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1. Introduction 

The mass generation in the Standard Model (SM) of electroweak interactions is provi­
ded by the Higgs mechanism which rests on the Electroweak Symmetry Breaking (EWSB). 
To accommodate the well- established electromagnetic and weak phenomena, the Higgs 
mechanism requires the existence of at least one iso-doublet, complex scalar field (Higgs 
boson). If SM holds valid as a weak-coupling theory till very high energies then the 
massive component of this iso-doublet is a neutral scalar particle which cannot have a 
mass heavier than few hundreds of Ge V. Thus the search for the Higgs boson is one of 
the fundamental quests for testing the minimal SM. Current estimations based on the 
different theoretical requirements and experimental implications[l, 2] give the SM Higgs 
mass in the "intermediate mass" window 65 < M H < 200 GeV for a top quark mass value 
of about 175 GeV [3]. 

Despite of the recent successes of the 8M in its excellent agreement with the precision 
measurements at present energies [4J, it is generally believed that the SM is not the 
final theory of elementary particle interactions. There are many extensions of the SM 
which lead to the enlargement of the Higgs sector of the SM. For instance, the Minimal 
Supersymmetric Standard Model (MSSM) [5] entails two elementary Higgs doublets at 
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low energies, the Two-Higgs-Doublet Model (2HDM) contains two complex SU(2)L ­
doublet scalar fields with hypercharge Y = ±1 to couple the up-type / down-type right­
handed quarks to its Higgs doublet. The search for relations between the many Higgs­
field dynamics and the masses of t-quark and Higgs boson give the selection rule for a 
particular model beyond the SM as well as for its acceptable parameters [6], [7], [8], [9]. 
In more complicated theories ( see [1] and references therein) such as SUSY SM ones, E6 
ones, or Left-Right symmetric ones [10], several neutral scalars, charged scalars and even 
double-charged scalars are required in order to give all amplitudes acceptable high-energy 
behavior [1, 2]. 

However there exists an alternative possibility [11] to restrict the number of elementary 
particles to the observable fermion and vector-boson sector with generation of composite 
scalar Higgs particles due to attractive self-fermion interaction. The idea that the Higgs 
boson could be a bound state of heavy quark pairs has been developed and worked out 
in a series of papers [11], being motivated by the earlier work of Nambu and Jona- La­
sinio (NJL) [12]. In particular, for t- quarks, it is provided by the Top-Mode Standa(£\: 
Model (TSM) Lagrangian, known also as the Bardeen-Hill-Lindner (BHL) Lagrangian:: 
[11],[13],[14]. The possibility that multiple four-fermion interactions (for three and a 
heavy fourth generations) are important in EWDSB, leading to an effective 2HDM at low 
energies, has been investigated in [15]. In this model Higgs boson induced Flavour Chan­
ging Neutral Currents (FCNS's) are naturally suppressed [16]. Some recent theoretical 
aspects and questions of tt- condensation frameworks one can find in the review of [17]. 
In these scenarios the heavy top mass is explained by the" top-condensation" where new 
strong forces lead to the formation of tt bound states and the EWSB. In a minimal version 
of quark models the top-condensation was triggered by a local four-fermion interaction. 

We propose the quark models with Quasilocal four-fermion interaction [18] where the 
derivatives of fermion fields are included into vertices to influence on the formation of the 
second Higgs doublet. Such extensions of the Higgs sector lead to a broad spectrum of 
excited bound states, moreover they may be viewed as more natural than other, above 
mentioned extensions since the particles involved in EWSB form only a ground state 
spectrum generic for SM. In these quasilocal NJL-like quark models (QNJLM) the sym­
metries do not forbid further higher dimensional vertices[18, 20] and one should eXPff-'" 
that the ground states could be accompanied by (radial) excitations with identical quan": 
tum numbers but much higher masses [19, 21, 22]. 

Thus, from the viewpoint of the 2HDM SM, the QNJLM are attractive because: i) 
it is an extension of the minimal TSM which adds new phenomena (e.g. a broad mass 
spectrum of bound states including charged Higgs bosons); ii) it is a minimal exten­
sion in that it adds the fewest new arbitrary constants; iii) it easily satisfies theoretical 
constraints on p ~ 1 and the tree-level FCNC's suppression [16] in accordance with the 
experimental evidence; iv) such a Higgs structure is required in order to build a model 
with the CP- violation [23] because the one-Higgs doublet interaction does not provide 
any effect of dynamical CP- violation. We shall show in a toy model with quasilocal 
four-fermion interaction how P-parity breaks down dynamically for the special choice of 
coupling constants [24]. 

