


Introduction 

Asking the question, which experimental results might perhaps rule out SUSY*), a 

possibility would exist, e.g. to distinguish between standard and supersymmetric GWS-models by 

measurements of top quark and Higgs boson masses. As indicated in ref. [1], the standard model 

with two Higgs doublets might fit into this (mt, mH)-region [region II, in Fig. 1; see ref. [1]] 

excluded in both models. In fact, recent analysis of vacuum stability in a two-Higgs model [2] 

result into lower bounds on mh, the heavier neutral Higgs boson and upper bounds on mt just 

covering region II. Violating these bounds, the Higgs Boson might be composite [3]. - Just to 

establish more or less this kind of a socalled effective theory, valid up to a given cut-off A (e.g. A 

= MPI., MGUT) here in the 2-Higgs model in between 106 
:::; A :::; 1019 GeV and via RG-improved 

EP down to about 1 TeV, we investigated also Higgs and top mass predictions from SUSY broken 

at a super high scale A z 0 (1012 - 1019 GeV) [4] down to A (MZ) via RGE"s in one- and two-

loop, which results now into allowed regions for Higgs and top masses of about the most probable 
values of 70 :::; mh :::; 120 GeV, n1

t
:::; 180 GeV for various values of the SUSY breaking scale, 

values just also fitting into region II of ref. [l]. This, e.g. could mean that with a big probability the 

top quark could be discovered finally at the TEV ATRON within the next three years. **) 

To establish further the above' predictions, investigations of upper bounds on mt for 

supersymmetric SU(5) model [5] and in case of a big top quark Yukawa coupling [6] result into an 

upper bound on mt < 187 GeV. For the SU(5) fixed point RG solution for top quark Yukawa 

coupling constants ht, which can be interpreted as the case of composite superhiggs, we find 

140 :::; m
t 

< 183 GeV. From the requirement that mb / m
T 

predictions of supersymmetric SU(5) 

has been successful [7], we find 145 :::; m
t

:::; 190 GeV. Similar bounds take place in all models 

with big ht (mt). For m t < 180 GeV we find also that mH < mz and hence it could be discovered at 

LEP II. 

So far the 2-Higgs model and in addition supersymmetric SU(5), just used to overcome 

approximately scale dependence and, in reality, touching only SUSY by part, might indicate that 

data discovered perhaps in region II in Fig. 1 of ref. [1] can perhaps exclude SUSY "by partl!. 

*) I am indebted to Chris Hill due to this special point of view. 

**) see, e.g.: F. Abe et aI., CDF collab.: FERMILAB preprint FERMILAB-PUB-94/097-E, CDF 

(1994) and Stephen Parke: FNAL-Conf. 322T (1994) {Summary of top-quark Physics}. 

See also: R. Rodenberg, Fermilab-Pub-93IT ... (FNAL-May 93): Higgs and top mass 

predictions in a two-Higgs model, from SUSY broken at high scale and in supersymmetric 

SU(5) model. 
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Further, fine tuning principles are examined to predict top-quark and Higgs boson masses 

modifying the Veltman condition based on the compensation of vacuum energies. Also Higgs and 

top mass predictions in SUeS) and S0(10) supersymmetric GUT models with fixed point solutions 

and the dependence of the Higgs boson mass on the scale of SUSY breaking in the MSSM will be 

discussed briefly. Finally we refer about upper bound on the SUSY breaking scale in 

supersymmetric SU (5) model. 
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1. Excluded (m t . mH)-region in case of SM and MSSM 

Numerical analysis [8] of the vacuum stability in GWS-model based on the use of the 

RG solutions to two-loop order leads to the following lower bounds for the Higgs 

boson mass (the lower bound for the Higgs boson mass mH is equivalent to the upper 

bound for the top-quark mass mt): 

mt= 140 GeV, mH 2:.. 85 GeV 

m t = 150 GeV, mH2:..110GeV 

m t = 160 GeV, mH 2:.. 130 GeV 

m t = 170 GeV, mH 2:.. 150 GeV 

m t = 180 GeV, mH 2:..160 GeV 

The corresponding vacuum stability curve [8] is shown in fig. 1; it corresponds to the 

requirement of vacuum stability up to the scale A = 1015 GeV [the bounds depend on· 

A only weakly and within the uncertainty of the strong coupling constant the same 

curve represents bounds for any A 2:.. 1010 GeV]. 
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Fig. 1: Curve 1: lower limit for the Higgs boson mass as function of m t in the 
standard model. Curve 2: upper limit for the lightest Higgs boson mass 

in the supersymmetric extension of the standard model for t < tg (3 < 

mt/mb and for the pseudoscalar mass in the range 0 .:::.. mAO':::" 1 TeV. 

The val ues of the other parameters are MSUSY == MSTOP' Mgau = A = 
[l = O. The curve for tg f3 10 is also shown. Region I: allowed only in 

the standard model; region II: excluded in both models; region III: 

allowed only in the supersymmetric model; region IV: allowed in both 
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On the other hand, in the minimal supersymmetric extension of the standard model 

with soft supersymmetry breaking terms, the form of the tree-level potential is fixed: 

V(H1, HZ) 

= g2 (IH/- IHZl2 )2 - t llH; H/ 
8 cos 2e w 

The lightest Higgs boson mass 

2 <H >2 2 
2 2 ( 

<H2> - 1 ) 2 m H .:s. mZ 
<H2>2 + <H >2 

.:s. mZ 
1 

<I.1) 

(1.2) 

is lighter than the Z-boson .mass. Recently it has been understood [9J, [tOJ that an 

account of the one-loop corrections due to ~he exchange of the t-quark inside the 
loop allows for a relatively big increase of the value of the lightest Higgs boson 

mass. The corresponding curve is also presented in fig. 1. For instance the account 

of the radiative corrections for mt = 150 Ge V can increase the value of the Higgs 
boson mass up to '" 110 GeV. The actual value depends slightly on the other (super
symmetric) parameters but for a stop lighter than, say, '" 2 Te V this dependence is 
only of the order of a few Ge V. 

So, from fig. 1 we see that even with radiative corrections included the allowed 
masses for the Higgs boson (for mt z.. 150 GeV) in the standard model and its super

symmetric extension are in nonoverlapping regions. It means that for the case of the 

heavy top quark we have in some sense the unique possibility to discriminate between 

the at present most popular electroweak models by the measurement of the Higgs 

boson mass. (Strictly speaking, we see from fig. 1 that even for mt < 150 GeV it may 

still be possible to discriminate between the two models if the Higgs boson mass 
happens to be in the corner of region III not yet excl uded by the LEP search or, of 
course, in region IJ This is particularly interesting in view of the fact that in most 
of the not yet experimentally excluded parameter space the supersymmetric lightest 
Higgs boson resembles very closely the standard model one, as far as its production 
cross sections and decay widths are concerned [11J. 

We also note that simple extensions of the minimal supersymmetric model predict 
the lightest Higgs boson in the same mass range [12J as in the minimal version and 
therefore our main conclusion applies also to those cases. 

