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ABSTRACT~ 	 The formulation and I'esolution of integrable lattice statistical models in a quantumBETHE ANSATZ AND QUANTUM GROUPS 
group covariant way is the snhject of this review. The 13ethc Ansatz turns to be remarkably 

useful to implement quantum group symmetries and to provide quantum group represen

tations even when q is a root of unity. We start by solving the six-vertex model with fixed 

boundary conditions (FBC) that guarantee exact SU(2)q invariance on the lattice. The 

algebra of the Yang-Baxter (YB) and SU(2)q generators turns to dose and the transfer 

matrix is SU(2)q invariant for FBC. In addition, I,he infinite spectral parameter limit of theH.J. DE VEGA 

t YB generators yields cleanly the SU(2)q generators. The Bethe Ansatz st.ates constructed 
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alternating inhomogeneities. This operator is shown to nescribe the SOS model after an1... 

appropiate gauge choice. Using this FBC light-cone approach, the scaling limit of both 

.I six-vertex and SOS monels easily follows. Finally, the higher level Bethe Ansat:?; equat.ions 

(describing the physical excitations) arc explicitly deriven for FBe. We then solve the 
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1. Introduction 

As is by now well known integrability is a consequence of the Yang-Ba..xter 
equation (YBE) in two-dimensional lattice models and two-dimensional quantum 
field theory (QFT) , (for recent reviews sec for example ref.[l]) . More precisely, 
a :;tatisLical model is integrable when the local weights are solutions of the YBE. 
Analogously, for two dimensional integrable QFT the two-body S-matrix fulfils the 
YBE. 

Quantum groups are closely related to Yang-Baxter algebras[1,2]. However, 
quantum group invariance holds for an integrable lattice model only for specific 
choices of t.he boundary conditions. As we showed in refs. [3-4] (see also rcfs.[5,6,7J), 
choosing fixed boundary conditions (FBC), the transfer matrix commutes wit.h ~he 
quantum group generators. 

The purpose of this paper is to review the work in collaboration wit.h Claudio 
Dcstri in reL'l.[3-4] on integrable lattice models and their scaling limit using a fully 
quantum group covariant Bethe Ansatz (BA) framework. Let 11S recall that the YB 
algebra of monodromy operators acting on the space of physical states, is the main 
t.ool to construct the transfer matrix eigenvectors by the (algebraic) Bet.he Ansatz. 
To do that we choose FBe (Dirichlet t.ype) and usc the Sklyanin-Chereduik[8,9] 
construction of the Yang-Baxter algebra. In this framework, besides t.he R-matrix 
defining the local statistical weights, there are two matrices K±(O) that define t.he 
boundary conditions. K±(8) must fulfil a set of equations [eqs.(2.12) and (2.15)J in 
order t.o respect integrability. (FBC is one spccial case out of a continuous family 
of boundary conditions compat.ible with integrability). 

The appropiale lIlonodromy operators Uab(\ w) for aN-sites liue take now the 
form depicted in fig.1 where arbitrary inhomogeneities Wi , (l .s; i .s; N), arc allowed 
at each ~itc. We compute the large 0 limit of the monodromy operators Uab(A, w) 
and find that they are just the quantum group generators. We do that explicitly 
for the six-vertex model where the qnantum group is SU(2)q . We find in t.his way 
an explicit representation of the SU(2)q generators acting on the space of states. 

In addition, the 0 --7 00 limit of the Yang-Baxter algebra for the Uab(A, w) shows 
that the transfer matrix teA, w) commutes with the SU(2)q generators and that the 
algebra of the Uab(A, w) (1 a, b .s; 2) with the quautmn group generators ( J± and 
qJ. ) closes [see eq~.(2.33)-(2.37)). Moreover, t(A,W) in the f} --7 00 limit yields the 
q-Casimir operator Cq through 

t(oo,w) = q + q-l + (q q-l)2 Cq 

It must be recalled that for periodic boundary conditions (PBC) the f) 00 limit--j> 

of the Yang-Baxter algebra also gives the quantum group generators but that. the 
algebra with the PBC monodromy operators docs not close [lJ . 
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Then, we investigate the BA construction in this quantum group covariant 
framework. It is natural t.o define for FBe a creation operator of pseudoparticles 
B(O) (proportional to U12(,\, w) ) which is odd in 8 [eq.(3.3)). The exact eigenvectors 
of the transfer matrix t( Al w) are then given by 

