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ABSTRACT 

We review the results of recent calculations of the surface tension in lattice QeD 
for fiat and spherical interfaces separating coexisting phases of hadronic matter and 
quark-gluon plasma. We compare these results with the the Bag model calcula.

. tion of Mardor and Svetitsky and discuss their implications for the 'Swiss Cheese' 
instability. Presented by J. Potvin. 

1. Introduction 
Recent lattice simulations of quenched and full QCD suggest that the phase tran

sition between hadronic matter and quark-gluon plasma may be weakly l.tt order (and 
possibly 2nd order in 2 flavor QeD).l First order phase transitions are particularly 
interesting since they feature metastable states which decay by nucleating droplets of 
stable matter. In strongly first order phase transitions the lifetime of such a decay is 
calculated from classical nucleation theory2,3 and depends on the value of the surface 
tension on a fiat interface separating ma.croscopic domains of hadronic matter and 
quark-gluon plasma. As reviewed in the following section, several lattice calculations 
of the surface tension in quenched QCD ha.ve given a value of order ex = 50MeVI1m2 

or less.4- 11 Compared to the scale of the strong interactions such a value is very small, 
confirming further the weak character of the phase transition. 

Weak first order phase transitions are outside the range of validity of classical nu
cleation theory. Studying droplet decay will therefore require a more detailed knowl
edge of the droplets' free energy at various droplet sizes.3 One standard parametriza
tion of the radius-dependence of the free energy is the following: 

~F(R) = -6.f V + QooA -	 8irCR +..... (1) 

Presented at the . Workshop on trQeD Vacuum Structure and its Applications", June 1-5 
1992, Paris, France. . 



were V, A and R are the droplet's volume, surface and radius respectively; f is 
the bulk free energy difference between the metastable and the stable states and the 
factor 811"C is the so-called curvature coefficient. Computing the value of the curvature 
coefficient on gluonic and hadronic droplets has motivated some of the most recent 
lattice work in finite temperature QCD.12 t 13 These will be discussed in Section 3 
below. 

The droplet surface free energy being size-dependent may imply a phase kinetics 
(i.e. droplet time-evolution) very different from the kinetics characteristic of clas
sical nucleation. An example is the 'Swiss cheese' instability suggested by Mardor 
and Svetitskyl4, in which droplets of sizes smaller than the size of the 'saddle-point' 
configuration in the classical theory may exist as metastable states (these sub-critical 
droplets are unstable in the classical theory). Because scenarios like the Swiss Cheese 
instability depend on the precise size-dependence of the free energy, lattice calcula
tions are particularly useful in determining the likely forms of droplet evolution as we 
will see in Section 4. 

2. Surface Tension of Flat Interfaces 

Most of the studies done so far have focused on studying the surface free energy 
in quenched QCD.4-6,8-11 Work in QCD with 4 flavors of dynamical (heavy) fermions 
was done by Hackel et al. 7 

The surface tension of a flat interface separating hadronic and quark-gluon phases 
is calculated from the free energy needed to create a macroscopic interface of surface 
area A = 2 L2 on a L *L *2L spatial lattice with periodic boundary conditions (see 
figure 1). It is sufficient to compare F12 , the free energy associated with a mixed phase 
system containing equal volumes of phase 1 (hadronic matter) and phase 2 (gluonic 
plasma), with the free energy (Ft, F2) associated with each bulk phase separately. 
By parametrizing (F12 - Ft ) and (F12 - F2) as a superposition of a volume term and 
a surface term, the contributions from the bulk free energy can be subtracted out, 
giving: 

fl.F/J = [Vt(F12 - Ft ) - lt2(F2 - Ft2 )]. (2)
Vi+lt2 

Vt and lI2 correspond to the volume occupied by phase 1 and 2 respectively. A similar 
formula can be used in the case of droplets of phase 1 immersed in bulk matter of 
phase 2 (or vice versa), using instead Yin and Vout , the volumes inside and outside the 
droplet respectively. Eq. (2) is equivalent to an experiment in which the system is 
initially in phase 1 and is allowed to 'grow' the other phase in one half of the lattice, 
leading to a mixed phase. The interface is then allowed to "melt" when the rest of 
the system is transformed to the second phase. 