Finally, it should be noted that for a heavy top q·uark, mt z.. 150 GeV, there is a 
(m t , mH) region (region II) in fig. 1 in which both the standard and SUSY models are 
excluded. The discovery of (mt, mH) in this region would mean that one has to look 
for other al ternatives. It is very interesting that the standard model with two Higgs 

doublets allows mt and mH to be in region II. 
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II. Higgs and top mass predictions in a two-Higgs model from the requirement of 

vacuum stability 

1. Introduction 

The question of vacuum stability, which arises because of rising experimental 

lower bounds on the top quark mass, is related to the structure of the effective 

potential (E.PJ [2]. If there exist more than one minimum or if the potential is 

unbounded from below the vacuum may be metastable or even will be unstable. 

For deciding whether the vacuum is stable or not it doesn't suffice to investigate 
the one loop corrected E.P., since large logarithms In <D/x (with x denoting the renor
malization scale) will destroy the reliability of the perturbative expansion. 

An improvement is achieved by employing the renormalization group equations 

(R.G.EJ which lead to the concept of running couplings. 

In oder to illuminate this idea let's review the one doublet standard model: By 

calculating the E.P. in the Landau gauge and by choosing suitable renormalization 

conditions the one loop corrected R.G.E.-improved E.P. reads 

-2 
Vi-loop (<1» = G2 (t) ~ (D2 + G4 (t) A(t) (D4 + V 

eff 2 4 scalar 
(II. 1) 

with 

and with 

2 
V scalar(~ = 0, CW ) 

The bar indicates scale -t = In (<!)/x)-dependent couplings and mass term, as dictated 

by the R.G.E., and 
t 

G(t) = exp ( - fa 

with r being the anomalous dimension. 

y(ci (t» 

i + Y (ci (t» 
(II.3) 

Being interested in the vacuum stability, the simplest thing to do is to investigate 
the behaviour of the running quartic coupling, since the second term in (ILt) will. be 
dominant for sufficiently large scales. In this connection a stable vacuum means a 
positive): (t) up to the cut off scale A. This work has been done by Cabibbo, Maiani, 
Parisi, Petronzio [13]. 
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A more detailed analysis has been carried out by Lindner, Sher and Zaglauer [8]. 

They investigated the full effective potential neglecting the term V scalar_in (IL1) and 
using two -loop beta functions. The relation between the initial value A(O) and the 

Higgs mass was achieved by numerically calculating the curvature of the E.P. at the 

minimum. 

In our paper [2] we extend the R.G.E. analysis of the E.P. to a model with two 

Higgs doublets. The interest in such extensions is mainly inspired by the close relation

ship to supersymmetric models (MSSM) [11], [12], [14]. Furthermore it· is the simplest 

extension of the standard model possessing some attractive features, e.g. with respect 

to spontaneous CP violation [15], strong CP problem [16], second class currents [17] 

or the problem of baryonsynthesis in the early universe [18]. 

This part of the report is organized in the following way: In section 2 we intro

duce the two doublet model. The tree level mass spectrum and a relation between 

these masses and the quartic couplings will be presented. In section 3 we will explain 

the method we used to get the initial values for integrating the R.G.E. The presenta

tion and discussion of our results will be given in section 4. Section 5 will be devoted 
to our conclusions and a brief outlook with respect to further considerations. 

2. The Two Doublet Model 

We introduce two Higgs doublets' with the hypercharge assignment 

(II. 4) 

The most general SU(2)L x U(1)y invariant potential symmetric under independent 

reflections <D1 -> - (D1 and/or <1>2 ~ - (D2 reads 

? 2 + A1 + 2 A2 + 2 
V (<D 1, <D 2 ) = [.Li (<Di <1>1) + [.L2 (<1>2 <D2) + T (<1>1 <D 1) + T (<D2 <D 2 ) 

+ A3(<D1 <D 1) (<DZ (D2) + A4(<Di (£)2) (eDi <D 1) 

+ ~ [( <Di <D2)2 + (<DZ <D 1)2 ] (II.S) 

By coupling the up-type quarks (u,c,t) solely to cD1 and the down-type quarks (d,s,b) 
solely to <D2 this special potential guarantees a natural suppression of flavour changing 
neutral currents. 

If one restricts the quartic couplings to 

A2 > 0 ; (11.6) 

this potential will be bounded from below. 
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We are interested in a minimum respecting the U(1)em 

1 (0) < <Dt>O =-= 
1/2 Vt 

( 0 ) < <1>2> 0 = 
1/2 V2 

(II. 7) 

with vr + v~ = v2 = (246 GeV)2. The ratio of the VEV's will be denoted by tanfj = 

vl /v2' 

A g lance at the tree level mass spectrum will reveal some more restrictions on 

the quartic couplings. Beside the expected three Goldstone bosons the mass spectrum 

contains two neutral scalars (ml' mh)' a pair of charged scalar particles (mt ) and one 

pseudoscalar (mp) 

2 1 
[ AtVr + 

2 2 2 2 2 ? 2 ] m l = A2v2 - (AtV1 - A2v2) + 4(A3 + A4 + AS) vi V2 2 

2 L [ A1 vr + 
2 / 2 2 2 2 2 2 ] 

mh = A2v2 + (AtV1 - A2v2) + 4(A3+ A4 + AS) vi v2 2 

2 t 2 
m± = - 2" (A4 + AS) v 

2 
ASV 

2 (II.8) mp = 

Now the additional restrictions can be read off directly 

AS < 0 j (II. 9) 

One should use the mass spectrum to exchange the couplings A1' A2' A3' A4' A5 in 
favour of the masses since the latter are physically more meaningfu1. As we have to 
invert a mapping of five quartic couplings on only four different masses* one coupling 
wi II remain arbitrary. For reasons which will be elucidated below we choose the com-

""" bination A = A3 + A4 + AS to be this free parameter. This yields 

2 
max{tan fjA1,A2} = 2 2 

2v cos f3 
) 

2 1 ( (m2 + m2) _ (m 2 _ m 2 ) /1 _ 4~ 2 sin
2 

[3 cos
2 

f3v4 ) min{tan [3Al,A2} = 2 2 Y 
2v cos [3 h 1 h 1 (m~ _ mf)2 

* the further unknown values of Vt and v2 will be expressed in terms of tanf3 and 
v = 246 GeV 
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2 
"" 2m± 

A3 = A +--
v2 

2 2 
m -2m 

A4 = Q ± 

v2 

2 m 
AS = 

_ -IL (IL10) 
v2 

Finding positive mass squares, i.e. minimum condition, requires: 

2 2 "" 2 m
h 

> m
l 

+ 21 A I v sin S cos!3 (II.11) 

so that the square root never causes any problem. It's possible to achieve degenerate 

mass squares, namely for): = 0 and tan2 S A1 = A2' 

3. Stability Bounds in the Two Higgs Doublet Model 

Our investigation of the E.P. in the two doublet extension will be carried out at 

the one loop level. 

A look at the !3-functions [19] reveals that the most stringent bounds will be 

obtained when investigating the E~P. along the <D1-direction since. the strongest direct 

influence of the destabilizing Yukawa coupling of the top quark h t is found in the 

S-function for At. 

