a useful identity follows 
immediately from (J.15), namely 

== -mw (J.16) 

Our goal now is to isolate in (J.14) leading and next-to-Ieading 
asymptotic terms, i.e. the terms of the order O(E"/mtv) and 
0(E2/m?v) for E -+ 00. Substituting into (J.14) a decomposition 
of the type (J.15) for each polarization vector, the amplitude M7a. 

becomes a sum of 16 terms; the first of them contains the 

mv;p"klJr'T1"" , (J.17) 

the next one is proportional to 

mHJ6"(p)k"r'Tl'" I (J.IS) 

etc. It is obvious that the leading (Le. quartic) divergence may 
only come from the term involving (J.17) (this of course contains 
a part of quadratic divergences al well). Further quadratic diver­
gences arise in terms involving products of the type (J.1S) (there 
are four such terms). All the other contributions to M7a. are alrea­

of the order O( I) for E -+ 00, as one may easily guess on the 
basis of the asymptotic behaviour of the leading term and of the 
remainder in the decomposition (J.I5). Following these 
considerations we thus get from 

:1 S 

M7a :..LXj +0(1) (J.19) 
t j=1 

182 



where 

Xl -4-(t3 +205t'2) _ +t'2= 4mw mw 
t21 t'2 

X2 -42 (tl - 205t) +-23 p.~(k) +-3r.~(k)
Tllw ntw mw 

t21 	 (Z 
X3 = -4'1 (3l'2 +2lu) +-3I.~(p) +-23 k.~(p)

tnw tnw mw 
t21:l 	 t:l 

X" -42 (t - 205t) +-3p.~(l) +-23 r.~(/)
1Hw fnw mw 

t 2 t21 
-'2-{3e +2tu) +-3 k.~(7·) +-23 I.~(r)X" 4mw tnw tnw 

(J.20) 

In (J.19) and (J.20) we have used standard notation (see Fig. 7) 

s = (k+/)2 (p+r)2 
(k -1»'2 =(/- r):l = q:l 

u (k - r)2 = (/- p)2 = Q2 

For a derivation of the expression for the Xl it is sufficient to use 
the 't Hooft identity (4.19) (a.nd of course taking into account lhat 
k2 [2 = p2 r2 =. m?v). To derive lhe expressions for X:l, ... ,Xs 

one ,has to use, in addition, identities of the type (J.16) 
for the corresponding four-momenla; the rest is a stra.ightforward 
algebra. ' 

The diagram in Fig. 7(b) corresponds to an interchange p H r, 
i.e. also t H u. Performing this (and using also s +t +u = 
we get for the whole contribution of Fig. 7 

1 ( 1 :l '2 2 2s
'"2 M711 +M7b) = -44 (t +u 23) ­
e mw 

1+ -23 (t +2u)(k.~(7» +1}.~(k) +l.~(r) + r.~(I)) 
mw 

+ -2 
1 

3 (u +2t)(k.~(r) +1·.l1(k) + l.~(p) +p.~(l))
7n w 

+ 	0(1) (J.21) 
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(b) 	We shall now examine the contribution of the diagrams in Fig. 
19( a), (b) which correspond to the Z exchange. Let us first consi­
der the diagram (a). The WWZ interaction is of the Yang-Mills 
type (i.e. it has the same structure as the WW, vertex - see 
(5.13), (5.14) and (5.69) resp.) and the corresponding amplitude 
M 194 is obtained from the Mfa by replacing e2 with g?vwz and 
using the Z propagator instead of photon propagator. It is easy 
Lo show that the longitudinal part of the Z propagator does not 
contribute, similarly to the case of Fig. 17(c) (see the remark 
following cq. (J.2)). Only the diagonal part of the Z propagator 
Lhus contributes Lo the amplitude M 19a ; it means that all evalua­
tion of the Mig" is essentially identical with the case of lhe M7a 
- one only has to replace Lhe t- 1 in (J.l9) by (t - m~)-I (and of 
course also replace e:l by gl¥wz). Thus we have 

1 5 

M 1911 = g~J'WZ--2LXj +0(1) , (J.22)
t - nlz j=1 

where the Xi' j = 1, ... ,5 are given by the expressions 
The contribution of Fig. 19(b) is then obtained from (J.22) by 
interchanging p Hr. After a simple algebraic manipulation we. 
thus get finally 

1 
-'2--(/\/1 1911 +M 19b) = 
gwwz 

1 (:l '2 '2 23 3 m~ -- t +u - ) - +--3
4mt" 

23 
4 mW 

1+ 	-23 (t +2u)(k.~(p) +p.~(k) + I.~(r) +r.~(/» 
mw 
1+ 	-3(u + 2l)(k.~(7·) + r.~(k) + 1.~(]J) +p.~(l»

2tnw 
+ 	0(1) (J.23) 

Nolice that (J.23) contains, in comparison with (J.21), some extra. 
quadratic divergences (see the term proportional to m~ in (J.23». 
This of course is a consequence of replacing t-I by (t-m~tl when 
passing from (J.19) to (J.22)j these extra quadratic terms arise 
from the original quartic terms in (J.21) upon such a replacement. 
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we shall examine the contribution of Fig. 20(c). Let us 
consider a general interaction of the type WWWW parametrized 

couolinl! constants at b (see (5.49)). Using the decomposition 
get (proceeding in an analogous way as before) the 

