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Preface

In this work I have presented a non-traditional introduction to the theo-
1y of unification of weak and electromagnetic interactions. I}x c?xltrast to
the usual textbook treatments 1 describe here in detail a derivation of the
standard model of electroweak interactions based on a straightforward app-
lication of the requirement of perturbative renormalizability. A, ne?essaf’y
condition for perturbative renormalizability is the corresponding ( "unitary )
behaviour of the tree-level Feynman diagrams in high-energy limit (a techni-
cal term "tree unitarity” is commonly used for such a condition in current
literature).

It is well known that the contemporary standard model of electroweak
interactions has been formulated in 1960’s by S. Glashow, S. Weinberg and
A. Salam who employed the principles of non-abelian gauge ifwariance and
Higgs mechanism. The road to the standard model described in th)e p}"esent
text was discovered somewhat later (during the first half of 1970 s) in the
papers [11 - 14] and its most remarkable feature. is that it de.mon‘s'trates the
necessity of the original principles if perturbative renormalizability of the
S-matrix is to be achieved. )

1t should be emphasized, however, that the requirement of perturbative

renormalizability in fact does not represent an "absolute dogma” for con-

structing a realistic theory; an experimental verification of p}'edictions of a
renormalizable theory only means that conceivable interachuns. of a non-
renormalizable type may play a role on a distant, so far inaccessible energy
scale (for a discussion of the problem of renormalizability from a modern
point of view sec e.g. ref. [72]). Actually, nowadays there seems to be a
widespread belief that the Glashow-Weinberg-Salam ((;‘:WS) standard n'lodel
is merely an effective theory (which is phenomenologically succ.essful :}u an
accessible energy region). In other words, it is most probably Just.a low-
energy approximation” of a deeper theory. There are sever:%l allternatwes (see
e.g. [13 - 75]), yet the existing experimental data do not indicate any clear
direction. o o

Anyway, it is clear that the requirement of perturbatxw‘z renormalizability
(whicli may now be regarded as a constraint of rather technical nature) played
the role of an extremely useful heuristic principle in the theory of‘weak and
eleclromagnetic interactions, since the QWS theory led to many highly non-
trivial predictions, a significant part of which have already been confirmed
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by experiments. Thus, one may say that regardless of a future development
of our ideas (in particular concerning an essence of the Higgs mechanism)
the GWS standard model will remain a relevant part of particle physics,
not only as a phenomenologically successful effective theory valid in certain
energy region, but also as a construction which is remarkable from a purely
theoretical, methodical point of view.

The present text originates from a series of lectures for graduate students
specialized in theoretical physics and particle physics which I delivered in a
period 1986 - 1992 at the Faculty of Mathematics and Physics of the Charles
University in Prague (these lectures form a part of a one-semester course).
The main reason for transforming my handwritten notes into this text was
the fact that the diagrammatic derivation of the GWS standard model from
the requirement of tree unitarity (i.e. of a decent high-energy behaviour of
tree-level scattering amplitudes) is not covered by the existing textbooks and
monographs in sufficient detail. At the same time this approach, which is
consequently deductive and systematic, is also quite straightforward and in-
structive and thus it seems to be attractive even from the point of view of
pedagogical clarity. The conventional formulation of the standard model as
a non-abelian gauge theory with the Higgs mechanism is not given here, as
it can be found in many textbooks such as e.g. [17], [21], [25], [36], [56], [76],
[77). The text is divided into five chapters; the first four of them have in a
sense preparatory character as there are discussed mostly the difficulties of
provisional (non-renormalizable) models of weak and electromagnetic inter-
actions whicly ultimately lead to the need for unification of both forces. The
core of the whole work is Chapter 5 where the diagrammatic construction
of electroweak unification (i.e. the above mentioned "non-standard deriva-
tion of the standard model”) is described in detail. Our exposition in that
chapler is close in spirit e.g. to the article of S. Joglekar [14] and also to
the lecture notes of C. H. Llewellyn Smith [18] and R. Kleiss [39] (ref. [18]
has been particularly stimulating); however, it is essentially independent of
these treatments and is also more detailed in some respects. The main text is
supplemented by a series of technical appendices which should further mini-
mize a dependence of Lhe wlhole work on external sources. The text should be
thus digestible even for an uninitiated reader; a necessary prerequisite is only
an elementary knowledge of quantum field theory on the level of Feynman
diagrams and also some familiarity with basic concepts of particle physics,
including in particular the Fermi-Feynman-Gell-Mann V — A model of weak
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interactions, I believe that the present work may also be useful for a more
experienced reader familiar with the conventional formulation of the stan-
dard model; it turns out that details of the "diagrammatic” derivation based
on tree unitarity are relatively little known in comparison with the tradi-
tional approach. Section 5.6 devoted to the effects of the Adler-Bell-Jackiw
anomaly goes slightly beyond the basic framework of the main text (a rather
detailed discussion contained there reflects to some extent the author’s own
predilection in the subject of anomaly). However, a detailed knowledge of
the material of Section 5.6 is not necessary for understanding of the bulk of
Chapter 5; what really matters for the first reading is just the simple for-
mula (5.119) which is also needed later in Section 5.7. Each chapter is also
supplemented by exercises and problemns.

Finally, a remark on the cited literature is in order. I did not attempt to
present a full list of literature concerning the standard model in the present
context; only the works necessary for the purpose of references are included
here. In this connection, the reader may find particularly useful the book
[77} which contains, among others, an extensive list of relevant literature.

At this place I would like to express my thanks to Dr. M. Jirdsek for
checking some of the exercises. My thanks are also due to Dr. P. Kolat for
a valuable comment on the proof of the main statement of Appendix I. I am
also grateful to students and other participants of lectures and seminars at
Prague University and the Institute of Physics of Czech Academy of Sciences
for all the discussions and comments which helped to improve the present
text. The last but not least, 1 would like to thank Mrs. L. Hirslova for
excellent typing of the manuscript.

Prague, May 1993 J. Hotejsl

Notation and conventions .

Unless stated otherwise, we always use the natural system of units in
whichhA=c=1.

Most of the other conventions correspond to the textbook of Bjorken and
Drell [16]. The indices of any Lorentz four-vector or tensor take on values 0,
1, 2, 3. The metric is defined by

Juw = diag(+1,~1, -1, "’l)v
so that e.g. the scalar product k.p is
k.p = kopo — Eﬁ

Dirac matrices v#, g = 0,1,2,3 are defined by means of the standard repre-

sentation [16]. We also employ the usual symbol p = p,v* for an arbitrary

four-vector p. We should particularly stress the definition of the 75 matrix:
7 ="

Further, the fully antisymmetric Levi-Civita tensor €,,,, is fixed by the

convention

€oza = +1

(Let us remark that this convention differs in sign e.g. from that used by
Itzykson and Zuber [21].)

Conventions for Dirac spinors are described in Appendix B. Let us em-
phasize that the normalization employed here differs from [16] (it coincides
e.g. with [20]).

Finally, the Lorentz-invariant transition (scattering) amplitude Mg; (for
brevity usually denoted simply as M) has an opposite sign with respect to
Bjorken and Drell {16] (the convention adopted here corresponds e.g. to [20]).




Frequently used symbols

Wg, z,,
W?* y ZT

E*, E

fL) fR

v,

e, et
v, b

®, ¢t
d s b

Gr

complex conjugation (c.c.)

hermitian conjugation (h.c.)

Dirac conjugation (3 = ¥'y,)

four-potential of electromagnetic field

tensor of electromagnetic field

field of charged vector bosons involving annihila-
tion operator of the particle W~

field of charged vector bosons involving annihila-
tion operator of the particle W+ (it holds W} =
(W

longitudinally polarized vector bosons W, Z
transversely polarized vector bosons

neutral scalar (Higgs) boson or the corresponding
field resp.

heavy leptons of electron type, or the correspon-
ding fields

arbitrary standard fermion (lepton or quark, or
the corresponding field resp.); exceptionally also
a coupling constant

left-handed or right-handed component of a fer-
mion f resp. (exceptionally also coupling con-
stants for heavy lepton interactions)

charged lepton (! = e,u,7), or the corresponding
field

neutrino {antineutrino) corresponding to the lep-
ton [, or the corresponding field

electron, positron

neutrino (antineutrino) of the electron type, or the
corresponding field

quarks with charge 2/3, or corresponding fields
quarks with charge -1/3, or corresponding fields
photon

Fermi coupling constant

atmaen

()

&, el

IER

vy, 4y

Qs
u(p), v(p)

e(p), e*(p)

EL(P)y E‘L‘/(p)
er(p), €7(p)
vt\lﬂl(k) Py Q)»
V/\pv(k» p, Q)
s, Lu
Eem.

E

1)

electromagnetic coupling constant (positron charge)
fine structure constant (a = e*/4r = 1/137)
coupling constant for interactions of weak charged
currents and W#

Cabibbo angle

Cabibbo-Kobayashi-Maskawa matrix

parameter of interactions of weak neutral currents
("weak mixing angle”, "Weinberg angle”)
parameters of interactions of left-handed, or right-
handed components of neutral current corresponding
to a fermion f

parameters of interactions of vector or axial-vector
components of neutral current corresponding to a fer-
mion f ‘

charge of a fermion fin units of e

Dirac spinor for a fermion or antifermion resp., with
four-momentum p

four-vector of an (arbitrary) polarization of vector bo-
son with four-momentum p

four-vector of longitudinal polarization

four-vector of transverse polarization

interaction vertex WWZ or WW«y

Mandelstam kinematical invariants
center-of-mass energy (Eem. = 5'/?)

typical energy of a considered process (e.g. Ecm.)
solid angle



Chapter 1

Introduction

One of the cornerstones of particle physics in the early 1960’s was a phe-
nomenologically successful theory of weak interactions based on the original
Fermi's idea {1] of a direct interaction of four spin-1 fields. A decisive role
in formulating this theory can be attributed to Feynman and Gell-Mann [2];
an important improvement of the Feynman ~ Gell-Mann theory is due to
Cabibbo [3]. The corresponding interaction lagrangian may be written as

Gr
La(::}l) == \/-
where G is the Fermi coupling constant determined from the measured

lifetime of muon, Gr = 1.166 x 10~3GeV~2. The current J* has lepton and
hadron parts,

—=JoJ! ' (1.1)

J’ = J(p"l"ﬂﬂ) + J(’hudron) (1.2)
where (taking into account only the leptons e, ., 4, v,)
J(Iepton) vy (1 - 75)3 + vy (l - 75)14 (1.3)

and the hadron part can be expressed in modern language by means of quark -

fields (if we consider also the c-quark beside the u,d, s)

J(ﬂllndron) = ﬁ»,’(l - 75)(‘1(308 170 + ssin 1’0)
+ &y*(1 - 5)(~dsin ¥¢ + s cos I¢) (1.4)

where Jc is the Cabibbo angle (J¢ = 13°). (However, one should keep in
mind that the relevance of the c-quark has been confirmed only in mid 1970’s;
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the ongmal Cabibbo current was given, roughly speakmg, only by the first
term in (1.4).)

In the commonly used terminology, the lagrangian (1.1) corresponds to an
interaction of two "charged” currents; the technical term ”charged current”

simply means that in the expressions (1.3) or (1.4) resp. occur pairs of fields

with different charge ((v.,€), (u,d) etc.). (For example, the electromagnetic
current is then "neutral”, in the sense of this terminology.) From the point of
view of space-time symmetries, the current (1.2) is of the type V—A4, i.e. it is
a Lorentz vector minus an axial vector (pseudovector). In other words, only
left-handed parts of fermion fields (e.g. eL = 3(1 — 7s)e etc.) participate
in weak interactions (this in fact was the original hypothesis proposed by
Feynman and Gell-Mann (2]). This corresponds to a maximal violation of
parity in the lagrangian (1.1): The parity-violating interaction (term VA
and AV) and the parity-conserving interaction (terms V'V and AA) have an
equal strength and this in turn leads to maximum parity-violating effects in
observable quantities.

The theory described by the relations (1.1) - (1.4) is usually called the
phenomenological (or effective) V — A theory of weak interactions. The
adjectives "phenomenological” or "effective” reflect the fact that this theory
described well most of the relevant experimental data known in 1960’s but
the calculations of decay rates and cross sections of physical processes were
only practicable on the level of tree Feynman diagrams (i.e. those not invol-
ving closed loops of internal lines) since the higher-order contributions in the
perturbation expansion were not renormalizable by means of the standard
methods (in contrast with e.g. quantum electrodynamics). Moreover, it has
also soon become clear that the approximation of tree diagrams can reaso-
nably describe weak scattering processes only for sufficiently low energies of
the interacting particles; a typical order-of-magnitude estimate amounts to

Eem, = st < G5¥ = 300GeV (1.5)

where E..r,. is the corresponding collision energy in the center-of-mass (c.m.)
system.

The above-mentioned difficulties of the four-fermion weak interaction
theory (1.1) within the perturbative framework (i.e. the non-renormalizability
of the closed-loop diagrams and the inapplicability of the tree approximation

at high energies) had a purely theoretical character in 1960’s. However, the- -

se technical flaws indicated that such a model, though phenomenologically
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successful practically until the early 1970’s, did not provide a full theory

of weak interactions and could only represent a certain approximation to a

fundamental theory in the low-energy limit. ‘
The road to a more satisfactory (i.e. renormalizable) theory of weak

interactions is remarkable in itself both historically and methodically, as it-

was based substantially on a development of new ideas and techniques in field
theory. From the physical point of view, it is interesting mainly because it
has finally led to a model which in a sense unifies weak and electromagnetic
interactions and provides some highly non-trivial theoretical predictions, a
part of which has already been verified experimentally. The history of the
discovery of the renormalizable unified theory of weak and electromagnetic
interactions has been described brilliantly by S." Weinberg, A. Salam and S.
Glashow in their Nobel lectures [4].

Glashow-Weinberg-Salam (GWS) theory [5, 6, 7] is based on the princip-
les of non-abelian gauge invariance (i.e. the Yang-Mills field) [8] and Higgs
mechanism [9]. The renormalizability of non-abelian gauge theories with the
Higgs mechanism has been proved by 't Hooft in 1971 [10] and experimental
evidence supporting the validity of the GWS model has been accumulating
continually since the early 1970’s (when the weak neutral currents have been
discovered). In view of its phenomenological successes the GWS theory is
now usually called the standard model of electroweak interactions (this term
has become widely recognized during 1980’s). A major triumph of the stan-
dard GWS model then has been the discovery of intermediate vector bosons
W and Z (in 1983) possessing the properties predicted by the theory. In a
sense, a "new era” in the physics of electroweak interactions has started in
1989 in connection with launching the experiments on the electron-positron
colliders LEP at CERN (Geneva) and SLC (Stanford, USA). These new
precision measurements now make it possible to verify even the theoretical
predictions of higher-order perturbative effects (denoted generally as "radia-
tive corrections”). It is expected that experiments on these colliders and on
the others now under consideration will make it possible to test ultimately
the correctness of basic principles of the standard model, i.e. the non-abelian
gauge symmetry and the Higgs mechanism, by the end of 1990’s. ,

In subsequent chapters we describe a road leading from the Feynman -
Gell-Mann model of the four-fermion ¥V — A interaction (1.1) to the GWS
standard model. In contrast to most of the existing literature, in this text
we present a derivation of the standard model based on the requirement

9

of "tree unitarity” (i.e. an "asymptotic softness” of scattering amplitudes
corresponding to tree-level Feynman diagrams in high-energy limit); such a
requirement is in fact a necessary condition of the perturbative renormaliza-
bility in higher orders. This alternative approach is rather straightforward
and instructive, and what is most important, it demonstrates the necessity
of non-abelian gauge fields and also the inevitability of a scalar Higgs boson
in renormalizable theory of weak interactions. Such a derivation of the stan-
dard model has appeared in the literature somewhat later than the original
GWS construction (see [11 - 14]). In the present work we give a detailed
treatment of this diagrammatic approach in a form which should (hopefully)
be digestible even for an uninitiated reader unacquainted with the traditional
"textbook” formulation of the standard model of electroweak interactions.

10



Chapter 2

Difficulties of Fermi-type
theory of weak interactions

2.1 Non-renormalizability of perturbation expansion' .

Some technical background for this chapter may be found in the appen-

dices A - G.

If one considers a genera.l Feynman diagram in a Fermi- -type theory of
weak interactions, i.e. in a theory of direct four-fermion interaction (exem-
plified by (1.1)), then the corresponding superficial degree of divergence (i.e.
the ultraviolet divergence "index”) is given by the formula (G.8) of Appendix
G where the relevant index of the four-fermion interaction vertex is w, = 6
(this is obtained by setting np = 4, ng =0, np = 0 in the formula (G.9)).
This indicates that a direct (conta.ct) four-fermion interaction leads to non-
renormalizable perturbation expansion, since by iterating the four-fermion
vertex in Feynman diagrams to a sufficiently high order one may expect ul-
traviolet divergent graphs to occur for an arbitrary configuration of external
lines, i.e. one imight encounter an infinite number of divergence types which
in turn would require an infinite number of renormalization counterterms. A
more detailed analysis indeed confirms such an expectation (see e.g. ref. [4]).
It is also obvious that in the considered case the value of the index w, = 6 is
closely related to the fact that the dimension of the Fermi coupling constant
Gr is M~?, in units of an arbitrary mass M (cf. Appendix G, the discussion
around the relation (G.11)).

11

(see Appeudxx A, defi

2.2 Tree-level violation of unitarity at high energies

In view of the inapplicability of standard methods of quantum field theory
in higher orders of perturbation expansion, we may restrict ourselves to the
lowest order only - i.e. to the approximation of tree diagrams. We shall
consider the purely leptonic sector of the theory described by the interaction
lagrangian (1.1), i.e.

w, .G F
L El elwn) \/:2' J(l epton) Jp((epton) (2 1 )

where the current J/ epton) 18 defined by the expression (1.3). Let us now inves-
hgate in more detail the elastic scattering processes vee—v,e and b.e — 7.e
in the high-energy limit, i.e. for E.,,, » m,. (in what follows the index e is
usually omitted for brevity). It can be expected (and it is indeed confirmed
by an explicit calculation - see Appendix D) that in such a limit one may
neglect m,. Asymptotic behaviour of the corresponding amplitudes and cross
sections may be then estimated on the basis of simple dimensional conside-
rations: In the system of units we are using (& = ¢ = 1) a cross section has
dimension [¢] = M~? (i.e. (energy)~?) and in the lowest order, i.e. in the

* st order of perturbation expansion with respect to the interaction (2.1), it

must be proportional to G%. Taking into account that G has dimension of
(energy)~? and neglecting the effects of masses of the interacting particles,
the mtegral €ross sectjon ¢an then only depend on the kinematical invariant s
jon (A.&)) It is clear that the on!y quantity with the
dimension of a cross secﬁon “#nd proportionalito G% is (up to a dimension-
less constant) G%s. Thus one may expect that in the limit s — oo the cross
section of the process ve — ve behaves like

a(ve — ve) ~ const. X Grs (2.2)
and similarly for 7e — Pe. The estimate {2.2) is confirmed by an explicit

calculation performed in Appendix D which gives the results (see (D.13),
(D.14))

a(ve — t;c) = %G}s ' (2.3)

olve — ve) = El;ci"’ (2.4)

12
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if one neglects m (we always tacitly assume such an approximation unless sta-
ted otherwise). Analogous dimensional considerations lead to the conclusion
that the corresponding scattering amplitude My; (which is dimensionless
for binary processes - see Appendix C, formula (C.3)) behaves (for a fixed
scattering angle) like Grs in the tree approximation.

‘We thus see that in a Fermi-type theory of weak interactions the scattering
amplitudes and cross sections calculated from tree diagrams rise linearly w1th
s (i.e. quadratically with the center-of-mass energy).

However, such a behaviour leads for sufficiently high energies to an appa- -
rent conflict of perturbative (tree-level) approximation with a general pro- .

perty of the exact S-matrix, namely with unitarity. The explanation of such
a remarkable statement is quite simple if we use a partial-wave expansion of
the relevant amplitude or the cross section respectively (see Appendix E).
Indeed, if a (tree-level) scattering amplitude M(s, ) depends linearly on s
(like Gps) then an analogous unbounded growth for s — co may be expected
for the corresponding partial-wave amplitudes as well (¢f. (E.7)). Thus, for
sufficiently large values of s {of an order s > G}') the tree approximation
will violate the unitarity condition (cf. (E.12)) ‘

IMU)s)| <1 | (2.5) |

Let us now illustrate this simple qualitative consideration on a concrete
example of the process ve — ve. If we neglect the electron mass, a correspon-
ding scattering amplitude is non-zero only for the combination of helicities

hi=hy=hi=h}= —% (2.6)

(this is a consequence of the V — A structure of charged currents in the
interaction (2.1)). From the result of the calculation performed in Appendix
D (see the formula (D.5)) then immediately follows that for the hehcntles
(2.6) one has

iMA;h',Agh,(-’,n)l =4v2 Gps (2.7)

Comparing (2.7) with the general formula (E.6) and taking into account the

relation (F.4) from Appendix F we see that for such a combination of helicities .
the Jacob-Wick expansion is in fact an expansion in Legendre polynomials -

(as A= hy — hy = 0, N = k] — h} = 0) and the independence of (2.7) on the
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scattering angle implies that only the partial wave with j = 0 contributes.
For the amplitude of this partial wave we then get immediately

MO (s)] =

Grs (2.8)

and for the cross section (corresponding to the combination of helicities (2.6))
one has

c=0= ;—G}‘a (2.9)
The umtanty condition (2.5) (or (E.19) resp.) then gives the bound s <

22 2 Gl i.e.
Vi< (2"\/—) : (2.10)

The critical value /sg, for which the unitarity condition is saturated (i.e.
such that in (2.5) or (E.19) the equality holds) is usually called "unitarity
bound” (see e.g. (15]) since for Ec,, > /5o the tree approximation (2.8) (or
(2.9) resp.) violates a necessary condition of unitarity and thus obviously
ceases to be a good approximation. In the considered particular case the
corresponding value is (see (2.10) & = (2rv3)}G5} ~ 870 Gev. Of
course, the value of a unitarity bound is process-dependent (see problems 2.2
and 2.3 at the end of this chapter).

It is in order to emphasize here that the violation of unitarity discussed
in this chapter refers to the lowest perturbative order; the exact S-matrix (if
we were able to calculate it) should of course be unitary as the hamiltonian
is hermitian,

It is easy to understand that the S-matrix calculated to a finite order
of perturbation expansion is not unitary, if one realizes that the unitarity
condition §§* = S+5 = 1 is nonlinear and thus it connects contributions of
different perturbative order (see e.g. [16], Chapter 8). Thus, in the consi-.
dered case of the four-fermion interaction, the tree-level S-matrix is in fact
not unitary for any value of the energy of interacting particles just because
we are neglecting higher-order contributions, For sufficiently low energies
(Grs € 1) the tree-level S-matrix differs little from a unitary matrix; a po-
ssible deviation from unitarity is of an order O(G%s?) and it is not possible
to draw any conclusion from the simple criterion expressed by the inequality

14



(2.5) (this inequality is only a necessary condition of the unitarity). Howe-
ver, a unitarity violation is manifest for sufficiently high energies (such that
Grs 2 1) when the condition (2.5) is no longer satisfied. One may then also
expect that the deviation from unitary behaviour in the tree approximation
is substantial, of an order O(1). ~

2.3 High-energy behaviour and renormalizability

It is important to realize that the inequality (2.5) is in general violated (for
suficiently high energies) even for tree-level scattering amplitudes of spinor
electrodynamics, although in some particular cases the condition (2.5) may
accidentally be satisfied for an arbitrary energy (see the problems 2.4 and
2.5 at the end of this chapter). However, in contrast with the four-fermion
weak interaction model, the corresponding amplitudes of partial waves in
spinor QED grow at most logarithmically with energy; this turns out to be
a behaviour typical for perturbatively renormalizable theories (see e.g. [12},
[17], [18]). (Let us also stress, in connection with the problem 2.5, that spinor
QED is renormalizable even in the case that "photon” has a non-zero mass
- see e.g. [17], [21]). . :

As we have seen, applications of the perturbation expansion in a theory
of Fermi type face two problems: '

1. Perturbation series is not renormalizable by means of standard methods.

2. Scattering amplitudes corresponding to tree diagrams grow with energy

like E2,. and for E... 2 G;* (i.e. for high, but still "terrestrial”
energies) the tree approximation is manifestly inapplicable.

We have already mentioned that these two problems are in fact closely
related to each other. More precisely, a power-like growth of iree-level ampli-
tudes with respect to energy implies non-renormalizability in higher orders of

perturbation expansion. This remarkable connection of two different aspects -
of perturbation expansion will be a subject of more detailed considerations -

in subsequent chapters and at the same time it will serve as an important
heuristic principle leading eventually to a realistic theory of weak interac-
tions. : :

Of course, it is highly desirable to have a renormalizable model of weak
interactions, i.e. to have a theory comparable with e.g. spinor QED. From
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what we have already said it follows immediately that for this purpose one
has to look for an adequate model of quantum field theory, in which tree-level
scattering amplitudes do not exhibit a power-like growth with energy. Tree
approximation will then also be applicable in a much wider range of energies
than in the case of a Fermi-type theory.

The model with charged intermediate vector boson described in the next
chapter alleviates the problem of high-energy behaviour of tree-level scattering
amplitudes only for some processes (e.g. for neutrino-electron scattering in
particular); nevertheless, it is an important first step towards a renormali-
zable theory of weak interactions.

Problems
: i

2.1." Calculate cross sections of scattering processes v.e — v,e and 7.6 — 7.e
(in the lowest order of perturbation expansion) in the high-energy limit
(i.e. neglecting m,) under the assumption that weak lepton current has
the form vV — aA (i.e. it involves the combination of Dirac matrices
¥o(v — a7s)), where a,v are real constants. Show that for an arbitrary
combination a, v it holds, in the considered approximation

a.(ve) ( 8)

< —=<<
2< Toag S0

2.2, Calculate "unitarity bounds” for processes 7,e — i.c and e~ et — v, 7,
within the framework of the Feynman ~ Gell-Mann (FGM) model of
weak interactions with V — A currents.

2.3, For which lepton processes (admissible in the lowest perturbative order
in FGM model) has the unitarity bound the maximum and minimum
value respectively?

2.4. Consider the process e"et — p~p* in the framework of spinor QED in
the high-energy limit, i.e. for s 3» m3. Which partial waves contribute
to the corresponding tree-level amplitude in Jacob-Wick expansion?
What restrictions are imposed by unitarity in this case?
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2.5. Discuss the partial-wave expansion of the tree-level scattering amplitude
for ex — ey in high-energy limit. Assume that photon has a non-
zero mass. What role does the photon mass play in the calculation of
partial-wave amplitudes?

17

Chapter 3

Intermediate vector boson

3.1 Hypothesis of charged massive IVB

A necessary technical background for this chapter may be found in Appen-
dix H.

One of the important results of the preceding chapter is an observation
that difficulties of the weak interaction theory of Fermi type are intimately
related to the contact character (i.e. zero range) of the four-fermion inter-
action described by the lagrangian (1.1): It is just the assumption of direct
interaction of four fermion fields which causes that the corrresponding coup-
ling constant (i.e. the Gr) has dimension of a negative power of mass.

Therefore it is natural to consider instead .of (1.1) an interaction descri-
bed by an "exchange” of another particle (which must then necessarily be
a boson) in analogy with e.g. photon exchange in QED. (Such an idea has
been probably formulated for the first time by O. Klein in 1938.) In its sim-
plest realization it means formally the passage from (1.1) to the interaction
lagrangian which may be written as

£ = 5—%(.7"%’: +IPW;) (3.1)
Here J* is the weak current defined by relations (1.2) - (1.4) (we shall consi-
der only its lepton part in what follows) and W is vector field corresponding
to a "mediating” particle (with spin 1) which is therefore usually called inter-
mediate vector boson (IVB). Contrary to photon (which is actually an IVB
of electromagnetic interaction), the IVB of weak interactions carries electric
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charge (41 in units of positron charge); this, of course, is due to the fact
that the weak current in (3.1) is "charged” in the sense defined in Chapter
1. In (3.1) the notation is chosen so that the W, contains annihilation ope-
rators of negatively charged particles W~ and, similarly, the W} involves
annihilation operators of positively charged W+. The coupling constant g¢
is now dimensionless (similarly to spinor electrodynamics) as one can easily
see from simple dimensional considerations (cf. Appendix G). The numerical
factor (2v/2)~! in (3.1) is introduced as a commonly used convention.

3.2 Correspondence with Fermi-type theory

The model of weak interactions defined by the lagrangian (3.1) must re-
spect an experimentally established fact that the effective Fermi-type theory
(1.1) provides a good description of a considerable part of physical reality
in the low-energy region. In the first place, this means that W#* must have
a non-zero mass {mw), so as the model (3.1) would indeed describe short-
range forces. (Let us remark that from negative results of direct search for
W# it has long been known that if such a particle exists, it must be much
heavier than e.g. muon.)} The condition of an equivalence of the IVB theo-
ry (3.1) and the Fermi-type theory (1.1) in the low-energy limit leads to a
formnula relating parameters Gr, ¢ and my which will be repeatedly used in
subsequent chapters. We will now derive this important relation.

Let us consider the muon decay g — ev,7, as a typical example of a low-
energy weak process, In the theory with IVB (3.1) such a process is described
in lowest (i.e. 2nd) order of perturbation expansion by the Feynman diagram
shown in Fig. 1(a), while in the Fermi-type theory the relevant diagram is
that of Fig. 1(b) (here the lowest perturbative order means of course the 1st
order in Gr).

The decay amplitude corresponding to the diagram 1(a) is given by the
expression

M) = @ (2—5’\,—5) [a(k)r,(1 = 15)u(P)} [a(p) 1o (1 = 75)v (k)] X

4 =2,p 50

X
2
q? —miy
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while the contribution of the graph 1(b) is

MY = —e%ta(km(l —u(PllEE( - )] (3.3)

. . A

() (b)

Fig. 1. Feynman diagrams for the process pi — ev,v, (a) in the theory with
IVB (b) in the Fermi-type theory.

In (3.2) we have used the standard expression for the propagator of massive
vector field (see (H.45) in Appendix H). Now we may let the second term in
the numerator of the IVB propagator in (3.2) act on the matrix elements of
fermion currents. Then using Dirac equation for the corresponding spinors
and taking into account the conservation of four-momentum ¢ = P—k = p+¥'
we obtain (assuming for simplicity that the neutrinos are massless)

u(k)f(1 — ys)u(P} = mya(k)(1+ 75)u(P)
wWp)f(1 — ys)o(k) = med(p)(1—1s)v (k') (34)

From (3.4) it is clear that the contribution of the second term in the IVB
propagator in (3.2) is suppressed by the factor m.m,/m% <« 1 and thus
it can be neglected. Further, simple kinematical considerations lead to the
following bounds on the squared four-momentum of the virtual W in the
diagram 1(b):

il

it

m: < ¢’ <ml (3.5)
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In view of what we have already said concerning the experimentally admissib-
le value of m it is then also obvious from (3.5) that

¢ < miy : (3.6)

so the momentum-dependence of the denominator of IVB propagator in
(3.2) may be ignored. Comparing the expression (3.2) (in which the above-
mentioned simplifications are taken into account) with (3.3) we get the desi-

red relation
Gr - ¢

\/5 8miy,
It is interesting to notice that in the derivation of (3.7) the negative sign in
the lagrangian of four-fermion interaction plays an important role; it is just
- this convention which then guarantees that G > 0, if the Fermi-type theory
is viewed as an effective low-energy approximation of the theory with IVB.

3.7

3.3 Fermion scattering processes

We will now investigate the behaviour of scattering amplitudes and cross
sections of processes v.e — v.e and J.e — P.e in the high-energy limit, i.e.
for s 3» m}, (for s & mjy the effective Fermi-type theory is of course valid if
the relation (3.7) is maintained). Feynman diagrams corresponding to these
processes in the theory with IVB (3.1) (in tree approxxmatxon) are shown in
Fig. 2.

Amplitudes corresponding to the diagrams in Fig. 2 are given by

) = (Z5) B0 = w0 = )
—9” + my¢"q’
x (9)
ir® = 2 (:25) B0 -] (L~ 10lH)]

—g* + m-wipppa

P (3.9)
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Let us now try to estimate the high-energy behaviour of the expressions
(3.8) and (3.9) with the help of dimensional considerations. In contrast with
Fermi-type theory, the relevant coupling constant g is now dimensionless.
However, the IVB propagator contains a term proportional to my?; thus, as
the scattering amplitude My; is dimensionless, it might seem at first sight
that it could grow linearly with s so as to compensate dimensionally the factor
my?. In fact, the "dangerous” term in the IVB propagator in (3.8) or (3.9)
resp. may be eliminated by using Dirac equation; lepton mass is factorized
(cf. (3.4)) and instead of a term behaving like s/m}, one gets a damping
factor m3/m¥,. Thus, amplitudes (3.8) and (3.9) are asymptotically constant
in the high-energy limit. More precisely, in the case of the expression (3.8)
it is so for an arbitrary scattering angle different from 0 or 7 resp. - this is
obvious from kinematical structure of the denominator of the corresponding
propagator,

‘,k

|

@ - 0)
Fig.2. Processes (a) v.e — v.e and (b)) b.e — D.e in the second order of

perturbation expansion in thc theory with charged IVB. The relevant
Mandelstam variables are ¢* = u, P? = s.

In the high-energy limit (when one may set m, = 0) the amplitude (3. 8)
is non-zero only for the combination of helicities hy = hy = b} = h} = -5
(cf. (2.6)); this is due to presence of the factor 1 — 45 in charged weak
currents. (In the case of the amplitude (3.9) the corresponding non-trivial
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combination is h; = A} = +%, hy = B = —-%, if we denote by h; and
kY helicities of the initial and final antineutrino.) Using the result (D.5)
from Appendix D and repeating considerations similar to those which in the
preceding chapter led to the relation (2.7), we obtain from (3.8) (for the
above-mentioned combination of helicities and for m, = 0)
@ - 33
Ml = S
1

2.—-—-—-——-—-—_-

% 14 cosd + 2mi, /s

where ¥ is the neutrino scattering angle in the c.m. system. An exact (direct)
calculation of the amplitude M(j‘:) using explicit form of lepton spinors u(p)
(as given in Appendix B) recovers just the expression on the right-hand side
of eq. (3.10). This expression has (for any ¥ # =) a finite limit for s — oo
(however, it behaves like s/m}y, for ¢ = #).

The scattering amplitude for v.e — v.e given by (3.10) may be now
expanded into partial waves. For the given combination of helicities we then
have A = ) = 0 in the formula (E.6), i.e. we are dealing with an expansion
into Legendre polynomials (see (F.4)). Amplitudes of partial waves may be
then calculated by means of the formula (E.8). In the considered case the
Jacob-Wick expansion involves an infinite number of partial waves owing to
the dependence of the denominator in (3.10) on the angle ¥ (cf. the problem
2.5 at the end of Chapter 2). The lowest partial wave corresponds to j = 0.
The formula (E.8) gives for the corresponding amplitude the result

M(o)(s) - ...]:_/1 “_E__d(cosg)
32r J_; 1+ cosd +2ml, [s

_ 98 (s '
= lﬁrln(m,z”+l) (3.11)

Imposing now unitarity condition (2.5) on the partial-wave amplitude
(3.11) we get (for s/m}, > 1) the bound

s <mlexp ( ;”) (3.12)

To assess now a numerical value of the "unitarity bound” defined by the
expression on the r.h.s, of (3.12), let us e.g. assume that ¢*/4x =~ aggp,
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(3.10) - |

where aggp = ﬁ is the electromagnetic fine structure constant. Then
167/g* ~ 548 and the unitarity condition (2.5) is violated only at astro-
nomical energies, corresponding to s > 10%8m},. (Let us remark that the
present-day realistic value is about g"'/41r = 0. 032 the right-hand side of
(3.12) is then approximately equal to 10%m},.) In view of the functional
form of the energy dependence of the partial-wave amplitude (3.11), such a
case is usually referred to as a "logarithmic violation of unitarity” in tree
approximation (note that a similar behaviour also exhibit e.g. partial-wave
amplitudes in QED - see the problem 2.5 in previous chapter).