It's possible to choose renormalization conditions which yield 

-3> -3> 1 
Veff(<I» = V (<D) + tree 64rc2 (II.12) 

Here m~ are the mass squares of the various particles running in the loops, Mi,(<b) 
denote the eigenvalues of the corresponding interaction matrices (k = W+, W-, Zo, y, 

t, b, scalar modes) and ck are factors specific for each particle type (ck = 3 for k = 
W±, Zo, Y / ck = -12 for k = t, b, ... ; ck = 1 for scalar modes). 

With these renormalization conditions ("be wise"-renormalization scheme [20]) the 

tree relations for the mass parameters remain unal teredo The scalar mass matrix yields 

2 M .. 
I J 

(II.13) 
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From this equation the radiatively corrected mass spectrum can be obtained for a given 

set of quartic couplings [2], [21J, [22J. Since we are interested in masses as input 

parameters we have to invert this relation. In order to achieve the initial values and 

finally integrate the R.G.E. we adopt the following procedure*: 

rv 

• For a given set of input parameters ml' mh' ~, m p ' m t , tan~, A we use the tree 
level relation (IL10) which gives us an approximation for the quartic couplings. 

• With these we calculate the radiative corrections to the scalar masses. 

• By subtracting the resulting 8m2 from the physical mass squares we acquire the 

tree level masses which are used to obtain the true quartic couplings again 

using (11.10), These are our initial values for integrating the R.G.E. 

· Some cal-e has to be taken when dealing with the Goldstone-modes because they 
possibly can give large logarithmic corrections to the E.P., due to their massless

ness. On the one hand we want these logarithms to be small at the minimum in 

order to keep radiative corrections to the mass matrix small. This in turn can 

give large logarithms on the ray <1>2 :: 0 where we want to investigate the 

poten tial. It is however possible to choose a point on this ray where the eigen

values of the interaction matrices corresponding to Goldstone-modes are also 

small so that they can be neglected when calculating the E.P. We will choose this 

point as the reference point for the integration of the R.G.E. 

4. Representation and Discussion of our Results 

Before launching into our resul ts we have to comment on a few technical details 

of our calculation: 

• As already mentioned above we investigated the E.P. along the ray <1>2 == 0 since 
stability for this "worst case" guarantees vacuum stability for the whole E.P. 

A related investigation of vacuum stability leading to bounds on the Higgs masses 
in the special case of Coleman-Weinberg symmetry breaking has been performed 

earlier [21J. 

A look at the tree level mass spectrum (IL8) reveals that the least restrictive bounds ** 
will be obtained when AtVf > A2V~ and according to that case):: = 0 since then the 

* this procedure was only applied to the scalar modes m I and mh which will be 

mainly considered by us 
** since we don't want to achieve artificial bounds 
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2 2 lighter scalar with ml = A2v2 + (rad. corr.) will be affected weakly by the top quark 

and the initial value A1 will be maximal for a given mho The other extreme, namely 

A1Vr < A2v~ and 5:: = 0, will result in nearly the same lower bound on the lighter scalar 

mass mr = A1vr + {rad. corrJ and the trivial bound mh ~ mI' 
Accordingly we investigated vacuum stability for max {tan2 ~ A1,A2} tan2 ~ A1 and 
I'V 

A 0. (For (1)2 = 0, Veff. has a saddle point, which resul ts into an imaginary part of 

Veff == ° only for ml = 0). 

. Starting from our reference point eD 1 = <1>* (vanishing Goldstone contributions) we 

investigated the values of the E.P. towards increasing eD 1 = 6 (1)* (6 > 1). The criterion 

for detecting an instability was Veff (6 cD*) < V eff( (1)*). 
We didn't refer to the physical minimum because before doing so one should 

consider lower bounds on the lighter scalar mass arising from arguments in 

analogy to the Linde-Weinberg bound [23J. Anyway, this would at most lead to 

more stringent bounds on the heavier scala~ mass and thus doesn't spoil our 
concept of least restrictive bounds. 

For diverging quartic couplings (of course with non-destabilizing influence) we 

didn't registrate the cut off scale where perturbative calculations were becoming 
untrustworthy. We just regarded the corresponding input parameters belonging 

to the domain of a stable vacuum. 

In figure 2. we fixed the light neutral scalar mass to a definite value (alternatively 

ml = 30, 60, 90, 120 GeV) and calculated the lower bound on the heavier scalar mass. 

The destabilizing effect of the t.oP quark can already be compensated by the heavy 

neutral scalar with a minimal mass mh = ml up to a characteristic* value for the top 
A A 

quark mass mtop' e.g. for ml = 30 GeV ~ m top = 98 GeV. When exceeding this 

value for the top quark mass a larger mass mh is needed in order to keep the vacuum 
stable. 

> 
One can see that the nontrivial bounds on mh (inclining lines mh i ml) are weakly 

dependent on the lighter mass mI' The reason for this is that the ~-function of A1 is 

not directly affected by A2' 

In figure 3 we plotted the stability bound on mh as a function of mtop and tan~, 
In order to avoid the trivial bound mh > ml' which we came across in the preceeding 

figure 2, we set ml = ° GeV. 

The enhancement of the Yukawa couplings in the two doublet model as compared 
to the standard one doublet model is seen when looking at smaller values of tan ~ 
(e.g. Vi (tan~ = 1) = 174 GeV whereas v1(tan~ = 3) =.233 GeV). Accordingly the top 

quark mass for which mh just starts rising above the value zero increases when 

heading towards tan ~ = 3. 

* characteristic for a given set of the free parameters ll1:t, mp ' tan~ 



- 1,1-

In Fig. 4 we represent the influence of the variation of m±. the mass of the 

charge~ Higgs scalar, on mh/sinS vs. mtop/sinS. Since mtop htv sin S /-V2 and 
mh = -VAl v sinS + rad. corr. (sinS, .. .) dividing the top quark mass and mh by sin\3, the 

dependence of the surface on the free parameter tan\3 will be mild for mh not too 
small and m top not too large. As expected an increasing charged particle mass m± 

will lower the stability bound on mho 

The same comment holds for figure 5 where we varied the mass of the pseudo

scalar mp' 
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Fig. 2 

Stabi lity bounds on the heavier neutral scalar mass mh for different fixed masses of 

the lighter neutral scalar ml (30, 60, 90, 120 GeV) versus mtop (input values: m± = 
80 GeV, mp = ° GeV, tan[3 = 2) 
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ml = 0 GeV, m± = 90 GeV, mp = SO GeV) 

3 



160 

140 

120 

100 

80 ", 

60 

40 

20 

·0 

200 

", 

.. ' .. ' 

180 
160 

140 
m /sin{3 120 

top 1 00 

- 15' -

'. 
" 

" 
" 

" 

", 
" 

" 

'" 

'. 

" 
'. 

'. 

" 

". 
" 

" 

" 

" 
" 

".,. .. 

" 

", 

" 

" 

GeV 80 6~0 m±/GeV 

Fig. 4 

Lower bounds on mh/ sin (3 as function of mtop/ sin (3 and 111;; (input values: 

ml = 0 GeV, tanf3 = 2, mp = SO GeV) 

" 

" 

" 
'. 

" 

'. 

" 

" 

'. 

" 

'. 
'. 