(1.2)w(iJ) = B(vdB(v2) ....B(llr)f2 

where VI, V2, •• • , Vr , fulfil the BA equations (3.4) (BAE) and n is the ferromagnetic 
ground state (3.2). We show that only BAE roots with strictly positive real part 
must he consider (Re Vj > 0). In particular, Vj = 0 and purely imaginary roots 
must be discarded. We map the BAE (3.4) for FBC onto DAE for PBC in 2N sites 

eq.(5.2)]. We find t.he usual PBe BAE pIllS an extra source and two important 

constraints ; 
a) the tot.al number of roots is even and they arc symmetrically distributed with 

respect to the origiu, 

b) a root at t.he origin as well as purely imaginary roots are excluded. 

Therefore, the antiferroelectric ground state (and the excitatious on the top of 
contain always a hole at the origin. This hole combined wit.h the extra source 

accounts for the suxface energy (see for example ref.[12]). 

Starting from the general SA state (1.2) we prove that they are highest weights 
for SU(2)q . That is, 

(l.:~)J+ \liCii') 0 

provided the BAE (3.4) hold for 1)1,1)2, •.• , Vr . Therefore, the eigenvalues of 
arc degenerate with respect to the quantum group and the eigenvectors: 

.Lw(iJ'), (.L)2W(11), ... , (J_)2J\{!(iJ'), (104) 

arc linearly independent from \li(11) . 
SOS and vertex models are relat.ed by the vertex-face c:orrespondence. (The 

degrees of freedom lie on faces for SOS model,:> whereas they lie on links for the 
vertex model). The correspondence between them amounts to an application of the 
q-analog of the Wigner-Eckart theorem. As we explain in sec. 4, the SOS space of 
states is identical to t.he set of maximal weight six vertex states in a quantum group 
invariant framework like ours. It theu follows from eq.(1.3) that. the Solid-On Solid 
(SOS) states are just the f.b.c. BA states given by eq.(1.2). The six vertex Hilbert. 
space includes t.he whole SU(2)q multiplets and follow then by repeatedly applying ,.the lowering operator J_ to the higheRt weight BA states (1.2) as shown in eq.(1.4). 
In other words, we have found the BA solution of the SOS model since we derived 

;/'"the transfer matrix eigenstates. In ref.[IO] an alternative but equivalent solution of 
the SOS model is derived using a DA in face language. In addition PSOS (periodic 
SOS models where the face states land 1+ p are identified) are solved in 
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The light-cone approach is a direct way to give a field theoretical interpretation 
to a lattice model and furthermore obtain its scaling limit a"l a massive QFT. The 
light-cone approach with periodic boundary conditions has been investigated in 
refs.[19-20J . Here we consider this approach in the case of fixed boundary conditions 
leading to a quantum group invariant framework. 

In this context we show in sec. 4 that the diagonal-to-diagonal transfer matri-x 
u(e) [fig.6] can be obtained from the row-to-row transfer matrix t(>., w) choosing the 
inhomogeneitieR appropiately. This is analogous to the relation found in ref.[19,20] 
for PBG. From the transfer matrix U(e) we define the lattice hamiltonian through 

H = 
't 

logU(e) 
(l 

where a is the lattice spacing. In the a 0, E> ---7 00 limit this operator defines the 
continuous QFT hamiltonian provided the renormalized ma'iS sca.le [see eq. (4.17) J 
is kept fixed. The evolution operator U(e) can be considered both in the vertex or 
in the face language. In face language, it has a simple expression provided we make 
an appropiate gauge transformation. That is, if one transforms each local R~matrix 
to a matrix R such that the SU(2)q symmetry holds locally. In this way, we show 
that the associated light·cone evolution operator U(e) just describes the 80S ABF 
model[13] feq.(4.27)]. 