In practice, the free energy is obtained from a suitable derivative of the partition 
function Z, since F = -lnZ. (Here, F/kBT has been rescaled to F). Some inves
tigators have used a derivative with respect to a change of the interface's surface.s 

Others have used a derivative with respect to the gauge coupling f3 (f3 = 6/92) 4 or to 



Fig. 1. A mixed phase configuration on a lattice, created by a small gauge coupling (tempera
ture) difference across the interface (ref. [4]). 
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Fig. 2. Path in coupling space for the calculation of the surface tension. 



external Polyakov line couplings5 in order to simulate an actual creation/destruction 
of phases through small changes of temperature or external fields. Others have ex

10plicitely calculated the probability to generate a two-phase system.8 

Derivatives of the partition function are usually obtained from Monte Carlo simula 
An example is the average action (8) calculated from the derivative of In Z with re
spect to fj. The free energy is then simply obtained from the following integral: 

{3"
F(fj") - F(fj') = r dfj (8){3 (3)J{31 

The calculation of the hadronic and quark-gluon droplets free energy is obtained from 
the integral of (8) along paths shown in figure 2. Each path is defined by tuning the 
gauge coupling fj inside Vl (fjl) and inside V2 (fj2) in succession (changing the coupling 
is equivalent to increasing and/or decreasing the temperature). In order to have a 
stable interface the integration starts at temperatures slightly smaller than Tc , that 
is fj = fjc - Sfj and ends at temperature slighlty higher, or fj = fjc +Sfj.4 To obtain 
the physical value of the surface free energy, the calculation is repeated for smaller 
values of the temperature difference Sfj, and an extrapolation to zero-Sfj is performed 
in the end. 

Lattices of several volumes have been used for surface tension studies, namely 
lattices with 2 and 4 times slices (or Nt = 2,4) with spatial volumes ranging from 
6*6*12 up to 16*16*32,4,5 from 8*8*16 to 8*8*40,6,7 and finally from 12*12*6 up 
to 12 * 12 * 12 (on a Nt = 2 lattice),8 and 12 * 12 * 12 on Nt = 2 as well as 20 * 20 * 20, 

4.1024 * 24 * 24 on Nt = 
The computation of the surface tension has a recent history. The world data can . 

be listed as follows: 
First, on Nt = 2 lattices, CI./T3 = 0.12(2) [ref A] , 0.08(1) [ref. 6 (approximate 

error)] , 0.071(8) [ref. 8], 0.140(6) [ref. 9] and, 0.078(8) [ref. 10]. 
On Nt = 4 lattices, on the other hand: CI./T3 = 0.024(4) [ref. 5] and 0.007(2) [ref. 

10]. 
We see that all studies are consistent with the statement that the surface tension is 

indeed small in QCD. There are some discrepencies between the different methods of 
computation however. Because the results within each group of methodologies do not 
agree, it is hard at this time to identify clearly each source of systematic error. Here 
it seems that errors due to small lattice volume, Monte Carlo sampling, ignorance 
of the so-called Karsch coefficients at intermediate coupling, etc. may be affecting 
the results in an uneven manner. More work is clearly needed here to determine how 
large a lattice or how long a Monte Carlo run need to be in order to see agreeement 
between these different methods. 

It is important to point out that all the recent computations of the surface tension 
in the 3-dimensional Ising model agree nicely over a wide range of temperatures. 15 
On the other hand, a major disagreement do exist in the 2-dimensional 7 -state Potts 
model between the 'integral' method16 and the probability distribution method.8 The 
source of the discrepency is not understood at the moment. 



It seems clear that the surface tension on lattices with 2 and 4 time slices differ 
substancially, indicating lack of scaling. This is consistent with the scaling properties 
of other physical parameters. In the case of the transition temperature Tc for example, 
studies have shown that scaling appears only on lattices with more than 10 time slices 
(Nt = 10).17 

A computation of the surface tension in 4-fiavor QCD has been performed by 
Hackel et al. 7 These authors have used the derivative with respect to a change of 
the interface area to compute the free energy.6 They have obtained a very small 
(negative) value, also consistent with zero within errors. It is worth mentioning 
that Hackel et al. have found that the value of the surface tension results from a 
delicate balance between the (positive) contribution of the gluonic degrees of freedom 
and the (negative) contribution of the fermionic degrees of freedom. Much remains 
to be done, however, regarding the estinate of the systematic errors present in this 
calculation, since approximate algorithms were used for both the computation of the 
surface tension and the Monte Carlo update of the gauge configurations. 