In our talk we give the description of the design of the Quasilocal Quark Models of 
type I and type II which provide two composite Higgs doublets and in principle satisfy 
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phenomenological restrictions on FCNC suppression. 

2. Quasilocal Quark Models and Polycritical Regime 

In order to involve in the theory the effects of the discarded states at scales of order A. 
it is needed to adjust the existing couplings constants in the Lagrangian and to add new, 
quasilocal, non-renormalizable interactions (vertices). These vertices are polynomial in 
the fields and derivatives of the fields and only a finite number of interactions is required 
when working to a particular order in X, where p is a typical momentum in whatever 
process is under study. 

We examine the DCSB patterns in the mean-field approach (large-Nc limit) and es­
timate the vertices with any number of fermion legs and derivatives. The main rule to 
select out relevant vertices is derived from the requirement of insensitivity in respect to 
the separation scale A following the conception of low-energy effective action [18]. 

We assume that: 

(i) 	 A.2-order contributions from different vertices are dominant in creating the DCSB­
critical surface that is provided by cancellation of all contributions of A2-order and 
defines the polycritical regime; 

(ii) 	 A.a-order contributions from vertices assemble in the mean-field action to supply 
fermions with dynamical mass md < < A. which establishes the low-energy physical 
scale; 

(iii) respectively A -2 (etc. )-order contributions are irrelevant at energies much lower than 
A. and so may be dropped from the theory if such accuracy is unnecessary. 

In the large-Nc approach the following approximation for v.e.v. of fermion operators is 
valid, 

((qqt) = ((qq») n (1 + O{l/Nc)), (1) 

where any number of derivatives can be inserted between antifermion and fermion opera­
tors. 

V.e.v. of a bilinear operator is estimated in the assumption that quarks obtain a 
dynamical mass. Namely, 

4_(82)n 1 I dp p2n 	 2 (2)(q A2 q) rv A.2n (211")4 tr p+ imd rv NcmdA. . 
Ipl<A 

One can see that the vertices with derivatives in many-fermion interaction are not sup­
pressed and play equal role in the mass-gap equation. 

We omit the full classification of effective vertices (see [18]) and describe only the 
minimal structure of the QNJLM which admits the polycritical regime, 

(3) 
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~ t-
where 8 = 1/2 (8 - 8) and amn is a hermitian matrix of coupling constants without zero 
eigenvalues. It is taken to be real symmetric one in order that the interaction did not 
break the CP-parity explicitely. Chiral fermion fields are given by qL(R) = 1/2{1 7s)q. 
We define the vertex formfactors to be polynomials of derivatives, 

Km 

fm{r) = Lf~)ri, (4) 
i=O 

to have quasilocal interactions. The variable r is related to derivatives, r -+ -82 / A2 . 

Let us regularize the interaction vertices with the help of a momentum cutoff, 
ijq --+ ijO{A2 82)q. Without loss of generality one can choose formfactors fi{r) being 
orthogonal polynomials on the unit interval, 

f1 

dr fm{r)fn{r) = c5mn . (5) 
o ~·,:~C,

Let us now introduce the appropriate set of auxiliary fields ¢n (x) const and develop t"V 

the mean-field approach, 

£(¢» = if(llJ + iM(¢»PL + iM+(¢»PR)q + NcA2 L
l 

¢>;,. a;"~ ¢>n. (6) 
m,n=l 

The dynamical mass functional is a linear combination of formfactors, 

(7) 

Thereby we come to a model with 1 channels. When integrating out the fermion fields 
one obtains the effective action of ¢*, ¢ - fields. The effective potential Veil is proved to 
be a functional depending on the dynamical mass functional M (¢* , ¢) and proportional 
to Nc that allows us to use the saddle point approximation for Nc > > 1. ,_ 

The effective potential for auxiliary fields can be derived with the momentum cutt__ 
regularization by averaging over quark fields: 

~) 
(8) 

herein Mo = M(O). The last approximation is valid in such a strong coupling regime 
where the dynamical mass Mo < < A. This regime is of our main interest and it is 
realized in the vicinity of a (poly)critical surface. The critical values of coupling constants, 
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a~n = 6mn /81r2 , are found from the cancellation of quadratic divergences. Here we study 
the critical regime in alll channels. The vicinity of this polycritical point is described by 
the following parametrization: 