For completeness, let us also calculate cross sections corresponding to the
amplitudes (3.8) and (3.9) in the asymptotic region s > m},. Summing
over lepton polarizations (and averaging with respect to the initial electron
polarization) one gets (cf. (D.5), (D.6))

* 2

M "’l’-— s u e (3.13)
M “”l‘—l‘——-——“zl (3.14)

27 (s —ml)?

Employing the kinematical identity #t = —s(1—y) (see (A.6)) and the formula
(C.13) for differential cross section and performing finally an integration over
y from { to 1, we obtain

2
o) G}y 4 s 1
Oivp = " mw3+mgy (3.15)

e G2 s

ofvh = ﬁm%m (3.16)
To express the cross sections (3.15), (3.16) in terms of Gr, we have used
the relation (3.7). Let us remark that while the result (3 15) represents a
good approximation for an a.rbxtrary s >» m?, the expression (3.16) may be
used either for s 3> m}, or m? € s €K m; th1s of course is related to the
fact that in the case of process P,e — Vse the W-exchange in the s-channel
produces a pole in the corresponding propagator for s = m%,. This point will
be mentioned briefly later in this chapter (see also the problem 3.3). From
(3.15), (3.16) it is immediately seen that in the case of the neutrino process
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the corresponding cross section has a non-zero limit for s — oo

ve) G}'

GEVB 1—00 = ngv (3.17)
whereas the antineutrino cross section converges for s — oo to zero like 1/s:

‘
0% 1o & %”’:l (3.18)
A technical remark may be in order here: Taking into account that both
scattering amplitudes are asymptotically flat, a naive guess based on the
formula (C.13) might be that both cross sections should vanish for s — oo.
However, it is easy to see that the non-zero value in (3.17) is due to the fact
that the amplitude for ve — ve is asymptotically bounded by a constant for
all directions except ¥ = = (see (3.10)); note also that the same feature of
(3.10) is responsible for the logarithmic growth of partial-wave amplitudes
(cf. (3.11)). i

Preceding considerations concerning the high-energy behaviour of am-
plitudes of physical scattering processes in the IVB theory (3.1) may be
summarized briefly as follows: From the technical point of view, the idea
of massive charged IVB as an "agent” of weak interactions seems to be so-
mewhat problematic at first sight because of the longitudinal piece of the
vector boson propagator involving the factor my;? which could, in principle,

play the same role as the coupling constant Gr in the Fermi-type theory.

Nevertheless, an application of the equations of motion (i.e. Dirac equa-
tion) eliminates potential problems at least in the case of purely fermionic
processes. The corresponding tree-level scattering amplitudes are asympto-
tically flat in high-energy limit and a violation of unitarity is described at
worst by a logarithmic function of energy (contrary to the power-like growth
of partial-wave tree amplitudes in Fermi-type theory).

3.4 Process v — Wy W}

The model with charged IVB thus representsin a sense a more satisfactory -

theoretical description (from the technical point of view) of purely fermionic
scattering processes than the Fermi — Feynman - Gell-Mann model (1.1).
However, this success is far from complete. Since we have introduced IVB as
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a new object into the theory of weak interactions, it is natural to consider,
beside processes involving a virtual IVB, also a direct production of physical
W=, In doing this, it turns out that for some combinations of polarizations
of external W% the amplitudes of the corresponding (tree-level) diagrams
exhibit a power-like growth in high-epergy limit. A classic example of such
a process is the production of a pair of W# in the neutrino - antineutrino
annihilation, i.e. ‘

v — WW+ - (3.19)
(In what follows, unless stated otherwise, we are working with electron-type
leptons and the corresponding index e is systematically omitted.) The pro-
cess (3.19) has been first discussed in this context in the paper [24]. (It is
a certain historical paradox that the paper [24] appeared only 2 years after
the Weinberg’s work [7] and that the Weinberg’s paper is not even mentio- .
ned in [24]. In contrast with the commonly accepted notation the authors of
(24] use a symbol X for the charged IVB.) We will now derive the essential
properties of the tree-level amplitude of the process (3.19) in the high-energy
limit. The corresponding lowest-order Feynman diagram is shown in Fig. 3.

1w W

P 4% %A av%
k ‘P

l

i I J q:r——‘l-

i I oo

1 -

el N\ NNINN
v W

- Fig.8. The proééss vi — WHW™ in the second order of perturbation ez-

pansion in the theory with charged IVB.

First of all, one has to realize that a possible source of "bad” high-energy
behaviour of the diagram in Fig. 3 (i.e. a power-like growth of the corres-
ponding amplitude with energy) may reside in polarization vectors of the
final-state W*. Indeed, components of the vector of longitudinal polarization
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(cotresponding to zero helicity) grow linearly with energy in the ultrarelati- -

vistic limit (see Appendix H, eq. (H.25)):
u 1 o(™¥ '
= — — 3.20
eulp) = '+ (Po ) (3.20)

(Let us however stress that the normalization 1.6}, = —1 is still maintained!)
The leading term in the longitudinal polarization (i.e. the first term in (3.20))
is thus proporhonal to the corresponding four-momentum; the presence of the
factor my; in this term will always play a key role in the estimates of the high-
energy asympt.oucs of tree-level amplitudes for processes involving real (i.e.
physical) massive vector bosons, both here and in the subsequent chapters.
Let us now consider the contribution of the diagram in Fig. 3 in the case
that both final-state W'’s have longitudinal polarizations; in such a case one
may expect the worst behaviour of the corresponding scattering amplitude
in the high-energy limit. The character of the leading divergence for s —
o0 may be easily guessed: Taken together, the leadmg terms from er(p)

and e.,(r) produce, according to (3.20), a factor of my? and for dimensional

reasons (scattering amplitude of a binary process must be dimensionless)
one may thus expect a quadratic dependence on energy for the leading term
in the considered amplitude. Further, it is also obvious that it is just the
combination of leading terms in both longitudinal polarizations which may

yield expressions divergent for s — oo; all the other combinations may only

contribute to the asymptotically constant (i.e. O(1)) terms in the limit s —
oo.. Taking into account the above remarks, the amplitude for the process
v — W[ W[ corresponding to the diagram in Fig. 3 may be expressed as

My = (2 f) 30l - 7s)r—vu(1 =1 )u(k)er(r)er () =
= v(l)'ru(l %) g e U 'rs)u(k)——— + 0(1)
(3.21)

(the standard form of the electron propagator used in (3.21) of course repre-
sents the inverse matrix (f —m)~!; one should keep this in mind in subsequent
manipulations).

The relation (3.21) may be further rewritten in the following way: We

employ the energy-momentum conservation ¢ = r —1 (see Fig. 3), decompose .
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"artificially” the f as f = f — [+ [ = § + [ and use Dirac equation #({)] =0
(we of course assume that m, = 0). Then we obtain, after a simple algebraic
manipulation

Mpi= =5 ,v(l)(1+7s){l A=k O (2

In the last expression one may use again an artxﬁcxal decomposition § =
§ — m + m; by means of this simple trick and performing some additional
standard manipulations we recast (3.22) as

oo~ 20u)

o z TmIl)(L+ %) 5= ‘ A1~ 2)u(k)
+ 0(1) | : (3.23)

My =

The first ferm on the right-hand side of (3.23), i.e.

2
M) =~ (DAL = 3)u(k) (3.24)
is, as expected, quadratically divergent for E.,,, — oo (let us recall that
lepton spinors u(k), v(l) behave in the high-energy limit like E2{2. (i.e. s!/4)
for the chosen normalization). In the terminology which we wxll use in what
follows the term (3.24) represents the leading (or dominant) divergence of
the considered tree-level amplitude. For a more detailed representation of
this leading term as an explicit function of energy we refer the reader e.g.
to the textbook [25] or the original paper [24]. However, we will not need
such detailed formulae; expressions of the type (3.24} will be sufficient for
our purposes.

We will now examine the second term on the right-hand side of eq. (3.23).
One might expect a priori that this expression contains a next-to-leading (in
this case linear) divergence for E.m, —+ oo. However, the would-be linear
divergence can be easily seen to vanish identically since

(1+7)4p(1 — 1) =0
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Thus, in the second term on the right-hand side of (3.23) the electron mass
squared m? is in fact factorized, which compensates the coefficient my;? co-
ming from longitudinal polarizations and the whole expression is therefore
of the order O(1) for s — o0. From the calculation that we have just des-
cribed it is also clear that the elimination of the linearly divergent term is
a consequence of the assumption m, = 0, more precisely of the fact that
the initial-state fermions (i.e. v,7) are massless - for an illustration see also
the problem 3.6 at the end of this chapter. (Such a connection will play an
important role in the derivation of the standard model in Chapter 5.) For
the tree-level amplitude of the process v — W' W, we thus have the result

Mp=M + 0(1) (3.25)

where the leading term M?,) is given by. the formula (3.24)., Quadratic

" growth of this term with energy means that perturbative S-matrix unitarity

for the considered process is violated in the same way as it was the case for
four-fermion scattering processes in the Fermi-type theory.

Some information concerning the behaviour of the considered model in
higher orders of perturbation expansion is contained in the "effective index”
of the corresponding interaction vertex which has been defined and calculated
in Appendix G (see the formula (G.14)): :

3
w:,”' = Enp+2n5 +np

(Let us recall that the coeflicient 2 multiplying the number of boson lines
ng involved in the interaction vertex is in this case a consequence of the
ultraviolet behaviour of the canonical massive vector boson propagator.) In
our case np =2, ng=1and np =90, so

will =35

(let us remind the reader that in the Fermi-type theory one has w, = 6). The .

value w®/! = 5 > 4 indicates non-renormalizability in higher orders of pertur-

bation expansion and a detailed analysis has indeed led to the conclusion that -
the model of weak interactions described by the lagrangian (3.1) is not re-.

normalizable within the framework of perturbation expansion (see [26], [27]).
However, the following remark is in order here: One has to keep in mind that
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the inequality w// < 4 is in general not a necessary condition of perturbative
renormalizability for a quantum field theory model. For example, in massive
QED one also has w&// = 5, but this theory is still renormalizable as we have
already stressed in the preceding chapter. Another important example of a
theory which violates the condition wi// < 4 but nevertheless produces a
renormalizable perturbatxon expansion for the S-matrix is just the standard
GWS model.

- As we have seen, the theory of weak interactions with charged IVB is
non-renormalizable and some scattering amplitudes corresponding to tree
diagrams diverge severely in the high-energy limit (displaying a power-law
behaviour). Thus, similarly to the case of the Fermi-type theory one may
observe here a remarkable connection between two different aspects of the
perturbation expansion mentioned at the end of Chapter 2: The power-like
growth of tree-level amplitudes in the high-energy region (for real particles)
implies non-renormalizability in higher orders of the perturbation expansion,
i.e. ‘an unacceptable behaviour of Feynman diagrams in the ultraviolet do-
main of four-momenta (of virtual particles) in closed loops of internal lines.
In the next chapter we will examine from this point of view the electrodyna-
mics of charged massive vector bosons.

3.5 Lepton decays of the IVB

To close this chapter we shall now discuss briefly lepton decays of the IVB.
The processes we have considered in the IVB theory up to now corresponded
to diagrams of at least second order in perturbation expansion. However,
the theory described by the interaction lagrangian (3.1) also admits (for a
sufficiently heavy IVB) processes of decay of W* into a lepton pair; the
corresponding decay amplitude is non-zero already in the first order of per-
turbation expansion (i.e. in the first order of g). According to our conventions
the first term in the lagrangian (3.1) describes the decay W+ — et + v while
the second term yields

W —e +7 (3.26)

For definiteness we shall deal with the process (3.26). The corresponding
tree-level Feynman diagram is shown in Fig. 4.

The probability of the decay per unit time, i.e. the decay rate (or width)
corresponding to the process (3.26) may be calculated by means of the for-
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mula (C.19) from Appendix C (we assume that all particles are unpolarized).
For simplicity we will also neglect the electron mass m; taking into account
that m < myw, it is clear that such a simplification is in fact a very good
approximation. A detailed calculation for m # 0 may be left to the interested
reader as an instructive exercise (see the problem 3.8).

i

Fig.4. The process W~ — e in the lowest order of perturbation expansion.

Before performing the formal calculation it is useful to realize that in the
approximation m = 0 one may easily guess the dependence of the conside-
red decay width on the other relevant physical parameters, i.e. ‘on g and
mw: The decay width has dimension of a mass in our system of units; the
only mass which is now available is the my and one must therefore have
I' ~ mw. Further, the decay amplitude is proportional to g (in the first
perturbative order) and thus it must hold I' ~ g?. The considered decay rate
must therefore necessarily have (for m = 0) the form

T(W~ — ) = Cg’mw S (3.21) .

where C is a numerical constant.
We will now deterinine this constant by means of an explicit calculation.
. The contribution of the diagram in Fig. 4 is given by the expression

Mii = 3 753B1(1 = )o(R)e*(0) (3.28)
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where £°(gq) is the polarization vector of IVB; of course, it holds ¢ = k + p.
The calculation of the squared modulus of the invariant amplitude (3.28)
and the summation over polarizations may be most effectively carried out in
the following way: First we sum over polarizations of the decaying IVB by
means of the formula (H.28) (see Appendix H) to get -

TIME = LS [kl - ()] x
pol. leptonpol.
X o(kne(1 =] (o + ) (829)

However, the term involving my;?¢?q° gives zero contribution; this is imme-
diately obvious if we use Dirac equation (for m = 0 both vector and axial-
vector current is exactly conserved). From (3.29) then easily follows

SoIMy

pol.

~ 39 Trlbn b1 = )] =

29°(k.p) = g"my (3.30)

]

Averaging over the vector boson polarizations amounts to multiplying (3.30)
by a factor of . Then using formulae (C.19) and (C.22) we get finally

(W= — ) = a%;g’mw { (3.31)

The coeflicient C in our preliminary estimate (3.27) is thus seen to be (48x)~!,
For the rate of the charge conjugate process W+ — e*v we of course get the
same result. Using the relation (3.7) the result (3.31) may be recast as

- o1 3
(W™ — ep) = Gw\/fGme (3.32)
Let us remark that the above calculation is not just an academic exer-
cise within the framework of a provisional theory of weak interactions; the
lagrangian (3.1) in fact makes a part of the GWS standard model and the
result (3.31) or (3.32) resp. thus holds (in lowest order) without any change
even in the modern theory of electroweak interactions. Note finally that we
could also take into account the hadronic part of the weak current in the
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lagrangian (3.1) and calculate the corresponding decay rate for hadron (i.e.

- quark) modes. We defer such a calculation to the last chapter devoted to the
- standard model where we also discuss the slightly more complicated pattern

of mixing in the quark sector which seems to occur in the real world (see the
problem 5.18 at the end of Chapter 5).

For the current experimental value my = 80.2GeV (see [28]) the decay
rate for the electronic mode (3.32) is numerically equal to

T(W- - ep) = 230MeV (3.33)

The value of this partial width thus shows that mean lifetime of the charged
IVB is shorter than 10~23sec (which is a typical lifetime of hadron resonances,
e.g. the meson p(770)). :

Coming back to the relations (3.14) or (3.16), we see that according to
this theory, intermediate vector boson should manifest itself as a dramatic
enhancement of the scattering cross section for e — e in the vicinity of s =
m}, (an experimental verification of this undoubtedly correct prediction will,
however, be out of reach of terrestrial facilities in a foresecable future). The
instability of the IVB (i.e. its finite decay width I') leads to a modification of
the denominator of the corresponding propagator: The standard Feynman
expression .
¢ —m}, +ie (3.34)

corresponding to a stable particle) turns into a " Breit-Wigner form”
P 8 P

q* —mly +imyTl : ~ (3.35)
Let us remark that in the GWS theory the passage from (3.34) to \(3.35) may
be formally accomplished by including higher-order effects, i.e. perturbative
corrections to the propagator on the level of diagrams with (at least) one
closed loop (see e.g. [39]). The modification (3.35) obviously regulates the
original singularity (pole) in the IVB propagator, which would appear in

scattering amplitude of the process e — e for s = m}, (cf. (3.16)). As we |

have already observed, the corresponding cross section should rather display
resonance behaviour with a maximum at s = m}, (in this context, see also
the problem 3.3). '
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Problems -

3.1. In the theory with charged I'VB calculate the cross section of the process
- e"et — u7 (in the tree approximation) in the limit s » ml, i..
effectively for m, = 0. Compare the result with the cross section of
the process e”e* — u~p* in QED for s > m} (see (D.18) in Appendix

D).

'8.2. Calculate amplitudes of the partial waves with j =1 and j = 2 (in the

tree approximation) for the process ve — ve (set m, = 0). Show that
partial-wave amplitudes for an arbitrary j grow logarithmically with
energy.

3.3. How many partial waves contribute to the Jacob-Wick expansion of the
scattering amplitude for the process 7e — e? Calculate the correspon-
ding partial-wave amplitudes and the cross section (again for m, = 0);
take into account the effect of the finite width of W. What restriction
is imposed by unitarity in this case?

3.4. Examine the asymptotic behaviour of the tree-level amplitude for the
process vii — W W7, where the indices L and T denote the longitu-

dinal and transverse polarization respectively.

-

3.5. Calculate the leading term in the cross section o(vi — W-WT) for
unpolarized W# in the high-energy limit.

3.6. Examine the high-energy behaviour of the tree diagram corresponding
to the process e"et — Wy W} in the theory described by the lagran-
gian (3.1). Calculate also the leading asymptotic term in the corres-

ponding cross section for unpolarized particles.

3.7. Consider the process e~et — 47 in the case that photon mass is diffe-
rent from zero. What is the high-energy behaviour of the corresponding

tree-level amplitude for longitudinally polarized "heavy photons”?

-

3.8. Calculate the decay width (W= — ep) for m, # 0.

3.9. Calculate the decay width I'(e~ — W~ + ».) in a hypothetical world
where m, > mw (and m, = 0). (Note that this rather academic
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example is a prototype of the realistic process ¢ —+ W+ 4 b, where ¢, '
are quarks from the third generation of fermions in the framework of
the standard model.) v o '

Chapfer 4

Electrodyhamics of vector
bosons

i

4.1 Interactions of W* with photons

The intermediate vector boson of weak interactions carries an electric
charge (as it is coupled to a charged fermionic current) and it is therefo-
re natural to consider also electromagnetic interactions of the particles W#,
Electrodynamics of charged IVB is the subject of this chapter. As we will see,
in contrast with the familiar "textbook” spinor electrodynamics (where the
charged particles have spin %) the electrodynamics of massive vector bosons
(i.e. charged spin-1 particles) is non-renormalizable within the perturbative
framework. More precisely, we will show here that amplitudes of some tree
diagrams in this theory display an equally bad high-energy behaviour (i.e. a
power-like growth) as that we have observed in the model of weak interac-
tions described in the preceding chapter. The non-renormalizability in higher
orders of perturbation expansion has been demonstrated in {26}. Electrody-

. namics of charged massive vector bosons has been discussed in many papers
. published in 1960’s (see e.g. {20-32] and other papers quoted therein); cf.
also [18], [33] and for a recent reference see in particular {34].

An electromagnetic interaction of the IVB may be introduced (similarly to
the case of charged spin -} fermions) by means of a suitable gauge invariant
modification of the corresponding free lagrangian. The lagrangian of free
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(non-interacting) fields W* is given by (see (H.47) in Appendix H)
1 - - v v -
Lo = —E(E“WU = QW)W — QW) + mi, Wy W (4.1)
The "minimal” electromagnetic interaction is defined by changing (4.1) into
Ll = -——-(D W, = D,W ) (D"WH — D*WH) 4 ml, Wy W (4.2)

where
D, = 0,+ieA,
D, = 0u—ieA, - (4.3)

(the coupling constant in (4.3) is e > 0). The lagrangian (4.2) is invariant
under local gauge transformations ‘

W;”(z) = e"‘""(‘)W;(w)
WH(z) = Wi (z)
Afs) = Auz)+-Bu0(z) (44)

Let us emphasize that gauge transformations (4.4) corrrespond, as in the
spinor electrodynamics, to an abelian (i.e. commutative) group U(1).
One may add to the "minimal” lagrangian (4.2) another gauge invariant
term
L'= —ikeW *W*F,, . (4.5)

where

Fu = 08,A, - 8,A, (4.6)

and & is an arbitrary (real) constant. If we require a general electromagnetic
interaction to be described only by polynomials with canonical dimension not
greater than four (so as not to spoil renormalizability @ priori) and, moreover,
if we assume the invariance with respect to discrete symmetries C, P, T (a
more detailed discussion see e.g. in [34]), then the most general lagrangian
of electrodynamics of the spin-1 charged vector bosons W# is obtained by
summing (4.2) and (4.5):

Lom=LHM L = Lo+ L™ + £ (4.7)
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An alternative (and in a sense more general) approach to electromagnetic
interactions of W# is discussed in Appendix I and in Chapter 5 (see Section
5.4). Let us remark that adding the term (4.5) to the original minimal
interaction incorporated in (4.2) corresponds physically to particles W with
an "anomalous” ma.gnetic moment uw = (1+&)e/(2mw) (the corresponding
gyromagnetxc factor is thus ¢ = 1 + &) and electric quadrupole moment
Qw = kem;} (see e.g. [17), p. 22 and also the papers [33], [34]). Let us
recall that the gyromagnetic factor ¢ = 2 for electron follows automatically
from Dirac equation with minimal electromagnetic interaction, while in the
case of vector bosons the value of g = 2 corresponds to & = 1 in (4.5). It
is also useful to realize that both the minimal interaction £{™™ and the
term L' in (4.7) have the same canonical dimension (equal to four) and thus
there is no reason to prefer a priori any particular value of the parameter
&; in this context, instead of "anomalous”, perhaps a more correct adjective
"ambiguous” is used for the magnetic moment of W# (see e.g. [18]). In
spinor electrodynarmcs, an analogue of the non-minimal term (4.5) is the
expression $a,, ), which has, however, dimension 5 and it would lead to
a non-renormalizable perturbation expansion.

Using (4.2), (4.3), (4.5) and (4.6) we may recast the interaction part of
the lagrangian (4.7) as

Lmt = ﬁs::m) + L= LWW-y + £Ww'n (4~8)
where for the term mhnear with respect to the fields W* and A, (photon)
one gets, after a straightforward manipulation

Lwwy= — iAW ,W} -a,W W)
+ WsW*r8,A, -8, W*A,) (4.9)
+ WH(A9, W, — k8, AW, )
and the quadrilinear term is given by
C Lwwry = AW W — APAWIWE) (4.10)

As we have already said, the value & = 0 in (4.9) corresponds to the minimal
electromagnetic interaction. In what follows, the particular case & = 1 will
play the most important role; the corresponding trilinear interaction (4.9)
will be called the electromagnetic interaction of Yang-Mills type and denoted
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as Li},’{;’g because in such a case, the expression (4.9) just corresponds to
the situation where W* and A, form a triplet of non-abelian gauge (i.e.
Yang-Mills) fields (see [8] and [17], [18], [25] etc.). The expression (4.9) is
remarkably symmetric for & = 1 (it is invariant w.r.t. cyclic permutations of
W=,W+ and A) and it may be recast in a more compact form:

Lo = —ie( AW EW} + WHWHEA, + WHAEW,)  (411)
The symbol & in (4.11) is defined iu the usual way as. '

fgng = f(aﬂg) - (auf)g

Interaction vertices corresponding to the lagrangians (4.9), (4.10) in momen-
tum representation are shown in Fig. 5. .

() ' (b)

Fig.5. (a) Vertex W-Wy corresponding to the trilinear interaction (4.9);
(b) Vertez W=W+yy corresponding to (4.10).

The vertex in Fig. 5(a) corresponds to the expression

VD, (k,p,qls) = eVau(k,p, glx) @)
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where
Vowlkypygl) = (8 = Bl + (o= sahagn + (50 = K (413
One has to keep in mind the four-momentum conservation in (4.13)
Cktptg=0 (4.19)

In Feynman diagrams involving vertices of the type WW+ an incoming line
of the W= with a four-momentum k is equivalent to an outgoing line of the
W+ with four-momentum —k etc. In the case of the interaction of Yang-Mills
type (i.e. for £ = 1) we will write simply

Vau (K, 2, 9) = (k= Plugau + (P = O)2guw + (7~ kugrv (4.15)
The general vertex WW«y '(4,13) may then be expressed as
V;\uv(k,P, QIK) = v;\yv(kl ) 2 q) + (l - n)(q,\g,,., - qu.%\v) (416)

The vertex WW 7 in Fig. 5(b) is given by

Vivpe = ~é (29yvgpc = GupGve — guvgw) (4‘17)

(in contrast with (4.13) the last expression is momentum-independent as the
interaction (4.10) does not involve derivatives).

The Yang-Mills expression (4.15) is invariant with respect to a simulta-
neous cyclic permutation of the indices ), u, v and of the momenta k,p, g,

i.e., it holds
Vauu(k, 2, 9) = Viur(p, 0, k) = Viau(a, %, p) (4.18)
and it satisfies an important relation
PVawlkp,0) = (—¢*9r + 00) — (—F’or + kaky) (4.19)

The relation (4.19) is sometimes called 't Hooft identity since it has probably
first appeared in the paper [35]. The proof is left to the reader as an easy
exercise (see the problem 4.1). '
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4.2 ngh—energy behaviour and the vertex WW'y

We will examine the high‘energy behaviour of tree-level scattermg a.mpll-
tudes of electromagnetic processes involving real (physical) vector bosons W#*
in the initial and/or final state. (Throughout the following text, we will em-

ploy the generic notation E for a relevant energy, e.g. E = E.m, = /3.) For .
a discussion of different variants of the trilinear interaction WW4 in (4.9),

the most interesting processes in this context are those involving two W's
and two photons, i.e. for example W~W* — 4y, W=y — W~y etc., since
the corresponding Feynman diagrams contain both external and internal W
lines. For definiteness, let us first consider the annihilation of a W# pair into
two photons. The diagrams corresponding to this process in the lowest order
of perturbation expansion (i.e. in the 2nd order w.r.t. interaction (4.9) and
in the 1st order w.r.t. (4.10)) are depicted in Fig. 6.

@ o ©

Fig.6. Trcc-level diagrams for the process W=W* — 47 contributing to order

e? in the electromagnetic coupling constant.

On the basis of simple considerations similar to those employed in the prece-
ding chapter one may guess that the high-energy behaviour of the diagrams
(a), (b) will in general be worse than in the case (c). The reason for this is
of course the factor of my; in the W propagator; it may cause, in princip-

le, that contributions of the diagrams (a), (b) grow like E™*? for E — oo -

while the diagram (c) behaves like E® for some n > 0 (according to (H.25)
or (3.20), further factors of my;} may arise from longitudinal polarizations
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of the external W#, but these are common for all the diagrams (a), (b),
(¢)). Of course, such a behaviour of the diagrams (a), (b) would disqualify
the electrodynamics of vector bosons W#* g priori, as the above-mentioned
leading divergences - if they are present - remain unmatched.

A necessary condition for the absence of a power-like growth of the consi-
dered tree-level amplitude with energy is therefore an elimination of the lea-
ding divergences in the diagrams (a), (b) themselves. Since a general WW«
interaction defined by (4.9) (or (4.16) resp.) depends on an arbitrary para-
meter £, one may try to achieve the desired divergence cancellation by means
of an appropriate choice of the x. To see how this can be done, we will inves-
tigate in detail the diagram (a) (the diagram (b) behaves analogously). Its
contribution may be written as a sum of two expressions which correspond
to the two terms in the W propagator (cf. (H.45)):

My =MD 4 MO (4.20)

where M corresponds to the diagonal term of the propagator and MP
contains the factor my;? (it corresponds to the longitudinal term). In view of

. what we have already said, it is Just the second term which is essential for

our discussion. The expression M®P s equal to

v

(2) — ’ q“q v, —klk)V, -] - A e (Ne*e .
M 7 T auA(P)‘L l") prv(") ) QI"‘)‘5 ( )5 ().‘.‘ (P)C (r)
»» Tml, g —mi, (4 1)

(the term Mm in (4.20) may be obtained from (4.21) by replacmg my ¢*q”
with —g* and in the high-energy limit it behaves similarly to the dmgram
(c)). To work out the expression (4.21) we use the relations (4.16), (4.18),
the 't Hooft identity (4 19) a.nd simple kinematical relations ¢ = k —p =
r—I, k’—l’—mw p* = r?'= 0. Thus we get first

M@ = -5 Ke (e (p)e*

a - mqg ()E()€ (P)S()

[krks — paps + 1 = k)(k-p 910 ~ P2gs) + O(my))
[llp = rerp + (1 = 6)(Ir grp + 749,) + O(miy)] (4.22)

X X

where the symbol O(mj,) denotes the terms in which m}, is factorized (these
terms thus cannot contribute to the leading divergence in (4.22)). Further,

42


http:m�Jq/J.qV

in (4.22) we use orthogonality of polarization vectors to the corresponding
four-momenta, i.e. k.e(k) = 0 etc. Thus we get finally

MO = 8L
. mi @ —-mi, '
x (= 5 [(k.p)(e(k).£'(p) — (k. (p))(pe(k))]
x [(r)(e®)£(r) = (e’ re()] + O(miy)}  (4.23)

Now it is easy to analyse the high-energy behaviour of the considered scattering
amplitude in dependence on the value of . First of all, it is seen that if at
least one of the W's has longitudinal polarization, the potential leading diver-
gence (quartic or cubic) vanishes for an arbitrary value of x. This statement
can be immediately verified if we replace in such a case the polarization ve-
ctor (k) or (1) in (4.23) by the corresponding leading term k/mw or
[/mw according to the by now familiar formula (H.25). The corresponding
expression in square brackets is then equal to zero and thus the whole would-
be leading divergence in (4.23) is suppressed. If both vector bosons W* have
a transverse polarization, the expressions in the square brackets in (4.23) are
in general non-zero and the leading term in the amplitude MP, (which in
this case would be quadratically divergent) vanishes just for x = 1. The
results we have obtained may also be easily generalized to other binary pro-
cesses of the considered type (see in this connection the problem 4.3). We
have thus arrived at the following remarkable statement concerning tree-level
diagrams of binary processes within the framework of charged vector boson
electrodynamics: :

Leading power divergences arising in the high-energy limit in tree-level
diagrams involving both external and internal lines of vector bosons W# are
eliminated for an arbitrary combination of the W* polarizations if and only
if the corresponding electromagnetic interaction is of the Yang-Mills type.

Moreover, it can be shown that e.g. in the case of the considered process
in Fig. 6 the resulting tree-level amplitude is asymptotically constant, i.e.
it is finite in the high-energy limit for an arbitrary combination of W# po-
larizations if the vertex WW4 is of the Yang-Mills type (i.e. the remaining
non-leading divergences from diagrams (a), (b) are in such a case compensa-

ted by the diagram (c) - see the problem 4.4). Of course, the same result may - -

be obtained also for the "Compton scattering” process yW — yW. Thus,
the electromagnetic interaction of the Yang-Mills type is "optimal” in the
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v above-specified sense (with respect to the processes considered so far).

It is important to realize that the above statement concerning the eli-
mination of leading divergences is only valid for the tree diagrams involving
both external and internal W lines. In the case of tree-level diagrams invol-
ving W's in the external lines only (combined with an internal photon line) -
there is no general mechanism (within the framework of the electrodynamics
alone) which would eliminate high-energy divergences arising from longitu-
dinal polarizations (though, as we will see below, in some particular cases an
"accidental” suppression of leading asymptotic terms may occur - see also
the problem 4.3). So e.g. the process WW — WW is described by the
tree-level diagrams shown in Fig. 7. ‘

o e - —— m— N e . J

w- w-
(®)

Fig. 7. Tree diagrams corresponding to the process WW — WW in the
vector-boson electrodynamics.

If all four external lines correspond to longitudinally polarized W's, one
may expect in general that leading asymptotic terms in both diagrams will
diverge like E*, as each external line contributes a factor of my; from the
decomposition (H.25).  If the interaction WW+ is of the Yang-Mills type,
then the anticipated quartic divergence indeed occurs; a direct calculation
leads to the result

2 ¥
MIM) L MM = S (P 4P —25Y) 40 (ﬁ,-) +0(1)  (424)
4mw My

where t = (k — p)?, u = (k—r)% The expression for the next-to-leading
quadratically divergent term O(E?) is rather complicated and we will not
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need it now (see however Appendix J). The following remark is in order
here: If we considered the minimal electromagnetic interaction (i.e. x =0 in
(4.13)) instead of the Yang-Mills WWy interaction, then in the case when all
the W’s in diagrams in Fig. 7 have longitudinal polarizations, we get instead
of (4.24) , -

M@ =0(1), MMM =0(1) (4.25)

i.e. for & = 0 the expected quartic divergence is completely suppressed and
contributions of the relevant diagrams are - in this particular case - asympto-
tically constant in the high-energy limit! However, such an elimination of di-
vergent terms only occurs in the case when both external lines in the vertex
WW« carry longitudinal polarizations; if e.g. transverse and longitudinal

polarizations of external particles are combined in such a vertex (together

with an incoming internal photon line) some divergent terms in general re-
main for any value of the parameter « in (4.13) (cf. the problem 4.3). In
Fig. 8 we have shown the configurations of lines entering the WW+ vertex
in corresponding diagrams, for which a divergence cancellation occurs for the
Yang-Mills and the minimal electromagnetic interaction W W« respectively.

Salient points of the preceding discussion may be concisely summarized
as follows: Electromagnetic interaction of the Yang-Mills type represents in

a sense an optimal choice for the vector bosons W as it eliminates systemati-

cally leading high-energy divergences (i.e. leading powers of E for E — co)
in tree-level diagrams involving both external and internal W lines. The
minimal electromagnetic interaction leads to an "accidental” suppression of
divergent terms in other cases, but only for special combinations of polari-
zations of external W’s. However, within the framework of the pure electro-
dynamics of charged vector bosons there is no choice of the parameter « in
(4.13) which would guarantee a cancellation of the power-like divergences in
all tree-level amplitudes of binary processes.

Thus, from the point of view of high-energy behaviour of the tree diag- -

rams, the electrodynamics of charged massive spin-1 particles (i.e. IVB's) is
technically unsatisfactory in a similar way as the model of weak interactions
described previously. As we have already mentioned earlier in this chapter,
quantum electrodynamics of vector bosons is non-renormalizable in higher
orders of perturbation expansion. This fact is suggested by the values of
effective indices for interaction vertices WW+ and WW4+; in both cases we
obtain w, = 6 according to the formula (G.14) in Appendix G. In the case
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of the Yang-Mills WW4« interaction some types of ultraviolet divergences
(coming from different diagrams) cancel [27], but even this variant of the
theory has ultimately proved to be non-renormalizable [26]. Electrodyna-
mics of IVB’s thus provides another example of a connection between the
"bad” high-energy behaviour of tree diagrams and non-renormalizability of
perturbation expansion.