Is2M 20c 2a [-4(t2 +u ) + 
4mw 

t., -23 
nlw 

U3
2mw 

+ 4b r 

1 
-23 
mw 

(k.f).(p) +p.f).(k) + l.f).(r) + r.f).(1))
' 

(k.f).(r) + r.f).(k) + l.f).(p) +P.f).(l))] 

+ 
s1 

(t +u)(k.f).(p) +p,f).(k) + l.f).(r) + r.f).(l) 

+ k.f).(r) + r,f).(k) + l.f).(p) +p.f).(l))] 

+ 0(1) 	 (J.24) 

Substituting into (J.21) and (J.23) the "right" values of coupling 
constants 

e=gsint?w, gwwz=gcost?w (J.25) 

(see (5.36), (5.37)) the condition of a cancellation of the 
(quartic) divergences j 

1 2 1 2 
a = --g, b = -g (J.26)

2 2 ~ 
Using the values (J.26) in the expression (J.24) we then get, after "i~I 
a simple manipulation 	 I 

l' 

i· 
t;1 1 2 2 2 3

-M20c = --(t +u - 2s ) - ­
g2 4mt,y mw 

+ 	2~~v (t +2u) (k.f).(p) +p.f).(k) + l.f).(r) + r.f).(l)) 

1 ' :i+ -23 (u +2t) (k.f).(r) + ,·.f).(k) + l.f).(p) + 	 :~ 
mw ~l,+ 0(1) 	 (J.27) 
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Thus, from (J.21), (J.23) and (J.27) it is obvious that the choice 
(J.26) guarantees, beside an elimination of quartic divergences, 
also a cancellation of a part of quadratic divergences, namely of 
those corresponding to "dangerous" kinematical structures like 
k.f).(p) etc. (these structures are potentially dangerous because 
they could not be compensated by mealls of diagrams involving 
a scalar exchange. cf.(5.72)). For the total contribution of the 
diagrams in Fig. 7, 19 and 20(c) (or, summarily, the graphs in Fig. 
20) we thus get finally (using (J.25) and the relation mwlm~ = 
cos2 t?w • see (5.39)) 

M7,. +M7b +M 19,. +M I9b +M20c = 
M 20a +M20b +M 20c = 

g2
---3+ 	 (J.28)
4m~v 

The result (5.53) is thus proved. 
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Appendix K . 

Interaction lagrallgian of the 
standard model 

For reader's convenience we summarize here the interaction lagrangian of 
the standard model of eledroweak interactions which we have deduced in 
Chapter 5 by means of a "diagrammatic method" I i.e. by imposing the 
requirement of tree unitarity. The resulting interaction lagrangian of the 
electroweak unification may be written as 

£inl I:Q,eli'I A" +Lcc +LNC 
I 


ig(WOW-OIJW+ 1I + IV-W+§"WO"+ W+WO§"W- II 
) 


" II }' II " /I 

la(W-.W+)2 i(lv-rl (W+)2 +(WO)2(W-.W+) (W-WO)(w+.WO)] 

1 
+ gmwW,,-W+1J71 +-2gmzZIJZ"TJ.Q 

COSllW 

1 1 g2
+ -lW-W+"t/2 + ----Z Z IJ ,/2 

4" 8co~tJw " 

~ 1 mI I-I 1 m~ 3 1 2 m~ <I6 -9- 71 -9-11 - -9 -71 
I 2 mw 4 mw 32 miv 
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• 
The term Ccc describes the interactions of weak charged currents and vector 
bosons W±: 

Ccc = 2~ L: iillA(l -ls)IWt + 
I=e,,,,T 

+ 2~(fi, c, Ih'(1 - '1")VCKM G) W,· +h.c. 'I' 

where VCKM is the Cabibbo-I<.obayashi-Maskawa unitary matrix (5.140). 
The term £NC corresponds to the interaction of weak neutral currents and 
the vector boson Z: 

~ (I) - A (I) - A
CNC = 6(e;L hi h +En Inl In)ZA 

I 

where 

1E(f)
L - Q,siIl2UW for 1= e,p,T,d,s,b 


1 Q . 2 U
fY) +2" - w for I = Ve , v,,, VT, tt, c, tL ISIll 

e;(I) . -Q/sin2tJw for an arbitrary In 

The neutral-current interaction may alternatively be written in the form 

9 ~ -" £NC = --U- 611 (vl- a/1s)IZ" 
cos w I 

where 

!(e;(I) + e(l))VI 2 L n 

a, = !(e(l) +e<f))
2 L R' 

that is 

1 Q . 2.QVI .'=1 - IS111 lIW } for I e, Il, T, d, s, ba, 
<I 

VI +t-Q/sin2tJw} 
for I = Ve, VI'! v"., tt, C, ta, +-4 
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In the terms describing the self-interactions of vector bosons we have em­
ployed the notation 

W: cos dwZ" + sin dwA" 

The following important relations are valid: 

e = gsin dw , mw/mz = cos dw. 

-:. 
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