160 

140 

120 

100 

80 

60 

40 .. ' .. -

20 

-0 

200 
180 

160 
140 

m top / si n{3 120 
100 0 

GeV 

- 16 -
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Fig. 5 
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S. Conlusion 

The bounds found above turn out to be very similar to the bounds found in the 

one-Higgs model; they are only reduced by the factor sin~. Since this factor cannot 

be arbitrarily small, these bounds are still severely restricting the allowed region in 

the parameter space. 

Not very much, however, can be said on the mass of the lighter scalar, but it is 

possible to estimate an upper bound on ml from requiring finite quartic couplings up 

to a unification scale. For the case A = 0 these bounds are approximately the same as 

in the one-Higgs case (evaluated with vanishing Yukawa couplings), only that they 

are reduced by a factor cos~. From the results of [24J one finds for a cut-off at the 

Planck scale ml < 160 GeV x cosS. This bound is lowered for A ¥ 0, so that a mass 

below or around the Z-mass seems to be favoured for the lighter scalar. 

What happens, if particles violating these bounds are found? Finding only one 

relatively light scalar might be an indication that a two-(or more) Higgs model is 

realized, either supersymmetric or not. It is also possible that the Higgs-mechanism 

is realized in a completely different manner, such as in models with composite Higgses, 

where such stability problems do not exist [3J. 

III. Higgs and top mass predictions from SUSY broken at High Scale and "in 

supersymmetric SU(S) model 

In this chapter we try briefly to establish that in terms of SUSY broken at super

high scale and also in supersymmetric SU(S) model, - these special models were used 

just to overcome by part the socalled scale dependence (approximately denoted as the 

socalled hierarchy problem) roughly more or less region II at the l.h. corner can 

just be covered from the (mt,mh) - region resulting from these theories. 

So far these models, touching SUSY only by part, could also be able to exclude partially SUSY for 

data discovered perhaps in region II of Fig. 1. So far in terms about Higgs and top mass predictions 

from SUSY broken at high scale, we study a model which originates from the minimal 

supersymmetric extension of the Standard model with SUSY broken at a superhigh scale A ~ 

0(1012 - 1019 GeV), with the suggestion behind that the Weinberg-Salam model originates from 

the MSSM with SUSY broken just at this superhigh scale A ~ 0(1016 GeV) [4]. This allows one 

to fix the boundary condition for the effective Higgs selfcoupling constant at scale A. The 

knowledge of this boundary condition plus vacuum stability requiren1ent allows to estimate the 

values of the top and Higgs masses. The main result now in two-loop approximation is that the 

most probable values of the Higgs and top quark masses are 
70 GeV :::;; mb :::;; 120 GeV and m t :::;; 180 GeV . It means that the top quark will be discovered 

finally (see also footnote, p. -2-, ref. **)) in the next three years at TEVATRON and that the Higgs 

will not be seen at LEP I [4]. 

So our main assumption is that the standard Weinberg - Salam model comes from 
its minimal. supersymmetric extension and that SUSY is broken at a high scale A » MZ ' 
The Higgs potential in the MSSM with general soft SUSY - breaking terms is given 
by [see eq. (I.O J: 
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(lILt) 

Here g1 and g2 are the gauge couplings of U(1) and SU(2) and the Higgs doublets H1 

and H2 couple with q = - 1/3 and q = 2/3 quarks respectively. We assume that one 

of the combinations of the H1 and H2 

(IIL2) 

is relatively light, mlight ~ 0 (M W )' whereas the other orthogonal combination 

(III.3) 

acquires a mass mheavy ~ O(A). We also assume that the masses of the superpartners 
of ol-dinary particles are of the order O(A). 

It is clear that in order to realize such a situation it is necessary to have fine 
tuning. So. our model does certainly· not solve the gauge hierarchy problem and we 
don't have at present any idea how to solve it within the suggested approach. 

At scales lower than the SUSY breaking scale A we haVe the standard Weinberg~ 
Salam model. The crucial point is that from the explicit formula for the effective 

potential (lILt) for softly broken MSSM we find that the selfinteraction effective 

coupling constant). for the light Higgs doublet at scale A is 

-2 -2 
g1 + g2 

O~)'12 2= 4 
P =A 

I {cos2cD)2 
p2=A2 

(III. 4) 

So the assumption that the standard Weinberg-Salam model originates from its super

symmetric extension with SUSY broken at a superhigh scale A allows to obtain non

trivial information about the low energy selfcoupling of the Higgs in the effective 
potential V = m2H+H + ~ (H+ H)2 and hence to obtain nontrivial information about the 
Higgs mass. To relate the high energy value (III.4) of A with the low energy value of 
).(MZ) we use the renormalization group equations which at one loop read 

2 dg3 -3 
167t -- = - 7 g3 

dt 
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16 
2 dg1 = 4-1 -3 (IlLS) n: -- 6 g1 dt 

16 
2 dht ( 9-2 -2 9-2 -2 ) h t n: -- = -h - Sg3-"4 g 2 - g 1 dt 2 t 12 

16 n: 2 dX 
dt 

= (-2 (-2 1 -2 3 -2) - -4 1 -4 1 -2-2 3 -4) 
12 A + h t - "4 g 1 - '4 g 2 A - h t + 16 g 1 + "8 g 1 g 2 + 16 g 2 

Here g3' g2 and i1 are the SU(3}, SU(2) and U(D gauge coupling constants, respectively, 
and h t is the Yukawa coupling constant. We neglected in our analysis all Yukawa 

couplings except that for the t-quark. We use the following values for the gauge 
coupling constants at electroweak scale +} 

a3(MZ) = O.11S ± O.OOS 

a~~ (MZ) = 127.9 ± 0.2 

sin2eW (MZ) = 0.2327 ± O.OOOS (IlL6) 

sin2e W = 
gf 

2 2 
gl + g 

2 

aem = . 2 e a2 sm - W 

In our numerical analysis we took the central values. The results of our numerical 

analysis for different values of A are summarized in figs. 6. The other very interesting 
point is that the lowest possible boundary value "5::1 A = 0 leads to the formation of 

another minimum of the effective potential, which is deeper than the electroweak 
minimum and thus leads to a vacuum instability. We plotted in figs. 6 a-c the vacuum 

stability curve which comes from the requirement that the electroweak minimum is 

the deepest one. 

It should be noted that in supergravity inspired models [14] (see also refs. [1] in 
ref. [4]) the val ue of the mixing angle CD is small, <D -.5.. 0.2. For instance in the model 
where Yukawa coupling constants of t- and b-quark coincide, one has tan<D = mb/mt 5.. 