'W" ¥

(a) (b)

Fig. 8. If the vertex WW4 in the configuration (a) is multiplied by the longi-
tudinal part of the W propagator, m¥, is factorized (which compensates
the my;}? from the propagator) for an arbitrary polarization of the exter-
nal W if and only if the electromagnetic interaction is of the Yang-Mills
type. In the configuration (b) the leading asymptotic term for longitudi-
nally polarized W (proportional to my? ) vanishes just for the minimal
electromagnetic interaction.

4.3 A naive electro-weak unification

To close this chapter, we will now discuss some processes involving vector
bosons W* and charged fermions. Both electromagnetic and weak interac-
tion contribute to these processes and thus it is natural to consider a straight-
forward unification of weak and electromagnetic interactions described by the
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interaction lagrangian
Ll = o 4 e (4.26)

mt

where the first term in (4.26) is the weak interaction and the second term
corresponds to electromagnetic interactions of charged leptons (here we will
consider only the electron) and vector bosons W#, i.e.

LED = —etyeA* + Lwwy + Lwwy (4.27)

(see definitions (4.8) - (4.10)). Unless stated otherwise, we always have in
mind the W W4 interaction of the Yang-Mills type (just for comparison, we
will sometimes also refer to the minimal electromagnetic interaction of W's).
We will use a provisional teclinical term "theory of electro-weak interactions”
for the model (4.26) (the hyphen indicates a superficial nature of such a
facile "unification”). Binary processes in which participate vector bosons W*
and charged fermions are essentially of two types: ve — W« and e~et —
W=Wt. Let us first consider a process of the first type, for definiteness in the
configuration e — W=+. Tree-level diagrams for this process corresponding
to the 2ud order of perturbation expansion with respect to the interaction
(4.26) are shown in Fig. 9.

e .
———— SN
k.{ P
e Q=k—p‘%
-1 r
e NN
v W—:

(a)
Fig. 9. Tree diagrams of the process ve — W=,

We will now investigate the high-energy behaviour of the corresponding
scattering amplitude. First of all, from our previous results it is clear that
if the final-state W~ lLas a transverse polarization then the contributions
of both diagrams in Fig. 9 are finite in the limit £ — oo. Let us further
consider the case when W™ has longitudinal polarization. One may expect
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that the contribution of the diagram (a) contains a term linearly divergent
for E — 0o. As regards the diagram (b), it is not difficult to show that its
part involving the factor my? from the corresponding propagator is finite for
E — 0o (to see this, one has to realize that in this part the electron mass is
also factorized - ¢f. (3.4). However, the part corresponding to the diagonal
term in the W propagator may yield a (linear) divergence for £ — co. Using
the standard high-energy decomposition of the longitudinal polarization vec-
tor (3.20), the contribution of the diagram (a) may be written as

Mo = *(p)u(k) +0(1) (4.28)

A TOHL = )

With the help of tricks similar to those which in Chapter 3 have led to the
realization (3.23) we get from (4.28) easily

o= ;v?—v(‘)sf‘ p)(1 —s)u(k) +O(1) (4.29)
For the contribution of the diagram (b) one may write first

My = '-Vim (1)79(1 - 75)“(k) @— V:\uv(p, Ty Q)rﬂeh(p) + O(l)

(4.30)
where the expression Vi, (p,r,¢) is given by the formula (4.15). With the
help of the 't Hooft identity (4.19), using relations p.e*(p) =0, p? =0 and
applying Dirac equation in the lepton matrix element, the expression (4.30)
may be eventually recast as

eg 1 _
My = Ef—v(‘)sf (p)(1 = vs)u(k) + O(1) (4.31)
Thus, it is clear from (4.29) and (4.31) that linear divergences arising in
diagrams (a) and (b) cancel each other and the full tree-level amplitude is
finite for £ — oo, i.e.

Mo+ My =0(1) (4.32)

The calculation we have just performed is the first and simplest example of
a divergence cancellation between tree-level diagrams of different type (the .
diagram (a) represents a fermion exchange in {-channel, while (b} corresponds
to the s-channel exchange of vector boson). The cancellation of divergences
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in this case does not give any restriction on coupling constants, as the con-
tributions of both diagrams are proportional to e g. In the next chapter we
will encounter many similar examples in situations where the requirement
of cancellation of high-energy divergences implies nontrivial relations among
coupling constants.

Let us now consider the process e"et — W-W*. Within the framework
of the theory of electro-weak interactions (4.26) it iscdescribed (in lowest
order) by the tree diagrams shown in Fig. 10. The diagram (a) represents a
"pure weak” and (b) "pure electromagnetic” contribution to the considered
process. :

(a) (b)

Obr. 10. Tree diagrams corresponding to the process e”et — W-W+,

The worst high-energy behaviour of the corresponding amplitudes may be
expected in the case when both vector bosons W# have longitudinal polari-
zations; one may then guess, in the same way as in the preceding examples,
that both diagrams in Fig. 10 may contain quadratically divergent terms for

E — oo, (However, let us recall that if the WW« vertex corresponded to -

the minimal electromagnetic interaction, quadratic divergence in the diag-
ram (b) would vanish - see Fig. 8.) In the case that only one of W’s has
longitudinal polarization, both diagrams (a), (b) yield linear divergences for
E — oo (for the Yang-Mills WW+ vertex as well as for the minimal elect-
romagnetic interaction). We will now examine in more detail the case when
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‘both vector bosons W2 have longitudinal polarizations. For the contribution

of the diagram (a) we get, using(3.20) and after usual manipulations

M, = _49—2,9(1)15(1 —y)u(k) +0 (%’—E) +0(1) (4.33)
mi, My

As we have indicated in (4.33), the amplitude M, contains beside the leading
quadratic divergence also a next-to-leading (linear) divergence for E — oo
(cf. in this context the remarks concerning the relation (3.25) in previous
chapter). Derivation of an explicit form of the linearly divergent term is left
to the reader as an easy exercise (see also Appendix J, the formula (J.1)).
For the contribution of the diagram (b) one gets (by means of manipulations
similar to those which have led from (4.30) to (4.31)) the result

My = me—;a(z),su(k) +0(1) (4.34)

If we now compare (4.33) and (4.34) it is clear that one cannot accomplish
a mutual cancellation of quadratic divergences in M, and M, by any clever
choice of the relative magnitude of the coupling constants e and g since the
corresponding expression in (4.33) contains 1 — 45 but (4.34) does not; it
means that quadratically divergent terms in M, and M; depend differently
on lepton polarizations. Beside that, in the expression (4.34) there is no
linearly divergent term of the type O(mE/m%,), in contrast with (4.33); of
course, this is a consequence of the conservation of lepton electromagnetic
current in the corresponding vertex of the diagram (b). We thus see that the
full tree-level amplitude of the process e~et — W=W+ contains (if at least
one of the W’s has longitudinal polarization) terms diverging like a positive
power of energy for E — oo.

We will now summarize main results concerning the high-energy beha-
viour of tree-level amplitudes of binary processes, that we have obtained in
this and the preceding chapter. The naive theory of weak interactions with
charged IVB and the electrodynamics of IVB have similar problems with
power-like growth of tree-level amplitudes for E — oo. Trivial unification
of weak and electromagnetic interactions in the lagrangian (4.26) does not
solve these problems. In the case of the process e~et — W-Wt, a cancella-
tion between leading divergences coming from the weak and electromagnetic
contribution respectively is not possible, because the weak interaction vio-
lates parity (via V — A currents) while the electromagnetic interaction is
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parity conserving. In other casses one has only a weak contribution (e.g. for
vi — W-WH*) or an electromagnetic one (e.g. for WW — WW) and the
terms divergent for E — oo cannot be eliminated trivially. It is obvious that
the power-like high-energy growth of the above-mentioned tree amplitudes
cannot be suppressed without introducing new particles and new interactions
which represent the "missing links” of the naive model of electro-weak inter-
. actions. Keeping in mind the remarks we have made concerning the process
e~et — W-Wt one may guess that the necessary new interactions should
in a sense "interpolate” between the original weak and electromagnetic in-
teractions in (4.26). A detailed construction of the "missing links” of the
unified theory of weak and electromagnetic interactions is the subject of the
next chapter.

Problems

4.1. Prove the "t Hooft identity (4.19).

4.2. Prove the relation (4.24).

4.3. Prove the statement in the text of Fig. 8.

4.4. Show that full tree-level amplitude of the process W=W* — v is finite
in the high-energy limit for an arbitrary combination of W# polariza-
tions if the WW4« interaction is of the Yang-Mills type. Can there be
a cancellation of non-leading divergences in diagrams (a), (b), (c) in
Fig. 6 in the case that the WW« vertex is described by the expression
(4.13) with a parameter & 5 17

4.5. Derive (4.29) and (4.31).

4.6. Calculate the leading term in the cross section of the process e — W™y
for E — oo in the approximation of tree diagrams in Fig. 9 (for
unpolarized particles). ‘

4.7. Derive (4.33) and (4.34).

4.8. Calculate the leading term in the cross section e~et — W-W+ for
E — oo in the approximation of tree diagrams in Fig. 10 (for unpo-
larized particles). What are separate contributions of the weak and
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electromagnetic interaction resp.? (see also problem 3.6). How are
changed the corresponding results if we consider the minimal electro-
magnetic interaction instead of the Yang-Mills vertex WW«?
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Chapter 5

Tree unitarity and electroweak
interactions

5.1 A criterion for perturbative renormalizability

We have shown in preceding chapters that the naive hypothesis on the
existence of charged intermediate vector boson of weak interactions leads
eventually - despite partial successes - to similar difficulties as the original
Fermi-type theory. Moreover, the introduction of an electromagnetic inter-
action of IVB's modifies substantially the properties of quantum electrody-
namics: Contrary to the familiar spinor QED, electrodynamics of charged
massive spin-1 particles is non-renormalizable (and, at the same time, some
tree-level amplitudes display a "bad” high-energy behaviour). In this chapter
we will demonstrate that a non-trivial unification of weak and electromagne-
tic interactions (which necessitates postulating extra particles and a host of
new terms in the interaction lagrangian) is able to cure simultaneously the
difficulties of the old provisional models of W# interactions, i.e. of both the
electrodynamics and weak interaction theory.

Let us now specify our goal more precisely. We wish to construct a phy-
sically realistic theory of weak and electromagnetic interactions (i.e. such
that it describes correctly experimental data e.g. for muon decay, Compton
scattering etc.) and we require that the model would be renormalizable
within the framework of perturbation expansion. The following remark is
in order here: The requirement of perturbative renormalizability is in fact
of technical nature and it is not clear at present whether it is indeed phy-
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sically relevant in its full extent. Nevertheless, this technical requirement
proved to be an extremely valuable heuristic principle which has led to many
non-trivial physical predictions (some of which have already been verified
experimentally).

However, a direct search for a renormalizable model of weak and elect-
romagnetic interactions would be a tremendous task: It would amount to
a systematic analysis of ultraviolet divergences in Feynman diagrams invol-
ving at least one closed loop and to finding conditions of a cancellation of
non-renormalizable divergences descending from different diagrams. From
the technical point of view, it is much easier to employ a connection between
perturbative renormalizability and the high-energy behaviour of tree-level
diagrams which has been observed in the discussion of the models described

" in preceding chapters. We will now formulate the relevant necessary condi-

tion for perturbative renormalizability in detail (cf. the end of Chapter 2)
and at the same time we will introduce a terminology commonly used in the
literature (see [11] - [14]).

The experience gained from various quantum field theory models suggests
that a necessary condition for the renormalizability of perturbation expansion
is "asymptotic softness” of tree-level scattiering amplitudes [14] or, in other
words, "tree unitarity” [11 - 14]: Such a condition means that an arbitrary
n-point tree-level amplitude MS;',’, (i.e. the amplitude of a process I + 2 —
3 + 4 + ...+ nin the approximation of tree diagrams) behaves (for fixed
non-zero scattering angles) in the limit E — oo at most like

M), = O(E*™) (5.1)

(cf. relation (C.3) for the dimension of M), In particular, for binary
processes the condition (5.1) means that the corresponding (dimensionless)
amplitude is asymptotically flat at high energies, i.e.

MY, = 0(), , (5.2)

for the amplitude of a process 1 + 2 — 8 + 4 + 5 in the limit £ — oo one

should have |
M=0(3) (53)

etc. In the subsequent discussion the condition (5.2) (which we have already
mentioned in preceding chapters) will be applied in a detailed manner to
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many particular processes and finally we will also mention an application of
the condition (5.3).

As regards the ligl-energy behaviour of the full amplitude M™ in a
renormalizable theory (to an arbitrary fixed order of perturbation theory) its
power-law character expressed by (5.1) is modified in higher orders at most
logarithmically (cf. [13}), i.e.

M®)| 5 = O(E*"In* E) (5.4)

where k > 0. ‘ .
The term "tree unitarity” of course does not mean that e.g. a four-point
scattering amplitude satisfying the condition (5.2) also fulfills exactly the
unitarity condition (see (E.12) or (E.15)); one has to keep in mind that in
a fixed order of perturbation expansion, unitarity of S-matrix is in general
always violated. The technical term we are using refers to the fact that
fulfilling the condition (5.2) for £ — oo implies, in a sense, a "minimal”
unitarity violation in the tree approximation: Partial-wave amplitudes in the
Jacob-Wick expansion grow in such a case at worst longarithmically for £ —

00 (cf. the examples in Chapter 3). An equivalent term1 "asymptotic softness

of tree-level amplitudes” [14] is more straightforward and thus perhaps more
instructive, but it is not commonly used in the literature.

The tree unitarity (5.1) thus represents a definite criterion for perturbati-
ve renormalizability whicl is particularly valuable in the case of interactions
of charged massive vector bosons. This criterion seems to be generally accep-
ted but oue has to stress that it is not completely rigorous. It is based on the
observation that in all known renormalizable models of quantum field theory
the condition (5.1) is satisfied and, moreover, there is a plausible intuitive
argument in its favour. We will now give this argument, which is obviously
superficial but still rather instructive (cf. [13] and also [18]).

Higher-order diagrams (i.e. those involving at least one closed loop) are
obtained, in a sense, by means of an iteration of tree diagrams: The imagi-
nary part of a one-loop graph may be expressed, roughly speaking, in terms
of an appropriate tree-level amplitude squared, from tree-level and one-loop
graphs one may get imaginary part of a two-loop diagram etc. Such an itera-
tion procedure of course corresponds to unitarity conditions for the S-matrix
within the framework of perturbation expansion (see e.g. [16], [20], [21]) and
one example of this kind is depicted schematically in Fig. 11. Thus, if the

o
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tree-level amplitude of some binary process beliaved for E — oo as E?, whe-
re § > 0, then the imaginary part of a one-loop amplitude (corresponding
in general to a different, appropriately chosen process - cf. Fig. 11) would
behave like £%, i.e. it would grow faster than the tree approximation in
the limit £ — oo. From the imaginary part of a diagram one may calcu-
late the full amplitude via a dispersion relation (see e.g. [16], [20], [21]); in
doing this, one has to perform appropriate subtractions in order to suppress
(ultraviolet) divergences. The essential point is that - as we have already ob-
served - the power-like growth of one-loop amplitudes is in geueral "worse”
than that encountered on the tree level. In further iterations (i.e. for more
complicated diagrams) the power behaviour of the corresponding imaginary
parts is getting worse, which necessitates introducing more subtractions in
dispersion relations; this in turn corresponds to an infinite number of re-
normalization counterterms, i.e. to the perturbation expansion which is not
renorinalizable in the usual sense. On the other hand, if the tree-level am-
plitudes of binary processes satisfy the condition (5.2), the imaginary parts
of one-loop diagrams in general bechave for £ — oo in the same way as
the tree-level amplitudes and there is @ priori no manifest reason to expect
that the character of the power behaviour would be substantially changed in
higher orders. In fact, however, it may happen that (as a consequence of the
integration in a dispersion relation) the high-energy asymptotics of the real
part of a one-loop amplitude is different from that of the imaginary part;
in such a way one may encounter a situation in which the condition (5.2) is
fulfilled but some one-loop amplitudes grow like a positive power of energy
for E — oo (i.e. the relation (5.4) is then violated). To be more specific, the
envisaged situation is known to occur owing to the presence of the famous
Adler-Bell-Jackiw (ABJ) triangle anomaly [40]; this remarkable plienomenon
will be discussed in more detail in Section 5.6 (see also [17]). )

The intuitive arguments whicli we have given thus indeed indicate that
the tree unitarity expressed by the relation (5.1) is a necessary condition
for perturbative renormalizability; however, one may find explicit examples
showing that it is not a sufficient condition.

Finally let us remark that the condition of tree unitarity may also be
pragmatically understood (apart from its deep connection with renormali- -
zability) as follows: If {5.1) holds, then the treec approximation is not in an
obvious conflict with the general requirement of S-matrix unitarity in a "ma-
ximal” energy range (which corresponds to at worst logarithmic growth of
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partial-wave amplitudes), i.e. the tree approximation is then applicable for
all "terrestrial” energies.

The exposition of the following paragraplis is conceptually very close to
refs. [14], [18] and [39] (the influence of the classic lecture notes [18] was
particularly stimulating) but in fact it is independent of these sources.

e A AT—— ——on | 2

Yoo fwe v v W

[ 4 x Z ) e
intermediate states
P W= i Wwowt v W=

——{ NN e WAN. V)

Fig. 11. A conneclion belween the imaginary part of a one-loop diagram for
the process viv — v and the tree-level amplitude of the process viv —
W=W* in the naive model of weak interactions with charged IVD.

5.2 Mechanisms of divergence cancellations and
neutral vector boson

Let us now consider again the process et — W~W* in the case when
both vector bosons W# have longitudinal polarization. If one wants to eli-
minate the leading (quadratic) divergences arising in the limit £ — oo in
the weak and electromagnetic contributions to the corresponding tree-level
amplitude (see Fig. 10 and the relations (4.33), (4.34)), one obviously has
to postulate the existence of a new particle and corresponding interactions.
We will a priori restrict ourselves to particles with a lowest possible spin,
i.e. 0,% or 1 and we will consider only the interaction terms satisfying the
condition (see Appendix G)

dim Ly <4 (5.5)
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so as not to introduce any other potential source of a non-renormalizable be-
haviour of Feynman diagrams in higher orders of the perturbation expansion;
in other words, we will only solve the problems due to the presence of charged
massive vector bosons.

First let us consider postulating a (neutral) spin-0 particle as an attempt
to cure the quadratically divergent terms in the expressions (4.33) and (4.34).
We will denote the corresponding (real) field as 5. In order Lo be able to draw
a Feynman diagram involving an exchange of the spinless particle contribu-
ting to the amplitude of the process (see Fig. 12), one has to introduce
interaction terms of the type WWn and een. It is not diflicult to realize that
the only possible choice preserving the condition (5.5) (as well as the Lorentz
invariance) is then

- W=

)

ot —y —

+ Ww+

Fig. 12. The lowest-order Feynman diagram for e”et — W-W+ involuinj
the exchange of a neutral spin-0 parlicle.
Ly = gww, W, Wty (5.6)

and

Eeny = Jeen E]‘e’l (57)

where I' is in general a combinalion of the 45 and the unit matrix and
IWWn, feen are the corresponding coupling constants. It is important to
notice that the coupling constant gww, is not dimensionless (contrary to the
Jeen); one obviously has (cf. Appendix G)

lowiwa) = M (5.8)
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in units of an arbitrary mass. As a consequence of this, the diagram in Fig.
12 can diverge at most linearly for £ — oo in the case of longitudinally
polarized vector bosons, since the coupling constant guw, compensates one
of the factors of my;} from W# polarizations; the contribution of Fig. 12 thus
behaves al worst like O(gwivy E£/mly) in the limit £ — oco. An exchange of
a spin-0 particle is therefore not suflicient for the desirable compeusation of
the quadralic divergences in (4.33) and (4.34). (However, such an exchange
is able to suppress linear divergences which may eventually occur and it will
play an important role later.)

14 w-

ct w+ »
———— NN\ SANN

Fig. 13. The ezchange of a hypothelical neutral heavy lepion in the process
e"et — W-WH,

As another alternative, let us now consider instead of Fig. 12 an exchange
of a neutral spin-% particle, i.e. of a hypothetical "heavy lepton” E°. The
corresponding diagram is shown in Fig. 13 (cf. the analogous Fig. 10(a)).
The most general interaction term producing the diagram in Fig. 13 is given
by

L,('f:) = (JLE)y" er + JREDY er)WF + hc. (5.9)

where the index L or R denotes the left-handed or right-handed component
of the corresponding fermion field respectively and h.c. means the hermitian
conjugate. In contrast with the preceding case, the contribution of Fig. 13
for longitudinally polarized W# does contain terms quadratically divergent
in the high-energy limit. The requirement of a compensation of quadratic
divergences in the expressions (4.33) and (4.34) then yields the following

conditions for the coupling constants f1, [r (see also {18]):

i =¢
Jh = ¢ (5.10)

|
@
!

i
LS

The first relation in (5.10) thus leads to a constraint for relative strength of
weak and electromagnetic interactions, namely

g<ev? (5.11)

One can see from (5.10) that the interaciion of the heavy lepton E° "interpo-
lates” between the original weak and electromagnetic interaction (as we have
anticipated in the preceding chapter) and in this sense a unification of the
two forces is indeed realized. The condition (5.11) guarantees the existence
of a real solution of eq. (5.10) and thus it is natural to call it a "unification
condition”. An interesling consequence of the inequality (5.11) and of the
general relation m?, = g*(4Grv/2)~" (see (3.7)) is an upper bound for the
W% mass:

L
my < (’”’ 2) = 53GeV (5.12)
Gr

In this way we could procced in eliminaling systematically the diverging
terms for all relevant scattering processes. 1t turns out that the alternative
of heavy leptons leads indecd to the desired goal (without introducing new
massive vector bosons); within the indicated scheme one would thus arrive at
a "minimal” renormalizable model of this type which was originally invented
by Georgi and Glashow [41] and [ormulated as the corresponding non-abelian
gauge theory with Higgs mechanism. However, such a model is - as we shall
sce later - in striking disagreement with experimental {acts. The scenario
of heavy leptons, though theoretically plausible (and even appealing) thus
obviously does not correspond (at least in its simplest version) to the real
world. For this reason we will not consider this scheme further, although from
a technical point of view it represents a remarkable and instructive example
of a renormalizable model of the unification of weak and electromagnetic
interactions (the interested reader may find further details in the original
paper [41] and also in {15] and [18]).

Finally, we shall examine the last remaining alternative, i.e. the case whe-
re the "compensation” diagram for the considered process e"e* — W-W+
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corrresponds to an exchange of a neutral spin-1 particle with non-zero mass
(the exchange of a massless particle would lead to a new type of long-range
force which is not observed in nature); this neutral vector boson will be
denoted as Z. The corresponding diagram is depicted in Fig. 14.

Fig. 14. The exchange of a neutral vector boson in the process e”et —
W=,

Let us first estimate the asymptotic behaviour of the contribution of Fig.
14 for E — co in the case when both vector bosons W#* have longitudinal
polarizations. The worst divergence might obviously arise from the term
involving the longitudinal part of the Z propagator, i.e. from the part pro-
portional to ¢"¢*. In the limit [/ — oo this term behaves in general like
O(mz*mp?mE?) because one of the factors ¢*, ¢” acts on the lepton ver-
tex and an application of the Dirac equation leads to a factorization of the
electron mass (cf. (3.4)). Thus, in contrast to the quadratically diverging
expressions (4.33), (4.34), the contribution of Fig. 14 may in general con-
tain a cubic divergence for I/ — oo. We have already encountered a similar
problem in the framework of the clectrodynamics of charged IVB (cf. the
discussion around Fig. 6 in the preceding chapter). The leading divergent
terni in the contribution of Fig. 14 (and in all the other diagrams which one
must consider as a consequence of introducing the interaction WW Z) can
be eliminated by means of an appropriate choice of the interaction vertex
WWZ in complete analogy with the case of the electromagnetic interaction
W1Vy. Namely, the following statement is valid:

Leading power-like divergences arising in the high-energy limit in tree-

GI

level diagrams involving interaction vertices of the type WWZ vanish for an
arbitrary combination of polarizations of exlernal W#* and Z if and only if
the trilinear vector-boson interaction WWZ is of the Yang-Mills type, e if
the corresponding interaclion lagrangian has the form

Lwwz = —igwwz(Z*W 8, W + WHW*3,2Z, + WHZY8,W;) (5.13)

where gwwz is a (real) coupling constant.

A proof of this statement is briefly sketched in Appendix I. However, for
completeness let us add that e.g. in the considered case of the diagram in
Fig. 14 the would-be leading divergence is in fact suppressed not only for
(5.13) but also for a wider class of WWZ interactions. (As we have seen
in the preceding chapter, a similar situation occurs in some particular cases
also for the electromagnetic interaction WW+.) The essential feature of
the WW Z interaction of the Yang-Mills type is that this option eliminates
potential leading divergences (which could not be compensated by another
diagram) in all cases. In what follows we shall therefore consider only the
WW Z interaction (5.13).

Similarly to the electrodynamics of vector bosons W#*, the interaction
lagrangian (5.13) leads to the Feynman rule for the WW Z vertex in Fig. 15

v«\l"’(k:p7 (1) = yWWZVr\yy(ky P (I) (514)

where the expression Vj,,.(k, p, q) is defined by the relation (4.15).

W
Ky A P

Fig. 15. Vertex corresponding to the trilinear inleraction WWZ.
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As we have already stated, the would-be cubic divergence in the contri-
bution of Iig. 14 can be made to vanish, so now we may consider a possible
compensation of the quadratically divergent terms in (4.33) and (4.34). In
the next paragraplt we will formally defie the corresponding interactions
of the neutral vector boson Z with leptons and we will investigate in detail
the conditions for elimination of the leading power-like divergences in the
expressions (4.33), (4.94) aud also in tree-level diagrams for other processes.
As we have already indicated in preceding chapters, a systemalic climination
of the terins violating the tree-unitarity condition (5.1) will ultimately lead
to recovering the standard GWS model {5, 6, 7] of electroweak interactions;
introducing a ncutral IVD is an important step in this direction.

5.3 Electroweak interactions of the neutral vector
boson with leptons

Belore a detailed discussion of the process e~et — W-W*, we will first
come back to a simpler case mentioned in Chaptler 3, namely to the process
vii — W-W+, Let us consider again longitudinally polarized vector bosons
W%, We will atllempt to compensate the quadratically divergent term (3.24)
in the expression (3.25) for Fig. 3 by means of a diagram involving an
exchange of the ncutral inassive veclor boson Z in analogy with Fig. 14.
Both relevant tree diagrams of the process v# — W~W+ are shown in Fig.
16 (for convenience we have also reproduced here Fig. 3). The diagram (b)
in Fig. 16 correspouds to a new interaction (in addition to (5.13)) of the
type

Lovz = Gz LYVL Zp (5.15)
where g,,z is the corresponding coupling constant (we still assume, for simpli-
city, that neutrino is massless and therefore only the lefl-handed component
of the corresponding field is introduced). Using (5.14), (11.25) and other
standard rules one may write {or the contribution of Fig. 16

. a5l _
iMy = =gz gwwz 5({)7,(1 — vs)u(k) x

2
___gpu+1n-'lqpqu ))A o
X V(g ) =
q*—mj mw myy
+ O(1) (5.16)
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Fig. 16. (a) The diagram for v — W~=W* corresponding lo naive weak
interaction theory with charged IVB. (b) The "compensation diagram”
involving an ezchange of the neutral IVD.

The longitudinal term from the Z propagator (i.e. the part proportional to
m3?¢”¢*) does not contribute at all, irrespectively of the form of the WiV Z
interaction (this is an automatic consequence of the assumption m, = 0 and
of Dirac equation). Using further the 't Hoofl identity (4.19), the relation
(5.16) may be easily recast as

1
Mo = 5-guuz gwwz L = ys)u(k) + 0O(1) (5.17)
2

A corresponding relation for the contribution of the diagram (a) in Fig.
16 has been derived in Chapter 3 (see (3.24) and (3.25)); one has

My = ==L 51 = 35)utk) + O() (5.15)

v
2
yy

Comparing the cxpressions (5.17) and (5.18) one immediately gels a condition
for the compensation of power-like (quadratic) high-energy divergences in the
tree-level amplitude of the process v5 — W W/ in the limit £ — oo:

1
- 59’ + 9oz gwwz =0 (5.19)
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It is not difficult to verify that the condition (5.19) guarantees a compensation
of power-like divergences in the amplitude of the considered process for any
combination of W* polarizations (i.e. including the case when one of the
final-state W’s has longitudinal polarization while the second one is polarized
transversely).

o w-
—— NN
k P

14
~1 7
et wt

(a) (b) ()

Fig. 17. The processe~e* — W~W+*. (a) The contribution of weak charged-
current interaction. (b) Electromagnetic contribulion. (c) Erchange of
the neutral IVD.

We will now examine in detail the tree-level amplitude for e”et —
W-W+*. For convenience, all diagrams considered up to now (see Fig. 10
and Fig. 14) are reproduced in Fig. 17. The compensation diagram” in
Fig. 17(c) corresponds to a new interaction (in addition to (5.13)) of the type
eeZ. For obvious reasons, we will parametrize the corresponding interaction
lagrangian by means of two coupling constants which we denote for brevity
as g, and gp:

Loz = (9LEL7"eL + grEny"en)Z, (5.20)

As we have already stated earlier, asymptotic behaviour of the contributions
of Fig. 17(a), (a) in the limit £ — oo can be expressed by means of the
formulae (see (4.33) and (4.34))

2
Ma = Lo ()1 = )u(k) + O(—E) + O(1)  (5.21)
dmiy, Mmiy

G5

My = %ﬁ(l}ﬁu(k) +0(1) (5.22)

Using standard procedures (see Appendix J), from {5.20) one obtains easily
the leading (quadratically divergent) asymptotic terms in the contribution of
the diagram (c):

1
Me = =5 gwwz ud(DA(1 - s Ju(k)
177.”,
1
2‘—‘—"1% gwwz gro(1)p(1 + vs)u(k)
v
+ 0 <—~"’:;V E‘) +0(1) (5.23)

Explicit expressions for the next-lo-leading (i.e. linearly divergent) terms
contained in (5.21) and (5.23) are given in Appendix J and we will deal with
them later. From (5.21) - (5.23) one immediately gets conditions for the
compensation of leading divergences for E — co:

1
- 592 +e —gLgwwz =0 (5.24)

e’ — gp gwwz =0 (5.25)

(Fulfilling these relations means that the would-be quadratic divergences va-
nish for any combination of polarizalions of the initial-state e~ and e*.)

The relations (5.19), (5.24) and (5.25) represent three equations for the
four unknown coupling conslants giwivz, gz, gL and gr if the e and g are
assumed to be known (these are the paraneters of the original naive theory of
clectro-weak interactions). However, now one can also consider the process
e — W~Z; in the 2nd order of perturbation expansion (with respect to
the interaction terms introduced so far) it is described by the tree diagrams
depicted in Fig. 18.

For contributions of the diagrams in Fig. 18 one gets (we give here ex-
plicitly only the leading terms, quadratically divergent for E — oo; for the
subleading (linear) divergences see Appendix J). .

1
M, = 99

2/2mwmzg o1 - ys)u(k) + O(E) + O(1) (5.26)
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_ 99wz L s ulk ;
Mo = S g (DL = 2s)ulk) + O(E) +O(1) (5.27)

ggwwz 1 _ .
= — — (!l - N4 O(E) + 01 5.28
Me 2/2 mwmzv( A = 3s)u(k) + O )+0) (528)
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(a) (b) ()
Fig. 18. The diagrams of the process e —» W™ Z.

The requirement of a cancellation of quadratic divergences in the suin of the
expressions (5.26) - (5.28) gives immediately the condition

— gL+ 9wz —gwwz =0 (5.29)

As regards the next-lo-leading (linear) divergences, the resulls given in
Appendix J show clearly that these cannot be eliminated in the case of the
process e~et — W, W} by any particular choice of the relevant coupling
coustants. lndeed, the corresponding amplitude contains terms proportional
to 5()u(k) and 5()ysu(k) (see (J.1) and (J.5)), which for obvious reasons
should be eliminated separately. A term of the first type (contained on-
ly in the contribution of Fig. 17(a) - see (5.1)) has an overall coeflicient
—g*m(4m?,)~" which of course cannot be zero. Thus it is seen that in this
case it will be necessary to introduce an additional compensation diagram
involving an exchiange of a new (neutral) particle Lo tame such residual next-
to-leading divergences; as we have already remarked carlicr in this chapter, a
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spin-0 particle is suflicient for such a purpose (cl. the discussion around Fig.
12). We will return to this important problem in Section 5.5. In the case
of the process re — W[ Zy, all the linearly divergent terms in the corres-
ponding amplitude are proportional to the expression #({)(1 + ys)u(k)} (see
(J.6), (J.7) and (J.13)) and one may try to eliminate them by means of an
appropriale choice of the ratio m?, fm% (see (J.13)} as a [unction of coupling
constants. Such a compensation would be highly desirable since our aim is
to conslruct a "minimal” model of weak and electromagnetic interactions
satislying the condition of tree unitarity. We have already observed in the
previous example that one cannot avoid introducing a new neutral spin-0
particle; if the linear divergence in the amplitude of #e — W Z;, did not
vanish owing Lo a suitable relalion among coupling constants and masses, it
would be necessary to introduce an extra spin-0 particle (which would have
to be charged in this case).

At this point one could also naturally ask what is the situation in the
case of other similar processes of the considered type, in particular e.g.
e~et — ZpZ, or emet — Zpy. We will discuss these problems in more
detail in Section 5.5; here let us only remark that the divergences arising in
the corresponding tree-level amplitudes are at mosl linear (see e.g. (5.78))
and thus it is not necessary to introduce new direct interactions of three vec-
tor boson fields (this favourable circumslance is of course closely related to
the fact that Z and v are neulral particles).

For convenience, lel us now summarize the equations for conpling con-
stants of the interactions WW Z, eeZ and v Z, which follow from the requi-
rement of cancellations of the leading power-like (quadralic) divergences in
the limit E — oo in the tree diagrams of processes vip — W7 W7 e~et —
W7 W} and pe — W[ Z,. We have obtained four equations for the four
unknowns gwwz, gz, 92 and gr (see (5.19), (5.24), (5.25) and (5.29)):

1
= +guzgwwz = 0

2
1
—592 +el~grgwwz = 0
e —grogwwz = 0
9L+ 9wz —gwvwz = 0 (5.30)

Moreover, the condition of a supposed compensation of linearly divergent
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terms in the amplitude of the process e — W Z,, is (see (J.6), (J.7), (J.13))

2
m%
- 1- 22 ) -9 31
9R = 9wz + gwwz ( 2'"1w) (5.31)

First we will deal with solving the system of equations (5.30). From the
first, the second and the fourth of them one can obtain easily

9= =ghwz (5.32)
An important constraint follows immediately from (5.32), namely (cf. (5.11))
e<y (5.33)

(let us emphasize thal the strict inequalily must hold, since for e = g there
is no solution of the system (5.30)). An interesting consequence of the in-
equality (5.33) and the relation (3.7) is a lower bound for W* mass (cf. on
the other hand (5.12)):

> ( )z =3 ( 3 )
mw IGC“ 5.34
' GF\/_Z

The inequality (5.33) is a necessary condition for the existence of a real
solution of the system of cquations (5.30) and it is therefore natural to call
it a "condition of unification” (of weak and electromagnetic interactions) in
analogy with the relation (5.11). The inequality (5.33) thus represents a
condition specific for the model involving a neutral IVB. If (5.33) holds, it
is easy to find out that the system (5.30) has just two solutions which differ
“trivially by an overall sign; however, such a diflerence does not lead to any
physical consequences and thus we conventionally choose the solution for

which (see (5.32)) gwwz = +v/g? — e2. Then one has

gwwz = g% —e?
__ 9
Gz = QW
_%g1+ez
gL = W
e2
grR = ﬁ (5.35)
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In the expressions (5.35) (similarly to (5.10)) a "unification of weak and
electromagnetic interactions” is manifest, in the sense indicated at the end
of Chapter 4: The coupling constants for interactions of the neutral vector
boson Z are non-trivial functions of the e and g, i.e. of the parameters corres-
ponding to the original electromagnetic and weak interaction in (4.26). Thus
it seems natural to introduce the term "electroweak interactions” (which by
now is standard) for such a unification of weak and electromagnetic interac-
tions; this term was originally coined by A. Salam in 1980 and we will use it
hereafter.