As it is known, the physical states above the AF vacuum arc described by the 
higher level BAE[14J. We obtain the higher level BAE for FBC in sec. 5 [eq.(5.14)). 
They are the starting point to study the excitations in SOS and RSOS models. To 
conclude we show that the BAE for FBG admit solutions at infinity only when 
is a rational number. This is precisely the case when RSOS models can be defined 
and when the representations of SU(2)q algebras cease t.o be isomorphic to usual 
SU(2). Recall that when!/1f' is rational, type I reprcscntatioru; are reducible but 
indecomposable, type II are irreducible 8.<; in SU(2) (see for example ref.[5,6]). 

It is known that the Six Vertex (6V) model, in the soc-:alled light-COIle for
UlUlation and with periodic boundary conditions (p.b.c.), yields the Sine-Gordon 
massive field theory in an appropriate scaling limit [19}. Hence the Iight-conc 6V 
model can be regarded a'i an exactly integrable lattice (minkowskian) rcgulari7.ation 
of the SG model. 

R.ecently, the hidden invariance of the SG model under the quantum group 
SU(2)q was exhibited [21J. Our quantum group invariant light-cone formulation, 
pI'ovidcs a lattice formulation where such hidden invariance appears starting from 
lirst principles. That is, not on a bootstrap framework but deriving the field theory 
as a rigorous scaling limit of the six-vertex modeL 

We present in section 6 and 7 the derivation of the facLorized S-matrices on 
the lattice, i. c. still in the presenc:e of the UV cutoff. This derivation is based on the 
"renormalization" of the BA Equations, which consists in removing the infinitely 
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many roots describing the ground state. What is left is once again a f. b.c. BA 
structure involving the lattice rapidities of the physical excitations (the particles of 
the model) and the roots of the higher-level BAE obtained in paper I. The explicit 
form of two-body S - matrix for the 6V model and the SOS model can be extracted 
in a precise way (eft. eq. (6.11)) from this higher-level BA structure. In the massive 
scaling limit these lattice scattering amplitudes become the relativistic S -matrices 
of the SG model (or Massive Thirring model) and of the continuum SOS model. 
Let us remark that the SOS S-matrix, although closely related to the 6V and SG 
S'-rnatrices from the analytical point of view, is conceptually different. It describes 
the scattering of kinks interpolating between renormfLlized local vacua labelled by 
integers. This kink S -matrix is most conveniently expressed in the so called face 
language (see eq.(7.3)). 

In section 8 we investigate the f.b.c. BAE (eq.(2.4)) when the quantum group 
deformation parameter q is a root of unity, say qP = ±l, with p some integer 
larger than 2 (the case p = 2 being trivial). In this case it is known that RSOS(p) 
model can be introduced by restricting to the finite set (1,2, ... ,p 1) the allowed 
values of the local height variables of the SOS model [13J. At the same time when 
qP = ±1, the representations of SU(2)q algebras cease to be isomorphic to usual 
SU(2). Recall that when 'Y/1f' is rational, type I representations are reducible hut 
indecomposable, type II are irreducible as in SU(2) (see for example ref.[5,G]). The 
restriction leading to the RSOS model from the SOS model is equivalent to the 
projection of the full SOS Hilbert space (which is formed by the highest weight 
states of SU(2)q) to the subspace spanned by the type 11 representations [5,61. 
That is, those representations which remain irreducihle when q becomes a root of 
unity. Our results 011 this matters, in the BA context, can be surIlIuari:rRd a.<; follows: 

a) 	Only when q is a root of unity, the f.b.c. BAE admit singular roots (that is 
vanishing z-root.s or diverging v-roots, in the notations of sec.l). 

b) 	When q tend to a root of unity, say qP = ±l, the BAE solutions ean be 
divided into regular and singular solutions, having, respectively, no singular 
roots or some singular roots. Regular solutions correspond to irreducible type 
II representations. Singular solutions with r singular roots corresponcl to 
the reducible and generally indecomposable type I rp-preseutations obtained 
by mixing two standard S'U(2)q irreps of spin J and J + l' (we recall that 
.1 N/2 M, where N is the spatial size of the lattice and M the number 
of BA roots). Then necessarily r < p. 

c) 	 The r singular roots Zl, Z2, .•. , Zr vanish with fixed ratios 

Zj wj - l Zl, W f!2'Tri/r) 1 S; j S l' (1.6) 