O.OS. So if we make the additional and very natural assumption that the mixing angle 
is small, which is equivalent to the saturation of the upper bound for the inequality 
OII.4), we are able to predict the dependence of mh on the value of mt. Of course 

the result depends on the value for the unknown SUSY breaking scale A, but fortuna

tely for 1012 5.. A 5.. 1019 this dependence is very weak, while our predictions have to 

be relaxed somewhat if A is allowed to be smaller than these values. It should be 
noted that in nonminimal supersymmetric electroweak models our boundary condition 
for A has to be modified [4], namely 

+) ». « k LP-HEP 91, Geneva Conf. 1991 [see e.g. raporteurs tal s given by J. Ellis, 

T. Hebbeker and J.R. Carter; Conf. Proc.J 
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(III. 7) 

The boundary condition (III.7) depends on the unknown coupling constant A1' so in 

general we loose any predictive power. However in models with small mixing angle <I> 

we find that the boundary condition for the minimal and nonminimal supersymmetric 

models coincide and they correspond to an upper bound in the inequality (III.4>' 

We changed slightly the upper bound (III. 4) , namely we put 

(1 ± k) (III. 8) 

where k = 0.1. It appears that the dependence of the Higgs masses on slight changes 

of the boundary co~dition (IIL8) is also very slight and it is also shown in fig. 6a-c 

(dotted lines in curve I). From the figures we see that starting approximately from 

m t 2:.. 160 Ge V the boundary condition (IlIA) leads to the vacuum instability (at least 

for top masses below 200 GeV) of the electroweak minimum for all values of A. 

Hence in our approach we find the values of the top quark mass mt .?:.. 160 GeV are 
excluded. Recent analysis of the radiative corrections [25] in the standard mode I gives 

the following values for the top quark mass: mt = 136 ± 17 GeV for mH = SO - 100 GeV 
and mt = 177 ± 15 GeV for mH = 0.1 - 0.5 TeV. Our model [4] is in favor of the first 

values of mt and mH' Let us stress'our main prediction is that the top quark mass 
is less than 160 GeV and that it will be discovered at TEVATRON in the next three 

years. Our next prediction is that in the model with small mixing angle <I> the Higgs 

boson mass is in the region 70 .:5.. mH .:5.. 110 GeV, so that the Higgs will definitely not 

be discovered at LEP I and maybe even not at LEP II. 

Here it should be noted again [1] that if the top quark is heavy (mt .2:. 150 Ge V) 

the predictions for the Higgs boson mass in the SM and in its supersymmetric exten
sion are in different regions and the measurement of the Higgs mass allows to distingu

ish between these models. 

In conclusion let us stress the main results. We have investigated the Weinberg-Salam model 

which originates from its supersymmetric extension with supersymmetry broken at a superhigh 

scale A = 0 (1012 - 1019). We have found that in our model the Higgs and top quark masses lie in 
the regions 70 ::;; m

H 
::;; 110 GeV and m

t 
::;; ISO GeV. It means that in such scenario the top 

quark will be discovered finally (see ref. (**), p. -2-) in the next three years at TEV ATRON, 

however the Higgs will not be seen at LEP I. 
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Figure 6 a-c: Allowed regions for Higgs and top masses for various values of the 

SUSY breaking scale. Curve I describes the upper bound obtained 
from the boundary condition at the GUT scale. Curve II is the vacuum 

stability bound and curve III corresponds to the choice IIp2 =A2 = O· 
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In order to make further Higgs and top mass predictions in supersymmetric SUeS) model 

with big top quark Yukawa coupling constant, we find [5], [6] from the requirement of the absence 

of the Landau pole singularity for the effective top quark Yukawa coupling constant up to Planck 
scale in this model an upper bound m t ::; 187 GeV for the top quark mass. For the SUeS) fixed 

point renormalization group solution for the top quark Yukawa coupling constant, which can be 
interpreted as the case of composite superhiggs we find that m

t 
~ 176 GeV. Similar bounds take 

place in all models with large ht(mt). For mt ::; 180 Ge V we find also that the Higgs boson is 

lighter than mz and hence can be discovered at LEP2. 

Consider the supersymmetric SU(S) model [14] with standard kinetic terms and 

with the superpotential 

+ 0.2S A2 ecx(3yoe TaS T.yo He 

+ A3 Tr (<D3) + A4H <D H + M1Tr (<D2) + M2HH (111.9) 

Here we consider only the third (top quark) supermatter gen~ration and neglect 

all Yukawa coupling constants of the first and second generations. The model contains 

the matter supermultipletts pa: (S~~n~ TaS (10) which correspond to the third genera

tion and the superhiggses cD(24), H (S), Ha(S)' 

The nonzero vacuum solution < <D > = Diag(2,2,2,-3,-3) breaks the SUeS) gauge 

group to the electroweak SU(3) ,~ SU(2) .~ U(l) gauge group. For energies higher 

than the grand unified scale M GUT we have effective restoration of the SUeS) gauge 

symmetry. We shall neglect all Yukawa coupling constants in the effective potential, 

except that one for the top quark Yukawa coupling constant A2' The corresponding 

renormalization group equations in one-loop approximation have the form (for the 

case of three generations) [26J 

dh'2 
A(h'2)2 _ B h'2-2 t = dt t t gs (IlLl0) 

dg~ 
= -b(g~)2 

dt 
(IlLl1) 

Here gs is the SUeS) gauge coupling, (16n:2)t = In(M1t-t), b = 6, A = 18, B = 192/S, and 

h t == A2' The solution of the eqs. (I11.10/10 has the form 
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(t + g~ bt) 
(111.12) 

= A(g~ (B - b»)-1 (1 + g~bt) + 

OII.13) 

We shall use the numerical value exGUT = g~1 4rc = 1/24 for the SUeS) gauge 
coupling constant at the unification scale M GUT = 1016 GeV. From the requirement 
of the absence of the Landau pole singularity for the effective top quark coupling 

constant ht up to the Plan::..k scale MpL = 1.2 x 1019 GeV we find that the top quark 

Yukawa coupling constant h t (M GUT ~ 1.3. For the renormalization group equations 

(111.10/11) the infrared fixed point solution [27J is 

-2 -2 
h t = kg S' k = (B - b)/ A = 1.8 011.14) 

For the infrared fixed point solution (III.14) we find that h~(MGUT) = 0.94. It 
should be noted that in our ,analysis we neglected all Yukawa coupling constants in 
the superpotential (lII.9) except that one for the top quark constant. However the 

neglected Yukawa coupling constants give positive contribution to the !3-functions 

that can only make the bound ht (M GUT) .:::. 1.3 more stringent. 

For the special fixed point solution (III. 14) the ultraviolet asymptotics for the 

propagator of the superfield Hex(S) is (for the scalar component of the superfield) 

(lIL1S) 

From the equal time commutation relation 

(III.16) 

for the scalar component of the superfield Hc/S) and the Kallen-Lehmann representa

tion for the propagator DH(p2) we find that the ultraviolet asymptotics for the 
DH(p2) propagator is i/p2 ZH (here ZH is the wave function renormalization). Thus 
we find from the relation (IIL1S) that the wave functi'on renorrnalization ZH is equal 
to zero in the limit of the regularization removing. Therefore we can treat the super
field Hex(S) as composite, namely: the probability ZH :::: 1< cp 1 <I»12 (where cp is the "bare" 

state and <I> is the Hrenormalized" state) of the physical state being at the "bare" state 
is equal to zero and besides the kinetic term for the renormalized superfield vanishes 
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in the limit of the regularization removing [28J. So the "compositeness" condition 

allows to determine the top quark Yukawa coupling constant and hence to predict 

the top quark mass. 