The solution (5.35) may also be parametrized in a somewhat different
way; in view of the validity of (5.33) it is possible to introduce an angle ¥y
(the Weinberg angle or the "weak mixing angle”) such that

sindy = - (5.36)
g
and 0 < dy < 5. The coupling constants in (5.35) may be then expressed
in terms of g and Jyy:

gwivz = gcosty
I
Iz = 2cosVw
_ 9 _l . 1‘9
g = cosﬂw( 2+sm w)
= 2 sty 5.37
IR P sin® (5.37)

One should emphasize that the results (3.35) or (5.37) resp. are identical with
the expressions obtained for the corresponding coupling constants within the
framework of the standard formulation of the GWS model (where these follow
from the principle of non-abelian SU(2) x U(1) gauge invariance).

1t is in order to introduce here the usual terminology: The expressions
(5.15) and (5.20) obviously represent interactions of the neutral IVB with
"weak neutral currents” (in contrast to the original weak interaction of char-
ged IVD with charged currents (3.1)). As we have remarked earlier, the
electromagnetic current is in this sense also neutral. In what follows we will
commonly use the standard term "neutral currents” just in connection with
interactions of the type (5.15) and (5.20).
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Let us remark that some experimental evidence for the neutral currents
has been first observed in 1973; their properties predicted by the GWS theory
hiave been confirmed decisively in 1978 aud repealedly in the following years
{sce [42]). For some aspects of the neutral-current phienomenology sce also
the problen 5.16.

We shall now examine in more detail the condition {5.31). Substituting
for the coupling constants in (5.31) the corresponding expressions (5.35) or
(5.37) resp., one finds that there exists indeed a positive solution for i, /m%
(an existence of which has not been obvious a priori):

2 2
md, e
v & 5.
m% g? (5.38)
or, using (5.36) .
2 = cosvyy (5.39)
mz

The result (5.38) or (5.39) resp. just represents the famous relation for the
IVD masses, first derived by Weinberg [7]. The standard derivation [7] is
based on an application of the Iliggs mechanisin [40} within the framework
of the corresponding non-abelian gauge theory. lu the (by now conventional)
formulation {7] one has to introduce specific interactions of spin-0 fields and
the relation (5.39) follows from a "minimal” rcalization of the Higgs mecha-
nism (which leads to the existence of a single physical neutral scalar particle).
The derivation of the relation (5.39) presented here is remarkable in that for
its purpose il has not been necessary to introduce any scalar particle and
the corresponding interactions. From our point of view, the relation (5.39)
is a consequence of the requirement of complete elimination of power-like
divergences in the tree-level amplitude of the process ve — W Z in the limit
E — oo; in particular, it follows from a condition of the compensation of
some nexi-to-leading (linear) divergences, provided that one wants to avoid
introducing physical charged spin-0 particles (sce also e.g. {14]).

From (3.7), (6.36) and (5.39) one gets easily the standard formulae {7] for
" masses of the W and Z:

1
ra \? |
my = (Gr\/i) P (5.40)

m —( mo \* ! 5.41)
= GrVv2/ sindy cosdy ®.

T

The relations (5.40) and (5.41) clearly show that admissible values of IVD
masses are bounded fromn below; we have already mentioned the lower bound
for inyy earlier (see (5.34)) and fromn {5.41) we get one for the my:

i
mz > 2 (??%’i) T 274 Gev (5.42)

1t should be stressed that the formulae (5.40), (5.41) give a prediction for the
W and Z masses, since Lhe parameter ¥y may be determined experimentally
e.g. from a study of fermion scattering processes mediated by neutral current
interactions of the type (5.15) and (5.20). In this context, the essential point
is that one only has to know the data for relatively low energies (i.e. for E <«
myvg). The experimental value of the parameter sin®dy is approximalely

sin? 9y = 0.23 (5.43)
From (5.40), (5.41) and (5.43) then follow predictions
my =77 GeV mz = 88 GeV (5.44)

The experimental determination of the sin®dy and precise predictions for
1VB masses are discussed in detail e.g. in [12] (sce especially the review
by R. Peccei). The experimental discovery ol the particles W# and Z with
predicted properties (sce [43]) was a triumph of the GWS theory.

Let us now briefly summarize the results we have achicved up Lo now.
The starting point of our road toward a theory of electroweak interactions
may be written as (cf. (4.26), (4.27))

Lint = Loo + LE 4 Ly + Livigy + -+ (5.45)

lepton

where Lec is the lagrangian of the original weak interaction (the symbol CC
stands for charged currents), the other three terms in (5.45) correspond to
electromagnetic interactions and the symbol ”...” represculs the envisaged
"missing links” of thic electroweak theory. Iustead of (5.45) we can now write

Lot = Lec + Lnc + L + Liwwy + Livwz + Liviypy + ¢ (5.46)

fepton

where Lyc is the interaction of weak neutral lepton currents (i.e. the sum
of expressions (5.15) and (5.20)) aud the interaction term Liywz is given
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by the expression (5.13); the relevant coupling constants are given by (5.36)
and (5.37). The symbol "...” in (5.46) indicates that it will be necessary to
introduce further interaction terms for suppression of a "bad” high-energy
behaviour of some tree-level amplitudes; for example, in the amplitude of the
process e”et — W W} there still remain some next-to-leading divergences,
namely the terms growing linearly with £ — oco. Furthermore, as we have
scen in Chapter 4, severe problems with power-like growth at high energies
show up in the electromagnetic contribution to the WW — WW scattering
amplitude. Now we may also consider a contribution of the Z-exchange
to this process and, moreover, one has Lo consider processes of the type
WW — ZZ and WW — Zv where one may expect highly divergent high-
energy behaviour as well. Interactions in the sector of vector bosons are
discussed in the next section.

5.4 Sector of vector bosons

First we shall examine in detail the tree-level scatlering amplitude for
W — WIV. As we have already noticed in the preceding section, in a
theory with the interaclion lagrangian (5.46) one has to consider, beside the
electromagnetic conlribution (Fig. 7), also the diagrams shown in Fig. 19,

Ww- W= W- Ww-
k P
Z
! 7
W- Ww- w- w-

(a) (b)
Fig. 19. Tree diagrams of the process WW — WW involving the Z exchange.
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We will discuss the case where all the external W’s have longitudinal pola-
rizations. For a general WW Z interaction, contributions of the diagrams in
Fig. 19 might behave like my'm3*E®, since each longitudinal polarization
contributes a [actor of my;' through its leading asymplotic term and the lon-
gitudinal part of the Z propagalor contains a factor of m3*. However, in
Section 5.2 we have already fixed the interaction term Ly z in (5.46) to be
of Yang-Mills type (sce (5.13), (5.14)). Using the 't Hooft identity (4.19) it is

" then easy to show that the contribution of longitudinal part of the Z propa-

gator vanishes identically even for an arbitrary combination of polarizations
of the external W’s. (For completeness let us add that the above-mentioned
would-be leading divergence is in fact suppressed in the considered particu-
lar case W Wp, — W W}, for a broader class ol WW Z interactions - cf. the
discussion around the relation (4.23) in Chapter 4 and see also Appendix I.)
A non-trivial contribution of the diagrams in Fig. 19 thus comes only from
the diagonal part of the Z propagator and the result is thus analogous to the
case of clectromaguetic interaction {i.e. to the photon exchange in Fig. 7).
For the contribution of Fig. 19 one may thus write (cf. (4.24) and Appendix
)

1
M+ M = gl g (B4 = 257) 1 OB £ 0(1)  (5.47)
W

Within the framework of a provisional theory described by the lagrangian
(5.46), the full tree-level amplitude for Wy Wy — W W, is of course obtained
by summing the electromagnetic and Z-exchange contributions, i.e., it is
given by the sum of (4.24) and (5.47). Using the first of the relations (5.35)
(see also (5.32)) one gets for the full contribution of Fig. 7 and Iig. 19

1
4
4myy

MOD) = g2 (8 +u* — 25%) + O(E*) + 0(1) (5.48)

Now it is obvious that within a medel described by (5.46) the leading quartic
divergence in (5.48) could be eliminated only by a trivial choice g = 0 (which
is unacceptable). Thus we must add new interactions to the terms already
present in (5.46), which would give a non-trivial tree-level contribution to
the scattering amplitude of W W, — W Wy, diverging like E* in the high-
energy limit and cancelling the leading divergence in (5.48). It is not difficult
to realize that the only possibility is to introduce a direct self-interaction of
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four vector fields W (an interaction of veclor bosons with a scalar field is of
no use here, as it is not sufficient for the suppression of quartic divergences).
Imposing the constraint (5.5), it is clear that terms involving derivatives of
vector fields are not admissible. The most general interaction of required
type must obviously have the form

Lwwww = a(WWHY W W) 4 (W W) (1) (5.49)

where a and b are real constants. In the first order of perturbation expausion
the interaction {5.49) yiclds a contribution to the scatlering amplitude of the
process W, Wp, — W Wy, which for £ — oo may be written as (sce the
problem 5.3) :

1
1
2myy

MO = L2y b;:—r.s’ FO(EY +0(1)  (5.50)
13

Now il is obvious that the lcading high-encrgy divergences in (5.48) and
(5.50) mutually cancel if and only if

Lo _la 5
a=—3q, b_zg (5.51)

and the sought lagrangian for a direct interaction of four W's thus has the
form (see (5.49), (5.51))

I
Lwww = 5o (W VOV = g (W =W (5.52)

(in (5.52) we of course use the standard shorthand notation for a Lorentz
scalar producl and for the square of a four-vector; such a notation will be
used frequently in similar expressions in what follows). It is intercsting to
notice thal coupling constants in the contact interaction of four W’s (5.52)
are proportional Lo g% one should keep in mind that the g is originally
the coupling constant for the interaction of the W with charged fermion
currents (whicl do not play any role in the considered process WW — WW),
This remarkable and at first sight rather unexpected correspondence between
two completely diflerent interactions is of course a technical consequence
of repeated application of divergence cancellation conditions for trce-level
scatlering amplitudes of several distinct processcs. Within the framework of

the traditional approach such relations arisc naturally {rom the structure of
non-abelian gauge theory (see e.g. [25] etc.).

Tree-level Feynman diagrams of the process WW — WW in Fig. 7,
Fig. 19 and the diagram corresponding to the contact interaction (5.52) are
collected in Fig. 20. For the [ull contribution of these diagrams (involving
longitudinally polarized W’s) one gets after a rather tedious calculation (see
the problem 5.4 and Appendix J) the result

Mu+Mb+Mcz_92 82 +O(l) (5'53)
dmiy

It is obvious that the remaining divergence in (5.33) cannot be eliminated
without adding a new term Lo the interaction lagrangian; taking into account
that this divergence is only quadratic, one could attempt to compensate il
by means of an additional diagram involving the exchange of a (nculral) spin
- 0 patticle, i.e. by introducing a new interaction of the vector field W with
a scalar ficld. We have encountered an analogous problem in the preceding
section in the case of a dillerent process (cf. the discussion following the
relation (5.29)). The problemn of suppressing such "residual” divergences
in (5.53) and in the other tree-level amplitudes will be treated in detail in
Section 5.5.

w- Ww- w- w- W- W-
k Pk P
72
i r { '
V- w-
w- w- w- W

w-

(a) (b) ()

Fig. 20. Tree-level diagrams for WW — WW corresponding to the tri-
lincar interactions WWv, WWZ and the direct contacl inleraction
WWIWW.
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We will now discuss other binary processes in the sector of vector bosons,
i.e. processes of the type V| V3 — V3V, where V;, i = 1,...,4 generally denote
W%, Z or 4. If we take into account the interactions introduced up to now,
then on the tree level there occur only processes WW — vy, WW — ZZ
and WW — Zv (the first of them has been discussed in detail in Chapter 4).
First let us consider the process W-W+* — ZZ. Relevant tree diagrams are
shown in Flig. 21. We will consider again the case that all four external veclor
bosons have longitudinal polarizations. Similarly to the case of diagrams in
Fig. 19 it is easy to show that the leading (quartic) divergence comes only
from the contribution of the diagonal term in the W propagator. In the
high-energy limit we then obtain for diagrams in Fig. 21

1 1
Mg + Jwb = —‘—g?y;yz—‘—“"(tz + Uz - 252) + O(Ez) + O(l) (5-54)

4 my,m%

W= Z - Z

W+ 7 "V+ Z

(a) (b)

Fig. 21. Tree-level diagrams for the process W=IW* — ZZ arvising from the
trilinear inleraction WWZ.

where the coupling constaul gwwz is of course given by (5.35) (or (5.37)
resp.). For a compensation of the leading divergence in (5.54) we introduce
a new contact interaction of four vectlor fields

Lwwzz = (W] Z*)W}Z") + AW WH)(Z,2%) (5.55)
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where ¢, d are real constants; the option (5.55) obviously represents the most
general interaction lagrangian with required properties. In the first order
of perturbation expansion the interaction (5.55) gives rise to the Feynman
diagram shown in Fig. 22. For the contribution of this graph in the limit
E — oo one then gets (see the problem 5.5)

mwez L1y Laaiy oy o) (5.56)

4m?,m%

W+ VA

Fig. 22. The lowest-order diagram for W-W+ — ZZ corresponding to the
direct inferaclion of four veclor flelds.

The condition of mutual compensation of leading divergences in the ex-
pressions (5.54) and (5.56) is thus equivalent Lo
= g2 - 2 [
C=Owwzs d=—giywz (5.57)
We have thus fixed another picce of the necessary direct interaction of four
veclor bosons, namely

‘CWWZZ = y;zVWZ[(H/"’ Z)(H"+ Z) - (|V‘ M,+)22] (558)

However, introducing the interaction term (5.58) is not enough to suppress
also quadratic divergences in the tree-level amplitude of Wy Wi — Z,Z;;
as in all previous cases, we defer this problem to Section 5.5.

.
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(a) ' (b)
FFig. 23. Tree-level diagrams of the process W-W+ — Zv arising from (rili-
near inleractions WWZ and WYy,

Finaly we shall examine the scatlering amplitude of the process W= W+ —
Zy. The relevant trec diagrams corresponding Lo trilinear interactions of the
corresponding veclor fields are shown in Fig. 23. Similarly to the preceding
cases let us consider a configuration in which all massive vector bosons W#*
and Z have longitudinal polarizations. The leading divergent _;arin appea-
ring in the corresponding scatlering amplitude for 12 — oo then hehaves like
mitmz' B and it comes from the diagonal part of the W propagator; ils
lougiludinal part may only contribute to a next-lo-leading (lincar) divergen-
ce, as one may easily find by means of the ’t Hooft identity (4.19). A direct
evaluation of the diagrans in Fig. 23 leads ta the result

(e () = (L) (ke () - (k)L ()]

mimgz

+ O(E)+.0(1) (5.59)

Mo+ My = gwwagwwz

where we have used the symbol giyw., for the electromagielic coupling con-
stant e and ¢(p) stands for a photon polarization (which is transverse, of
course). To compensale the leading divergence in (5.59) we have to introdu-
ce another contact interaction of the four vector bosons W#, Z and 7; the
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most general form of such an interaclion satisfying the usual requirements is
Lwwzy, = [(W;WH)(Z,A")
+ g(Wr2*)(Wra”) (5.60)
+ MW7 AR(W}H2ZY)
where f, g and h are real constants.

In the first order of perturbation expansion the interaction (5.60) yields
the Feynman diagram shown in Fig. 24.

W- 7

W+ Z

I'ig. 2{. The lowest-order diagram of the process W=W* — Zy correspon-
ding lo a dircct inleraction of the four veclor fields.

Its contribution to the scatlering amplitude of the process W Wi — Zpy
may be written in the high-energy limit as

MOV e |2 156" 0) + 9() (1) + M) ")
+ O(E)+0(1) (5.61)

Leading divergences in (5.59) and (5.61) thus cancel cach other if and only if

[ = =29ww.gwwz, §=h=gww.gwwz (5.62)
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The needed "compensating” direct interaction WW Z+ is thus described by
the lagrangian

Lwwzy = gww,gwwz[-2W~. WH)(A.Z)+(W™. Z)(W*. A)
+ (W= AW 2)] (5.63)

It can be shown that by adding Fig. 24 to the diagrams in Fig. 23 the non-
leading high-energy divergences are in fact cancelled as well; more detailed
comments on this remarkable fact will be given in the next section.

The following remark concerning the interaction WW ¥ is also in order
here: In Chapter 4 we have obtained a direct interaction of this type auto-
matically as a part of the U(1) gauge invariant electromagnetic interaction of
charged vector bosons W? (see (4.8), (4.10)); from the considerations presen-
ted in this section it is clear that the corresponding term L.y could also
be derived from the requirement of divergence cancellations in the diagrams
shown in Fig. 6.

Our results concerning the direct (contact) interactions of four vector
bosons W#,Z or v may be summarized as follows: According to (4.10),
(5.52), (5.58), (5.63) and using the relations (5.36), (5.37) we have

Lwwyy = —g*sin®dy [(W™. WH)A? — (W, A)(W*. A)]

Lwwww = 3g" (W VW7 = (W= W)

Lwwzz = —g*cos®dw [(W-. W+)Z’-(W'.Z)(W+. Z)}

Lwwzy = g'sindw cosIw[-2W. WH)(A.Z)+ (W™. Z)(W*. A) +
+ (W~ A)W*. 2)] (5.64)

The expressions (5.64) may be conveniently rewritten in the following com-
pact form: Denoting by Lyyyy the sum

Lvvvy = Lwwww + Lwwy + Lwwzz + Lwwzy, (5-65)
then it holds
1
Lover = =LV WH = S(W W)+ (WP W+) -
— (WWO)WWO), (5.66)
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where we have also introduced a new shorthand notation for the relevant
combination of neutral vector fields:

W = cosdwZ, +sindwA, (5.67)

Now it is also possible to recast the trilinear interactions of vector bosons in
a more compact form; defining Lyvy as the sum

Lyyv = Lwwy + Lwwz (5.68)
then using (4.11), (5.13), (5.36), (5.37) and the definition (5.67) one has
Lyvy = —ig(WORW B, W} + W-*WHE, W2 + WHW*F,W,) (5.69)
Instead of the interaction lagrangian (5.46) one may thus write
Line = Loc + Lnc + £§:;73,, + Lyvv + Lyyyy + ... - (5.70)

The symbol "...” in (5.70) means the remaining "missing links”, i.e. the
interaction terms which we will have to introduce for a compensation of non-
leading high-energy divergences which still occur in some tree-level amplitu-
des, as e.g. in (5.53) etc. These residual divergences and their elimination is
the subject of the next section.

5.5 Residual divergences and neutral scalar boson

Let us return to the formula (5.53) which expresses the contribution to
scattering amplitude of the process W W, — W W, corresponding to the
diagrams in Fig. 20. As we have already indicated in the preceding section,
we will now try to eliminate the remaining quadratic divergence in (5.53) by
introducing a new interaction of the W’s with a neutral scalar field (which
we denote here by 1). It is not diflicult to realize that the only possible choi-
ce (satisfying our standard requirements) is represented by the interaction
lagrangian

Lwwy = gww,,W;Wﬂ‘)) (5.71)
(cf. also (5.6)). Tree diagrams for the process W-W~ — W~W~ corres-
ponding to the interaction (5.71) are shown in Fig. 25. As we have already
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stated earlier, the coupling constant gww, in (5.71) must have dimension of
mass (see (5.8)). Then it is also obvious that the contribution of diagrams
in Fig. 25 to the scattering amplitude of Wy W — W W may involve
al most quadratic divergence in the limit £ — oo. Indeed, a corresponding
asymptotic term may be estimated in this case as gjyy,m w E?. Direct eva-
luation of the diagrams in Fig. 25 for longitudinally polanzed W’s leads to
the result (sec the problem 5.7)

w- w- i
/\J\/\f\f\r\f\/\l\a .
ko P .

Fig. 25, Tree-level diagrams of the process W-W~ — W~W~ involving the
ezchange of a scalar boson 7).

s
MO 4 M’E") = gng"‘;l"; +0(1) (5.72)

From (5.53) and (5.72) it is clear that the desired cancellation of residual
quadratic divergences in the scattering amplitude of Wy Wy — Wy W[
occurs if and only if

Iwivy = gmy (5.73)

This result is another remarkable example of the fact that offending high-
energy divergences arising in the individual diagrams may indeed be cancelled
in the full tree-level scattering amplitude if the relevant coupling constants
are judiciously chosen; at the same time it is also obvious that within our
"minimal strategy” such a choice is essentially unique. Eq. (5.73) represents
a new non-trivial relation among coupling constants and masses in different
sectors of the model we are building; the existence of many such relations is
a typical feature of the theory of electroweak unification.
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" From what we have already said earlier in this chapter it is obvious that
the new interaction term (5.71) will also play an important role in scattering
amplitudes of some other binary processes. In particular, we shall now return
to the process e"et — W W}, For the total contribution of the diagrams
that we have considered up to now (see Fig. 17) we obtain (using (5. 21),
(5.22), (5.23), (J.1), (J.5) and (5.36), (5.37)) the expression

m(l)u(k) + O(1) (5.74)

2
M4+M6+Mc="492
My

(where the relevant four-momenta are of course denoted according to Fig
17) It is interesting to notice that terms proportional to u(l)ﬁ(gt(k), occurring
in the individual diagrams (a) and (c) (see (J.1), (J.5)) cancel in their sum
as a consequence of the relations (5.36), (5.37). Now we may try to elimi-
nate the remaining linear divergence in the expression (5.74) by means of a
"compensation” diagram involving an exchange of the scalar boson 7 wl'uch
we have already discussed briefly in Section 5.2 (see Fig. 12 and the conside-
rations following the relation (5.8)). Of course, for this purpose one also has
to introduce an interaction of e* with the scalar field n; from the structure
of the residual linear divergence in (5.74) it is seen that it is sufficient to
consider an interaction of the type (cf. (5.7))

Lcen geeneen (5-75)

In the case of longitudinally polarized W's one then gets for the contribution
of Fig. 12 a result (see the problem 5.8) which in the high-energy limit may
be written as |
MO = — g g (u(r) + 00) (5.76)
w

where gww, is of course defined by (5.73). Required cancellation ?f the
linearly divergent terms in the sum of (5.74) and (5.76) then occurs if and
only if m

=177 (5.77)

The results (5.73) and (5.77)) reflect one remarkable common feature of tri-
linear interactions of the scalar field n: A corresponding coupling constant
is always proportional to the mass of the particle interacting with the 7.
Within our approach, such a dependence is obviously related to the fact that
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interactions involving the scalar field are introduced to compensate non-
leading high-energy divergences, which in comparison with leading terms con-
tain extra factors of M or M? resp. where M is a mass. (Let us remark that
within the framework of a gauge theory of electroweak interactions a simple
alternative interpretation of the above-mentioned relations follows naturally
from the Higgs mechanism, which generates masses of vector bosons and fer-
mions; this traditional formulation can be found in any standard textbook
or monograph - see e.g. {17], [21], [25] etc.)

We shall now examine other binary processes for which there are still
power-like high-energy divergences in the corresponding scattering amplitu-
des. In Section 5.3 we have already mentioned that the tree-level scattering
amplitude for e¥e™ — Z,Z, contains a linear divergence if one takes in-
to account only the diagrams shown in Fig. 26(a), (b). Indeed, a direct
computation of the diagrams (a), (b) gives the result (see the problem 5.9)

Mat M = ~(o1 = g 7 9(Du(k) + O(1) (5.78)

e~ Z >e“ Z e A

e AVAS AVA] —— .
Pk P,
k » k i
n
e e e

~1 r -1 -1 "
Ty g e 2t

(a) (b) (c)
Obr 26. Tree-level diagrams for e¥e™ — ZZ.
where g1, gr are coupling constants for the interaction of the Z and neutral
currents, given by the corresponding expressions (5.35) or (5.37) resp. Let us
emphasize that quadratic divergences contained in the individual diagrams

(a) and (b) automatically cancel in their sum (the very existence of the
crossed graph (b) is of course due to the fact that Z is neutral); such an effect
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is in a sense analogous to the mechanism of divergence cancellations in the
electrodynamics with a "heavy photon” - cf. the problem 3,7. We may now
try to compensate the linear divergence in (5.78) by means of the diagram
(c) in Fig. 26. One vertex of this diagram corresponds to the interaction
(5.75) while an appropriate interaction producing the other vertex has yet to
be introduced. It is clear that in analogy with (5.71) one may write for the
corresponding lagrangian generally

Lz20 = gz202u2"n (5.79)

For the contribution of the diagram (c) in Fig. 26 one then gets easily (see
the problem 5.10)

1
Mc = "gceuﬂZZn@'ﬁ(l)u(k) + O(l) (5'80)

where the coupling constant is of course given by (5.77). Using (5.37) one

ets
£ 2

2 g
—gp)l= —— 5.81
(92 = 9r)" = ;= T (5.81)

and one thus finds immediately that linear divergences in (5.78) and (5.80)
cancel each other if and only if

1
=— 5.82
9220 2 cos ﬂwgmz . ( )

(in deriving (5.82) we have also used the relation my = mzcosdw - see
(5.39)).

Let us note that the interaction term (5.79) we have just introduced
should now also lead to a compensation of residual quadratic divergences
e.g. in the scattering amplitude of the process Wy W} — Z,Z;, discussed
in the preceding section (cf. the considerations following eq. (5.58)); more
precisely, such an automatic cancellation of divergences would be highly de-
sirable in order not to have to introduce further interaction terms. One may
verifly directly that the above-mentioned elimination of quadratic divergences
indeed occurs. However, the corresponding (rather tedious) calculation will
not be performed here; instead of that we shall comment on this remarkable
fact from a more general point of view later in this section.
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Introduction of the scalar field  and the corresponding interactions may
of course lead to new power-like divergences in the limit £ — oo, i. e.
one may anticipate divergent terms in tree-level scattering amplitudes of
processes which we have not considered so far. Indeed, one also has to
investigate processes involving real scalar bosons in the initial or final state
(note that in the diagrams considered up to now the 5 always entered as a
virtual exchanged particle); it is clear that for the tree diagrams involving
external lines of scalar bosous and massive vector bosons one may in general
expect - as a consequence of the by now familiar mechanisms - a divergent
behaviour in the limit £ — oo. Iu particular, we shall now examine the
process of production of a pair of scalar bosons in the annihilation of a pair
of longitudinally polarized W’s, i. e. the process W7 W} — 5. In such
a case the interaction term (5.71) leads to the tree diagramns shown in Fig.
27 (a), (b). Tor the total contribution of the diagrams (a), (b) in the limit
E — oo one may then write (see the problem 5.11)

U]
[ S, /
L P /vf pi
e
/
w- N
N\
l \\ »
— --.1:-. “\ "
W+ " L
(a) (b): (c)
Fig. 27. Tree-level diagrams of the process W—W+ — .
\ .
Mot My=-T—s10() (5.83)

4mw
For a compensation of the quadratic divergence in (5.83) one has to intro-
duce a new interaction term; obviously, the only possibility (satislying usual
conditions) is represented by the expression

Lwivm = gwwm Wy WHy? X (5.84)
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which in the lowest order of perturbation expansion produces the diagram in
Fig. 27(c). In the case of longitudinally polarized W#* it is easy to get for
the contribution of this diagram

1
M, = gww,,,,-%s + 0(1) (5.85)

The requirement of divergence cancellation between (5.83) and (5.85) is the-
refore equivalent to

| .
IWWan = ;g’ (5.86)

Similarly one may consider the process Z,Z;, — 75y ; for a compensation
of quadratic divergence in tree-level diagrams descending form the trilinear
interaction (5.79) it is necessary to introduce a direct contact interaction
Z2Zm,

L2z = 9220 ZuZ"n? (5.87)

and the requirement of divergence cancellation in the corresponding diagrams
(which can be obtained from Fig. 27 by replacing all W's with Z’s) yields,
using (5.82), the following relation for the coupling constant gzzy,:

1 ¢

9z2znn = g—cosz 0W— (588)

Now it is in order to summarize briefly the results we have obtained so far.
By means of a systematic elimination of high-energy power-like divergences
in tree-level scattering amplitudes of soine selected binary processes we have
arrived at the interaction lagrangian

Line = Lo+ Lnc+ 5;:;'22,, + Lvvv + Lvvvv + Lwwvy
+ Lzzn+ Lwwag+ Lzzgn + Leen + .- (5.89)

(see (5.70), (5.71), (5.75), (5.79), (5.84) and (5.87)) where the coupling con-
stants of the newly introduced interactions (i.e. of those which are new with
respect to (4.26)) are intertwined via many remarkable relations (see (5.36),
(5.37), (5.73), (5.77) etc.). The symbol ”...” denotes again further possible
terms which should eventually be included, for the theory of electroweak inte-
ractions to be complete (i.e. so that it would satisfy the condition (5.4) or at
least the tree-unitarity criterion (5.1) in all cases). It should be emphasized

88



that some terms, which a priori are not excluded by the requirement of Lo-
rentz invariance and by the condition dim Ly < 4 (see (5.5)), are manifestly
absent in the lagrangian (5.89). For example, in the Lyyy there isno ZZ2Z
term and similarly the Lyyyy does not incorporate any term of the type
ZZZZ. Within our approach, the absence of such terms is related to the
fact that for some processes, certain divergences cancel automatically (e.g.
for e~e* — Z,Z;, or e"et — Zy,y - see (5.78) and the problem 5.12) and the
above-mentioned "exotic” interaction terms are simply not necessary. (Let
us remark that the absence of a ZZ+ term is of course also completely na-
tural from the physical point of view, as its existence would mean a direct
electromagnetic interaction of the neutral Z.) Potentially interesting (i.e.
potentially ”"dangerous”) binary processes which we have not considered in
detail and the corresponding tree-level scattering amplitudes will be discussed
later in this section; the above remarks are pointing toward a preliminary
conclusion that for the elimination of unacceptable high-energy behaviour
of tree diagrams of binary processes suflice the terms given explicitly in the
lagrangian (5.89).

However, we are still not at the end of our road. We may also consider the
remaining two interaction terms of renormalizable type (i.e. satisfying the
condition (5.5)), namely a cubic and a quartic self-interaction of the neutral
scalar field :

Lomn = g7’ ) (5.90)
Lo = .‘ervmn’l‘ (5.91)

(Let us recall that the coupling constant in (5.90) then has dimension of a
mass, while the coupling constant in (5.91) is dimensionless.) Obviously, the
interaction terms (5.90) and (5.91) need not be introduced for a compensation
of power-like high-energy divergences in tree-level scattering amplitudes of
binary processes. However, they play an important role in some processes
of the type I + 2 — 8 + 4 + 5 (this remarkable fact was first noticed
by Cornwall, Levin and Tiktopoulos [11}). The corresponding calculations
are technically rather complicated, so here we only recapitulate the essential
results [11] very briefly. First one has to recall generally that in the case of
a process involving 5 particles the corresponding scattering amplitude has
dimension [M~!] in units of an arbitrary mass (see (C.3)) and the condition
of tree unitarity (5.1) requires in the high-energy limit a behaviour of the
type (see (5.3)) .
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’ 1
M1+z...3+4+5 o - (592)

=

where E is a typical energy of the considered process (e.g. E = /5). In
the paper [11] (cf. also [39]) the processes ZZ — ZZ7n and ZZ — ny (and
also the corresponding processes involving charged vector bosons) have been
investigated from such a point of view. Basic types of tree-level diagrams
contributing to the scattering amplitudes of these processes are shown in
Fig. 28 and 29. (As an instructive exercise we recommend the reader to
draw all the tree diagrams derived from the basic types in Fig. 28, 29 and
verify that e.g. in the case of the process ZZ — 739 the total number of
graphs is 25.)

L_....___

MMM

() (b) (c)

Fig. 28. Basic types of tree-level diagrams of the process ZZ — ZZn. All
the other graphs correspond to appropriate (topologically distinct) per-
mutations of external lines and vertices.

90



Z ) ; e
——— ~—- L
N N
N
7 K q\\i
z Ty Z ) Z n
(a) . (b) (<)
! 1wz y
z 1/ z | /! ] 2
S ;
; S \
v 7
\ A \\
zZ 7\ | Z‘ | \1i 5°Z ;\
(d) (e) (f)

Obr. 29. Basic types of tree-level diagrams of the process ZZ — nqn. Al the
other graphs are oblained by appropriate (topologically distinct) permu-
tations of ezxternal lines and vertices.
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In what follows we are going to discuss only the case of longitudinally po-
larized Z's in the considered processes. Then the diagrains of the type (a),
(b) in Fig. 28 (i.e. those in which the cubic self-interaction (5.90) is not in-
volved) give a contribution whose leading term behaves in the limit £ — oo
as a constant independent of E; this asymptotically constant term (coming
from the diagrams of the type (a)) may be estimated (up to a numerical
factor) as mz*m3’g},, m?, where gzz, is the coupling constant (5.82). The
contribution of diagrams of the type (c) (i.e. those which involve the self-
interaction (5.90)) also contains an asymptotically constant term which may
be cstimated (up to a factor) as m3z*g% 7, 9ymm. Since the whole tree-level am-
plitude of the process Z, Zy, — Z1,Z;,n should exhibit the "good” high-energy
beliaviour (5.92), one has to achieve a cancellation of the above-mentioned
asymptotically constant terms by means of an appropriate choice of the coup-
ling constant g,,,. An explicit calculation [11] then leads to the conclusion
that desired cancellation of unwanted constant terms occurs if and only if

Gonn = —79—" (5.93)

It is interesting to notice, among others, that in this connection it was ne-
cessary to consider explicitly for the first time a non-zero mass of the neutral
scalar boson 7, i.e. the parameter m, # 0. In the case of the process
ZyZy — nmy the condition of a compensation of asymptotically constant
contributions from diagrams of the type (a) - (d) in Fig. 29 by similar terms
coming from graphs of the type (e) (i.e. from those involving the quartic
self-interaction (5.91)) amounts to fixing the coupling constant gyng:

L ,m '
G = — 559 ml, (5.94)

Similarly to (5.93), it is essential here that m, # 0; however, the preceding
considerations do not imply any constraint for the value of m, (in contrast
to masses of vector bosons W* and Z which have been accurately predicted
by the theory of electroweak unification - see (5.40), (5.41)).