8 2 -1 6 	 ..6..mn (9)1r amn mn + ~'("'<,j 

The generalized mass gap equations, 

6Ve,,(</>, </>*) = 0 = 6Ve,,(</>, </>*) (10)
6</>~ 	 6</>m ' 

deliver the extremum to the effective potential which may cause the DCSB if it is an 
absolute minimum. They read: 

-!1 d 
~ (IM(r)12M(r)fm(r) 

o 	r+ A2 

A2 
{"'<,j fm(0)I MoI2Moln M6 

1 

+ 	!~ (IM(rW M(r)/m(r) - IMol2Mo/m(O)). (11) 
o 

The true minimum is derived from the positivity of the second variation of the effective 
action around a solution of the mass-gap equation, 

(12) 


This variation reads: 

41r2 
2 =(a, (AO'O' p2 + BO'O') a)

Nc 6 Se" 

+2 (1r, (A7rO'p2 + B7rO')a) + (1r, (A7r7rp2 + B 7r7r )1r) , (13) 

where two symmetric matrices - for the kinetic term A = (A~n) , i,j = (a,1r) and for 
the constant, momentum independent part, B = (B~n) - have been introduced. 

The positivity of the second variation corresponds to the formation of physical mass 
spectrum for composite scalar and pseudoscalar states which can be found from zeroes of 
the second variation determinant at the Minkovski momenta (p2 < 0), 

det(Ap2 + B) = o. 	 (14) 

Matrix elements of B are given by the following relations: 

B;;': = 6!1 

d; [( ReM)2/m(r)ln(r) - M~/m(O)ln(O)l 
o 
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2 (A2)+ Mofm(O)fn(O) 6ln MJ - 4 - 2L\mn 

1 d 
+ 2! ; ( ImM)2 fm(r)fn(r), (15) 

o 
1 

B;;:' - 2!~ [( ReM)2 fm ( r) f n (r) - Mg fm (0) fn (0)1 
o 

A22
+ 2Mofm(0)fn(0) In MJ - 2L\mn 

1 d 
+ 6! ; ( ImM)2 fm(r)fn(r), (16) 

o 

B~: =4!1 d; (ReM) ( ImM)fm(r)fn(r), (J('\
'-.: 

o 
where the terms of 1/A2-order are neglected. 

When exploiting the mass-gap equation (11) one can prove that the matrix B has 
always a zero eigenvalue related to the eigenvector <I>?n =< 1Tm > -i· < CTm >. It corresponds 
to the arising of the Goldstone mode (the massless Goldstone bosons). 

One can convince oneself that if the solution M(r) has an imaginary part the mixing 
between scalar and pseudoscalar channels arise which leads to the P-parity breaking. Of 
course, this "axial" mass should not be removed by a global chiral rotation. 

The kinetic energy matrix A turns out to be block-diagonal [24], and does not induce 
any P-parity breaking. 

(18) 


fA:::'n - Hfm(O)fn(O) (In ~ +0(1)) 

1 1dr]+ ! [fm(r)fn(r) - fm(O)fn(O)l-:;: + 0 CV) , (19) 
o 

herein we have displayed the leading terms only in the large-log approximation. The more 
detailed expression can be found in [24], [19]. 

3. Higgs Bosons as Radial Excitations - Model I 

Let us construct now the two-flavor quark models with quasilocal interaction in which the 
t- and b-quarks are involved in the DC8B. In accordance with the 8M, the left components 
of both quarks form a doublet: 

(20) 
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which transforms under 8U(2)L group as a fundamental representation while the right 
components tR, bR are singlets. 