The renormalization group equations for the SU(3) '>9 SU(2) ,x' U(1) electroweak 

supersymmetric gauge theory allow to connect the top quark Yukawa coupling constant 

at grand unified scale with the Yukawa coupling constant at the scale of the super

symmetry breaking MSUSY; to relate the Yukawa coupling constant at the MSUSY 
scale with the observable Yukawa coupling constant at the electroweak scale MW 

we have to use the renormalization group equations for the standard Weinberg-Salam 

model. The renormalization group equations have the form [29J, [30J 

-2 2 -2 -2 -2 -2 = A1 ( h t) - h t (Bl gl + B2g 2 + B3 g 3) (III. 17) 

(IIL1S) 

with b1 = - 22, b2 = -2, b3 
symmetric case and with b 1 
B3 = 16 for the standard case. 
in the form 

6, Al = 12, B1 = 26/9, B2 = 6, B3 = 32/3 for the super
-41/3, b 2 = 19/3, b3 = 14, Al = 9, Bl = 17/6, B2 = 9/2, 
The solution of the equation (III.17) can be represented 

3 
1/h2 (M) = IT 

i = 1 
3 

= J t (IT 2 - B· / b· ) K(t) (1 + gi bjx) 1 1 dx 

o i = 1 

Numerically, for M = 0.1 TeV we find 

-2 -1 {h t (0.1 TeV» = __ 0_,O_S_8 __ + 0.815 

-q (M GUT ) 

(III.19) 

(III.20) 

Using our previously derived bound ht (MGUT) ~ 1.3 we find that h t (0.1 TeV) ~ 
LOS. The top quark mass is equal to m t = h t (m t ) < H >, where v2 = (174 GeV)2 = <H2> 
+ < Ii 2 > and < H > = v cos (13). So our bound on the top quark mass reads 

(I II. 21) 

Note that from the requirement of the absence of the Landau pole singularity for the 

effective top quark Yukawa coupling constant up to GUT scale we .!:ind that mt ~ 193 
GeV. For the fixed point solution the Yukawa coupling constant h t (OJ TeV) = LOS 

and mt = 183 GeV for < H > = 174 GeV. The top quark Yukawa coupling constant at 
the electroweak scale depends rather weakly on the Yukawa coupling constant at 
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GUT scale. For instance, for 0.5 ~ h~2(MGUr < 1.7 we find that 1 ::.- ht (0.1 TeV) :5.. 1.08. 
In the rest of our paper we shall consider the models with ht (0.1 TeV) .?::.. 1 (according 

to our definition such models are the models with big Yukawa coupling constant). It 

should be noted that our formula (III.20) has bee!l derived for Cl3 (0.1 Te V) =: 0.116. 

The main uncertainty in the determination of the h t (0.1 TeV} comes from the uncer

tainty related with the determination of the strong coupling constant a3 (0.1 TeV) 

and roughly speaking h t (O.1 TeV) I'V Cl3 (0.1 TeV), so for a3 (0.1 TeV) =: 0.115 ± 0.01 we 

have 2% uncertainty in the determination of the ht (0.1 TeV). Besides there are uncer

tainties related with threshold effects. We shall assume that the accuracy of the 

ht (0. t Te V) calculation is 5%. For the SUSY breaking scale MSUSY =: 0.1 Te V the 
radiative corrections to the Higgs boson mass are numerically small and the tree 

level formulae for the Higgs boson mass are valid .. In the supersymmetric Weinberg

Salam model with soft supersymmetry breaking the following inequality [31] for the 
Higgs boson mass takes place: 

mH ..:s... mZ Icos(2~}I, ~an~ =: < H > / < H > (III.22) 

Using the inequality (III.22) and the previous experimental bound [32] mR ~ 42 GeV for the 

supersymmetric Higgs boson mass we find that 

Icos(~) I ~ 0.85 (III.23) 

or 
Icos(~} I ..:s... 0.30 (III.24) 

For the solution (III.24) m
t 

= h.t (m
t

) cos(j3) V ::; 60 Ge V and hence it is excluded (remember that 

in this context the previously obtained experimental bound on the top quark mass is m t :::; 91 Ge V 

[33]) .. From the bound (III.23) we find that for the SUeS) fixed point solution 

(III.25) 

The error (III.25) is nothing but the assumed 5% uncertainty in the determination of 

the ht (O.l TeVL So we find that in the models with large top quark Yukawa coupling 

constant (h t (0.1 TeV) .?::.. 1) the top quark has to be heavier than 145 GeV. Assuming 

that m t =: (145 ± 25) GeV [34J we find that Icos(~)1 ~ 0.93 (1 ± 0.05) and hence according 

to the inequality (III. 22) the Higgs boson is lighter than 

+20 
mH..:s... 67 -14 GeV (III.26) 

For the case of relatively big supersymmetry breaking scale MSUSY the radiative cor
rections are very important [35J for large top quark masses and we have to take them 

into account. We shall assume that the supersymme~ry breaking scale MSUSY (we 

identify the MSUSY with the mass of the top squark) is less than 1 TeV (for MSUSY 
bigger than 1 TeV it is very difficult to explain why mZ is small compared to MSUSY) 
and at the scale between mZ and MSUSY we have effectively the Weinberg-Salam 
model with the single Higgs isodoublet, so the superpartners of quarks and leptons 
have the masses I'V MSUSY' To estimate the Higgs boson mass we have to solve [34] 
the renormalization group equation for the selfinteraction constant I' of the light 

Higgs doublet which at one loop level reads 
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(III.27) 

Here A is the Higgs doublet selfinteraction coupling constant. Besides we have to 

solve the eqs. (III. 17/18) for the energies between mt and MSUSY' We have found 

that for MSUSY = 1 TeV the value of the ht(mt) (for 120 GeV < m t < 200 GeV) is 

increased approximately by 3% compared to the case MSUSY = 0.1 TeV. We have solved 
the renormalization group equation (III.27) together with the boundary condition 

_I -2 + 2 
A 2- 2 _ g g 

P -M SUSy - 4 (III.28) 

m t 
Remember that cos(~) = and the knowledge of the ht(m t ) allows to relate 

ht(mt)v 

the top quark mass with ;C (m\v) and hence to determine the Higgs boson mass 

(III.29) 

The results of our calculations for the top quark masses in the interval 120 GeV s:; mt s:; 180 GeV 

are presented in the table 1. For the case when MSUSY '"" 1 Te V, at smaller energies the standard 

Weinberg-Salam model is valid and we can use the experimental bound [32] n1H ~ 60 GeV for 

the nonsupersymm~tric Higgs boson. From the table 1 we see that for m t ~ 140 Ge V the Higgs 

boson is lighter than 60 GeV and hence in our model (and in all models with ht (mt ) ~ 1) the top 

quark has to be heavier than 140 GeV. Moreover, another important feature of the model is that for 
m t s:; 160 GeV the Higgs boson mass is lighter than the Z-boson mass and hence due to the new 

CDF-data (ref. (**), p. -2-) it will perhaps not be discovered at LEP2. 