Let us summarize the results which we have obtained up to now in con-
structing a theory of electroweak interactions. We have arrived at an inter-
action lagrangian which now has the form (cf. (5.89))

Line = Lo+ Lnc+ £§;':3,, + Lvvy + Lvvyv + Lwwy
+ £ZZ’] + »CWWrm + ['Zva + ‘Ccev’ + me + L:rmr)q + .. (5~95}
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where the last two terms in (5.95) are given by the expressions (5.90), (5.91),
(5.93) and (5.94). The interaction terms written explicitly in (5.95) are
necessary for suppressing the bad high-energy behaviour of individual tree-
level diagrams corresponding to the given model. For fixing the correspon-
ding coupling constants we have employed only a limited number of physical
scattering processes and in the construction (5.95) we have used up all the
interaction terms which had to be taken into account within the framework of
the "minimal” strategy adopted. More precisely, we have employed tree-level
scattering amplitudes of the following processes (in each case for a particular
combination of helicities of the incoming and outgoing particles):

v — WWwt
e~et — Wowt
e — W-2Z
ecet = 22

W W = 4y
W-WwW- —- W"W-
W-wt o 22 (5.96)
W-W* - Zy .
W-Wt g
ZZ —
ZZ — ZZy
ZZ —

It is not clear @ priori whether the desirable divergence cancellations occur
also in the tree-level scattering amplitudes of the other physical processes
which we have not considered yet (this uncertainty is expressed by the symbol
”...” in (5.95)). In particular, if we restrict ourselves to binary processes, then
beside (5.96) there are several other cases which are potentially interesting

(i.e. potentially "dangerous”) from the point of view of the high-energy .

behaviour of the relevant tree diagrams, namely
re — Wy
eTet - Zy
eTet = Zg (5.97)
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v = 22
ZZ - 72Z

Of course, the processes (5.97) are most intriguing in the case of longitudinal-
ly polarized external vector bosons (note that we have already investigated
the reaction e — W=7 in Chapter 4). One may show, by means of an ex-
plicit calculation, that in tree-level scattering amplitudes of processes (5.97)
the high-energy divergences cancel automatically, owing to the structure of
the interaction lagrangian (5.95). The corresponding calculations are left
to the interested reader as an instructive exercise (see the problem 5.12).
Beside that, the possible remaining non-leading divergences in scattering
amplitudes of some processes (5.96) which we have considered earlier (such
as W-W+* — ZZ or W"W* — Z7) can be shown to vanish as well. The
above-mentioned automatic divergence cancellations in tree-level amplitudes
of the processes (5.97) etc. represent a remarkable fact in itself — these indi-
cate that the lagrangian (5.95) is at least a viable candidate for a reasonable
theory of electroweak interactions. However, it is not at all clear whether
the corresponding cancellations of unwanted terms for £ — oo occur in
scattering amplitudes of all physical processes. In other words, the following
two questions arise naturally:

1. Does the model (5.95) satisfy the condition of tree unitarity?

2. Does the model (5.95) satisfy the stronger condition (5.4), i.e. is the
corresponding perturbation expansion renormalizable?

The answer to the first question is yes while the second question is to be
answered in the negative. This statement (which we have already foresha-
dowed at the end of Section 5.1 but still may sound somewhat surprising)
deserves a more detailed commentary. In the first place, one has to note that
for technical reasons it is virtually impossible to verify directly the validity of
the tree-unitarity condition for all (n-point) scattering amplitudes by means
of the elementary methods employed so far. Fortunately one may proceed
in a completely different manner. The interaction lagrangian (5.95), which
we have deduced through a systematic elimination of high-energy divergen-
ces in some selected tree-level Feynman diagrams, is in fact identical with
the original Weinberg model (7] of the unification of weak and electromag-
netic interactions of leptons. Of course, the Weinberg model [7] has been
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formulated as a non-abelian gauge theory with the Higgs mechanism (the"

vector bosons W#*, Z and 7 correspond to the four gauge fields of the group
SU(2) x U(1) and 7 is the Higgs boson; the lagrangian (5.95) represents
the particular choice of gauge condition used originally by Weinberg [7] - the
‘so-called unitary or U-gauge which is characterized by absence of unphysical
fields). For a detailed investigation of properties of a theory described by the
lagrangian (5.95) one may therefore employ the powerful formal apparatus of
gauge theories (see e.g. [15], [17], [25] etc.). Let us remark that the complete
tree-level unitarity in a theory of such a type has been first proved by J. 8.
Bell who followed an earlier work of S. Weinberg (see [44]).

As to the stronger condition (5.4), it is violated at the level of one-loop
diagrams. That is to say, one may find an example of a binary process, for
which the corresponding scattering amplitude in the one-loop approximation
(more precisely, its real part) grows linearly with energy, although imaginary
parts of the relevant graphs (which of course are fully determined by the
corresponding tree-level amplitudes) are asymptotically constant for £ —
oo (cf. the discussion related to Fig. 11 in Section 5.1). The reason for
such a "pathological” behaviour is the famous Adler-Bell-Jackiw (ABJ) axial
anomaly in a triangular closed fermionic loop (the fermions are leptons in
our case) [40], [45], [46]. This remarkable phenomenon will be discussed in
more detail in the next section. Here we restrict ourselves to the following
three closing remarks.

i) The above-mentioned linear growth of some one-loop scattering am-
plitudes for E — oo implies non-renormalizability of the perturbation
expansion on the level of two-loop diagrams.

ii) The effect of the ABJ anomaly demonstrates that the tree unitarity is
only a necessary, but not sufficient, condition for perturbative renor-
malizability (as we have already indicated in Section 5.1).

iii) Despite the fact that subtle effects of the ABJ anomaly violate per-
turbative renormalizability of the theory described by the lagrangian
(5.95), in fact we have almost reached our objective (as (5.95) represents
precisely the original Weinberg model [7]); in the following sections 5.6

and 5.7 we shall see that effects of the anomaly are removed "miracu- -

lously” (and at the same time very naturally from the physical point
of view) if one considers, beside electroweak interactions of leptons,
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also the corresponding interactions of quarks [45), [46] (in building a
realistic theory of electroweak unification we are of course obliged to
include likewise the quark sector, in view of the phenomenologically
well-established form of the weak charged current in (1.1) - (1.4)).

5.6 Effects of the ABJ axial anomaly

To illustrate a violation of the condition of "perturbative unitarity” (5.4)
at the level of one-loop Feynman graphs, we shall consider, as an example, the
process e*e~ — vy (which is completely innocuous at the trec level). The
diagrams leading to an "anomalous” behaviour of the corresponding one-
loop scattering amplitude in the high-energy limit (in the sense indicated at
the end of the preceding section) are shown in Fig. 30. Before examining
these graphs in more detail, the following remark is in order here: Within
the framework of the theory described by the interaction lagrangian (5.95),
there are of course many other one-loop graphs contributing o the scattering
amplitude of the considered process beside those depicted in Fig. 30, but all
of them already exhibit a "normal” behaviour in the high-energy limit (i.e.
obey the law (5.4)). This fact can be best explained using the formalism
of non-abelian gauge theories with Higgs mechanism and therefore we will
refrain from discussing it here.

We will now examine in more detail the contribution of the diagrams in
Fig. 30(a), (b). The corresponding scattering amplitude may be written as

Ma=M+ My =

2
1 g 2.2- _
' (cos 19w) aeQee 5L )7 (ve — aers)u(l-) x
— Aa+m-2 Ao . 5

28 T2 80 7 (ke (R)e(p), (5.98)

x
¢ —mZ

where the notation employed in (5.98) has the following meaning: Coupling
constants for the interaction of weak neutral current with the Z correspond

“to formulae (5.37); here we have only introduced extra symbols for a vector

and axial-vector interaction constant (indicating explicitly the lepton type)

1
5(91, +gr) = v,

cosVw
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%(QL—QR) = cadn® | (5.99)
i.e. (see (5.37))
v, = -—1b+sin"'19w
4 K
6 = — . (5.100)

(a) , -(b)

Fig. 80. The one-loop diagrdms of the process ete™ — ~v in which an effect
of the ABJ azial anomaly is manifested. Internal lines in the closed
Jermion loop correspond to a lepton (e.g. electron). )

In the expression (5.98) the couplmg parameter g, is factonzed since in

the vertex of the triangular fermion loop attached to the Z propagator only - o

the axial-vector part of the corresponding neutral current can play a role;

the contribution of the vector part vanishes identically as a consequence of -

the well-known identities for traces of Dirac y-matrices (the so-called Furry
theorem - see e.g. [20], [21]). Further, for each electromagnetic interaction

we have singled out explicitly a factor Q. (Q. = —1), i.e. the charge of -

the fermion in the closed loop in units of e (this is useful with regard to a
later discussion of the quark sector). Finally, the expression Tp,u(k, p) is the
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contribution of the closed loops in Fig. 30(a), (b) which is formally given by

" the integral

, ' dir 1 1
Tanv(ksp) = /(2 )4Tl‘ (1‘ p_ ,Ff m Iv" +,‘ m Ia"/s)
+ [(k; 1)« (p, ")I ) (5.101)

(it is easy to verify that the reversed orientation of the closed loop in the

. diagram (b) with respect to (a) just corresponds to the symmetrization in-

corporated in eq. (5.101)).
The integral in (5 101) is apparently (lmearly) dwergent in the ultraviolet

" region and thus it is an ill-defined object by itself; one should therefore add

to the formal expression (5.101) a prescription giving it a precise meaning. It
is well known (see [40], [47), [48]) that one can do so either with the help of an
appropriate regularization procedure or by imposing a physical requirement

" of absence of "longitudinally polarized photons” in the final state, iie. by
" imposing the identities

F'Tou(k,p) =0,  p'Top(k,p) =0 (5.102)

- Let us remark #hat in the standard language of quantum field theory the

relations (5.102) are usually called in this context "vector Ward identities”
and they also express conservation of vector (electromagnetic) currents in the
corresponding vertices of the considered Feynman graph. The construction of
a finite quantity T, based on the constraints (5.102) was first performed by
Rosenberg [49] and it has been employed later by Adler [48] in his pioneering
investigation of the triangle anomaly. However, a more detailed discussion of
various definitions of the T, goes behind the framework of this introductory
treatment of the electroweak unification; beside the literature we have already
quoted, one may find an elementary introduction to the anomaly problem in
the textbooks [21], [25], [36] and also in the review article [50]. ,
As regards the high-energy behaviour of the amplitude (5.98), its poten-
tially "dangerous” part obviously corresponds to the second term in the Z

. propagator (because of presence of the factor m3?). Using the ¢* from this

term to multiply the ) in the first neutral- current vertex, the electron mass
m is factorized (through an application of the Dirac equation), which com-
pensates one factor of m;'. Multiplying by the ¢* the axial-vector vertex
of the triangular fermion loop, a naive calculation (in a sense described in
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detail e.g. in [50]) would lead to the conclusion that the expression ¢®To, is
equal to 2mT),, where T, is the contribution of the corresponding fermionic
loops in which 7,75 is replaced by 75 (such a result would correspond to a
classic relation for the divergence of the axial-vector current). However, in
fact (using a mathematically correct calculational procedure), the amplitude
Touv subject to constraints (5.102) satisfies an axial-vector Ward identity

1
7" Top(k,p) = 2T, (k, p) + 275,,‘,,,,,/:"1)”, (5.103)

where the second term on the right-hand side of eq. (5.103) is just the
celebrated Adler-Bell-Jackiw (ABJ) axial anomaly. Since the fermion mass
is not factorized in this anomalous term (a factor of m only appears in the
first term on the right-hand side of (5.103)), there remains an uncompensated
factor m7' in the contribution of Fig. 30(a), (b) and the corresponding
amplitude thus grows linearly with energy for £ — o0.

It should be emphasized (as we have already indicated in the preceding
section) that the imaginary (or "absorptive”) part of the contribution of
diagrams in Fig. 30(a), (b) is finite in the limit £ — co. (The following
technical remark is in order here: The terms "imaginary” or "absorptive”
part are commonly used in an equivalent sense; a non-zero absorptive part
corresponds to a discontinuity on a cut which in the considered case exists
on the real axis of the variable s = ¢? for s > 4m?. A general discussion of
such singularities and analytic properties of scattering amplitudes and Green
functions in quantum field theory see e.g. in [21] where one may also find
a formulation of the standard Cutkosky rules for computing the absorptive
part of a Feynman graph.) The finiteness of the absorptive part of the
diagrams in Fig. 30 in the high-energy limit may be easily understood if
one realizes that this can be expressed by means of a product of amplitudes
of tree diagrams corresponding to processes ete” — ete~ and ete” — 77
(see Fig. 31(a), (b)). These tree-level graphs are of course finite in the
limit E ~ oo: In the case of the diagram for ete™ — ete™ involving the Z
exchange, a factor m? is produced in the potentially offending term (when
the Dirac equation is applied in both vertices) which compensates the m3?
from the Z propagator; the "good” behaviour of the tree-level graph for
ete™ — v+ is manifest. In calculating the contribution of Fig. 31(a), (b) one
must of course also integrate over the phase-space volume for the electron-
positron intermediate states; such an integration, however, does not change
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qualitatively the estimate inferred from the behaviour of tree-level graphs of
the intermediate processes.

(a) (b)

Fig. 31. Absorptive part of the diagrams from Fig. 30. The permutation
of the external photon lines in the graph (b) is equivalent to reversing
the orientation of the closed fermion loop in Fig. 30(b). The usual
notation is used, such that the "cut” internal lines correspond to real
particles, i.e. the corresponding propagators are replaced by 8-functions
according to the Cutkosky rules.

It is instructive to demonstrate the difference between asymptotic behaviour
of the diagrams in Fig. 30 and of their absorptive part (Fig. 31) in terms
of explicit formulae. For the amplitude of the considered fermion triangular
loops T,y (see (5.101)) satisfying the conditions (5.102) one may write a
tensor decomposition (for a detailed discussion see e.g. [50 - 52])

Tﬂﬂ”(klp) = F‘](&)QQE“,,”ICPP”{-
+ Fﬁ(s)(pv%rupa“' uEavpo)kac (5.104)

where we have used the notation s = g¢? for the validity of (5.104) it is
essential that k? = p? = 0, The invariant amplitudes (formfactors) F; and
F; may be expressed as integrals over Feynman parameters

F(s)——ifldzfl_zd — (5.105)
W=, L Vi —oys—ie '
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/dz/— gy Z1=2=y) (5.106)
m? — zys — i¢

In the first place one may now verify the anomalous Ward identity (5.103):
From (5.104) it follows immediately

T = SF1(38)Epvpa k°P°

and from (5.105) one gets

L g [ m’ N CAt
’Fl(*‘)h;ffo ”’”/,, Wy T 0 (010D

where the first expression on the right-hand side of (5.107) corresponds to
the "normal” term in (5.103) (which vanishes for m — 0) and the second
term reproduces the ABJ anomaly. On the basis of (5.107) one may also
easily estimate the asymptotic behaviour of the functlon Fi(s) in the limit
s — oo (i.e. pro s> m?):

11

The absorptive (i.e. imaginary) part of the amplitude Ty, which we de-
note as A,y may be written in the form analogous to (5.104) where the
formfactors F; and F; are replaced by the corresponding imaginary parts

Aj=1Im Fj, j=1,2. A calculation of the 4, and Aj; using the formulae -

(5 105), (5.106) is straxghtforward and yields the results

1m? 144/1- 4m?/s
= e g — .10
Al(") 32 Inl T 7 2/3 (51 9)

1 1—4m3/s 2m? 1+.+/1—4m?/s
_1 dmljs _2m’, 1+ y1-dm'/s 5.110
Aals) 2 ( s s? lnl — /1 —4mi/s ( )

(let us remark that the formula (5.109) has been first used in connection with -

the ABJ axial anomaly by Dolgov and Zakharov [53]). From (5.109), (5.110)
one gets easily the corresponding asymptotic expressions valid for s — oo
(i.e. for s > m?):

Ai(s)=0 (%iln%) | (5.111)
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As) = 3140 (—-m;ﬁ) (5.112)

From (5.108) and (5.111) it is obvious that the high-energy behaviour of the
real part of the formfactor Fy differs substantially form the asymptotics of
the corresponding imaginary part: While the imaginary part decreases for
s — oo like 1/s* (up to a logarithmic factor) the real part only falls off like
l/s.

The followmg technical remark is in order here. Formulae (5.105), (5.106)
are obtained by a direct computation of the amplitude T,,,, and from these
one may derive the expressions (5.109), (5.110) for the corresponding imagi-
nary part Aq,,. However, one may also proceed in a reversed order: Using
the well-known Cutkosky rules (see e.g. [21]) one may first calculate the
absorptive part A,y (let us stress that this is given by convergent integrals)
and the full formfactors Fy, F; may be then defined by means of dispersion
relations (which in the considered case converge without subtractions). The
above-mentioned difference in the power behaviour of the A,;(s) and Fi(s)
for s — oo can be then traced, technically, to the integration in the corres-
ponding dispersion relation

F ( 3) e A, (S ) d i
T Jagma S —$

(this is just the effect we have mentioned in a preliminary discussion in the
introductory Section 5.1). However, a fundamental reason for this effect is, as
we have also noticed earlier, the ABJ axial anomaly; within the framework of
the dispersion relation approach {which in this case obviates completely the
problem of ultraviolet divergences) the anomaly is a consequence of special
properties of the invariant amplitude A,, in particular, of the fact that the
integral of the A; taken along the cut (4m?, 00) is non-zero. Indeed, for the
function A(s;m?) given by the formula (5.109) one has (for an arbitrary
value of m) a "sum rule”

x 1
Ay(s;m?) = ——. .
/4 A = o (5.113)
(It is interesting to notice that a dominant contribution to the integral (5.113)

comes from the region of small s, i.e. from the vicinity of the threshold
8o = 4m?, As we have already indicated earlier, such an interpretation of
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the ABJ anomaly has been first formulated in the paper [53]; a brief review
of the method as well as further details can also be found e.g. in [51], [52].)

After this rather technical exposition we are going to discuss again the
part of the contribution of diagrams in Fig. 30 or Fig. 31 resp., which
corresponds to the longitudinal term in the Z propagator. From what we have
already said it may be easily seen that the considered part of the scattering
amplitude (which we will denote as M@ A )) behaves in the high-energy limit
(i.e. for s >» m%) like (see (5.98), (5.104) and (5.108))

M) = o(1, rsu(l-) 3~e~vwk’p CMRE)  (5.114)

(i.e. it grows linearly for £ — oo as we have already stated earlier). For the
absorptive part of the Mg) we obtain an asymptolic estimate

mm? s

Abs MD ~ b(1, yysu(l- )mzz?

i.e. Abs MY falls off like 1/E for E — cc.

As regards the diagonal term in the Z propagator and the corresponding
part of the contribution of diagrams in Fig. 30 (we shall denote this part by
Mg)) one may easily estimate on the basis of the above-mentioned relations
that in the limit £ — oo one has

MY ~o(1) (5.116)

and also

Abs MY ~ 0(1) (5.117)

(the last estimate follows from the fact that Abs M( ) gets a contribution
from the invariant amplitude A, which accordmg to (5 12) decreases for s —
o as 1/s).

Let us supplement the preceding discussion with the following remark: -

A preliminary semi-quantitative estimate of the asymptotic behaviour of the
Abs M, based on considerations about tree-level graphs of the intermediate
processes in Fig. 31 which we have formulated earlier in this section, can be
made more precise with the help of a formula for the absorptive part of the
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In e Euvpukp 7 ’p(k)e‘”(P) (5.115) )

relevant triangle diagram (cf. e.g. [54])

2i Aapu(k,p) 21 Y I;l Z/dﬂ @(P, s)vaysv( P, 8")] x
x [5(P 3’)7»(—;—,?'———,7‘,11(1’ 3], (5.118)

which may by derived either directly from S-matrix unitarity or with the
help of Cutkosky rules. The relation (5.118) is written in the c.m. system
of the pair of photons in the final state. The four-momenta P, P’ are of
course on the mass shell, i.e. they satisfy conditions P? = P = m?; one
has further (P PP =(k+pP=sand P=—-P,s0 P =P} = E' =
Vs, |P| = 1v/s —4m?. The factor |BIJE = /1 -—4m’/s in (5.118) comes
from the phas&space volume of the two-particle intermediate state ete™ and
the angular integration is carried out over directions of the P. From (5.118)
one then immediately gets an appropriate relation for Abs M4 which enables
one to verify the corresponding statements made earlier.

As a conclusion let us emphasize the main result of this section, namely
the observation of a linear growth of the considered amplitude M,a with
energy in the limit E — oo. It is important to realize that the relevant
numerical coefficient in the corresponding leading asymptotic term is (if we
consider only a dependence on properties of the fermion in the anomalous
triangular loop in Fig. 30)

Clhmaty = 2:Q2 (5.119)

The origin of (5.119) is obvious from the discussion around (5.98) and (5.103).
From (5.119) it is obvious that the linear divergence of the amplitude My
for E — 0o cannot be compensated or removed if we take into account only
the electroweak interactions of leptons; a neutrino loop of course does not
contribute to the considered process and all the standard charged leptons (as
e.g. muon) give a contribution identical with (5.119), since for an arbitrary
charged lepton ! one may obviously repeat the procedure described in Section
5.3 and arrive thus at the result (cf. (5.100))

1
a=-y (5.120)
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(of course, one always has @7 = 1). The condition (5.4) is thus violated and
the model described by the interaction lagrangian (5.95), which incorporates
ouly leptons in its fermionic sector, is therefore not renormalizable. Let us
remark that (as we have already indicated at the end of the preceding section)
non-renormalizable ultraviolet divergences will appear in diagrams involving
at least two closed loops (this of course is closely related to the power-like
growth of the corresponding anomalous one-loop graphs for £ — o0). An
explicit example of a 2-loop graph leading to a non-renormalizable ultraviolet
divergence is given in Fig. 32 (for a more detailed discussion see e.g. [46]).
In the following section we will show, among others, that the contribution
of anomalous triangular loops made of quark fields can cancel the lepton
contribution completely (see the original papers [45], [46] and also e.g. [21]
and [25]).

et NANAN—

Fig. 32. An ezample of a 2-loop diagram of the process e"et — e”et in
which the ABJ anomaly induces a non-renormalizable ultraviolet diver-
gence.

As an epilogue to this section let us finally add that within the framework
of gauge theories with Higgs mechanism one encounters other possible ma-
nifestations of the ABJ anomaly, as e.g. a gauge-dependence of physical
scattering amplitudes (at the one-loop level) or a violation of unitarity of the
S-matrix {at the two-loop level); for a more detailed discussion of these effec-
ts, see e.g. [46] and also the textbook [17]. However, it should be stressed
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again that all the "destructive” effects of the ABJ anomaly manifested in
the perturbation expansion in fact disappear when both leptons and quarks
are incorporated in the fermion sector of the standard model of electroweak
interactions and the resulting theory is then perturbatively renormalizable.

5.7 Interactions in the quark sector

Now we will investigate weak and electromagnetic interactions of had-
rons; it is natural {(and physically well substantiated) to describe these as
interactions of fundamental quark fields, i.e. the fields of elementary fer-
mions with fractional electric charges (fractional with respect to the charge
of electron or muon). In Chapter 1 we have already given a form of the
weak charged quark current (i.e. the current constructed from fields carrying
charges differing by one unit) expressed in terms of fields of the four quarks
u, d, s, ¢ (see (1.4)). (Needless to say, u = "up”, d = "down”, s = "stran-
ge”, ¢ = "charm”.) The starting point of our discussion in this section will
be the original weak current of the Cabibbo type, corresponding to the first
line in the expression (1.4) (which involves only u, d and s). That is, we
will not assume a priori the existence of a c-quark (which indeed has been
confirmed only after a corresponding theoretical prediction) and we will show
that one may arrive naturally at the concept of an extra quark field through
considerations concerning the high-energy behaviour of some tree-level diag-
rams, supplemented with some well-known facts about phenomenology of
weak processes. In other words, within our general approach based on an
investigation of tree-level amplitudes of clementary binary processes we will
derive the structure of the weak charged current involving the c-quark (i.e.
the second line in (1.4)). The expression (1.4) corresponds to a realization
of the familiar Glashow-Iliopoulos-Maiani (GIM) mechanism [55] (see also
[25], [56), [57]), i.e. to a suppression of weak neuiral currents non-diagonal
with respect to "flavours” of the type u, d, s or ¢ (let us stress that the weak
charged current (1.4) is non-diagonal). The meaning of such a mechanism
will be clarified in the subsequent discussion.

Let us first consider the interaction of the quark current of the Cabibbo
type with the field of charged intermediate vector bosons described by the
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lagrangian

L4 = 2_\”72,;—,,(1 — s)(dcos O¢ + ssin dg)WH° + h.c. (5.121)

In the tree approximation we shall examine the scattering amplitude of the
process

ds — w-w+ (5.122)

Within the model described by the interaction lagrangian (5.121) there is a
single diagram corresponding to the process (5.122), namely that depicted in
Fig. 33 (in this case the electromagnetic interaction does not contribute as
the electromagnetic current is lavour-diagonal). We are going to discuss the
high-energy behaviour of the tree-level amplitude of the process (5.122) in
the casc that both final-state veclor bosons have longitudinal polarizations.
Using the by now familiar arguments one may then guess immediately that
the contribution of the diagram in Fig. 33 diverges quadratically for £ — co.
Let us denote the corresponding scattering amplitude by M (to indicate
the u-quark exchange in Fig. 33); an explicit calculation (which is completely
analogous to procedures used earlier in the lepton sector) yields the result
(see the problem 5.13) '

d W
e e AV VAVE WaVa
) ,

k
u
-1 "
e e WAVAVAVE Vo
3 Wt

Fig. 33. Tvec-level diagram of the process d5 — W-W+ in a model of weak
interactions involving a quark charged current of the Cabibbo type.

W - 1 _ .
M = 4m?v.9url.9u:”(1))‘(l vs)u(k)
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1 "
g et ()(1 = 25)u(8)
+ 0(1): (5.123)
In (5.123) we have introduced a natural notation (cf. (5.121))
Jud = gcosdo,  gu = gsinde (5.124)

The first term on the left-hand side of (5.123) represents the leading (quadra-
tic) divergence and the second Lerm corresponds to a next-to-leading (linear)
divergence in the limit £ — oo. (It is important to notice that none of the
divergent terms in (5.123) depend on my, i.e. even the non-leading divergen-
ce is independent of the mass of the exchanged u quark; this circumstance
will play an essential role in the divergence cancellation mechanism working
in the high-energy limit for the considered scattering amplitude.)

We might attempt to cancel the quadratic divergence in (5.123) (in ana-
logy with the case of the process ete™ — W+W = etc.) by means of a tree
diagram involving an exchange of the neutral vector boson Z in the s-channel;
to this end one would have to introduce a direct interaction of the type Lq,7,
i.e. an interaction of the Z with a weak neutral strangeness-changing current.
The corresponding coupling constant would then have to be of an order of
(cf. (5.124) and (5.37))

Gds2 = _qsin 0(; cos ﬂc/ [ole}:} 19w (5125)

However, the existence of such an interaction would lead to a phenomenologi-
cal disaster, in the sense that it would be clearly incompatible with common
experimental data: Strangeness-changing (AS # 0) decay processes in which
the hadron charge is conserved (AQ = 0) would be predicted within such a
theory to occur in the lowest perturbative order, so the corresponding decay
rates would have to be comparable with those of the commonly observed
processes for which AQ # 0, AS # 0 (let us recall that the allowed decays
obey the empirical selection rule AS = AQ). In fact, the data show that
the weak processes in which AQ = 0 and AS # 0 are strongly suppressed in
comparison with the cases AS # 0, AQ # 0. Thus, e.g. the relative decay
rate (branching ratio) of the process {~ — #% b, (i.e. s — ue~¥, on the
quark level) is (see [58])

BR (K* — 7%*%y,) = 0.048
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whereas in the case of the decay £~ — m~e*e™ (which corresponds to s —
dete™ on the quark level) one has [58]

BR(K™ - 7 ete™) =2.7x 1077

There are other examples of such a type, so one may conclude that introdu-
cing a dircct intcraction of the Z with a strangeness-changing neutral current
is phenomenologically unacceptable.

As regards the other conccivable mechanisms for suppression of power-like
high-energy divergences in (5.123) (within the general scheme delincated in
Section 5.2) it is also clear that an exchange of a scalar particle is not sufli-
cient for the compensation of the quadratic divergence (cf. the discussion
around the relations (5.6) - (5.8)) and thus we are left with the last alterna-
tive: One may attempt to cancel the offending terms in (5.123) by adding
to the diagram in Fig. 33 a similar one, in which instead of the u-quark ex-
change another spin-4 fermion is involved. For this purpose (and within our
"minimal strategy”) we are going to introduce another quark (denoted as c)
with the same charge as the u (i.e. Q. = Q. = 2/3) and the corresponding
interaction with d, s and with vector bosons W#* will be assumed to have a
form analogous to (5.121), i.e. (cf. the notation (5.124))

C,d,s l -
L8 = ﬁ[c7p(] — 95)(gead + gers) | W + hic. (5.126)

where geq and g, are the corresponding (in general complex) coupling con-
stants which must be determined. The tree diagram for the process d§ —
W=W+ corrresponding to the interaction (5.126) is shown in Fig. 34. For its
contribution (which we denote as M9) in the case of longitudinally polarized
W% we get immediately, using (5.123)

1
MO = gt 1 - o))
1 . - .
- "hmgcdgc, 7 (D1 = vs)u(k)
+ 0Q1) (5.127)
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Fig. 34. The diagram of the process d5 — W~W* involving an exchange of
the c-quark which compensales the divergent behaviour of Fig. 33 in
the high-energy limil.

Quadratic divergences in (5.123) and (5.137) cancel each other if and only if

JudJus + g:dg:. =0 (5.128)

It is gratifying that the condition (5.128) automatically guarantees even a
cancellation of linear divergences in (5.123) and (5.129); so we need not worry
about any extra strangeness-changing neutral scalar exchange (which would
be phenomenologically unacceptable). Of course, the observed automatic
cancellation of lincar divergences is due to the fact (which we have empha-
sized earlier) that these terms do not depend on the mass of the exchanged
quark in diagramns in Fig. 33, 34.

The relation (5.128) gives one constraint for two unknown coupling con-
stants ged, geo. However, now one may also counsider the process

ug— W-wt (5.129)
which in the lowest order in (5.121), (5.126) proceeds via the diagrams shown

in Fig. 35.
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(a) (b)

Fig. 35. Tree-level diagrams of the process ué — W~-W+ involving a d- and
s-quark exchange.

As before, we are going to discuss the case of longitudinally polarized W's.
Following essentially the same steps which previously have led to (5.128) one
finds that the cancellation of high-energy divergences in diagrams (a) and
(b) in Fig. 35 is equivalent to

ud Ged + Gus Ges = 0 (5.130)

(similarly to the relation (5.128), the condition (5.130) guarantees an elimina-
tion of quadratic as well as linear divergences in the corresponding tree-level
scattering amplitude). It should be emplasized that fulfillment of (5.130) is
also important from a phenonienological point of view, since recent experi-
mental data show that the existence of a direct interaction of the type L,.z
(i.e. an interaction of the corresponding neutral current and the Z) is equally
implausible as the £,4z which we have discussed earlier (see [58]).

Equations (5.128), (5.130) for the unknown coupling constants ges and
ges can now be solved easily. After a simple manipulation one gets first

igcsi = Gud ‘
[9:d] = Gus (5.131)
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and using (5.124) we may wrile

9a = gsindg exp (i8cd)
ges = gcosVg exp (i) (5.132)

where the phases 8.4, 6, are real numbers. Substituting (5.132) and (5.124)
into eq. (5.130) we obtain

exp (18.4) = —exp(id.,) (5.133)

The general solution of the system of equations (5.128), (5.130) is thus

~gsindg exp (i6)
gcos Jg exp (i6) (5.134)

Jed
Ges

I

where § is an arbitrary real number.

If we now employ the result (5.134) in the interaction lagrangian (5.126),
it is easy to see that the phase § is in fact irrelevant as it may be eliminated
by means of a suitable redefinition of the c-quark field (in other words, the
phase factor exp(:8) from the coupling constants may be "absorbed” in a de-
finition of the dynamical variable of the c-quark field). The "compensation”
lagrangian (5.126) may be thus written, without loss of generality, as

Lﬁgg") = 2’?67,,(1 — 45)(—dsin V¢ + s cos Vg )W*° + h.c. (5.135)

The preceding considerations may be summarized as follows: Starting
from a phenomenological model of weak interactions of the three quarks u,
d, s involving non-trivial Cabibbo mixing (5.121), it is necessary lo postulate
the existence of another quark if one wants to respect the trec unitarity
and to avoid, at tlie same time, flavour non-diagonal neutral currents. The
requirement of tree unitarity also determines uniquely the structure of the
relevant c-quark interaction (5.135): The corresponding charged current must
contain a combination of the fields d and s whicli is "orthogonal® with respect
to the original Cabibbo combination in (5.121).

The result (5.135) has been first obtained by Glashow, lliopoulos and
Maiani [55] within the framework of gauge theory of weak and electromag-
netic interactions based on the standard gauge group SU(2) x U(1). The
suppression of unwanted effects of non-diagonal neutral currents, following
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from (5.135), is therefore called (as we have already noted earlier in this
section) the GIM mechanism. Introducing the c-quark is also very natu-

ral from an "aesthetical” point of view, more precisely from the point of

view of a lepton-quark symmetry, since the four quarks u, d, s, ¢ are then
natural partners of the four leptons v,,e,,, g. Such a symmetric scheme
was in fact originally proposed by Bjorken and Glashow as early as in 1964
[59] without anticipating its possible dynamical consequences. It should be

stressed that the theoretical prediction of the c-quark [55], [59] has been re- -

markably successful since it has been experimentally-confirmed (in a rather
unexpected way) in 1974 as the "hidden charm” in the J/v particles (see

[60]); a number of experiments performed in subsequent years then repea- -

tedly demonstrated both the existence of charmed hadrons (i.e. the "overt
charm”) and various aspects of the GIM mechanism (see e.g. [25], [61], [62]).