The Model I which is to satisfy the FCNC suppression has the following Lagrangian: 

(21) 

Here we have introduced the denotations for doublets of fermion currents: 

_ (fJ2
) (22)Jt,k =tRit,k - A2 qL, 

and the tilde in It,k and ]",k marks charge conjugated quark currents, roteted with 72 

Pauli matrix 
it,k = i72J~k' ]",k = i72Jt,k (23) 

The subscripts t, b indicate right components of t and b quarks in the currents, the index 
k enumerates the formfactors: 

It,!=2-3(-~), It,2 =-Vs ( - ~:) , 

Ib,! = 2 - 3 ( - ~:) , Ib,2 = -Vs ( - ~:) . (24) 

As the spin or indices are contracted to each other in (22), Jt,k transforms as a doublet 
under 8U(2)L. 72 is a Pauli matrix in the adjoint representation of the group 8U(2)L. 
Coupling constants of the four-fermion interaction are represented by 2 x 2 matrix akl and 
contributed also from the Yukawa constants 9k,h 9b,k' 

The Lagrangian density of the Model I (21) to describe the dynamics of composite 
Higgs bosons can be obtained by means of introduction of auxiliary bosonic variables and 
by integrating out fermionic degrees of freedom. According to this scheme, we define two 
scalar 8U(2)L-isodoublets: 

<P = (4)11) (25)1 ,J.. , 
1f'12 

and their charge conjugates: 

~ = ( ¢i2 ) (26)
1 ,J..*'

-If'll 

In terms of auxiliary fields, the Lagrangian (21) can be rewritten in the following way: 

NA2 2 2 
c ~ t 1 ~ [-t t]CJ = Lkin + 81r2 Lt <Pk(a- )kl<Pl + i Lt 9t,k<PkJt,k + 9b,k<PkJb,k + h.c. (27) 
. k,l=l k=l 
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The integrating out of fermionic degrees of freedom will produce the effective action for 
Higgs bosons of which we shall keep only the kinetic term and the effective potential 
consisting of two- and four-particles vertices. The omitted terms are supposedly small, 
being proportional to inverse powers of a large scale factor A. The Yukawa constants are 
chosen of the form 

gt,k = 1; gb,k = 9 (28) 

for k = (1,2). The first constant is set to unit because the fields <PI and <P2 can always 
be multiplied by an arbitrary factor which is absorbed by four fermion coupling constants 
through redefinition of polycritical coupling constants. The remaining constant 9 induces 
thereby the quark mass ratio mb/mt. 

We assume the electric charge stability of vacuum or, in other words, that only neutral 
components of both Higgs doublets may have nonzero v.e.v. Hence, one can deal with 
only neutral components of the Higgs doublets in the effective action for studying DCSB. 
This part of the Higgs sector can be investigated separately as a model where two singlets 
(not doublets) appear as composite Higgs bosons. For this purpose, we use the Quasil0'C~ 
Two-Channel model[19]. . 

Following the definitions made in [24], we relate the fields </>1, </>2 and p to the neutral 
components of Higgs doublets: 

(29) 


The condition of minimum of the effective potential with the charged components of Higgs 
doublets put to zero values: </>12 = </>21 = 0, brings the mass-gap equations for them: 

(31) 

(32) 

Let us consider the equations (30)-(32) for two cases: 1) p = 0 and 2) p O. 
When p = 0, assuming that </>1 f:. 0 and </>2 f:. 0 one finds the following solutions. 

The solution of the mass-gap equation of Gross-Neveu-type is: 

(33) 

The solution of the mass-gap equation of the Abnormal-type is: 

(34) 
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For the case 2, of a non-zero p , it can be shown that for fixed Llkl while A grows 
larger, the solution exists if Llkl parameters are chosen close to a particular plane in the 
parametric space. This plane is defined by the equation: 

(35) 

When Llkl satisfy the equation (35) exactly, the solution is found to be as follows (in the 
large-log approximation): 

6.11 
,,/.,2 _ [1 + 0 ( 1 ) ] (36) 
0/1 - 16(1 + g4) In ~: In ~: ' 

(37) 

(38)l = ~ (1 ~~4) [1+ 0 en1Z:) ] . 
The mass spectrum of related bosonic states is determined by the Eqs. (26)-(31) and 

taking into account the conditions necessary for a minimum of the potential (52,53). The 
solutions at -m2 = p2 < 0 one can obtain from the Eqs: 

det(Ap2 + B) = 0, (39) 

The "kinetic" matrix A as being proportional to p2 is derived in the soft-momentum ex­
pansion in powers of p2 and in a large-logA approximation. After substituting expressions 
for the matrix A, B into (39) one can get the mass spectrum for the neutral Higgs bosons 
in ModelL For the case, p = 0, the mass spectrum is resembling ones in Two-Channel 
model[19], in particular, the Gross-Neveu-type solution brings the spectrum for scalars: 