In, conclusion we would like to stress that the considered model and all models with large h t 
(mt) predict that the top quark is heavier than m t 6' 11'0 GeV. Moreover, only for 

m t s:; 160 Ge V the Higgs boson (for MSUSY s:; 1 Te V) is lighter than the Z-boson and hence it 

will perhaps not be discovered at LEP2. It should be noted that the inequality m
t 
~ 140 Ge V has 

been ~btained in [36] where the supersymmetric model with "top quark condensate" has been 

considered. The model with the "top quark condensate" is nothing but the standard model plus the 

assumption that the top quark effective Yukawa coupling constant has Landau pole at some scalar 

A. 



- 2J -

Table 1. The dependence of the Higgs mass on the top quark mass in the assumption 

that the supersymmetry breaking scale is MSUSY = 1 TeV. All masses are in 
GeV. The uncertainty in the calculation of mt reflects the assumed 5% un

certainty in the determination ofht{mt ). 

m t mH 

120 +5 

125 35+ 4 
-1 

130 41+2 

135 47+.5 
-.2 

140 53-1 
+3 

145 59-2 
+5 

150 
-3 

66+6 

155 -4 
73+8 

160 81-6 
+9 

165 -7 
89 +10 

170 -8 
97 +11 

180 ~05:~1 
.-P + 

Finally we should mention that in a recent paper by W.A. Bardeen, Ch. T. Hill and 
D. Jungnickel [37] the authors argued, that a wide class of models admit fine tuning 

of significan~ hierarchies between strong-coupling "compositeness" scale, and low 

energy dynamical symmetry breaking scale. The hierarchy· is not always limited, - a 

"game" we just tried to demonstrate in Chapter III in comparison with the results 

presented in Chapter II and illustrated in Fig. 1 - when large-N compositeness condi
tions are matched onto two-loop perturbative renormalization group the authors [37] 
find that large hierarchies can be generated; though hierarchy is indeed model 
dependent. 

Last, not least we should mention that in a recent paper [38J we have shown that 
a supersymmetric SU(S) grand unified model with four light Higgs doublets, a light 
colour octet, and electroweak triplet and two singlets, which has been proposed in 

[39J, predict the correct value of sin2ew ' Moreover, we find that it is possible to 

obtain the ratios mb (mb) / m t and ms (1 GeV)/m
tl 

in agreement with experiment 
provided the Yukawa coupling constants for the 3rd and 2nd generations are relatively 
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large. In case of the 1st generation md/me one has to take into account two-loop con
tributions, otherwise one runs into troubles with the explanation of the ms/mll-ratio 
for the 2nd generation. Again, as mentioned before in Chapt. III, there we have also 
tried to overcome the scale-problem using flrst RGE's for the Yukawa coupling 

constants of the 3rd and 2nd generation above the SUSY -threshold, and, for the scale 

mt < II < MSUSY' via RGE's effectively down to the SM with a single Higgs doublet 
just from the GUT scale down to 1 GeV scale. Of course the resu~s depend on the 

scale of supersymmetry breaking MSUSY' on cts and on value of hb,s (MGUT). But, 

last not least, the results agree quite well with the data. 

IV. Some remarks about the influence on top and Higgs mass predictions from fine tuning 

principles, via fixed point solutions in SUeS) and S0(10) supersymmetric GUT models 

and its scale dependence of SUSY breaking in the MSSM 

1. Fine tuning in one-Higgs and two-Higgs Standard Models 

The fine-tuning principles are examined to predict the top-quark and Higgs-boson masses. 

The modification of the Veltman condition based on the compensation of vacuum energies is 

developed. It is implemented in the Standard Model and in its minimal extension with two Higgs 

doublets. The top-quark and Higgs-boson couplings are fitted in the SM for the lowest ultraviolet 

scale where the fine-tuning can be stable under rescaling. It yields the low-energy values 
mt~17S GeV; mH~210 GeV [40] [41]. 

2. Higgs and top mass predictions in SUeS) and S0(10) supersymmetric GUT models with 

fixed point solutions 

We study fixed point solutions in SUeS) and SO(10) supersymmetric grand unified models. 
For the SUeS) model with a single big ht coupling constant we find ISS GeV S; m t S; 200 GeV. 

For ISS GeV S; m
t 

S; 17S GeV we find that the Higgs boson is lighter than MZ. The SUeS) and 

SO(10) fixed point solutions with big ht and hb coupling constants give a top quark mass mt = 180 

- 190 GeV and a Higgs boson mass of mh = 118 - 120 GeV (for MSUSY = 1 TeV). From the 

requirement of the absence of a Landau pole singularity up to the Planck scale we find an upper 
bound on the top mass m

t 
= 209 GeV in the SUeS) model and m t S; 193 GeV for the SO(10) 

model [42]. 

3. Dependence of Higgs boson mass on the Scale of SUSY breaking in the MSSM 

We study the dependence of the Higgs boson mass on the scale of supersymmetry breaking 

MSUSY in the minimal supersymmetric extension of the standard Weinberg-Salam model [43]. 
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The allowed Higgs boson mass region depends on the value of the top quark mass and on the value 

of the scale of the supersymmetry breaking MSUSY. It appears that the dependence of the allowed 

Higgs boson mass interval on the scale of supersymmetry breaking MSUSY is rather weak. For 

instance, for MSUSY ;?:: 104 TeV and for mt( m t) = 150 GeV we find that 

100 GeV s mh S 120 GeV. 

So our main assumption is that the standard Weinberg-Salam model originates from its 

minimal supersymmetric extension which is explicitly broken due to soft supersymmetry breaking 

terms at scale MSUSY. The tree level Higgs potential in the minimal supersymmetric Weinberg-

Salam model with general soft supersymmetry breaking terms is given by 

(IV. 1) 

Here g~ and gx, are the U(l) and SU(2) gauge coupling constants and the Higgs doublets H~ and 

~ couples with q = 113 and q = 2/3 quarks respectively. We assume that one of the combinations 

of the H-!. and Hl; 

(IV.2) 

is relatively light, mlight ~ O(mz), whereas the other orthogonal conlbination 

(IV.3) 

acquires a mass mheavy ~ O(MSUSY). We also assume that the masses of the superpartners of 

ordinary particles are of the order of O(MSUSY). It is clear that in our scenario for MSUSY ~ O( 1) 

Te V it is necessary to have fine tuning among the soft supersymmetry breaking terms however at 

present we don"t have any idea how to realize fine tuning in a natural way. 