In terms of the more t.raditional hyperbolic parametri7.ation, with v-roots 
related by Vj = log Zj to the z-roots, the singular rootH form an asymptotic 
string-like configuratiou. They have a commOll diverging real part and are 
separated by 1f/r in the imaginary direction. 
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So we sec that the RSOS eigcnstates are ea.qily singled out from the full set of 
BA cigenstates of the 6V or SOS transfer matrix. One must retain all and only 
those BAE solutions with M > (N - p + 1)/2 (which correspond to states with 
J < (p 1)/2) and with all M z-roots different from zero. This provides 
therefore an exact, explicit and quite simple solution for the RSOS model on the 
lattice {with suitable boundary conditions, as we shall later In particular the 
ground state of the 6V, SOS and RSOS models is the same f.b.c. BA state (in the 
thermodynamic limit N --t 00 at fixed lattice spacing). It is the unique SU(2)q 
singlet with all real positive roots and no holes. The local height configuration 
which, loosely speaking, dominates this ground state can be depicted as a sequence 
of bare kinks jumping back and forth between neighboring bare vacua (see fig. 10). 
In the massive scaling limit proper of the light-cone approach [19], this ground state 
becomes the physical vacuum of the SG model as well as of and all the Restricted 
SG field theories. 

In the discussion ending sec. 8, we argue that the kink S -matrix for the 
excitations of the RSOS models follows indeed by restriction from that of the SOS 
modeL In the scaling limit it is to be identified with the relativistic S -matrix 
of the Restricted SG models. All these field theoretical S -matrices arc naturally 
related t.o the Boltzmann weights of the respective lattice models. This is hecause 
thp- higher-level BAE are identical in form to the "bare" BAE, apart from t.he 
renormalization of the anisotropy parameter [ (related to q by q ei-r) 

(1.7)[ 7 1!' "( 

and the replacement of the cutoff ±e with the suitably scaled rapidities OJ 
of the physical excitations 

C\ [OJ±o --t-
1r-[ 

In particular, since "( 1r/p for the RSOS(p) model, eq.(1.7) yields p --+ p 1. This 
shows that the renormalized local vacua i run from 1 to p - 2 when the bare local 
heights en run from 1 to P 1. The higher-level BA structure of the light-cone 
6V model (or lattice SG model) thus provides a microscopic derivatioIl 
of t.he bootstrap construction of ref. [21] and explains why the S-matrix of the 
p -restricted SG field theory ha.'! the same functional form of the Boltzmann weights 
of the lattice RSOS(p + 1) modeL Moreover, the well--known correspondence be
tween the critical RSOS{p) models and the Minimal eFT Models Mp imply the 
natural identification of the massive p-restricted sa model with a completely mas
sive relevant perturbation of Mp. This is generally recognized as the perturbation 
induced by the primary operator ¢1,3 with negative coupling. 

Two detailed examples of the BA realization of the qllantun group reduction 
to the RSOS models are presented in sect.ion 9. We considered the simplest cases 
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p :3 and p = 4. The RSOS(3) model is a trivial statistical system with only 
one state, Hince all the local heigths arc fixed once we choose, for example, the 
boundary condition fo = 1. In our quantum group covariant Lb.c. construction 
this corresponds to the existence of one and only one type II state when '1 = 'lr /3. 
We then obt.ain the following purely mathematical result: for any N 2 and real 
w = cxp( -28) the set of BAE 

Zj _ 'We7ri/3) N [N/2J 
-1 zje"" _ W II Zj ~ ~:e2'i" 1 ~ j N 

z 
J 

(1.9) 
admit one and only OIle solution with nOil-'.lero roots within the unit disk Izl < l. 
In addition, these roots arc all real and positive. 