2 ,...., 46.22 ,....,m(11 (40)
3(1 + g2)' 

det6.2 ,....,m(1 
,...., -- 4md2 (41) 

(1 + g2)Ll22 In (~:) 

and for pseudoscalars: 

2 46.22
m1r1 :::::::: (42)

3(1 + g2)' 

- o. (43) 

The Abnormal solution induces the following mass spectrum for scalars: 

2 ,...., 86.22 ,....,m(11 (44)
3(1 + g2)' 

2 26.~~3(3J36.12 - 6.22 )2/3 _ 6m2m :::::::: (45)
(1 32/3(1+g2)ln2/3(~:) - d 
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and for pseudoscalars: 

m2 32/3(3V3dI2 - d 22 )4/3 
1r

, :::::: (46)
27(1 + g2)d~~3Inl/3 (~~) , 

o 	 (47) 

Remark that dynamical mass md is in fact the mass of t quark in the Model-I, because 
the v.e.v. of ¢>Ib which is parametrized as ¢>I = (¢>u), gives the value of mass of t-quark. 

The mass spectrum in the P-parity Breaking Phase, for a non-zero pis: 

2m1 0, (48) 

2 3dn - d 22 '" 16¢>2 _ 4m2m2 '" 	 (49)'" 3(1 + g2) In ~~ '" 1 - d' 

2 8d22 m :::::: 	 (5[\3 3(1 + g2)' \;.../ 
2 3dn + 7d22 

m '" 	 (51)4 	 '" 27(1 + g2) In ~ ,
J.I. 

Thus, we have constructed the Model I where: 

a) 	 Two composite Higgs doublets are created dynamically as a consequence of DCSB 
in two channels. 

b) In 2HQ Model I Higgs bosons are rather radial, ground and excited states in the 
scalar-pseudoscalar channels. 

c) 	 The appropriate fine tuning leads also to spontaneous breaking of P-parity and, 
therefore, of CP-parity in the Higgs sector. 

4. Top-Bottom Condensation for 2HQM Model- II~: .., 
'i 

The Lagrangian density of the Model II to describe the dynamic of two composite 
Higgs bosons which consist of bound states (condensates it, bb) and satisfy the FCNC 
suppression[16] can be written as: 

N cA2 ~ t -1 "- - -t
LJ = L kin + 87r2 L.. <Pk (a )kl<P1 + 'lq(MPL + M PR)q + h.c., (52) 

k,I=1 

where PL(R) = 1/2(1 ± {5) - the left and right projectors, and M is the two-by-two flavour 
matrix: 

M 	= t [ gt,k¢m2 ft,m (~:)
(p) 	

(53) 
m=1 rI.* Igb,k'f'm1 J b,m A2 
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In this Model II q)I, q)2 give masses to up-, down-type quarks. The structure of quark 
interaction is specified in four formfactors: 

f)2 82 

ft,l = 1- Ct,l A2' ft,2 = -Ct,2 A2 ' 

82 82 

fb,l = -Cb,1 A2 ' fb,2 = 1 - Cb,2 A2 • (54) 

When the chiral symmetry is broken, the v.e.v. of neutral Higgs fields are non-zero 
and the true Yukawa vertices should be obtained by subtracting from M its v.e.v. 

(55) 

where ( ...) means a v.e.v.: 

(M) = (mt 0). (56)o mb 

The elements of the matrix (56) are the quark mass functions: 

mt (T) = 4>1 (1 + Ct,1 T) + 4>2ei60 Ct,2T, 

(57) 

defined to be real and 4>1 =< 4>12 >,4>2 =< 4>22 >. The non-zero phase at mb, which is 
displayed explicitly in (56), may appear if the v.e.v. of 4>22 acquires irremovable phase 
factor when the chiral symmetry is broken. As the vacuum charge stability is assumed, 
(M) is diagonal. 

The effective potential of Model II and solutions of the corresponding mass-gap equa­
tions are obtained in the scheme described above for ModelL (For more details the reader 
is referred to [26]). 

The suppression of the flavor changing neutral currents in a composite two-Higgs 
model can be implemented when Yukawa couplings are chosen as follows: 

9t,1 = 9b,2; 9t,2 = 9b,1 = v'5. (58) 

To be short we display only the mass spectrum. When the mass ratio of t- and b­
quarks mt/mb holds unchanged while A goes to infinity, in the large-log approach we get 
the following estimations for Higgs boson masses: 

1. for the case of conserved P-parity (60 = 0): 

moo - 2mb, 

moo' ,...", 
,...", 2mt, 

m 1r - 0, 

m 1r, - (m~ + m~) (~ 15 )
A2 12 - -mtmb . 