3. Surface Tension of Spherical Interfaces 

Unlike the surface tension of a fiat interface (or wall), the definition of the surface 
tension on a droplet is more ambiguous. The reason rests with the fact that at T = Tc , 

walls are macroscopic objects which are stable in the infinite volume limit. Droplets, 
on the other hand, are unstable objects which either shrink or grow during the phase 
transition. Of course, stable droplets do exist in macroscopic sizes in the real world, 
when a pressure difference between the droplet's interior and exterior balances out 
the surface tension. In principle, such an environment could be created in supercooled 
and superheated matter. 

Another ambiguity in the definition of a droplet's free energy has to do with the 
location of the droplet's surface when the interface has a finite thickness w. This 
problem can also be solved for macroscopic droplets supporting a pressure difference 
across their interface by using Laplace's equation ~p = 20./ R as a constraint.3 ,18,19 

The radius dependence of a stable droplet surface tension was first computed 
by Gibbs.3 ,18,19 Following general thermodynamics and using Laplace's equation, one 
can derive this radius dependence in terms of the wall surface tension 0.00 and of the 
surface thickness w (assumed to be thin), thus obtaining the Tolman-Gibbs equation: 

(4)a. = 1 + 2w/R . 

As discussed in reference [19], it can be argued that the Tolman-Gibbs formula holds 
for slowly growing non-equilibrium macroscopic droplets as well. 

Practically speaking, it is very difficult to adequately simulate metastable states 
or slowly growing droplets in lattice QCD simulations because of limitations on the 
system's volume and on the actual identification of metastable states (not to men
tion the definition of real time in Eucledian field theories). One alternative is to 
artificially create a droplet of a given size at T = Tc using some external fields or 



by applying a (small) temperature difference across the interface. The problem is of 
course whether this is at all meaningful, particularly in the case of small (microscopic) 
droplets. However this procedure may be justified for large droplets which feature 
flat walls on a microscopic scale. These artificially created droplets would correspond 
to droplets which in the real world are in equilibrium or grow at a very slow rate. 
These assumptions can be checked indirectly by comparing the surface free energies 
obtained from the use of different types of external fields and/or by comparing with 
the large R-limit of the Tolman-Gibbs equation (Eq. (4)) as will be done below. 

Two series of calculations in quenched Nt = 2 lattice QeD have been performed 
recently,12,13 in wich droplets were created by tuning the gauge coupling (and hence 
the temperature) inside the droplet to artificially stabilize its surface. Huang et al.12 

have measured the derivative of the partition function with respect to the gauge cou
pling (3 and integrated with respect to (3 in order to obtain the free energy. Kajantie 
et al. 13 have computed the derivative with respect to the droplet's radius R and in
tegrated with respect to R to compute F. Both studies have used Eq. (1) to extract 
the value of the curvature coefficient; in both cases also, an extrapolation to a zero 
value of the stabilizing temperature difference had to be performed. 

The values of the surface tension obtained in reference [12] are shown in figure 3: 
a/Tc 

3 = -0.060(7), -0.042(5), +0.055(14) for hadronic droplets with radii R = 4,5,8 
respectively, and a/Tc 

3 = 0.000, -0.076(5), +0.061(14) for gluonic droplets with radii 
R = 4,5,8. These values were obtained directly from the integration of the action, 
without using equation (1). The results are compared with the Tolman-Gibbs formula 
(Eq. 4), using a value for the interface width of w = 4,6 and a wall surface tension 
of aoo/Tc3 = 0.12(2).4 The agreement with the Tolman-Gibbs formula for R > 5 is 
rather surprising given the fact that no free parameters were available. Perhaps the 
size of R = 8 droplets could be considered as macroscopic; given the droplet width 
w = 4,6 droplets with radii smaller than 5 are clearly microscopic. 