At scales lower than the supersymmetry breaking scale MSUSY we have the standard 

Weinberg-Salam model with the single light Higgs isodoublet H == Hlight. The crucial point is that 

from the explicit formula for the effective potential (IV. 1 ) we find that the selfinteraction effective 

coupling constant A. for the light Higgs doublet H at scale MSUSY is 



- ~2.-

(IV.4) 

So the assumption that standard Weinberg-Salam model originates from its supersymmetric 

extension with the super symmetry broken at scale MSUSY allows us to obtain nontrivial 

information about the low energy effective Higgs selfcoupling constant in the effective potential 

V m2H+H + A(H+Hf Ii and hence to obtain nontrivial information about the Higgs boson 

mass. To relate the high energy value{l\(~of X (MsUSY) with the low energy value of A (mz ) we 

use the renormalization group equations which at one loop read 

- -3 
d g3 / dt = - 7 g3 ' 

- -3 
dg l / dt = (41/ 6)gl 

-7 -2-
9g; / 4 - 17 gl /12)ht (IV.5) 

-4 
3g2 /16) , 

Here g3' g2 and gl are the SU(3), SU(2) and U(1) gauge coupling constants, respectively, and ht 

is the top quark Yukawa coupling constant. In our analysis we neglected all Yukawa coupling 

constants except top quark coupling constant. We·use the following values for the gauge coupling 

constants at electroweak scale (see refs. in [43]): 

(IV.6) 
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sin2 t9-w(mz ) == 0.2327 ± 0.0008 

These value correspond to electro weak gauge couplings of 

--1 
al (mz ) == 58.89 ± 0.11 

-·1 
al (mz ) == 29.75 ± 0.11 (IV.7) 

In our numerical analysis we took the central values for al(mz ) and a2(mz ) since the uncertainty 

in the determination of al (mz ) and a2(mz ) practically does not change the allowed regions for the 

Higgs boson mass. The results of our numerical analysis for different values of top quark mass are 

summarized in Figs. (7a-7c). The curve 1 corresponds to the initial value I(Msusy) == + 00 and it 

is the upper bound on the Higgs boson mass which comes from the requirement of the absence of 

the Landau pole singularity for the Higgs selfcoupling constant A up to scale MSUSY. The curve 2 

corresponds to the boundary condition A(MsUSY) == (g: (MsUSY) + g~ (MsUSY)) / 4 and it is the 

upper bound on the Higgs boson mass provided the standard Weinberg-Salanl model originates 

from the minimal supersymmetric Weinberg-Salam model.. The curve 3 corresponds to the 

boundary condition A (MsUSY ) == 0 and it is lower bound on the Higgs boson mass. So the 

allowable values of the Higgs boson mass lie between the curves 2 and 3. Note that solid curves 2 

and 3 correspond to the initial value a3(mz ) 0.120 and the curves 2a(b), 3a(b) to the initial 

values a3(Ms ) == 0.110 (0.130). The curve 3 coincides with the vacuum stability bound which 

comes from the requirement that A(Il) ~ 0 for f.1 :::; MSUSY' For MSUSY ~ 104 TeV the allowed 

values for the Higgs boson mass practically don"t depend on the value of supersymmetry breaking 

scale MS U S y. We used the current top quark mass definition 

m t (m t ) == fi t (m t ) (H) «H) == 174 Ge V). The relation between the pole top quark mass and the 

current top quark mass is [44] (see also ref. [5] in ref. [44]): 

(IV.8) 

It should be noted that in nonminimal supersymmetric electroweak models, say in the model 

with additional gauge singlet supermultiplet a we have due to the kaH1i'!2H2 term in the 

superpotential an additional term k2/H1i'!2H212 in the potential and as a consequence our boundary 

condition for the Higgs selfcoupling constant 'X has to be modified, namely 
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-? 
The boundary condition (IV.9) depends on unknown coupling constant k-(Ms )' so in general the 

allowed Higgs boson mass interval is between curves 1 and 3. It is very important to stress that for 

all nonminimal supersymmetric models broken to standard Weinberg-Salam model at scale MSUSY 

the effective Higgs selfcoupling constant ).,(MsuSY) is nonnegative that is direct consequence of the 

nonnegativity of the effective potential in supersymmtric models. So the curve 3 describes the lower 

bound on the Higgs boson mass in general case. The single condition is that the supersymmetry is 

broken at scale MSUSY and at lower scales we have standard Weinberg-Salam model with the 

single Higgs isodoublet. 

To conclude, we have found the allowed regions for the Higgs boson mass in standard 

Weinberg-Salam model in the assumption that it originates from the minimal supersymmetric model 

with the supersymmetry broken at some scale MSUSY. The allowed Higgs boson mass region is 

between curves 2 and 3. In arbitrary case when standard Weinberg-Salam model originates from 

arbitrary supersymmetric model with the supersymmetry broken at scale MSUSY the allowed 

Higgs boson mass region is between curves 1 and 3. 
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Figures Caption 

Figures 7a - 7c: Allowed regions for the Higgs boson mass for different values of the current top 
quark mass mt(mt) = ht(mt)(H). Solid curve 1 describes the upper bound obtained from the 

requirement of the absence of Landau pole singularity for A(f.1) up to scale Ms- Solid curves 2 

describes the upper bound on the Higgs boson mass which corresponds to the boundary condition 
- -2 -2 
A(Ms) = (gl (MJ + g2(MJ) / 4 and a 3(mZ ) 0.120. Solid curve 3 describes the lower bound 

on the Higgs boson mass and it corresponds to the boundary condition A(Ms) 0 and 

a 3 (Ms ) = 0.120. Curves 2a, 3a and 2b, 3b correspond to a 3(MJ = 0.130 and a 3(Ms ) = 0.110 

(Ms MSUSY)' 

4. Upper bound on the SUSY breaking scale in supersymmetric SUeS) model 

The status of coupling constant unification in standard supersymmetric SU(5) model and its 

extensions is discussed. Taking into account uncertainties related with the initial coupling constants 

and threshold corrections at the low and high scales we find that in standard supersymmetric SUeS) 

model the scale of the supersymmetry breaking could be up to 108 Ge V. In the extensions of 

standard SU(5) model it is possible to increase the supersymmetry breaking scale up to 1011 Ge V 

[45]. 

Summarizing this we can say, that Higgs and top mass predictions from SUSY broken at 

high scale and upper bound on the top quark mass for supersymrnetric SU(5) and Higgs mass 

predictions fit into a (mt, mH)-region, where for mt > 150 Ge V whether the results from the SM 

nor that one obtained from the MSSM coincide. But the requirement of vacuum stability in a two

Higgs model just fits into this region, also overcoming the socalled hierarchy problem, certainly 
model dependent, as mentioned above. For fit ~ 187 Ge V the lower bound for the heaviest 

neutral scalar mass mh results intom.t.~·H 0 G.eV f"1" 1/2. L -1 ~ I.. 30 [q.'1..., 

Finally we should not forget to mention, that all these previously quoted treatments are 

certainly more or less embedded completely in the Higgs-Kibble mechanism, usually denoted as the 

socalled "Higgs-Phenomenon" [47], indicating all the completely not understood and "hidden" 

problems and troubles due to this procedure. 

As long as we cannot quantize gravity completely, a possible way out of these difficulties just to 

avoid, rQughly spoken, the socalled "zero-length", might be "Stringsll, Toward to these ideas and 

so far to get a chance to overcome in this context perhaps step by step the existing and not 
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understood problems, a comparison of the "running coupling constants ", e.g., calculated via 

SUGRA with those obtained via "Superstrings anLQuantum Gravity II , might indicate a "way out" of 

all these problems [48]. 

Last, not least we should mention, that at the 2nd March 1995 CDF and D¢ established the 

existence of the top quark*); 

(a) CDF: mtop = 176 ± 8 (stat.) ± 10 (syst.) GeV/c2 and tt-production cross section to be 

6.8~i.·: pb [49]. 

(b) D¢: m top = 199 ± ~~ (stat.) ± 22 (syst.) GeV / c2 and its production cross section to be 

6.4 ± 2.2 pb [50]. 
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