2mtmbln~ 4m t 

(59) 
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2. and for the P-parity breaking phase: 

ml 0 (60) 

m2 ~ 2mt (61) 

m3 "'"' "'"' 2mb (62) 

m4 ~ I sin 80 1 

15(mr + m~) 
8lngm t 

(63) 

We stress that when 80 =1= 0 we have neither scalars no pseudoscalars any longer because 
the particles which are eigenstates of the energy operator, are mixed of both P -even parity 
and P-odd parity fields, hence the former classification by parity does not hold for this 
particular case. 

Thus in the Model II the Quasilocal Yukawa interaction with Higgs doublets reduces 
at low energies to a conventional local one where each Higgs doublet couples to a define· 
charge current and its v .e. v. brings the mass either to up- or to down- components of 
fermion doublets. Based on the FCNC suppression, the Model II leads to the relation 
mt > > mb and so to an enhanced coupling of the light scalar (pseudoscalar ) boson to 
the down-type quarks while suppressing the coupling to the up-type quarks. The Model 
II has a broad spectrum of excited bound states which is to parametrize the data, in 
particular, obtained from the Next Linear Collider. 

5. Summary 

In our talk we have proposed a set of Quasilocal N JL-type quark models (QN JLM) which 
lead to a larger spectrum of ground and excited states in the polycritical regime. From 
the viewpoint of the SM, these models are considered as more natural than common 
extensions of the SM, since they do not enlarge the number of elementary particles in 
fermionic sector and preserve the symmetries of the SM. In the framework of the QNJLM 
we have presented two Models which provide at low energies two composite Higgs doubl~~'~ 
as minimal extensions of the Top-Mode Standard Model [11],[14]. In the 2HQ Model i 
Higgs bosons are rather radial, ground and excited states in the scalar -pseudoscalar 
channels. In the 2HQ Model II, which consistent with the requirement of natural flavour 
conservation [16], strong forces lead to the formation of top and bottom bound states 
(and corresponding condensates) and generate masses of t,b-quarks. In Model II we have 
concentrated on the scenario where each of the neutral components of the two doublets 
¢1,2 (with v.e.v. Vl,2) couple at low energies respectively to the 13 = ±~ fermion fields 
The FCNC suppression leads to the relation mt » mb and to an enhanced coupling of 
the light scalar (pseudoscalar) boson to the down-type quarks and the charged leptons 
while suppressing the coupling to the up-type quarks. The existence of light neutral 
Higgs (pseudo)scalar bosons in the framework of 2HDM is not excluded by existing data 
« 40 GeV). The chance that it can be seen at the Next Linear Collider in the II 
processes has been pointed out in [27],[28]. As a result of complexity of two v.e.v.'s for 
two composite Higgs doublets the dynamical CP-violation may appear in the Higgs sector. 
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At high energies these channels are strongly coupled and one could say that two-composite 
Higgs doublets partially represent the mixture with excited states. If such excited states 
exist then they will modify the Higgs mass predictions. In addition, we remark that low 
values for the Higgs masses of the additional states could actually change the window 
for MH since these states could give a significant contribution to the p-parameter [29]. 
From our consideration we have seen that the appearance of dynamical CP-violation in 
the Higgs sector imposes strong bounds on Higgs masses, in particular, one light scalar 
Higgs boson is unavoidable. The experimental implications of such effects are expected 
to be rather small in the fermion sector of the SM [1],[27]. These effects are observable 
in decays of heavy Higgs particles (namely, pseudoscalar Higgses may decay into scalar 
ones, scalar Higgs may decay into pseudoscalar ones) and in decays of Higgses particles 
into two vector bosons where CP-even and CP-odd amplitudes appear. At high energies 
the appearance of the appreciable CP-violation could be important both as a source 
of electron and neutron electric dipole moments [30] and as a mechanism for EW scale 
baryogenesis[31], [32]. Besides one expect also that modifications of the SM Lagrangian 
(the Higgs and Top interactions) by higher dimensional vertices may enhance the Higgs 
production at hadron colliders [33]. 
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