(In this context one should also recall that we did not have to discuss any -

analogy of the GIM mechanism in the lepton sector because we have not
considered a priori any mixing between leptons of the electron and muon

type; at present there is indeed no clear-cut experimental argument for in-*
- troducing a phenomenological parameter analogous to the Cabibbo angle

into leptonic weak interactions - see [58].)
The full lagrangian describing weak interactions of the four qua.rk ﬁelds
u, d, s, c mediated by charged vector bosons may be denoted as La

GIM u,d,s eds
LE Ll 4 et
2—“7\/..-—5 [ﬁ’y,,(l —ys)(dcos Ve + ssindg)

+ &1,(1 = s)(~dsin dc + s cos ac)] W* +he. (5.136)

I

With regard to some future considerations it is convement to recast the last
expression in a matrix form as :

&M = \g/i(ﬁ, (1 — ¥s)Varm (:) W+ 4 h.c. (5.137) .

where Vg1 is the real orthogonal matrix

—sinde cosdg

Vorm = ( cosdg  sindg ) - (5.138)
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For completenéss we should now recall further well-known emj)irical facts

‘about the spectrum of elementary fermions. In 1975 a new charged lepton
. has been discovered [63], which has been denoted as 7, with the rest mass
. of about 1.8 GeV/c? (this of course does mot coincide with a hypothetical
" "heavy lepton” mentioned in Section 5.2; the tau lepton is in a sense just a

"copy” of the electron or muon and it carries a new conserved lepton charge).
A corresponding neutrino » has not been observed (in contrast to the v, or
v,) directly so far (i.e. the corresponding scattering experiments with the v,
have not been performed yet); however, in view of a lot of convincing indirect
evidence, the existence of a v, is generally assumed to be established (see

" [58]). Moreover, in 1977 there have been published the first experimental

data pointing toward the existence of another quark species, denoted as b
("bottom”), -with charge @y = ~1/3 (a brief review of the corresponding
experimental results may be found e.g. in [61]). Assuming quite generally
the above-mentioned lepton-quark symmetry, a natural counterpart of the
six leptons (v, e, v, #t, s, T) should then be the same number of quarks;
beside the experimentally established species (*flavours”) u,d, s, ¢, b there
should therefore exist another quark, commonly denoted as ¢ ("top”), with
the charge @ = 2/3. A direct evidence for the t-quark (i.e. an experimental
detection of processes related to its existence) is generally expected to appear
during the 1990's (a present experimental lower bound for the corrwpondmg
"rest mass is about m, > 91 GeV/c* [65]; for comparison, my = 5 GeV/c?
and m, = 1.5 GeV/c? - see e.g. [61]). However, the reason for such an
expectation is not only an "aesthetic® aspect of a quark-lepton symmetry.
Indeed (as we have already indicated at the end of Section 5.6), such a
symmetry of the spectrum of elementary fermions within the framework of
the standard model of electroweak interactions plays an important role in
cancellation of the triangle ABJ anomalies; we will deal with this remarkable
fact in more detail somewhat later. Moreover, there are compelling (though
indirect) experimental arguments in favour of existence of the -quark [68]
(if we assume validity of the basic principles of the theory of electroweak
unification). Let us recall at least one of them: If we consider a model of
the interaction of charged currents and vector bosons W2 involving 3 quarks
with charge equal to -1/3 (i.e. d, s, b) and only 2 quarks with charge 2/3
(i.e. u, c) then in case of a non-trivial mixing among d, s, b (which is

_indeed confirmed by experiments - see [66], [67] and the review [68]) the

condition of tree unitarity in annihilation channels with mltlal states ds, db
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and sb would force us to introduce the corresponding neutral currents and

interactions of the type Laz and L,z respectively; an existence of such
interactions is however unacceptable phenomenologically (see [69] and the
review [68]). Flavour non-diagonal neutral currents may be avoided if we
assume the existence of a t-quark with due properties; in this context, the
role of the t-quark is analogous to that played by the c-quark in the GIM
mechanism. A discussion of technical details of the indicated considerations
is recommended to the reader as an instructive exercise (see the problem
5.14). The charged-current interactions in a model involving six quarks are
then parametrized by means of elements of a unitary 3 x 3 matrix which is
now usually called the Kobayashi-Maskawa, or Cabibbo-Kobayashi- Maskawa
(CKM) matrix [70] (see also 58], [68]), and we thus get a generalization of
the GIM interaction lagrangian (5.137)

d :
Lo M = f(“, &, D11 =) Voxm (z) W* 4 h.c (5.139)

wlere Vogeum is the above-mentioned unitary matrix

Vvd V;u Vub
Vexkm = Va Vu Vg ’ (5.140)
Va Vi Vi

Let us remark that the matrix Voxpm can be described in terms of four physi-
cally relevant real parameters (if one employs a suitable redefinition of phases
of the quark fields in (5.139)), viewed as tlree angles and one phase (which
may be related to CP violation [70]). In [58] one may find a "standard” para-
metrization of such a type (see also [68] and the original papers [71]) as well
as numerical values of matrix elements in (5.140). Methods of experimental

determination of the matrix Voxm (more precisely, its first two rows) are -

reviewed e.g. in [68]. One more terminological remark is in order here: In
connection with the empirical structure of the spectrum of elementary fer-
mions which is suggested by experiments (and which is also corroborated by
the renormalizable theory of electroweak interactions), the notion of fermion

"generations” has become customary in particle physics: Fermions of the fir- - -

st generation are v,, e, u, d, to the second generation belong v,, g, ¢, s and
the third generation (incomplete as yet because of the mxssmg top-quark) is
defined to comprise v,, 7, t and b.
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Problems of the GIM ‘mechanism and its generaliza‘tion to a model in-
volving six quarks (i.e. three generations of fermions) within the usual fra-

" mework of non-abelian gauge theory with Higgs mechanism are treated in
" considerable detail e.g. in [25], [56], [57], [62] and [68]. For simplicity, in

what follows we are going to discuss a model involving four quarks (i.e. two
generations of fermions); a generahzatlon of the relevant cons:deratnons to
the realistic case of three generations is straightforward.

Thus, let us return to the GIM interaction lagrangian (5.136) or (5.137)
resp. Now we are going to consider the "diagonal” processes of the type
g3 — W=W+*, where q is a quark (u, d, s or ¢). In analogy with the results
obtained in Section 5.3 for the electroweak interactions of leptons one may
expect that in the quark sector one will also have to introduce (diagonal)
neutral currents and the corresponding interactions mediated by the neutral
vector boson Z. First we will examine tree-level diagrams of the process
uit = W+W=. Contributions of the weak charged-current interaction (5.136)
and of the electromagnetic interaction are depicted in Fig. 36.

u W+
s LVA YA Y22
k r -
d,s
~1 »
e
i Cw-

(a) (b)

Fig. 36. Tree-level diagrams of the process uii — WHw- corresponding to
weak charged current interactions (a} and the electromagnetic interac-

tion (b).

Let us suppose that both final-state W’s have longitudinal polarizations.
In the same way as e.g. in the case of the process ete™ — WIW[, one
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has to add further diagrams to Fig. 36 if the tree unitarity is to be satisfied
for the considered uit annihilation process. The diagrams necessary for a
cancellation of quadratic and linear high-energy divergences arising in the
contribution of Fig. 36 are shown in Fig. 37.

u W

u wt

(a) (b)

Fig. 87. The diagrams compensating the bad high-energy behaviour of the
contribution of Fig. 36. ’

The diagram in Fig. 37(a) contains a vertex corresponding to an interaction
of quark neutral current with the Z. Taking into account the result (5.37)
derived earlier for lcptons, it is convenient to parametrize such an interaction
for an arbitrary fermion | as follows:

g - -
Liz = cos 0 (e‘L”fme + €g)f:mfn) z* (5.141)

The constants eg};, (which characterize separately the strength of the inter-

action of left-handed or right-handed fermions resp. with the Z) may be now
determined for the u-quark from the requirement of a cancellation of quad-
ratic divergences arising in the limit £ — oo from the individual diagrams
in Fig. 36, 37. Thus we obtain the following equations (cf (5.24), (5.25)):

1, 4 1, . g
- Dk = 29, 0.e?— (w) =
2g cos’ Vg + 2g sind¢ — Qqe . 19w€l' gwwz =0 (5.142)
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- Q.,e’ - cosgdwsg‘]gwwz =0 (5.143)

The relations (5.142) and (5.143) are written in a form which should make
the origin of the individual terms obvious. We will only add several technical
remarks: The last term on the left-hand side of eq. (5.142) (which comes
from Fig. 37(a)) has an opposite sign with respect to the first two terms
(which come from Fig. 36(a)) while in an analogous equation (5.24) the
corresponding terms (i.e. the first and the last one) have an equal sign.
Such a difference is due to the interchange of the external W# lines in Fig.
36(a) as compared to Fig. 17(a), which of course is related to the values
of the relevant quark charges; in this sense, a natural counterpart of the
process uti = W*W= in the lepton sector is v# — W*W~ (cf. Fig. 16 and
eq. (5.19)). In the electromagnetic contribution in (5.142), (5.143) we have
made explicit the charge factor @, (for a comparison with (5.24) and (5.25)

let us remember that Q. = —1). If we now use the relations
gwwz = gcosiw
e = gsindy

(see (5.36) and (5.37)), the solution of equations (5.142), (5.143) is obtained

immediately:

e = %—Qusin’#w (5.144)
e = —Q,sin*dw (5.145)

After the elimination of quadratically divergent asymptotic terms in the
diagrams in Fig. 36 and 37(a) there still remains (similarly to the case of the
process ete~ — WFWY[) a linear divergence:

2
M 4 MO 4 MO 4 MO = - Tooms(lJu(k) +0(1)  (5.146)
w
(the notation in the left-hand side of eq. (5.146) should be self-explanatory).
The linearly divergent term in (5.146) is cancelled by the contribution of
the diagram in Fig. 37(b). This graph contains a vertex corresponding to a
Yukawa-type interaction, which for an arbitrary fermion f will be written as

(cf. (5.75)) ]
Ly =gsmfin (5.147)
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By means of manipulations analogous to those which in Section 5.5 have led
from (5.74) to (5.77) one then finds that the required cancellation of linearly
divergent terms occurs if and only if

g My

= 5.148

Guun 2y . ( )

One may proceed in a similar way for other processes of the considered

type. An analysis of the tree diagrams for the process dd — W, W{ thus
leads to the result (cf. (5.144), (5.145))

e = -%—Q,sm’aw (5.149)
e = —Qusin*dyw : (5.150)

The different form of (5.149) as compared to (5.144) (i.e. the difference in the
sign of the numerical constant 1/2 in both expressions) is explained by the
remark following the relation (5.143) (a "leptonic counterpart” of the process
dd — W-W+ is just e“et — W-W+ - cf. the result for the gy, in (5.37)).
From what we have already said it is also clear that for the s-quark neutral-
current interaction one gets a result completely analogous to the d-quark
case, i.e. the rclations (5.149), (5.150), in which Qg is replaced by Q, (of
course, Q¢ = @, = —1/3 anyway). Similarly, for the c-quark we obtain the
same formulae as in the u-quark case (i.e. (5.144), (5.145) with @, replaced
by Q.). These results can be easily generalized to the case of six quarks;
for all the quarks with charge -1/3 (i.e. d, s, b) one obviously gets formulae
of the type (5.149), (5.150), and for quarks with charge 2/3 (ie. u, ¢, ¢
formulae of the type (5.144), (5.145) are valid. Instead of the parameters eg )
it is often convenient to employ their combinations vy, ay which characterize
respectively strengths of the interaction of the vector or axial-vector part of
the neutral current with the Z. We will define the parameters vy, ay for an
arbitrary fermion in an immediate analogy with (5.99); comparing it with
(5.141) we define

Ly, v
vy = E(EL)“.&}Q)) ’
_ Yo
o = Z(sL ) (5.151)
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Using the preceding results it is easy to find that (see (5.144), (5.145), (5.149),
(5.150))

vy = +i— —Qysin*dyw  for [ =u,qt (5.152)
v = ';1;" —Qsindw  for  f=dys,b (5.153)
ay = +-}I for  f=u,ct (5.154)

a = -i- for  [=d,sb (5.155)

Let us recall that (sce (5.37) and (5.100)) the formulae (5.153) and (5.154)
are also valid for any-neutrino, i.e. for [ =, | = e,u,7 (in this case
of course @y = 0) and the formulae (5.153), (5.155) hold for an arbitrary
charged lepton [ = e, ¢, 7 (in such a case @ = —1).

Finally, in all considered cases the coupling constant of the relevant Yu-
kawa interaction (5.147) is given by (cf. (5.148))

m
9= =gk (5.156)

As regards other binary processes involving quarks, which are "potentially
dangerous” from the point of view of the high-energy behaviour of the corres-
ponding tree diagrams, such as e.g. @#ad — W, 2y, id — W, uii —
2.2y, etc., it is not difficult to realize that the formulae (5.152) - (5.156)
together with (5.39) and the "universal” formulae for gwwz, gwws, 922y
(see (5.37), (5.73), (5.82)) already guarantee the tree unitarity to hold in
the quark sector on the basis of mechanisms completely analogous to those
discussed in detail in the case of leptonic interactions.

Now we are in a position to discuss the last problem which remains to be
solved, which Lowever is of fundamental importance for the renormalizable

“theory of weak interactions: One has to find out what is the contribution

of closed quark loops to the ABJ triangle anomaly which we have examined
in Section 5.6 using a particular example within the {ramework of leptonic
sector of the theory. We have indicated earlier that the quark and lepton
contributions to the anomaly cancel each other; now we are going to prove
this statement directly at least for the particular configuration of interac-
tion vertices in the anomalous triangular fermion loop corresponding to the
process discussed in Section 5.6.
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Thus, let us consider the contribution to the' ABJ anomaly coming from
triangular closed loops in Fig. 30 in the case that their internal lines corres-
pond to an arbitrary fermion f. It is clear that the relation (5.119) giving a
relevant numerical coefficient in the contribution of the electron loop to the
anomaly may be immediately generalized; namely, for an arbitrary fermion
fone may write -

Cinomaly - anI' . (5'157)

where Q; is the corresponding charge factor and ay is an axial-vector neutral-
curent interaction constant (see (5.151) and (5.154), (5.155)). We will now

calculate the total contribution of quarks and leptons to the anomaly, accor-

ding to (5.157), separately for each fermion generation (since the relevant
properties of generations repeat themselves, it is easy to see that we always
get the same result for different generations). With the help of (5.100),
(5.154) and (5.155) we then get from (5.157) e.g. for the first generation of

fermions (v, e, u, d): '
gllerton) —l ‘ (5.158)

anomaly ™ 4
cl, = (31— QN S
LGt

where N, = 3 is the number of quark colours. Let us recall that the term
"colour” refers to an extension of the number of quark types - each flavour in

fact corresponds to a triplet of quark fields distinguished by a "colour”. Such -

a degree of freedom is irrelevant for the dynamics of electroweak interactions
and that is why we have not considered it so far (it is however essential in
the strong interaction dynamics - see e.g. [25]). Nevertheless, when adding
contributions of the corresponding closed loops, one has to take into account
all types of fermion fields and thus one has to include additively also the
quark colour. From (5.158) and (5.159) it is seen that

i ol 4 i) — g, (5.160)

i.e. thefontributions of quark and lepton loops to the ABJ anomaly cancel
each ofher and such a cancellation occurs separately for each generation.
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. Our earlier statement is thus proved. It is also interesting to notice that
" an essential point in the proof of eq. (5.160) is that the number of colours
. N, = 3. This number is of course well substantiated experimentally in other
. situations (see e.g. [25]) and it is thus gratifying that results from different

areas of particle physics sustain each other. We will also show that eq. (5.160)

* is equivalent to a remarkably simple identity for charges of the fermions
. belonging to the same generation. To this end, let us include formally in the

lepton part the (vanishing) neutrino contribution as well; we thus get first

C( lepton) c(quark)

"Mmalv anomaly
1
= ;H(Qy = Q)(Qu + Q) + Ne(Qu - Qu)(Qu + Q.,)] (5.161)

However, it holds '
Q—Qe=0u—-Qu=1 (5.162)
and from (5.161), (5. 162) it is obvious that eq. (5.160) is equivalent to the

identity
Qv+ Qe + Ne(Qu + Q) =0 (5.163)

" (which is obviously valid if N, = 3}, or

> Q=0 - (5.164)
7

where the sum in (5.164) means a summation over all fermions belonging to
the same generation, i.e. including quark colours. It is important to reali-
ze that the anomaly cancellation condition, equivalent to (5.164), represents
the only theoretical argument correlating properties of quarks and leptons,’
i.e. it implies a lepton-quark symmetry which is very natural from an aes-
thetical point of view (let us emphasize that the arguments for introducing

- the c-quark or the t-quark resp. to implement the GIM mechanism or its

generalization resp. concern the quark sector only, and they tell us nothing
about a quark-lepton symmetry).

So far we have proved the absence of the ABJ anomaly in one particular
case, namely for the configuration in which there are two photon lines and
one Z-line attached to the corresponding vertices of relevant fermion loops.
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However, there are several other configurations where the ABJ triangle ano-
maly could play a role. If we denote the corresponding configuration by
means of the triplet of vector bosons whose lines are attached to vertices
of an anomalous triangular fermion loop, then we have ~ apart from the
configuration Zvy discussed earlier — the following additional possibilities:
22, ZZ2Z, ZWW, and YWW. Moreover, it is well known (see e.g. [17],
[21], [25], [48]), that the ABJ anomalies occur in triangular fermion loops of
two types:

- VVA (two vector vertices and one of the a.xml-vector type),

- AAA (three axial-vector vertices).

Of course, in the configuration Zy7y considered up to now only the VVA
fermion loops play a role (and the same is true in the ZZ7 case) but in
configurations ZZZ and WWZ one has to consnder both the VVA and the
AAA fermion loops.

One may demonstrate that the ABJ triangle anomalies vanish (i.e. can-
cel) in all the above-mentioned cases; again, the mechanism described in the
case of the Zvv configuration plays an essential role. In other words, the
contributions coming from quark and lepton anomalous triangle loops cancel
each other owing to the identity (5.164) (absence of some anomalies is how-
ever trivial). A proof of the complete cancellation of anomalies within the
standard electroweak theory is left to the interested reader as an mstructwe
exercise (see the problem 5.15).

It is remarkable that a complete cancellation of the ABJ anomalies occurs
automatically, as a consequence of properties of the electroweak interactions
of quarks and leptons (which have been deduced from the requirement of the
tree unitarity) and of a choice of the quark charge spectrum which is very
natural from a physicat point of view. Anyway, the elimination of anomalies is
technically the last crucial step in the construction of an internally consistent
model of electroweak interactions. '

Now we have come to an end of our road to the renormalizable theory
of weak and electromagnetic interactions, The last "missing link” in the

electroweak lagrangian (5.95) is the interaction of charged and neutral quark -

currents with the vector bosons W#* and Z described by the expressions
(5.137) (or (5.139) resp.), (5.141), (5.151) - (5.155) and the Yukawa inter-
action of quarks with the scalar field 5 (see (5.147),(5.156)) and of course
a standard electromagnetic interaction of quarks. The final result of our
construction just corresponds to the lagrangian of the standard model of
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electroweak interactions which is currently (together with quantum chromo-

" dynamics) one of the cornerstones of the modern particle theory (see [25]).

The full interaction lagrangian which we have obtained is for convenience
summarized in Appendix K. The method of deriving the standard model of
electroweak interactions, which we have described in this chapter, relied sub-
stantially on the criterion of tree unitarity; as we have seen, the elimination
of anomalies is then an automatic consequence of a physically realistic choice
of the quark sector of the model. The absence of manifest sources of un-

* desirable divergences in perturbation expansion indicates that the model we

have obtained is renormalizable (cf. the discussion at the end of Section 5.5).
It turns out that such a guess is indeed correct: Now we have an interaction
lagrangian which leads to a renormalizable perturbation expansion for the S-
matrix. However, a proof of such a statement is by far not straightforward;
for carrying out the corresponding proof to all orders of perturbation ex-
pansion it was necessary to reformulate non-trivially the whole theory and
to apply some remarkable new techniques and methods of quantum gauge
field theory (see [10]). A technical discussion of these problems can be found
in many textbooks and review articles (see e.g. [15), [17], [21], [25]).

The derivation of the standard model of electroweak interactions descri-
bed in this chapter is remarkable in particular because it demonstrates the
necessity of introducing vector bosons and interactions of the Yang-Mills type
(this corresponds to the principle of non-abelian gauge invariance in the tra-
ditional GWS formulation) and at least one elementary scalar boson (which
corresponds to the GWS realization of the Higgs mechanism) if one wants to
arrive at a renormalizable theory of weak and electromagnetic interactions.
In other words, and in a more detailed way: After the formulation of the
GWS theory [5 - 7] one might naturally contemplate the question of whether
one could do without the Higgs scalar boson (whose presence is somewhat
"uncomfortable” - see below). The systematic deductive approach [11 - 14]
described in some detail in the preceding section shows that the ingenious
GWS construction based on principles of broken symmetry in fact represents
the only realistic possibility for a renormalizable electroweak unification, if
at the same time we restrict the number of possible new particles (i.e. if
we have in mind a "minimal” model); let us recall again that in comparison
with the naive "electro-weak” theory (4.26) we had to introduce (within such
a minimal strategy) one extra neutral vector boson and one neutral scalar

boson.
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As we have already mentioned, the assumed existence of a neutral scalar
Higgs boson is somewhat uncomfortable; by that we mean, in particular, that
the standard model does not predict any specific value of a mass for such a

particle (in contrast to the case of an IVB). On the other hand, we have also °
mentioned that the requirement of perturbative renormalizability is, from a .

modern point of view, a restriction of rather technical nature (see e.g. [72])
and its physical relevance is not, strictly speaking, quite clear. The problem
of the "Higgs sector” of electroweak interactions thus represents one of the
most interesting open questions of the contemporary particle physics (see e.g.
[73], [74]). One may expect that this intriguing problem will be elucidated
by the planned experiments on LEP 200, LHC and SSC which, moreover,
should also verify whether the self-interactions of vector bosons are indeed
of the Yang-Mills type. It is supposed that the corresponding tests of these
fundamental aspects of the standard model will be feasible in a foreseeable
future - by the end of this (or at the beginning of the next) millenium.

Problems

5.1. Derive (5.10).

5.2. Prove the statement following the relation (5.19).

5.3. Derive (5.50).

5.4. Derive in detail (5.53) (a sketch of the proof is given in Appendix J).
5.5. Derive (5.56).

5.6. Derive (5.59), (5.61) and (5.62).

)
)
5.7. Derive (5.72).
5.8. Derive (5.76).
5.9. Derive (5.78).
5.10. Derive (5.80).

5.11. Derive (5.83) and (5.85).

5.12.

5.13.
5.14.

5.15.

5.16.

5.17.

5.18.

Prove that scattering amplitudes of the processes (5.97) corresponding
to the interaction lagrangian (5.95) satisfy the condition of tree unita-
rity.

Derive (5.123) and (5.127).

Show that in case that there exist five quarks u, d, s, c, b, 2 sixth quark
t with charge 2/3 is also necessary if one wants to suppress bad high-
energy behaviour of all relevant tree-level scattering amplitudes and, at
the same time, to avoid non-diagonal neutral currents. Prove that the
matrix Voxas on (5.139), (5.140) must then be unitary. How can one
arrive at a parametrization mentioned in the text following (5.140)?

Prove that the ABJ triangle anomalies vanish (for an arbitrary fermion
generation) also in configurations 22y, ZZZ, ZWW and yWW (in
the sense defined at the end of Section 5.7). In doing this, neglect the
mixing of different generations in quark sector. How does a non-trivial
mixing influence the cancellation of anomalies?

Calculate (in tree approximation) cross sections of elastic scattering
processes v,e — v e and J,e — Due.-Discuss separately the low-energy
and high-energy regions. Explain how could one determine, from a
measurement of cross sections o(vue — v,e) and o(P,e — Pue) in
low-energy region (i.e. for s « Gg') the neutral-current parameter
sin*ly and how could one verify validity of the Weinberg relation
mw/mz = cosdw (predicting thus the values mw and mz without a
direct detection of W and 2).

Calculate (in tree approximation) cross sections of processes v.e ~+ v e
and Ve — D.e.

a) Inthe low-energy region compare the obtained results with Feynman-
Gell-Mann theory (see Appendix D).

b) Does it hold a{v.e — v.e) = g(F.e — P.€) in the limit s — co?
Calculate (in tree approximation)

a) total decay width of the W

b) total decay width of the Z
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¢) the decay width I'(yp — ff) wheren is the Higgs scalar boson and
fis an arbitrary fermion (such that 2my < m,). What is the ratio
of lepton and hadron (i.e. quark) widths in the case of W, Z and
7 decays assuming that m, = 300 GeV and m, = 120 GeV?

d) For the value of m, considered above calculate also the decay
widths I'(n = W=W?) and I'(y — ZZ). For what value of m, is
the decay width of the scalar boson 5 comparable with its mass?

5.19. Let us imagine that the electromagnetic interaction is switched off, i.e.
e =0 (in such a hypothetical world an electron differs from the corres-
ponding ncutrino only by its rest mass). Is it possible to construct in
such a case a renormalizable theory of weak interactions incorporating
the original naive model with W bosons? Does an anomaly cancellation
condition lead to a restriction on the fermion spectrum? How can one
interpret a role of unification of weak and electromagnetic interactions
in constructing a corresponding renormalizable theory in the realistic
case ¢ # 07
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Appendix A
Kinematics

In this appendix we have summarized some formulae of relativistic kinematics
which are needed in the main text.

For a binary reaction I + 2 — 3 + { let us denote the four-momenta
of particles 1,...4 (with rest masses m;,...,my) consecutively as k,p, ¥, ', so
that it holds

k+p=k+)p (A1)
and
B =m} p=m) k*=ml pi=ml (A.2)

If one defines the standard Mandelstam variables (kinematical invariants) as

s = (k+ p)2
= (k—¥k)?
u = (k-p) (A3)
then the following familiar relation holds:
4
s+t+u=Zm? ‘ (A4)
=

The identity (A.4) is most easily proved as follows:
According to the definition (A.3) and using the four-momentum conserva-
tion (A.1) one may write

shtdu = gllktp + (K4 F) 4 (= K)o =)+ (k= 9) 4 (K = )]
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#+ ] 1
= F4+p+ k7 +p 4 5k +p -k = p)

From the last expression and from (A.1), (A.2) then immediately follows the
result (A.4). Let us recall that s = E?, | where E,,,, is the total energy of
colliding particles in the center-of-mass (c.m.) system.
Further, we will introduce a dimensionless variable
pq :
I ee— A'5
¥="% | (A.5)
where we have denoted ¢ = k — k’. This kinematical variable is particularly
useful in cross-section calculations in situations when one may neglect rest
masses of particles. Namely, in a massless case the following relations hold
(we leave a corresponding proof to the reader as a simple exercise)

= -3y

u = —s(l-y) {A.6)

Moreover, the variable y is in such a case simply related to the scattering
angle in the c.m. system:

y= %(l —cos¥) | (A7)

where ¥ is defined as the angle between momenta k and . A proof of (A.7)
is easy if one takes into account that upon neglecting masses one_has in the
c.m. system

- . 1
ko=lk=p ==K =k|=p=lF|=E=5Vs
Then

pk—pk
= pk—[E*— E?cos(r — ¥)]

pk— %s(l + cos ¥) ,

=
-y
|

However, one also has p.k = s and from the definition (A.5) we thus imme-
diately obtain (A.7). It is also obvious from (A.7) that if one neglects masses,
the variable y takes on values from 0 to 1.
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We will now give two frequently used formulae. The first of them expresses
the momentum of particles colliding in the c.m. system, as a function of the
kinematical invariant s and of the relevant rest masses my, mj:

A, m?.m;)]*

. NPeml = [ n (A8)

where .
Mz, y,2) = 22 +y? + 22 — 22y — 222 — 292 (A.9)

The proof of (A.8) is straightforward. Total energy of the two particles in
the c.m. system is (using the shorthand notation P, = p)

VB +mi+ R+ mi=y/s (A.10)
Solving eq. (A.10) with respect to |p] we get first
2
77 +m2 = (V5 m3)

from where (A.8) follows after a short manipulation.
The second frequently used formula gives the magnitude of relative ve-

. locity of 2 particles in a collision (in an arbitrary reference frame). Let the

two colliding particles with rest masses m;, m, have antiparallel velocities
¥y, 2. Then it holds

2 _ 2,214
K_P&)m;ﬂzi (A1)
2

where p; = (E;, ), © = 1,2 are four-momenta of particles 1,2, i.e. p? = m}.
The proof of (A.11) is easy: Under given conditions one has

Gai e (1B, Bl
— )2 = W 12
(¥ — 1) (El +°5,
1 S |
= g EVEE+ AR - mim]

(the last identity becomes clear if we use |fi| = \/E? — m?). However, in the
considered configuration of the particle momenta one may write

|91 — 7] =

|5y — 33

il

n.pa= BBy + | ||53]
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and the relation (A.11) is thus proved. The formula (A.11) may be also recast

in terms of the function A(s,m?, m3) introduced in (A.9). Indeed, from the
definition (A.3) it follows

(s = m] —m})

B | -

Prpa =
and substituting this to (A.11) we get immediatelj

’\%(3: mi,mj)

¥y = g = A.12
|91 — TN (A.12)
Finally, using (A.8) one may also write
- " 3%!5c.m.' ’ ’
— g = ——— A.
Iv; Ugl E1 Eg ( 13)
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Appendix B

Dirac spinors and free fields

External lines of Feynman diagrams corresponding to s;')in-;i; fermions repre-
sent graphically solutions of Dirac equation in momentum representation (for
a four-momentum p we always take p, = +/p? + m?):

(F-mu=0, (F+my=0 (B.1)

The u,v in (B.1) is a shorthand notation for u(p,s), v(p,s), where s is a
polarization’ which takes on 2 possible values. The symbol # in (B.1) is
defined as p = p,v* where v*, 1 =0,1,2,3 are standard Dirac matrices.

In diagrams, a factor of u (or @ resp.) corresponds to a particle, and simi-
larly v (or # resp.) stands for an antiparticle. From (B.1) it follows immedia-
tely that for conjugated spinors @, 7 one has (recall that i = ulyy, 7 = vly)

#(p-m)=0, ¥(FH+m)=0 (B.2)
The functions u,v are normalized by
du = 2m, v =—2m (B.3)

If we use the convention (B.3), an expansion of a free Dirac field in plane
waves may be written as

v ‘?/ (2 U )ulp, )™ + 0¥ 0,8l o)™

i

]

#e / (2m)¥(2 o)% [b*(p, $)a(p, 5)e™ + d(p, s)0(p, s)e™]
(B.4)
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where b (b*) is an annihilation (creation) operator for a particle and d (d*)
correspond to antiparticles. Let us remark that the annihilation and creation
operators in (B.4) satisfy anticommutation relations

{b(p) 3): b+(p,5,)} = {d(}’v?)s‘#(l"» 31)} = 630'53(5"’ }-")
etc. which correspond to the normalization of one-particle states defined by
< f’;"!ﬁ'r" >= 5:0‘63(1?“' i")

It is in order to emphasize here that, instead of the convention (B.3),
another normalization is frequently used in the literature, namely u =
1, ¥v = —1 (see e.g. [16], [21]). An advantage of the option (B.3) is that the
relevant formula for a scattering cross section or a decay rate has then the
same form both for bosons and fermions (see Appendix C, formulae (C.1) or
(C.14) resp.) and that a Lorentz-invariant scattering amplitude My, for an
arbitrary binary process is dimensionless (cf. (C.3)).

For the functions u, v normalized according to (B.3) one has further

Z u(p, s)i(p,s) =p+m . (B.5)
s
Z v(p, 8)i(p,s) =p—m (B.6)
ET)

Finally, let us specify an explicit form of the functions u, v satisfying (B.1),
(B.3). We will denote u(p, s) = ul)(p), i.e. the polarizations s are labelled
by an index r = 1,2. Solutions of (B.1) with polarizations corresponding
to definite projections of the spin onto the z-axis in the rest frame of the
considered particle (we assume m # 0) are given by

r)
X
u(')(p) = \/E_+Tn_ 3_5 " (B'7)
E+ mx
. 3-}”' X(')
W) =4VE+m | E+m” ) (B.8)
' (r)
X
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In (B.?), (B.8) we have denoted

1 0
W = @ =
=) =()

and & are Pauli matrices. The upper sign in (B.8) refers to r = 1, the lower
sign corresponds to r = 2. The signs & in (B.8) are chosen so that the
operation of charge conjugation would turn a function u into a v, assuming
th:.toa. phase of the charge-conjugation matrix is fixed conventionally (C =
ir*1°). '

It is important to notice that in the ultrarelativisticlimit (i.e. for £ » m)
the u and v behave like v/E; this fact is frequently used in estimates of high-
energy asymptotics of scattering amplitudes represented in terms of Feynman
diagrams.
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Appendix C

Formulae for cross sections
and decay rates

If we fix our conventions so that the Dirac spinors u, i, v, ¥ corresponding to
external fermion lines in Feynman diagrams are normalized according to the
(B.3), then a general formula for the differential cross section of a process
14 2— 34 4.+ nreads (cf. [16])

1 1 1 2/ \dgd e d®ps d’p,
S SN N N YV 23 i
40 = Z 5125 25 M Cr) St ;1’:)(2,,)3253 @B~
1)

regardless of whether the particles 1,2,... n are bosons or fermions. In the
formula (C.1) we have denoted by 1, 7; velocities of the initial particles 1,2
(we take them to be parallel and of opposite directions), the pj,j = 1,..,n
are on-shell four-momenta and E; denote the corresponding energies, i.e.
Ej =/} +m? for j = 1,...,n and K is a combinatorial (statistical) factor,
which is different from 1 only in a case that some of the final-state particles
3,...,n are identical, namely
|
K=]]= (C.2)
ekl

where n, is the number of identical particles of the r-th kind in the final state
(of course, it holds n; + ... + ng = n —2). The My; is a relativistic invariant
scattering amplitude which in practice is calculated as the contribution of
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Feynman diagrams relevant for the considered process. Let us remark that
owing to the employed normalization of one-particle states (corresponding
to (B.4)) the My, is connected with the corresponding S-matrix element via
the relation

' . 1
Spi = &5+ (20)*6*(Pr - PYiMp) [] Ry @E
: A !

where P; or P; resp. is the total four-momentum of the final or initial par-
ticles resp. The convention used by Bjorken and Drell [16] differs from our
definition by replacing iMy; — ~iMy;.

Using the formula (C.1) one may determine easily a dimension of the
amplitude My;. The dimension of the left-hand side of (C.1) is

[do} =M -2

where M is an arbitrary mass and on the right-hand side of (C.1) one has
(recall that the dimension of the four-dimensional delta function is M~%1)

MMMl M (M = (M 0
Thus, for the dimension of M; we obtain the equation
M= = [[Mp[P}. M1
from where we get immediately
My] = M+ (C.3)

In particular, (C.3) implies that a scattering amplitude of an arbitrary binary
process 1 + 2 — 3+ 4 (i.e. for n = 4) is dimensionless (let us stress again
that the normalization convention (B.3) is crucial for such a statement to be
valid). This simple fact is frequently used in the main text for estimates of
high-energy behaviour of scattering amplitudes of weak and electromagnetic
processes.

For the relative velocity |0, — 2] in (C.1) we may use formulae (A.11) or
(A.12) from Appendix A and obtain thus commonly used equivalent alter-
natives to (C.1) in which the factor

|5y — T 2E) T (2E) !
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is replaced by
F(pipa)? — mimi)H
or by
A (s, mi,m3)

respectively.