The RSOS(4) model can be exactly mapped into an anisotropic Ising model as 
showed in eqs. (9.1-5). In our case the horizontal and vertieal Ising couplings turn 
out to be 8-dependent cornple.T: numbers. For even N, the Ising spins are fixed on 
both space boundaries. For odd N the spins are fixed 011 the left and free to vary 
on the right. We analyzed the BAE for the RSOS(4) model in some detail. In the 
thermodynamie limit the ground state, as already stated, is common to the 6V amI 
SOS IIloode1s. The elementary excitations correspond to the presence of holes in 
the ~ea of real roots c:haractering the ground state. Each holes describes a physical 

or kink and may be accompanied by complex roots. In SflC. 9 we argue 
that in the RSOS(4) CCl:)e a state with v holes necessarily contains [v/2] two--8trings 
those positiou is entirely fixed by the holes. Notice that here the number 1/ of holes 
call he odd even for even N. This is not the case for the 6V or SOS models, where v 
is always even for Neveu. What is that when "( (1!'/4)- the largest real 
v-root diverges in the J == 1 states the 6V and SOS models. Therefore, these 
states get mixed with J = 2 states into type I representations and do not belong 
to the RSOS( 4) Hilbert space. The RSOS{ 4) states with J = 1 are obtained by 
Cnj)OS,lll~ the largest quantum integer IN/2--1 = N /2 (see the Appendix). There is 
no root associated to N /2 + 1. It follows that these states, from the 6V and SOS 
viewpoint, have a cutoff dependent term in the energy equal to 1!'/a, where a is the 
lattice spacing (loosely speaking, one could say that "there is a hole at infinity"). 
They are removed from the physical SG spectrum in the continuum limit. We are 
thus led to propose as RSOS(4) hamiltonian, for even N 

a- l 1rJ (1.10)= Hsosh 

where is given by eqs. (4.14), (4.10), (4.21-27) and.J 0 or 1. In this way, 
the particle content of the light cone RSOS(4) and the corresponding S-matrix 
turn out to coincide with the results of the bootstrap--like approach of ref. [21]. 
Eq. (1.10) defines, in the scaling limit, the hamiltonian of t.he (p 3)-restricted 
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SG model. Notice, in this respect, that the higher--Ievel BAE (5.17) and (6.10) 
completely determine the physical states in tenus of renormalized parameters. 

To summarize, the picture we get from the BA solution of the f.b.c. 6V, SOS 
and RSOS(p) lattice models is a.<; follows. Performing the scaling limit whithin 
the light-cone approach, these lattice models yields respectively: the SG model 
(or Massive Thirring Model), a truncated SG and the (p-1)restrict.ed SG models. 
for the SG model we have esseutially nothing to add to the existing literature, 
apart from the explicit unveiling, at the regularized microscopic level, of its SU(2)g 
invariance and for a better derivation of the S-matrix. The trunc.atcd SG follows 
by keeping only t.he highest weight states with respect to SU(2)q, that is the kernel 
of the raising operator J+. Finally we showed that the RSOS(p) lattice models with 
trigonometric weights yield in the scaling limit proper of the light-cone approach 
the (p - l)restricted SG field theories formulated at the bootstrap level in ref. [21]. 

2. Boundary conditions in lattice integrable models 

Let us consider an integrable vertex model with R-matrix ~j(O) (see fig.l). 
Each element R~~(O) defines the statistical weight ofthis configuration. We a.<lsume 
R(0) to fulfil the Yang-Baxter eqnations. The indices a, b, c, d, are assumed to run 
from 1 to q with q 2. 

[10R(0-e')] [R(0)01] [1®R(O')] [R(0')01] [II»R(O)] I» 1] 
(2.1) 

We shall assume T and P invariance for R(fJ) 

R~j(fJ) = Rtj(0) Rt:k(0) (2.2) 

In addition, we a.'3snme R(O) to be regular, that is 

R(O) = c 1 or R~~(O) = c li~li~ (2.3) 

whcre c is a numerical constant. Eqs. (2.1) and (2.3) imply the unitarity-related 
equation 

R(O) R( --0) = pCB) 1 (2.4) 

where pCB) is an even c-number function. Furthermore, we as:mrne crossed-unitarity. 
That is, 

R(8) R( -0 211) /)(0) 1 (2.5) 

where 1] is a ~onstatlt and R':J.(O) == Rbd(O) . 
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Let us consider now a NxN' square lattice with periodic boundary conditions. 
Then the row-t.o-row transfer matrix is given by 

1'(0, w) LTaa(O, w) (2.6) 
a 

wherc the operators Tab(O,W) defined by (see fig.2) 