It is important to notice that having w = 4 implies that the definition of a droplet's 
radius is ambiguous at Tc (Laplace's equation cannot be used at Tc).19 However, one 
can estimate the error due to this ambiguity by using calculus of variations with 
respect to the transformation R -+ R + 8 on the surface term of the droplet's total 
free energy. One finds an error of (R!/2) - 1, or, of about 20 percent for R = 8 
droplets and up to 60 percent for R = 4,5. Qualitatively, the ambiguity due to 
interface thickness does not change the picture shown in figure 3. 

Kajantie, Karkkainen and Rummukainen13 have expressed their computed free 
energy using equation (1) as an ansatz. The values of the curvature coefficients thus 
obtained were C = -0.076(25) and C = +0.076(120) (in units of T 3

) for hadronic 
and gluonic droplets respectively. Their data on hadronic droplets have smaller erro.rs 
than the data on gluonic droplets. These numbers can be compared with the Bag 
model calculation of Mardor and Svetitsky14 (see also Section 4. below) which predicts 
C = -0.0707 (hadronic) and C = +0.0707 (gluonic), thus showing a nice agreement 
particularly in the case of the hadronic droplets. 

A consistency check can be made by comparing the coefficient of the surface
dependent term which should be identical to the flat wall surface tension: Kajantie 
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Fig. 3. Radius dependence of the surface tension on hadronic (filled circles) and gluonic 
(squares) droplets. :The data point at R-l·0. corresponds to the wall surface tension (Ref. 4). 
The dashed curve represents the Tolman-Gibbs equation. 



et ale have obtained 0.10(14) and -0.37(80) (in units of T3) for hadronic and glu
onic droplets, values which are consistent with the flat interface studies4- 10 but also 
consistent with zero surface tension. 

Huang et al. 12 have also computed the values of the curvature coefficient, by 
fitting their data to equation (1). In units of Tc3 the fit gave a the following values for 
the curvature term C: -0.051(9) and -0.077(13) for hadronic and gluonic droplets 
respectively. There is (some) quantitative agreement between these results and those 
of reference [13] for the hadronic droplets but not for the gluonic droplets. One reason 
for the discrepency may be in the different extrapolation schemes used, particularly 
in the computation of the free energy itself. 

We note that given the large values of the ratio w/ R used so far, one should be 
suspicious of truncated series such as equation (1), especially when terms in powers 
of 1/R may be important. That the fits may be incorrect can be seen by looking at 
the fitted value of the wall surface tension (o:Jitted), which in reference [12] is twice 
the value of 0:00 , 4-10 instead of being the same. 

4. Implications for the Swiss Cheese Instability 

Mardor and Svetitsky have studied the surface tension in the Bag Model, 14 using 
equation (1) as an ansatz. They found a value of the curvature coefficient given by 
C = ± (~) T2 (- for hadronic droplets and + for gluonic droplets). Moreover, the 
fiat wall surface tension 0:00 in QCD with NO strange quarks turned out to be zero. 

At least for hadronic droplets, the lattice results are consistent with the Bag model 
calculations at least qualitatively, in that the value of the wall surface tension is small 
on the scale of the strong interactions, and that the curvature coefficient is negative. 
Comparisons in the case of gluonic droplets may be premature at this time, given 
the discrepencies found in different lattice studies regarding the sign of the curvature 
coefficient (negative in reference [12], positive in reference [13]). 

An interesting consequence of Mardor and Svetitsky's results is that the nega
tive value of the curvature term leads to a secondary extremum at small R in the 
free energy thus generating the so-called "Swiss cheeze" instability. In this scenario, 
sub-critical hadronic droplets of a certain characteristic size are not destroyed by fluc
tuations as they would be in classical nucleation theory.14 At temperatures smaller 
than Tc, the metastable vacuum would not consist of bulk quark-gluon plasma, but 
instead of plasma with 'droplets' of hadronic matter.14 At temperatures larger than 
Tc, on the other hand, no such 'dirty' metastable hadronic state could exist since the 
curvature coefficient is positive. Some uncertainties concerning the viability of this 
scenario remain, however, especially regarding the contribution of 1/R-terms to the 
free energy,19 as well as the inherent (in)stability of these droplets.20 
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