Further, we are going to derive a practically useful formula for the diffe-
rential cross section of a binary process with respect to the scattering angle
in the center-of-mass system of colliding particles. Let us consider a process
1+ 2— 3+ {in the center-of-mass (c.m.) system, i.e. take p; = —p1 = Pom.
and E; + E; = /3 (the |(Pem.| is of course given by the formula (A.8) - see
Appendix A). We will assume that the particles 3, § are not identical; in the
opposite case we would just have to include a combinatorial factor K = 1.
From the genera.l formula (C.1) we then get first (see also (A.13))

&ps &py
2 4 RN i
do = 4| _.cm l %IM/,I (21!') 64(}71 +p21—pa— p4)(2ﬂ')32E3 (21’)32E4

The relation (C.4) may be now integrated to eliminate the é-function; in
doing this, we will still use the same symbol do for the integrated cross
section. First of all, one may integrate trivially over d®p4 to get

(C.4)

s Ml (V7P md o PE i - 5)
&y |
C.5
ARV T (C.5)

where 5 = fi3 = —py; in (C.5) we have also set E, + E3 = /5. A direction of
the 7' may be described by spherical angles ¥, ¢ (the axis 3 of the coordinate
frame is defined by the p direction) and one may then write

&5 = |F|d|7|dQ = |§'*d|7') sin 9dddyp
Let us now integrate (C.5) with respect to |5'| (in the limits 0 and oo); thus we

get rid of the é-function corresponding to energy conservation. For brevity,
let us denote || = z. Using such a notation, (C.5) reads

1 2 22dzdQ)
= G HIMJ-IJU()\/ e W g
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(C.6)

- where

f2)= V2 +mi+ /22 4+mi—/fs (C.7)

The equation f(zo) = 0 has a single positive solution zo, namely (see (A.8))

I A("xmg’ mi)] d
2o = !pc.m.l - [ 4s (C.S)
The é-function in (C.6) is then equivalent to
§ C.9
[f(z)] If'( o)l §(z — 20) (C9)
From (C.7) it follows easily
S(20) = — 2 - 20V (C.10)

+
Va+my g +mi  ad+mia+m]
Substituting (C.9) and (C.10) into (C.6), an integration of (C.6) with respect
to z is trivial and by using (C.8) we obtain finally

da — l 1 'ﬂc.m.l 2
dQ " 64x%s l[)'c_.,,,lij\'i!’i (C1)

Obviously, the formula (C.11) may also be recast as

do 1 EA*(s,mg,mi)
dQ ~ 64n2s A*(s,mf, m3)

2

Mzl (C.12)

In a case where one may neglect particle masses it is useful to work with
differential cross section (of a binary process) defined with respect to the
Lorentz invariant dimensionless variable y defined in Appendix A (see(A.5)).
If the |My;]* depends only on the angle ¥ then using (A.7) one gets from
(C.11) or (C.12) resp. a simple formula

do

— 2 i
dy 161r s!Ml'l (C.13)

In practical calculations, the Mandelstam invariants ¢, u in |M|* may be
then expressed in terms of s and y (see (A.6)). The integral cross section is

then obtained by integrating (C.13) over the y from 0 to 1.
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Let us now consider a two-particle decay of a particle with mass M in its
rest frame; masses of the decay products will be denoted as m;, m;. The
differential decay probability per unit time is given by (cf. [16])

1 °pa

o = LM RSP = by ) s (2«)32 E (mj; aeEk  (C1)
where My, is the corresponding relativistic invariant decay amplitude (de-
termined by the relevant Feynman diagrams), P is the four-momentum of
the decaying particle, i.e. (in the rest system) P = (M,0,0,0), p: = (Ei, 5i)
for { = 1,2 are four-momenta of the final-state particles 1,2 and I is the
combinatorial factor defined in (C.2). In what follows we will consider for
simplicity the case I # 2,i.e. K = L

The phase-space integration of the differential decay rate (C.14) (i.e. an
integration over the momenta of the final-state particles 1,2 may be perfor-
med in analogy with the previous derivation of the formula (C.11). If we
denote the integrated element of the two-particle phase volume correspon-
ding to a solid-angle element df? by a symbol d(LIPS;) (where " LIPS is
an acronym for "Lorentz Invariant Phase Space”) we thus obtain

1 [ dp,
4%’7 ZE 2B,

it

=8P — p1 — p2)
2

161|'2 \/zz +mi /27 + m2
x & (\/z’ +m?+ /22 +m} -~ M) = o 4 (C.15)
! 2 M 1672

where |p] is the magnitude of three-momentum of a decay product (remember
that |f1] = |2] = |B]). The |p] is of course given by (cf. (C.7), (C.8))

d(LIPS;)

1= g A7t ) ©16)

Note that using the definition (A.9), the expression A(M?,m?,m2) may be
rewritten as

A(M?,mi,m3) = [M? = (my + ma)"|[M? — (m; —ma)’] (C.17)

Thus, in a case where it makes sense to consider an angular distribution
of the decay products (e.g. if the decaying particle is polarized) we have a
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general formula for the corresponding differential decay rate
1
dw = m‘Mﬁ"d(LIPSz) (C.IS)

where the element of the phase space is given by (C.15). If the initial and
final-state particles are unpolarized, the quantity | M ;;]* summed over pola-
rizations does not depend on the angles 2 = (v, ) and the relation (C.18)
may be integrated trivially; we thus get a useful formula for the integral
decay rate (decay width) I':

I= —-——[M LIPS, (C.19)

where the symbol |M]? indicates, as usual, summing and averaging over
polarizations and the phase-space factor is

LIPS, = %%

= %\/ g (m 1;; ma)’ \/ - (ml;l;nz)’ (C.20)

" The last expression follows easily from the relations (C.15) through (C.17).

For completeness we give finally two frequently used particular cases of
the formula (C.20):
i) If my = my = m we get from (C.20)

, 1 4m?
L1P521m1=ma=m = g 1- W (C.21)
ii) For my,my €« M we have a very simple approximate formula
L1
LIPSs|mympeM = 3 (C.22)
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Appendix D

Neutrino-electron scattering in
Feynman — Gell-Mann theory

As an illustration of the considerations presented in Chapter 2, in this appen-
dix we will perform a detailed calculation of cross sections of the elastic
scattering processes vee — v.e and V.e — P.e in the lowest pertirbative
order within a Fermi-type model of weak interactions. More precisely, we
will employ the model of direct four-fermion interaction ot the type current
x current, with currents V — A (see (2.1)), i.e. the classic Feynman - Gell-
Mann theory {2). The relevant Feynman diagrams are shown in Fig. 38. The
Lorentz-invariant scattering amplitudes M y; corresponding to the diagrams
(a), (b) in Fig. 38 are given by

M) = —i%{aww(l () )1 )] (D)

iMf) = —i%lﬁ(kh’(l — 75)u(p)] [a(p)7,(1 = 1s)v(K")] (D.2)

(for the sake of brevity, polariza.tions‘ are not marked explicitly in the Dirac -

spinors in (D.1), (D.2)). Throughout our calculations the neutrino is taken to
be massless, but we will keep m, # 0. We will also use a shorthand notation v
instead of v, and m instead of m,. First let us consider the process ve — ve.
From {D.1) it follows easily (for an arbitrary combination of polarizations)
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() (b)

Fig. 38. Feynman diagrams corresponding o the elastic scaitering processes
a) vee — vee and (b) V.e — Dee in the lowest order of perturbation
ezpansion in a Fermi-type model,

MR = SR - 1u(b] w07 (1 - 26)ul)
[@(k" )75 (1 = ¥s)u(p)] [@(p) 7o (1 — 75)u(k)]

= Fefual (1 - 1Bk (1 — 7))
X THu(K)a( )70 = 10)u(p)a(a). (1 = 20)]

Summing in the last expression over polarizations (with the help of (B.5))

we get (using also the relation (1 — 45)? = 2(1 — 75) and other well-known
properties of Dirac matrices)

STIMPPE =

pol.

2GETY((F + m)y" k" (1 — 1)K (F + m) 7o (1 = )]
2GETe[F 7 by (1 = ) Tx (K v h70 (1 = 75)] (D3)

(Notice that the terms involving m do not contribute in the last expression,
since the trace of a product of an odd number of Dirac matrices vanishes.)
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The spinor traces in (D.3) may be evaluated most efficiently by using the
following identities:

Te(fr*h ) Te(frofre) = 32(a.c)(b.d) + (a.d)(bc)]
T(fv' 1) Tr(frodrems) = 32(a.c)(b.d) - (a.d)(bc)]
Tr(dy* B ) Te(frefrors) = 0 (D4)

Let us remark that the identities (D.4) follow easily from the standard for-
mulae (remember that we adopt the convention €133 = +1)

Tr(vun¥eYe) = 4(Guwps = JusGve + Guous)
Tr(yu e o1e¥s) = 4i€upo

Using now in (D.3) the formulae (D.4) we get the result
> IME) = 12863 (k.p)(K p)

pol.

which may be rewritten in terms of the Mandelstam variable s (see (A.3)) as

S IMEP = 32G% (s — m?)? (D.5)

pol.

In the case of the process #e — Ve, the starting point is the expression
(D.2); the corresponding calculation is completely analogous to the preceding
case and it leads to the result

3 IMEP = 3265 (u — m?)? (D.6)

pol.

where u is the Mandelstam variable defined in (A.3) (i.e. = (k—p')*). The
expressions (D.5) and (D.6) are thus related by the replacement s « u, as
it was to be expected on the basis of the "crossing symmetry (see e.g. [20],
§66

)Ctoss sections of the considered processes may be now calculated by
means of the formula (C.11) (let us recall that for an elastic scattering one
always has |Fom.| = |PL,.|)- For the angular distribution of the final-state
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particles in the c.m. system we thus get (averaging in (D.5), (D.6) over the
electron polarizations)

de®) G} (s—m?)?

0 4x? s (D7)
da(ve) F (u - mz)z
N 4x? s (D-8)

Thus, the angular distribution of scattered particles in the process ve — ve
is manifestly isotropic (in the c.m. system) according to (D.7). In order to
express the right-hand side of (D.8) in terms of the scattering angle in the
c.m. system we may use the relation u = 2m? — s — ¢ (see (A.4)) and (owing
tom, =0)

t=(k—K)? = —2kk’ = ~2|foum.[*(1 — cos V)

Usfng (A.8) for the |p.m.], after a simple manipulation one gets

t—m? = —(s —m?) (D.9)

Of course, for m = 0 is (D.9) reduced tou=—1(1+4cos¥) = —3(1 —y) as
expected (cf. (A.6), (A.7)).
Substituting (D.9) into (D.8), we have the following result for the diffe-

rential cross section of the process Ve — e w.r.t. scattering angle in the
c.m. system:

do®) G (s—m?)? s—m? ?
R 1- % (1 — cos ) (D.10)

Let us now calculate the corresponding integral cross sections. The an-
gular integration is trivial for the process ve — ve; from (D.7) we get imme-
diately
G% (s —m?)?

o(ve — ve) = - S (D.a1)
The integration of the differential cross section (D.10) leads to
2
(e — ve) = %(s - m?) {1 - (’-"s—)a] (D.12)
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In the high-energy limit, i.e. for s 3> m?, the relations (D.11), (D.12) yield
approximate asymptotic formulae

o{ve — ve)|,om & %3 (D.13)
o(ie = De)|,pmr & g—f—s (D.14)

For completeness let us also give a simple formula for computing numeri-
cal values of the cross sections (D.13), (D.14). Since we employ a system
of units in which A = ¢ = 1 in all relevant formulae, in order to express
the cross sections in units [cm?] one has to use the conversion constant
fic = 0.197GeV fm (where 1 fm = 107'3cm). Further, taking into account
that Gr = 1.166 x 10-*GeV?, then e.g. from (D.13) one gets

o(ve — ve) = 1.7s[GeV?] x 107%cm? (D.15)

If one wants to express the numerical value of (D.15) as a function of the
neutrino energy- E, in the laboratory frame (i.e. in the rest system of the
electron), one may use an approximate relation valid in high-energy limit
(i.e. for E, 3» m), namely

s=2mkE, (D.16)
Since m = 0.5MeV, one gets from (D.15) and (D.16)
o(ve — ve) = LTE,[GeV] x 107 em? (D.17)

An unbounded growth of the cross sections (D.13), (D.14) for s —+ oo
means, roughly speaking, that weak interactions in a Fermi-type theory be-
come "strong” in the high-energy limit. In this context (and for an elucida-
tion of the term "weak interaction”) it is instructive to compare numerical
values of the cross sections (D.13), (D.14) with the cross section of a typical
electromagnetic process (e.g. e"et — u~ut) for various energies. Let us
recall that for s 3> m} one has, in the tree approximation (i.e. in the 2nd
order of perturbation expansion in QED), the approximate formula
—ot -ty = ﬁr_a_? = 86.8
o(e"et = p~ut) = T s(GeV’)nb (D.18)
where Inb (= 1 nanobarn) = 103 ¢m? (a is the fine-structure constraint,
o = 1/137).
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Appendix E

Jacob-Wick expansion and the
unitarity condition

In this appendix we present some basic relations and formulae concerning
the expansion of a relativistic scattering amplitude (given in momentum and
helicity representation) into partial waves (characterized by values of the total
angular momentum), i.e. the so-called Jacob-Wick expansion [19]. Within
the framework of such a formalism we then discuss the condition of unitarity

. of the S-matrix. A more detailed exposition and a derivation of the Jacob-

Wick expansion may be found either in the original paper [19] or in the
textbooks [20], [21). A very useful survey of this method is also contained in
an appendix of the paper [22].

First we will consider a process of elastic scattering of particles 1, 2,
throughout our dicsussion we are working in the center-of-mass system. The
initial and final states of both particles are characterized by their momenta
(they are plane waves) and helicities. The axis 3 of the coordinate frame will
be identified with the direction of an initial-state particle momentum. For
the scattering amplitude normalized so that its square is just equal to the
differential cross section, i.e.

do
=l (B.1)
one may write a partial-wave expansion (Jacob-Wick expansion [19])
Suon(s,9) = 325 + D)D) (E:2)
H
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where h = (hy, hy), and k' = (h},h}) are the initial and final helicities re-
sp., 0 = (9, ) defines a direction of the momentum of scattered particles
and A,A(Q) are Wigner functions (known also from the theory of angular
momentum as the matrix elements of finite rotations - see e.g. [23]). The
indices A, A’ are given by '

A=hy—hy XN=h -k

Some basic properties of the Wigner D-functions are summarized in Appen-
dix F. A coefficient fU) in the expansion (E.2) is the amplitude of the partial
wave cotresponding to the total angular momentum j. The sum in (E.2) runs
over all non-negative integer or half-integer values of the j resp. depending
on whether the set of particles 1, 2 contains an even or an odd number of
fermions resp. The amplitudes of pa.rtial waves have the form

1) = 5 H(sm D (E3)
where § is the momentum of colliding particles i m I’.he cm. system (for
elastic scattermg we of course have |p] = |J']) and S m. is S-matrix element
for scattering in a state with total angular momentum j and for given initial
and final helicities 2 and A'). The essential point is that S,‘,}, belongs to
a unitary matrix. This immediately implies an important bound for the
partial-wave amplitude fU)(s) (here and in what follows we usually omit the
indices &, h')

IR (E4)

Let us recall that |p] can be expressed in terms of s as (see (A.8))
)‘%(srmg’mg)

{m = 28%

The expansion (E.2) may be rewritten for the Lorentz-invariant scattering
amplitude M which we usually employ in our calculations (which is defined
directly as a contribution of Feynman diagrams). Indeed, comparing the
formulae for scattering cross section (E.1) and (C.11) one gets (equating
phases of f and M) in general, i.e. including an inelastic scattering case,

where [j] # |7|

M =8r st (%)% f . | (E.5)
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The partial-wave expansion for the amplitude M may be written as
Mun(s, Q) = 167 Y (2] + )M ()DL () (E.6)
7 :
(the coefficient 167 in (E.G) is chosen conventionally for a convenient norma-
lization of the amplitudes MU) - see below, the relation (E.12)). From an

orthogonality relation for the Wigner D-functions (see (F.6) in Appendix F)
we obtain for partial-wave amplitudes in (E.6) a general formula

. 1 1) ey 451
Dg) = *(5)
M (s) lﬁx/M(s’n)D""‘ (ﬂ)—“ (E.7)
In the particular case where X' = A = 0 (i.e. for by = hy, A} = k) the D-

functions are reduced to Legendre polynomials (see (F.4)) and the formula .
(E.7) then becomes

. ,
M) = = / M(s,9)P;(cos 9)d(cos ¥) (E.8)
-1
In an elastic scattering case, the relation (E.5) simplifies to

M =8r/sf (E.9)
From (E.3) and (E.9) we thus get

MW (s) = ;{r"_ s -1 E.10

| ()= 225 -1 (.10)
and unitarity of the matrix SU) then yields the bound

o)< (E11)

In high-energy limit or for massless particles one has [p] ~ }/s and instead
of (E.11) we may write a simpler inequality

Mg <1 (E.12)

In the case of an inelastic process { + 2 — & 4 { one may also write a
partial-wave expansion in the form (E.2) or (E.6) resp; however, in such a
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case only the purely non-diagonal S-matrix elements are involved. Instead
of (E.3) and (E.9) we then have (cf. also [23], where the case of spin-zero

particles is discussed)
.‘,:Z‘( )=

or’

S
2:111%1*1% Sin

) ()= 37 i)
Mt‘ncl.(‘s) - 4i|fl’IS"'d'

where the symbol S.(;Z

(E.;s)’

(E.14)

[

;. again represents co]lectively elements of the relevant

unitary matrix and the index "inel.” denotes the inclastic channel 1 + 2 —

3 + 4. In high-energy limit, the relation (E.14) implies the bound

iM(J)

inel.

The constraints for partial-wave amplitudes following from S-matrix uni- -

(E.15)

tarity can also be easily converted into inequalities for partial cross sections
(i.e. for cross sections corresponding to the individual partial waves). From
(C.11), (E.6) and using the orthogonality relation (F.6) for the D-functions
in the expansion (E.G) we get, after performing the angular integration (for
a given set of the initial and final helicities) -.

) o(s) = ZU(J‘)

where

(j)(a) = (2; + MU

In the case of elastic scattermg, the inequality (E.11) then nnphes a bound

for the partial cross sections (E.17), namely

() < (2 + x)gﬂ% |

which in high-energy limit becomes
olils) < (2] +1
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167
>

(E.16)

(E17) -

(E.18)

(E.19)

In the case of an inelastic process it is easy to derive analogous inequali-
ties; in high-energy limit (or for massless particles) one gets from (E.17) and
(E.15)

j . 4r )
ol (s) < (25 + D (E.20)
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Appendix F

Wigner D-functions

In this appendix we summarize some important propertics of the Wigner
D-functions which enter the Jacob-Wick expansion described in Appendix
E. A more detailed review may be found e.g. in [20] or [23].

In what follows, the symbol  denotes, as ever, a pair of spherical angles
defiing a dircction in the 3-dimcusional space. Wigner D-funclion appearing
in the expansion (E.2) or (E.6) resp. is defined by

Dr(;:?m(n) = e"""l’d}:?’“(ﬂ) (Fl)

Indices m, m' may only take on values —j, —j+1,...,j—1, j, and the functions
d¥) (9) arc given by the general formula

mtn

e

(j+m)
7 =m)(7 + m)l(j — m)!

(146781 - g (5’5) Taserra—g (F2)

A () = (=1 [22:‘(

where § = cos . )
Some special properties of d\) (9):

m'm

49 (=9) = d9.()

d9 ) = 9 _.(v) (F.3)
dfr?m(o) = 67""“

In the case m = m' = 0 it holds for an arbitrary integer [ > 0
DY) = P(cos )

where P is Legendre polynomial.

Examples of explicit form of the functions d'7) (W) forj=1:

m'm

1
dY = d(_’,)_l-:i(l—{-cosﬂ)
d&,’ = cos?

flﬁ‘_’l = d_ = %(1 ~ cos?)

1
d&},’ = —d((,',) = rl((,l_}l =—d) = —sin9

-10 = \/2
An orthogonality relation:

o) G (a1
/Dmilmx(ﬂ)vzanz (Q)4_1r = -2—;—”;-161'”" 6"‘1"*2

(F.4)

(F.6)



Appendix G

Index of Feynman diagram

In this appendix we derive, for completencss, a standard formula for the "in-
dex” (or "superficial degree of divergence”) of an arbitrary Feynman diagram
within the framework of a general model of quantum ficld theory described
by a polynomial lagrangian (see also [21]). We discuss separately the case of
interactions involving a spin-1 boson field with a non-zero mass (M) which
is not treated in sufficient detail in [21}: If we use in such a case the cano-
nical propagator of the massive vector field which behaves in the ultraviolet
(UV) region like a constant ~ M~? (see (1.45) in Appendix H), then the
standard formula for the index of 2 Feynman graph 0[21] should be modified
in a simple way, as we will show in the sequel (see also [25], {26]).

First we are going to discuss a "standard” case where all boson pro-
pagators (in momentum representation) behave in UV region as k=2, The
contribution of a Feynman graph involving L closed loops (i.e. L independent
momenta of internal lines) may be writlen as

M(G) =-/d"kl...d4k[, T(kry ooy kL Pext.) (G.1)

where ky, ...,k are relevant internal (loop) momenta and the symbol pea,
denotes collectively external momenta; in (G.1) we have neglected a possible
dependence on masses of particles corresponding to the internal lines (i.e.
propagators) since a non-zero mass in a propagator obviously does not in-
fluence the convergence properties of the integral (G.1) in the UV region
ki = 00, t=1,..., k. The integrand in (G.1) is thus a homogeneous func-
tion of the variables &y, ...,k in the UV region. We then defline the index of

153

the graph G as the degree of homogeneity of the complete expression behind
the integration sign in (G.1) (i.e. including d*k;...d%k.) and denote it as
w(G); this means that when rescaling the loop momenta according to

ko M, i=1,..,L (G.2)

the expression behind the integration sign in (G.1) (where all the masses
are neglected) is multiplied by the factor A“(€), 1t is easy to realize that
w(G) < 0 corresponds to a convergent integral (G.1) (which however may
contain UV-divergent subgraphs) and for (superficially) UV-divergent graphs
one has w(G) 2 0 (such an UV divergence is logarithmic for w(G) = 0, linear
for w(G) = 1, quadratic for w(G) = 2 etc.). Let us stress that in such a
simple estimate of the degree of divergence of a Feynman graph based on a
straightforward power counting in (G.1) we have of course ignored any sub-
tle details of the considered diagram whicli in particular cases may cause an
"accidental” cancellation of some of the potential UV divergences. A termi-
nological remark is perhaps also in order here. In the literature, the w(G) is
often called "superficial degree of divergence” or "overall degree of divergen-
ce” of a graph. We employ here the term "index” (which is frequently used
e.g. in Russian literature) mostly for the sake of brevity and lerminological
simplicity, taking into account that later we will also introduce the notion of
an "index” or "effective index” of an interaction vertex.

In order to calculate the w(G) one has to realize that under the scaling
transformation (G.2) in the UV region, each fermion propagator is multiplied
by a factor A1, each boson propagator yields (according to our assumption)
a factor A~ and a derivative from the interaction lagrangian (acting on
an internal line) gives a factor of A; finally, the volume element in (G.1)
contributes a factor A*L. Putting this together we get

w(G)=4L—Ip~2Ip+ Y &, (G.3)

where Ip is the number of interual fermion lines of the considered graph, /g
is the number of internal boson lines and §, is the number of derivatives from
interaction lagrangian acting in a vertex v on the internal lines and the sum
in (G.3) runs over all vertices of the graph G. The number of closed loops
L may be easily expressed in terms of the total number of internal lines ([)
and total number of vertices (V):

L=I1-V+1 (G.4)



Of course, one has I = Ir + Ip and (G.3) may be thus rewritten as

W(G)—4=3Ip+2p~4V +) &, (G.5)
The numiber of internal fermion or boson lines resp. may be expressed as
1
'2‘ Z fu

1
Iy = Ez‘,:bv (G.6)

Ir

I

where [, or b, resp. is the number of internal fermion or boson lines resp.
attached to the vertex v. Further, one has

fv = Nrw - EF;V
bu = NBp— EB;V
5., = Npw— ED;., (G7)

where Lr., is the number of external fermion lines attached to the vertex v,
the Eg,, has the saine meaning for boson lines and Ep,, denotes the number
of derivatives from the interaction term corresponding to the vertex v which
act on external lines. Similarly, the symbols ng,, and ng, in {G.7) denole
the total numbers of fermion and boson lines attached to the vertex v (i.e.
the total numbers of fermion and boson fields occurring in the corresponding
terin of the interaction lagrangian) and np,, is the total number of derivatives
in the corresponding interaction term. Using (G.6) and (G.7), the relation
(G.5) may be recast as

3 .
—d = E y —4) = (SEp + L G.8
w(G) —4 d (wy ~4) (2L‘r+EB+6) (G.8)

where we have introduced the notation
Wy = %np;., + gy + npg (G.9)

and

EF = Z EF;u
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Z EB;V
Y Epy (G.10)

o
It

The Ep (£g) is thus the total number of external fermion (boson) lines of
the considered Feynman diagram and § is the total power of external imo-
menta factorized in the contribution of the graph as a result of the action
of derivatives from interaction terms on the external lines. The number w,
defined by eq.(G.9) is usually called the index of the vertex v and it cha-
racterizes a corresponding term in the interaction lagrangian. The values of
w, for individual interaction terms (i.e. for individual vertices of diagrams)
in a sense determine, according to (G.8), the structure of UV divergences of
Feynman graphs in a given model of quantum field theory and indicate thus
renormalizability or non-renormalizability of the perturbation expansion: If
there is w, > 4 for at least oue interaction vertex in the considered model,
then on the basis of (G.8) one may in general expect an infinite number of
types of UV divergences (i.e. there is an infinite number of combinations of
Ep and Eg for which one may get a UV-divergent graph in a sufficiently
ligh order of perturbation expansion) and such a field theory model is then
"suspect” of being non-renormalizable (however, there may operate a spe-

" cial additional mechanism cancelling the offending UV-divergences so that

the perturbation expansion may turn out to be renormalizable despite an
"unfavourable” power-counting result). If for any vertex one has w, < 4,
there may be only a finite number of types of UV-divergent graphs (here one
should empliasize that in (G.8) one of course has £ > 0, £5 > Gand § > 0)
and the perturbation expansion is thus renormalizable by means of a finite
number of counterterms.

In this connection, it is also uscful to notice that the valuc of w, given by
(G.9) is equal to the dimension of the corresponding interaction term Cfﬁ
(i.e. of the corresponding monomial in relevant fields, without a coupling
constant) in units of an arbitrary mass M: Indeed, the dimension of a fermion
field (i.e. the corresponding power of M) is equal to § and the dimension of
any boson field is equal to 1, as oue may find easily froin the corresponding
free lagrangians; the dimension of a derivative is of course equal to 1. The
formula (G.9) may be thus recast as

wy = npding + ngdimB + np,, dimd (G.11)
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and the right-hand side of the last expression is just equal to dimﬂsxi. (The
symbol dimX has of course the same meaning as the notation [X] used for
a canonical dimension in other places of this text.) Let us remark that the
formula (G.11) is generally valid in an n-dimensional space for n # 4, if we
use the appropriate values of dimy and dimB; such a generalization of the
relation (G.11) is left to the interested reader as an instructive exercise.

Let us now consider a model of quantum field theory where all the boson
fields have spin 1 and a non-zero mass and take the corresponding propaga-
tors to have the canonical form (11.45) (an example of such a model is the
theory of weak interactions with a charged IVB described in Chapter 3).In
such a case the boson propagators behave in the UV region as a non-zero
constant and the preceding calculation of the index of a Feynman graph is
modified in a simple way: In the basic formula (G.3) one has to replace the
term —2/p by zero. Further steps in the computation of w(G) are not chan-
ged and the above-mentioned modification of eq. (G.3) thus implies that
instead of the previous results (G.8), (G.9) now one gets

Ww(@) —4=) (W —4)- (%Ep +2Ep + §) (G.12)

where we have denoted
will = gn;:-ﬂ, + 20, + B0y (G.13)

All preceding considerations may be easily generalized to the case of a field
theory model involving boson fields both of the type 1 (with the propagator
~ k=% in the UV region) and of the type 2 (with the propagator ~ const. in
the UV region): In such a case, the formulae (G.9) and (G.13) are combined
to
Wl = :;-np;v + ngf., + 271(32;)‘, + np (G.14)
where ng?v or ng?u resp. is the number of the type-1 or type-2 boson lines
resp. attached to the vertex v and the sccond term in (G.8) or (G.12) is
modified analogously.
The number wé//- appearing in (G.12), (G.13) or {G.14) resp. will be
called an "effective index” of the interaction vertex v. The adjective "effecti-
ve” should reflect the fact that the formulae (G.13) or (G.14) resp. describe
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a structure of the UV divergences assuming that one employs the canonical
propagator (H.45) for massive vector fields; the value of w//" thus provides
an information on potential UV divergences arising as a combined effect of
the structure of the corresponding interaction term and a "bad” high-energy
behaviour of the propagator (11.45). It is in order to remark here that the
above-mentioned canonical description of a massive vector field is not always
mandatory; generally speaking, one may use a formalisin involving a type -
1 vector propagator and an auxiliary unphysical spin-zero field (see e.g. [21],
paragraph 3.2.3). Internal consistency of such a formalism (i.e. the fact that
the unphysical auxiliary field does not influence pliysical quantities) must
in each case be verified separately. Thus, e.g., in spinor electrodynamics
with a massive photon, such a formalism is internally consistent and the
same is true for non-abelian gauge theories with the Iliggs mechanism; the-
se theories are renormalizable (although the relevant effective indices wg//:
calculated from (G.13) or (G.14) suggest non-renormalizability of the per-
turbation expansions). In both of these cases, a gauge symmetry (abelian in
QED case) is essential. llowever, the above-mentioned alternative formalism
for the description of a massive vector field cannot be consistently used e.g.
in the model of weak interactions with a charged [VB described in Chapter 3
or in the electrodynamics of charged vector bosons (Chapter 4). The difficul-
ty is that in both cases one gets a non-unitary S-matrix in higher orders of
perturbation expansion (see e.g.[26], {29]). Within the framework of the ca-
nonical formalism, both these models are non-renorinalizable, in accordance
with an estimate based on the formula (G.13) or (G.14).

In any case one may say that a value of the effective index wif/* > 4 in
models involving interactions of massive vector bosons is signalling poten-
tial problems with UV divergences in high orders of perturbation expansion
which, however, may be in fact sometimes suppressed by means of more sub-
tle special mechanisimns. A physically relevant example of such an interest-
ing situation is just the standard model of electroweak interactions descri-
bed in Chapter 5. All the interaction terms of course satisfy the condition
dimc{) < 4.

From what we have said up to now it should be clear that it makes sense
to distinguish between the eflective index w¢//" defined by (G.13) or (G.14)
resp. and the index w, which may be always defined as the dimension of
the corresponding interaction term (cf. the formulae (G.9) and (G.11)). Of
course, in some particular cases the equality w, = wf/* may hold trivially (as
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e.g. in a Fermi-type theory, i.e. in a model of direct four-fermion interaction).

Appendix H

Massive vector field

In this appendix we sumnarize some basic properties of a massive vector

field, i.e. the field corresponding to massive spin -1 particles and we derive *

here some important relations which are used {requently in the main text in
the description of processes involving intermediate vector bosons. Further
details may be found e.g. in the textbooks [21] (§3.2.3), [36] (§2.8 and §4.5).
Let us first consider the relativistic wave equation for a free particle with
spin 1 and a non-zero mass which has been originally formulated by Proca

(see e.g. [36], [37]):
8™ +m*BY =0 (H.1)

where

F™ = g*B* - 9"B* (11.2)

Equations (I1.1), (H.2) represcnt, in a seuse, a straightforward generaliza-
tion of Maxwell equations (which correspond to massless photons). The
corresponding one-particle wave function is described here by four (in ge-
neral complex) functions of space-time coordinates B*(z) (p = 0,1,2,3)
which are components of a four-vector w.r.t. Lorentz transformations and
the parameter m # 0 in (H.1) has dimension of a mass. (The presence of
a mass terin of course causes that Proca equations are not invariant under
gauge translormations.)
Substituting (H.2) into (H.1) one gets

(O +m?)B® — 8*(9,B*) =0 (H.3)
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Acting on eq. (H.3) with 8, (i.e. calculating the four-divergence of (H.3))
then on the left-hand side only the expression m?8, B* remains and thus we
get immediately

4,.B® =0, (H.4)

i.e. a "Lorentz condition” follows automatically from Proca equations (II.1),
(I1.2). The essential point in derivation of (H.4) is, of course, just that
m # 0, i.e. that the original equation (II.1) contains a mass term. (In the
case m = 0 we get by means of the same procedure only a trivial identity;
this corresponds to the well-known fact that the Lorentz condition does not
follow from Maxwell equations but rather represents an appropriately chosen
subsidiary condition.)

The result (11.4) means that Proca equation (I1.3) for the four-vector B*
is equivalent to the pair of equations

(O+m})B*=0, 8B, =0 (H.5)

That is, individual components of the wave function B* satisfy the Klein-
Gordon equation (and describe thus indeed a particle with mass m) but they
are not independent since the four-divergence of the B* vanishes. The equa-
tions (H.4) physically mean that the number of independent components of
the wave function is thus reduced (in a covariant manner) to three, which
just correspond to a spin-1 particle. The independent components are conve-
niently chosen to be B, j = 1,2,3 and B° may be then expressed in terms
of B using (I1.4). (Let us remark that (I1.4) in fact represents the only con-
ceivable Lorentz-covariant condition linear in B* which eliminates just one
degree of freedom in the considered four-component wave function.)

We will now examine solutions of equations (H.1), (H.2) or the equivalent
equations (I1.5) resp., corresponding to a given momentum k. Such a plane-
wave solution may be written as

B,(z) = N(k)eu(k)e™ ' (1L6)

where k* = (ko, k), and from the Klein-Gordon equation in (H1.5) immediately
follows .
B=1l-k=m? (H.7)

i.e. kis the four-momentum of a particle with mass m. (A remark: Here and
in what follows, if we write components of a four-vector without denoting
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them explicitly we always have in mind upper Lorentz indices, i.e. the con-
travariant components.) The N(k) in (H.6) is a normalization factor whose
specific value is inessential at present and ¢,(k) represents the wave function
in momentum space; in this sense it is e.g. a direct analogy of the functions
u(k), v(k) in Dirac plane waves (cf. Appendix B). At the same time, the
€,4(k) may be interpreted (similarly to the case of solutions of Maxwell equa-
tions) as a polarization vector corresponding to the plane wave (11.6). Such
a dual role of the four-vector ¢,(k) is of course specific just for the descrip-
tion of a spin-1 particle. (In what follows we will also clarify a connection
between polarization and helicity for plane-wave solutions of the type (11.6).)
The second equation in (I1.5) yields immediately

k.e(k) =0 (11.8)

where k.e(k) = k"¢, (k). In order to find all linearly independent solutions of
eq. (H.8) it is instructive to consider first the corresponding solutions in the
rest frame of the vector particle, i.e. for k = k(® = (m,0,0,0). Eq. (H.8)
then implies £o(k®) = 0; the space components ¢;(k®), 7 = 1,2,3 may
be arbitrary. There are 3 linearly independent (in general complex) three-
dimensional vectors &), & ), £ which may be chosen to be orthogonal,
i.e. satisfying conditions

EW g0 =g, (1.9)
for \, X' = 1,2,3. In the rest frame one may thus write 3 linearly independent
solutions of eq. (H.8)

€W = (0,6M), A=1,2,3 (11.10)

which just correspond to three possible spin states of a massive vector partic-
le. An obvious explicit example of a solution of the type (H.10) is the triplet
of real vectors

eM = (0,1,0,0)
e® = (0,0,1,0) (11.11)
e® = (0,0,0,1)

It is useful to notice that the conditions (H.9) may be rewritten in terms of
Lorentz-invariant scalar product for the four-component objects (H.10) as

5(’\),5(’\1)' =~ (11.12)
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If we require that the €™ in (H.10) transform as four-vectors, a triplet of Ii-
nearly independent solutions of eq. (1.8) for an arbitrary k  (k* = m?) may
be obtained from (IH.10) by means of the corresponding Lorentz transforma-
tion. Denoting three linearly independent solutions of eq. (H.8) as £(k, )
(where again A = 1,2,3), the nornialization condition (H.12) imposed in the
rest frame then also implies

E(k,A).C‘(k,/\') = —5,\,\- (H.13)

for A, ¥ = 1,2,3. Vectors £(k,A) for a given momentum E can be easily
found directly from eq. (11.8), without performing the above-mentioned Lo-
rentz transformation. To this end, one may choose 3 real vectors & (k, A), A =
1,2,3 such that the first two of them are mutually orthogonal and also or-
thogonal to k, and the & (k,3) is directed along the £, i.c.

k
&k,3)=a—= (H.14)
{|
where a > 0. A solution of eq. (I1.8) may be then written as
ek, 1) = (0,(k,1))
e(k,2) = (0,€(k,2) (H.15)

e(k,3) = (a%al-;:.—i)

The normalization condition (I1.13) is satisfied if we take the £ (k,1) and
£ (k,2) to be unit vectors and in the expression for £(k,3) we set a = ko/m.
Vectors €(k, A) thus correspond to (linear) transverse polarizations for A =
1,2 and longitudinal polarization for A = 3. In the following we will employ
the usual symbol e1(k) for the longitudinal polarization; according to the
preceding discussion, its components are given by

el (k) = "(k,3) = (@ ky —k—) (11.16)

m' m |E|

It is perhaps in order to emphasize that the existence of three nontrivial
polarization vectors, i.e. of tliree space-like four-vectors satisfying (I.8) is
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obviously related to non-zero rest mass of the considered vector particle; it
can be best seen from the discussion of the corresponding solutions in the
rest frame, whose very existence is guarantced just by the fact that m # 0.
It is easy to prove that for a massless particle there is no space-like vector
satisfying (H.8) which would correspond to longitudinal polarization.

For completeness we will now clarify a connection of the polarization
vectors (I1.15) with states characterized by a definite helicity. Orientations
of the unit vectors & (k, 1), € (¥,2) may be chosen such that

i x E(k,1) =€ (k,2) (Ha7)
where ii = k/ Ii{ is the unit vector along the direction of E. From (H.17) then
also immediately follows

i xE(k,2) =—E(k1) (H.18)
The relevant hermitean 3 x 3 matrices representing spin components are

generators of rotations in three-dimensional space around the corresponding
coordinate axes, i.e.

00 0 0 0 i 0 —i 0
Si={00 —i], SS=[0 00|, SS={i 0 0] (1.19)
0 i 0 - 00 0 0 0

The helicity operator for a spin-1 particle carrying a momentum E is thus
represented by the matrix

. . 0 —-n3 ng
hE)=i.8=i]| ns 0 - (11.20)
-9 M 0

Acting with (H.20) on an arbitrary vector € (viewed for convenience as a
one-column matrix) it is straightforward to derive the formula

h(E)e = i(7i x &) (1.21)

Using (11.21), (H.17) and (H.18) we then get for the polarization vectors in
(11.15) or (11.16) resp.

W(E)E (k1) = i€ (k,2)
h(R)E (k,2) = —i€ (k1) (H.22)
h(k)éL(k) = 0
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If we define complex vectors

1
(k4 = ol6 (1) +6 1,2
.. -
E[e (k, 1) — i€ (K, 2)] (11.23)
(passing thus from linear to circular polarizations), the relations (I1.22),
(I1.23) immediately yield

&(k,—) =

i‘(i:)g(k7 +) = £&(k, +)
h(E)E (k,—) —&(k,~) (H.24)
Thus, (11.24) together with the last equation in (11.22) make it clear that the
vectors £ (k,£) and £1(k) represent states with helicities 1 and 0.

Now we are going to derive an important relation concerning the asympto-
tic behaviour of components of the vector of longitudinal polarization in
high-energy limit (i.e. for |k] 3> m), which reads

1 m
BILY — LK 3
ep(k) ml. +0 (L‘ ) (11.25)

0

The proof of (H.25) is easy. Using (11.16) one gets for the difference of the
four-vectors e (k) and k/m first

el (k) - ,ik” — (M’ M _’:_) (}1.26)

n m m k|

However, it holds

S 2 2
ho—|M _ 1 k-l m (12) (11.27)
m M ket K ko 4[] ko

and from (I1.26), (11.27) thus imumediately follows (11.25).

The relation (H.25) shows that the individual components of the four-
vector of longitudinal polarization grow unboundedly in the high-energy limit
since they behave like components of the corresponding four-momentum; let
us emphasize, however, that the normalization e,(k).e7,(k) = —1 still holds
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for an arbitrary k as it is defined by means of the indefinite Minkowski-space
metric.

We will exhibit one more relation for polarization vectors of a massive
vector particle which is frequently used in practical calculations, namely

3
. 1
Esp(k» Nes(k, A) = =g + ’?k,‘k,, (11.28)
A=1

(Notice that (I.28) is in a sense an analogy of the forinulae (B.5), (B.6)
valid for a Dirac particle). A proof of (11.28) is most easily performed in the
following way. Since the e(k, A) are four-vectors, the sum over polarizations
on the left-hand side of eq. (11.28) must be a 2nd rank tensor depending on
a single four-vector k. Denoting the considered polarization sum as P, (k)
one may therefore write

Pu(k) = Ay, + BR,E, (H.29)

where A, B are constants (because k* = m?). Now it is sufficient to use a
concrete form of the polarization vectors (which should be as simple as po-
ssible) for a conveniently chosen four-momentum £k, e.g. for k£ = (kq,0,0, IE;)
(then one may employ e.g. the first two expressions from (11.11) and the
corresponding particular value of (1.16)). With such a choice we obtain
Pu(k) =1, Pos(k) = —kolkJn~? and using this in (H.29) we get immediate-
ly A=—1, B=m"? and eq. (11.28) is thus proved.

So far we have considered the Proca equations (I.1), (}.2) or (IL.3) re-
spectively as equations for the wave function of a relativistic massive spin-1
particle. These equations may of course be also employed for the description
of a corresponding classical {ree field. For simplicity we shall first consider
the case of a real field (which corresponds to neutral particles upon quantiza-
tion). The equations of motion (11.3) may be derived in a standard manner
as the Euler-Lagrange equations corresponding to the lagrangian density

1
4
where F,, = 8,8, — 8,DB,. The classical field described by the lagrangian

(11.30) can be quantized canonically; in doing this, one has to keep in mind
that the relevant independent dynamical variables are the space components

L=—~F,F" + %m’ﬂ,,m (11.30)
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B;, § = 1,2,3. Details of the procedure of canonical quantization of the
Proca field can be found e.g. in [21], [36], [38]. For the quantized field B,
one wmay write an expansion into the the plane waves (H.6)

£ f:{a(k, ,\)c,,(k,,\);-"*‘ +a*(k, é\)s; (k, )5);"‘”] , :
' (H.31)

&
By(z) = / (27 )33 (2ko) 1/ o
where the polarization vectors e(k, ) satisfy the conditions (H.8), (H.13)
and the normalization factor N (k) in (H.6) is chosen so that the canonical
commutation relations for B;(z) and the corresponding conjugate momenta
imply the following commutation relations for the annihilation and creation
operators in the decomposition (H.31):

[a(k, X), a* (¥, X)} = S (E— k) - (H.32)

Now we are vgoing to calculate the corresponding Feynman propagator.

One may start with its usual representation in terms of time-ordered product
of a pair of field operators, i.e. define »

Dy (2 — y) =< 0T (Bu(z)B.(¥))I0 > (H.33)
where ) .
" T(Bu(2)B.(y)) = ¥(zo — yo) Bu(z) Bu(y) + 9(yo — o) Bu(y) Bu(z) (H.34)

To compute the expression on the right-hand side of (H.33) one employs
the decomposition (H.31), commutators of the type (H.32) and the formu-
- la (H.28). Standard manipulations then lead to a result for the propagator
Duu(z — y) which contains, among others, also non-covariant terms propor-
tional to go,g0,6%(z — y) (see e.g. [21], §3.2.3, §5.1.7 and [38]). In general,
one may expect such contact terms to be present in the propagator, becau-
se the time-ordering operation T" in (H.33) is not, a priori, strictly defined
for g = yo; the J-function in the conventional definition (H.34) has unique
meaning as a generalized function but relativistic covariance of (H.34) is not
manifest. Let us however remark that the above-mentioned problem does
not occur in the massless case (i.e. for the electromagnetic field). It is clear
that in view of the above-mentioned ambiguity of the massive vector-boson
propagator for z = y one has to postulate an additional requirement of re-
lativistic covariance (it is usually formulated as replacing the symbol T' in

167

(H.33) by an appropriate covariant lime-ordering T'* - see >e.g. [21]). On the

other hand, the Feynman propagator of a massive vector field may also be
viewed as the causal Green function of the Proca equation (H.3); a practical
computation of the covariant propagator function D,,(z) is performed most
easily just by utilizing this connection. Thus, one has to solve the equation

(0 +m")Di(z) - 3"(OrDy(2)) = g26'(z)  (H.35)

(a solution of (H.35), if it exists, is automatically a 2nd rank tensor w.r.t.
Lorentz transformations). Performing in (H.35) Fourier transformation, i.e.
introducing the function D, (k) defined by

- d‘k the ‘
Dy (z) = (2#)‘3 D, (k) (H.36)
one gets from (H.35) the system of algebraic equations
(=K + m?)DA(k) + Kk DM(k) = gt (1.37)
or
LiD) = g (1.38)
where «
LY = (=K 4 m?) g} + k*k), (H.39)

" The D??(k) is a 2nd rank tensor (depending one a single four-vector k) and

thus it may in general be written as

D (k) = Dr(¥)PE (k) + Du(k)PL* (k) (11.40)
where
' ., Kk
Py o= g — 7
kPk®
Pr o= - (H.41)

Denoting as Pr and Py, the matrices with elements given by the mixed com-
ponents of the tensors (H.41), it is easy to find that

Pi=Pr, Pi=P, PrP,=PPr=0, (H.42)
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i.e. the matrices Pr and P, are orthogonal projectors - this is a substantial
advantage of the parametrization (H.40). The matrix L defined by (H.39)
may be decomposed in an analogous way:

L= (=K +m*)Pr+m?P, (H.43)

Employing the relations (H.42) together with (H.40) and (H.43) it is now easy
to solve the matrix equation (H.38); since the unit matrix in its right-hand
side may be written as Pr + Py, one gets readily (for k? # m?)

1 1

Dp=— (H.44)

DT":_kz+m2’ m?

The ambiguity corresponding to a potential singularity at k* = m? is removed
by defining the causal Green function in a standard way, i.e. by the familiar
replacement m? — m?—te. According to (H.40), (H.41) and (H.44) one thus
gets the final result for the Feynman propagator of the massive vector field
in momentum space:

=G + m=1k kv *
Dby == rie (H.45)

In closing this appendix let us also remark that for a classical complex
vector field one has to write the corresponding free lagrangian as

L= ~3(8,B, ~ ,B,)(0"B" — 0'B*) + m'B,B* (H.46)

or for a quantized non-hermitean field (i.e. a field corresponding to charged
particles), in the form

1 - v v -
L= "i(auBu- _ 6‘.,3,, )(@*B* — 8B**) + m"B,, Bt# (Hv.47)

where the B and B} are related by means of hermitean conjugation, The
change of coefficients in (H.46) in comparison with (H.30) is of course due to
the fact that in the case of a complex field, the B; and B} are independent
dynamical variables. In the case of a charged vector field one also has to
modify plane-wave decompositions of the type (H.31) (cf. e.g. the expressions
(B.4) for a Dirac field). The formula (H.45) for the Feynman propagator
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(which in the case of charged vector bosons is defined by means of time-
ordered product of the fields B} (z) and BJ}(y)) is not changed. Thus, in
practical calculations of Feynman diagrams involving charged intermediate
vector bosons of weak interactions, an internal IVB line labelled e.g. by W~
corresponds to the same propagator as that labelled by W+ and the relevant
expression is always given by (H.45).
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Appendix I

Interactions WWZ and WWwey

We are going to prove first a basic statement on the direct interaction of
three vector bosons W*, Z set forth in Section 5.2, namely:

Leading divergences arising in the limit £ — oo in tree-level diagrams (of
binary processes) involving interaction vertices WW Z vanish for an arbitrary
combination of polarizations of the external W* and Z if and only if the
interaction WWZ is of the Yang-Mills type, i.e. the vertex in Fig. 15 is
given by the expression (see (5.14), (4.15))

prM) yirM

w2y ) = gwwz Vi, Yk, p,q) (L.1)

where

VM (k,p,q) = (P — O)aguw + (@ = k)ugau + (k= P)ugru (L2)

and gwwz is a (real) coupling constant.

Further, at the end of this appendix we will show how one can genera-
lize the corresponding statement concerning the electromagnetic interaction
WWe of the Yang-Mills type which we have derived in Chapter 4.

A proof of the first part of the above assertion (stating that the Yang-Mills
structure (5.2) is a sufficient condition for an elimination of the corresponding

divergences) is based on applications of the 't Hooft identity (4.19). Since

we have already used such a technique in several particular examples in the
main text, we léave a formulation of a proof of the first part of our statement
to the reader.

Now we are going to prove the more difficult part of the statement, namely
that the Yang-Mills structure (1.2) of the WW Z interaction is a necessary
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condition for an elimination of the leading high-energy divergences in the
corresponding tree graphs. Of course, in doing this we will only consider
interaction terms satisfying the constraint (5.5), i.e.

dimLwwz < 4 (1.3)

It is obvious that a Lorentz-invariant interaction of three vector bosons
fulfilling the condition (I.3) must involve just one derivative of a vector-boson
field (the corresponding coupling constant is then of course dimensionless).
In momentum space, this means that the interaction vertex shown in Fig. 15
represents a linear polynomial with respect to the four-momenta k, p, ¢. In
fact only two of these four-momenta are independent as it holds k+p+¢ = 0.
Choosing e.g. the k aud p to be independent variables, the most general li-
near polynomial representing the interaction vertex WWZ may be written
as

Vaue(kypyq) =
= (AkA + BpA)gyv + (Cku + Dpu)gf\u + (Eku + Fpu)g)u
+ GE).pvpkp + H€;\,.wpp (1'4)

For comparison, the expression for the Yang-Mills vertex (1.2) may be written
(using the four-momentuin conservation ¢ = —(k -+ p)) as

VIM(k,p,q) = (k+ 2p)agus + (=2k = P)ugrs + (k= Plugau  (L5)

On the general interaction vertex (I.4) one may now impose constraints.
following from the requirement of a suppression of the leading high-energy
divergences in relevant tree-level Feynman diagrams. For this purpose we
will consider 3 different configurations of the vector boson lines W#*, Z, such
that the Z, W+ or W~ label consecutively an internal line outgoing from
the  WWZ vertex in a Feynman graph (with the other two vector bosons
corresponding to external lines). These 3 configurations correspond e.g. to
processes ete™ — WHW~ e~ — W~Z and vet —» W*Z (see Fig. 39).

a) First we shall examine leading power-like divergences arising in the
limit E — oo from the diagram in Fig. 39(a). Obviously, the worst di-
vergence comes in any case (i.e. for an arbitrary combination of the W#
polarizations) from the longitudinal part of the Z propagator which is pro-

portional to mz2q%¢*. Acting with the ¢* on the leptonic vertex, the electron
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mass m is factorized, which compensates one factor of m3'; however, there
remains another a priori uncompensated factor mz' which may cause that
the degree of divergence of the diagram (a) for £ — oo is in general higher
than that of any other tree graph contributing to ete™ — W+W~. (Such
an argument may be used in all the considered cases, i.e. for the diagrams
(b) and (c) as well, and we will keep it in mind implicitly in what follows in

estimating high-energy behaviour of the leading divergent terms.)

(a) (b . : (c)
Fig. 39. Tree diagrams of processes (a) e”et — W~Wt (b) ve™ — W~2Z
(c) vet - WtZ involving the interaction vertex WWZ.

Thus, for an arbitrary combination of polarizations of the final-state W's
the leading divergence in question resides in the expression

m3' ¢ Vaw (k, py )™ ()€™ (F) (1.6)

Substituting into (5.6) the general parametrization (1.4) and using the conserva-

tion law ¢ = ~(k + p), then after a simple manipulation one gets for the
leading term contained in (1.6}

ni![ - B+ OEEEe®)
= (B4 F) k) |)e ()
+(G~kawww§%meqm] (L7)

173

(In deriving (1.7) we have of course also utilized the relations k* = m},, p* =
mly,, k.e*(k}) = 0, p.e*(p) = 0 and we have neglected non-leading terms
in which m}, is factorized.) The requirement of an elimination of leading
divergences in the diagram (a) thus means that the coefficients of all the
independent kinematical structures in (1.7) should vanish. So we get the
conditions

B+C=0 (1.8)
E+F=0 (1.9)
G-H=0 (L.10)

b) We will now examine the diagram in Fig. 39(b). In this case, a
potential leading divergence comes from the expression

My P Vau (ky p, q)e™(k)e™ (q) (1.11)
Substituting {I1.4) into (I.11) and using p = —(k + ¢), then similarly to the
preceding case we obtain for the leading term contained in (1.11)
wit | BB+ P e @) ®)
+ (=C +2D)(ka)e" (k) £()
+ Ge,\wpk"q"e"‘(k)s“’(q)} (1.12)

The requirement of an elimination of leading divergences in the diagram (b}
thus yields the conditions

B-E+F=0 (1.13)
-C+2D=0 (1.14)
G=10 (1.15)

¢) Finally, for the diagram in Fig. 39(c) the corresponding leading diver-

gence comes from

my K Vau (k. p e (p)e™ () (L.16)

Substituting (I.4) into (1.16) and using k = —(p + g}, then in an analogous
manner as in the preceding cases we get for the leading term involved in
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(5.16)
i [ (C + E = F)(pe"@)(g.£"(0))
+ (24— B)(p.q)(e"(p)-€"(2))

4 l-lew*qﬂe'"(p)e"<q)] (117)

The requirement of an elimination of leading divergences in the diagram (c)
thus yields the conditions

C+E-F=90 (118)
2A-B=0 (L19)
H=0 - (120)

Thus, in the first place we see that two of the eight unknown parameters in
(1.4) must vanish if one wants to suppress all leading high-energy divgrgeuces
in the diagrams in Fig. 39, namely (see (1.10), (1.15), (1.20))

G=H=0 (1.21)

In other words, the two terms in the expression for the WWZ interaction
vertex involving the Levi-Civita tensor €, are identically zero. For the
remaining six unknowns 4, ..., F we have obtained a system of six conditions
(1.8), (1.9), (1.13), (1.14), (1.18) and (1.19). For convenience, let us summarize

these equations here:
B+C =
E+F =
B~E+F =
~C+2D =
C+E~-F =
24— B =

(==~ T e N o S o i =

(1.22)

It is easy to find that the solution of the system (1.22) is unique, up to a one-
parametric freedom in choosing arbitrarily one of the unknowns (e.g. A),
namely

B=2A, C=-2A, D=-A, E=A, F=-A (1.23)
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The result (1.23) means that the most general expression (1.4) constrained
to satisfy our conditions has the form

Viulk,pq) = A [(k + 20)a g + (=2k = p)ugan + (K — 2p)ugrn (L.24)

with A being an arbitrary constant. This, however, is just the interaction
vertex of the type (1.5) and A = gwwz in the notation of (1.1). Thus we see
that the necessary condition for eliminating the leading high-energy diver-
gences in the particular graphs in Fig. 39 is that the WWZ interaction be
of the Yang-Mills type; the more it is a necessary condition for suppressing
unwanted divergences in a general case. Qur statement is thereby proved.

The following comment on the obtained results is in order: In the general
expression (I.4) we have started from, it has not been necessary to assume
a priori that the parameters A,...,H are real; however, from (1.24) it is clear
that the parameter A must be real (and, according to (1.23), the same is then
true for the rest) for the corresponding interaction lagrangian to be hermitean
(cf. (5.13), (5.14)). Thus, according to (1.21) and (1.23), the solution of the
considered problem admits only real values of the parameters in (1.4).

To close this appendix, we will make an important comment concerning
the electromagnetic interaction WW+<., In Chapter 4 we have derived the
Yang-Mills structure of the corresponding interaction vertex, starting from
the electromagnetic interaction (4.7) involving one free parameter & (we ha-
ve used then a priori also some restrictions which follow from imposing the
discrete symmetries C, P and T). A question arises naturally, as to whether
it would be possible to derive the Yang-Mills interaction WW+ in a man-
ner analogous to that employed here in the WIWZ case. The answer to
this question is yes: The procedure described in this appendix may be easi-
ly generalized and used almost without any change for the electromagnetic
interaction WW+. To this end it is sufficient to consider a general para-
metrization of the type (I.4) and diagrams analogous to those in Fig. 39
with the Z lines being replaced by photons; one has just to realize that for

-a diagram of the type (a) (involving an internal photon line) a correspon:

ding argument has to be reformulated: In such a case one has to require an
elimination of the longitudinal part of the photon propagator on the basis
of electromagnetic gauge independence (mind that the longitudinal part of
photon propagator may depend on a gauge-fixing parameter) and not becau-
se of suppressing an offending high-energy divergence. (Strictly speaking, for
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the considered graph the required effect occurs automatically owing to the
current conservation in the leptonic vertex; thus, in order to draw indeed a
non-trivial constraint for WW4« from electromagnetic gauge-independence,
one should instead consider e.g. tree diagrams involving two WW+ vertices
- an obvious example is provided by elastic WW scattering.) Thus, although
a physical origin of the relevant condition formulated for an electromagnetic
diagram of the type (a) (in a broader sense) is different from the case of the
WW Z interaction, it is clear that technically such a condition leads to the
same equations for parameters in an expression of the type (1.4), i.e. we thus
recover the relations (1.8), (1.9) and (1.10). For photonic diagrams of the type
{(b) or {c) resp. the corresponding conditions are formulated in the same way
as in the case of WWZ interaction (i.e. by requiring a suppression of the
would-be leading high-energy divergences). The above remark concerning
the W+ interaction thus provides an interesting non-trivial generalization
of the arguments used in Chapter 4.
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Appendix J

High-energy behaviour of some
tree diagrams

In this appendix we summarize formulae for the leading and next-to-leading
asymptotic terms corresponding to the limit £ — oo in contributions of soime
important tree-level Feynman diagrams discussed in the main text. In more
complicated cases we give a brief derivation as well.

1. The process ete™ — WHW[

(a) The contribution of the diagram in Fig. 17(a) may be written as

My = =g a0~ s0)u(h)

2
w

. mi(1)(1 — vs)u(k) + O(1) (J.n

2
4mjy,

A derivation of this result is left to the reader as an easy instructive
exercise (see the problem 3.6 in Chapter 3).

(b) The contribution of Fig. 17(b) contains only a quadratically di-
verging term (see (4.34) or (5.22) resp.). '

(c) The contribution of Fig. 17(c) will now be worked out in more
detail. A starting point of our calculation is the expression

- 14
Ts -~ 275>u(k) %

. . _ 1
iMie = Pgwwzi(l) (gw, 3
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—pyPV -2 p.v
x ATy o el@ehr)  (12)
q?—m}

(here and in what follows we take into account that the vector of
longitudinal polarization is real - see (H.16)). Employing cyclicity
of the Vo (p, 7, ) (see (4.18)) and 't Hooft identity (4.19) it is easy
to show that the longitudinal part of the Z propagator does not
contribute (this is even true for an arbitrary combination of W#*
polarizations)., Using further the standard decomposition (H.25),
(J.2) may be rewritten as

1 - L+
Mize = gwwz—5-6(!) (gw 1 +grY 75) u(k) x
miy 2 2
1 .
XV lpr g+ O) (13)
s—mb
where s = ¢* = (k+{)*. Using in (J.3) again the 't Hooft identity,
we get, after a short manipulation

- - A+
Mire = —gwwz—59(l) (ym/ Y 4 gy 75) u(k) x
mjy 2 2

X (ot 50)+0(1) (7.4

An application of Dirac equation in (J.4) finally leads to the result

1

Myge= — Z—'rgwwzybﬁ(‘)ﬁ(l — 7s)u(k)
371“;

i

- ﬁgwwzgnﬁ(l)ﬁ(l +7s)u(k)

+ o gwwz(on — gr)i((nsu(k) +0(1) (1.5)
My

2. The process ve — W[ Z),

(a) The contribution of Fig. 18(a) is given by

g [
mybmwmzv(’)ﬁ(l =75 )u(k)

(1)1 + ys)u(k) + O(1) (J.6)

Mige = —

m

9.
+ 2\,/59” mymg

179

{(b) For the diagram in F‘ig. 18(b) one has

g 1 _

= =z - k
Mlgb Zﬂg memz”(l)fs(l ¥s)u(k)
g m
oz — (1 k J.7
i1+ (k) + 01 (1)
A derivation of the formulae (J.6) and (J.7) is straightforward and

we leave it to the reader as an instructive exercise,

(c) The evaluation of Fig. 18(c) is slightly more complicated and we
will therefore indicate here at least its most important steps. As
a starling point, let us take the basic expression

iMpg, = i"’z—g\/——zgwwzﬁ(‘)“fp(l —7s)u(k) x

_ pv+nz-—-2 PV \
x Vo el () s (09)
that is
Mise = Mg+ M., (J.9)

where the MS};’C and Mﬁ,{ respectively correspond to the diagonal
and longitudinal parts of the W propagator in (J.8). First we will
compute the ME:)C Employing (4.18) and (4.19) one may show

easily that

¢ Vi (py 1y q)E,{(p)e‘;‘(r) = (m¥, - 77122)51,(;)),61,(7‘) (J.10)

Using also Dirac equation and the decomposition (H.25), then
after a short manipulation we get from (J.8) and (J.10)

(z) _ J9wwz m _ ﬁ -
M= Z2 (1 28 1+ )ul) + O()
(J.11)

From the last expression it is clear thal the Mg)c contains terms
at most linearly divergent for £ — o00. The calculation of the
part Mg:;)c is analogous to the case of Fig. 17(c). We use again
the decomposition (H.25), the 't Hooft identity (4.19) and Dirac
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equation and after simple algebraic manipulations we obtain the

result
o _ _ ggwwz 1 _ ;
MIS(:_ 2\/5 mwmzv(l)ﬁ(l ’75)11(’»)
g9wwz m  _
= 5(){(1 k
T (1)1 + ()
+.0(1) (J.12)

According to (J.9), (J.11) and (J.12) we thus have for the whole
contribution of Fig. 18(c)

_ _ 99wwz B
Mine = = ED0EE a1 = )u(k)
2
g9wwz m _omE
2/2 mwmg (1 szv) F(I)(1 + 7s)u(k)
o) (J.13)

. The process Wy W, — Wy W[

We shall examine here contributions of the diagrams in Fig. 7 (photon
exchange), Fig. 19 (Z exchange) and Fig. 20(c) (direct interaction of
four vector bosons) and prove the relation (5.53). All these diagrams
are summarized in Fig. 20. (There are of course also contributions of
neutral scalar boson exchange (see Fig. 25); the corresponding calcu-
lation is relatively simple and we leave it to the reader as an exercise -
see the problem 5.7).

(a) Let us first consider the contribution of Tig. 7(a). The correspon-

ding amplitude is given by

. . -g°°
Mz, = zgezVA,‘,(p,—k,q)q—zVam(—q,r,—l)><

x e(p)er(R)er(r)ez (1) (J.14)

The photon propagator in (J.14) corresponds to the Feynman gau-
ge and for the WW< vertices we have used the rule that an in-
coming W~ is equivalent to an outgoing W+ with opposite four-
momentum (see Chapter 4, the remark following eq. (4.14)); in
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each case one has to maintain an order of the momentum variables
in the function Vand of the corresponding indices (YW W+ or an
arbitrary cyclic permutation resp.). For the vectors of longitudinal
polarizations one may write according to (1.25)

ei(p) = ;l;p* + Ap) (J.15)

etc. where the remainder A*(p) is of the order O(mw/E). Sin-
ce it holds p.er(p) = 0 and p* = m}y, a useful identity follows
immediately from (J.15), namely

pA(p) = —mw (J.16)

Qur goal now is to isolate in (J.14) leading and next-to-leading
asymptotic terms, i.e. the terms of the order O(E*/m},) and
O(E?/m},) for E — oo. Substituting into (J.14) a decomposition
of the type {J.15) for each polarization vector, the amplitude My,
becomes a sum of 16 terms; the first of them contains the product

mpipt ke (J.17)
the next one is proportional to
miyp AT (J.18)

etc. It is obvious that the leading (i.e. quartic) divergence may
only come from the term involving (J.17) (this of course contains
a part of quadratic divergences al well). Further quadratic diver-
gences arise in terms involving products of the type (J.18) (there
are four such terms). All the other contributions to My, are alrea-
dy of the order O(1) for £ — o0, as one may easily guess on the
basis of the asymptotic behaviour of the leading term and of the
remainder in the decomposition (J.15). Following these simple
considerations we thus get from (J.14)

2 5
e 4
My, = -t—f\;)\j +0(1) (3.19)
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where

X1=‘-

1
+2st%) — ;;%—Vt’

X2=

t! t!
2 _ —
4,"2? (8~ 25) + o - PAK) + — r.A(k)
Xy = —(3:’+2tu)+-—m(

A(p)
1 2 2

t
R —p.A(l) + A
Xa 4mi, (¥~ 26) + mfyp 0+ 2 Wr ()
2 2

i t
+ 20u) + ,;?—;k.A(r )+ oy LA(r)
(J.20)
n (J.19) and (J.20) we have used standard notation (see Fig. 7)
(k+0)°=(p+r)

Xs-‘:

t = (k=pP=(-r)=¢
O S

For a derivation of the expression for the X it is suflicient to use
the 't Hooft identity (4.19) (and of course taking into account that
k' = [? = p? = 1r? = m}). To derive the expressions for X3,..., X5
in.(J.20) one has to use, in addition, identities of the type (J.16)
for the corresponding four-momenta; the rest is a straightforward
algebra.

The diagram in Fig. 7(b) corresponds to an interchange p «» r,
i.e. also t & u. Performing this (and using also s +¢ + u = 4miy)
we get for the whole contribution of Fig. 7

_(M,a + My = (t’ +u? —2s) — -—2‘2—
My
b (R AG) + p.A(k) +LA@) +r.A®)
My

2m’,
o(1) (J.21)

w2k A) 4 AK) + LA®D) + p.AD)
W
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(b) We shall now examine the contribution of the diagrams in Fig.

19(a), (b) which correspond to the Z exchange. Let us first consi-
der the diagram (a). The WWZ interaction is of the Yang-Mills
type (i.e. it has the same structure as the WW< vertex - see
(5.13), (5.14) and (5.69) resp.) and the corresponding amplitude
Mg, is obtained from the Mg, by replacing e? with ¢4, and
using the Z propagator instead of photon propagator. It is easy
to show that the longitudinal part of the Z propagator does not
contribute, similarly to the case of Fig. 17(c) (see the remark
following eq. (J.2)). Only the diagonal part of the Z propagator
thus contributes lo the amplitude Mig,; it means that an evalua-
tion of the Mg, is essentially identical with the case of the My,
- one only has to replace the ¢~! in (J.19) by (t — m%)~! (and of
course also replace e? by .‘szwz)- Thus we have

Miga = giy LCrympn y ZX +0(1), (J.22)

where the X;, j = 1,...,5 are given by the expressions (J.20).
The contribution of Fig. 19(b) is then obtained from (J.22) by

interchanging p « r. After a simple algebraic manipulation we,

thus get finally

(Miga + M) =
gwwz
- 2 2 3mp
- 4mw(t +ut - 24%) m?, +4m‘ §
1
+ o (U 20)(RAQR) + p.AK) +LAW) +r.A(0)
w

. Eni_aw(MZt)(k'A(,.)“A(k)quz‘A(p)HzA(l))

+ 0(1) (J.23)

Notice that (J.23) contains, in comparison with (J.21), some extra
quadratic divergences (sce the term proportional to m% in (J.23)).
This of course is a consequence of replacing t~! by (t—m%)~! when
passing from (J.19) to (J.22); these extra quadratic terms arise
from the original quartic terms in (J.21) upon such a replacement.
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(c) Finally, we shall examine the contribution of Fig. 20(c). Let us : Thus, from (J.21), (J.23) and (J.27) it is obvious that the choice

consider a general interaction of the type WWWW parametrized . (J.26) guarantees, beside an elimination of quartic divergences,
by coupling constants a, b (see (5.49)). Using the decomposition ' also a cancellation of a part of quadratic divergences, namely of
(J.15) we then get (proceeding in an analogous way as before) the _ those corresponding to "dangerous” kinematical structures like
result : k.A(p) etc. (these structures are potentially dangerous because
1 2 s 4 they could not be compensated by means of diagrams involving

Maoe = 2a [4,"4 +u')+ mi, I a scalar exchange - ¢f.(5.72)). For the total contributiou of the

¢ diagrams in Fig. 7, 19 and 20(c) (or, summarily, the graphs in Fig.

- Tf‘iy(k'A(p) +p.AK) + LA(r) + r.A(D) ; 20) we thus get finally (using (J.25) and the relation m},/m% =
u cos? Jw - see (5.39))

~ G (kM) + AR + LAR) + p.A(z))}

W Mag + My + Miga + Mgy + Moo, =

24 S _
+ 4 [4712‘{',,3 + miy, = Mzo.;+ Moo, + Mzoc
- E'TIT(t—I-u)(k.A(p)-%p.A(k) +LAGF) +r.A) : = i s+0(1) (J.28)
w i
+ A+ rAK) + LAR) + p.A(z))] : The result (5.53) is thus proved.
+ 0(1) (J.24) f} :
Substituting into (J.21) and (J.23) the "right” values of coupling :
constants
e=gsindw , gwwz = gcosdw (J.25) ’

(see (5.36), (5.37)) the condition of a cancellation of the leading
(quartic) divergences yields (cf. (5.51))

I,
a———-2~g N b= '2'9 (J-26)
Using the values (J.26) in the expression (J.24) we then get, after
a simple manipulation

T T A AR S U

+u? —25)——%
w

1
- EMzoc

b (4 2) (k AG) +pA®K) +LAG) +rA()
My

. (w20 (kA + AR + LAG) +p.A())
W
o() (2.27)

L A L S N

185 ; : 186


http:cf.(5.72

Appendix K

Interaction lagrangian of the
standard model

For reader’s convenience we summarize here the interaction lagrangian of
the standard model of electroweak interactions which we have deduced in
Chapter 5 by means of a "diagrammatic method”, i.e. by imposing the
requirement of tree unitarity. The resulting interaction lagrangian of the
electroweak unification may be written as

Line = Y Qefr"fAu+ Loc +Lnc
/
— ig(WOW, W 4 W W W 4 W WG W)

- 91[%(w~.w+) —~(W YWY 4+ (WO (W -.W+)—(W—W°)(W+.W°)]

. 1

+ gme‘:W””“q+ 0 gmzgZ, 2ty
1 - l

+ Zg’Wﬂ weg? +§ 2‘9 Z,Z2"y*

- "y _,__"_3__1_ 2’"_"4
E 29 ff n-39; 379
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The term Leg describes the interactions of weak charged currents and vector
bosons W#:

g _
Loc = o Yo w1 - )W+

I=e,ur
g d
+ m(ﬁ.é, DY = 15)Vexm Z Wi +h.e.

where Vo is the Cabibbo-Kobayashi-Maskawa unitary matrix (5.140).
The term Lyc corresponds to the interaction of weak necutral currents and
the vector boson Z:

Loe = N7 A (e
NC = CosIw z,:(ﬁb S e +er Jry fr) 2
where
52[) = ...% —_ Q[Sil)2 dw for f = cyl‘lr|d’8'b

1 .
sg) = +'2“—st111219‘4/ for f=wv,v,vsu,ct

Eg) = -—Qfsinzﬂw for an arbitrary f

The neutral-current interaction may alternatively be written in the form

Lyc = cow Zf’r (vy —ar1s)f2s
where
1
o = el
1
a = 5 ) 4 ey
that is
- 1 ]
vro= 1 Qysin 0“’} for f=epn,1,ds0b
ay = -3
vy = +i—Qrsin®Y
aj - +% Qs W} for f=v,,vuvru,cl
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In the terms describing the self-interactions of vector bosons we have em-
ployed the notation

W: = cosdwZ, +sindwd,
The following important relations are valid:

e = gsindw, mw/mz = cosdw.
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