Tab(B,w) L t(l,lb(fJ wl)0ia2al(0-W2)0 ..... 0taaN_l(0 WN) (2.7) 
al)#··,aN-l 

Cqact on the vertical space V ®J<i<N Vi ,Vi == , and the simplest choice for 

the local vertices is [tab(O)]e.4 =: R~;'(O). In eq.{2.7) Wj,W2, .... ,WN stand for arbitrary 
inhomogeneity parameters. The 1~b(fJ, w) fulfil the YB algebra 

R(). It) [T(...\,w) ® T(Il" w)®T().,w)]R(...\ /-L) (2.8) 

a.'! follows from eq.{2.1). Thus, the reO, w) are a commuting family 

[1'(0, w), r(O',w)] 0 (2.9) 

Let. us now consider the generalization to other boundary conditions compatible 
wit.h integrability[8]. Define (sec fig.3) 

U<:.b(O,W) LTad(O,w)Kic(O)Tci/( -O,W) (2.10) 
cd 

where T- 1(-0, w) is the inverse in both the horizontal and vertical spaces : 

"'T (B w)T,-l(-O -) (2.11)i,(1 'TL.-t ab , ' Ix: ,W (,Ie 1

b 

and I is the identity on the vertical space V . Summation over indices of the vertical 
space V arc omitted both in cqs.(2.1O)and (2.1l)(cft. fig. 3). K-(8) in eq.(2.1O) is 
a qxq matrix solely acting on t,he horizontal space. It must fulfil[8} 

R(...\ J1.) [K-()') 01]R(). + J1.) [K-(J1.) 01) 
(2.12)

[K-(Jl) ~ 1] R()" + /1) [K-()') ® 1] R()' - 1-') 

(Notice, that our R-rnatrix differs from ref.[81 in a permntation matrix R P R, 

P:1(O) = !jdo~). 
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As is well known, R~~(O 0') has the interpretation of scattering amplitude 
for a two-body collision where a(d) and bee) label the initial (final) states of two 
particles with rapidities 0 and 0' respectively. In this S-IIlatrix context, Ka},(0) is the 
scattering amplitude for one particle with a rigid wall on the left, a and b labelling 
the initial and final states and 0 being its final rapidity (see figA). 

Thanks to eqs.(2.8) and (2.12), U(8, w) fulfils the Yang-Baxter algebra 

R(A - JL) w) IJR(A + JL) ®Ij= 
(2.13)w)®IjR(A+ll) ® I] R(A JL) 

The transfer matrix is given now by 

41) = L K:b(). + 1})[,~Lb(A,W) (2.14) 
ab 

Here K+(A} describes the scattering with a rigid wall on the right (eft. fig·.5). It. is 
a solution of the equation: 

It) [1 0 K+ (>.)]R('\ + 11.) [1 ® 
(2.15)(1 ® K+(JL)] R(A -I- 11.) [1 ® R(A - Ji) 

It follow8 from cqs.(2.13)-(2.15) that iR a commuting family 

[tU), o 

As we can see from eqs. (2.10) and (2.14) the boundary conditions associated to 
t(O,w) follow from the form of K+(A) and IC(A) sitting on the right and left 
borders, respectively. 

From now on we shall consider the case of the six-vertex modd, where q = 2 
and the Rmatrix reads, in terms of a generic spectral parameter 0, 

sinh 01 0 0 0)
o c b 0 b = bee, ,) sinh(ir _ 0) 

R(O) 0 b c 0 sinhi,( c c(O, ,) = sinh(i, e)
000 1 

where the anisotropy parameter, (we may assume 0 ::; , ::; 11') is related to the 
quantum group deformation q by q == exp(i,). This R~matrix (2.17) is unitary for 
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realO. Crossed unitarity (2.5) holds for 77 = i, . It. is also convenient to work with 
modified local vertices 

i,j2) (2.18) 

in order to construct the row-to-row monodromy matrix 1'rtl,(O, . POl' this R-
matrix the diagonal solut.ions K±(8) of eqs.(2.12} and (2.15) turn to be[8,91 

K±(O) K(O, 

where 

K(O,e) = 
. 

_1_ (Sinh(C +0) 
sinh( 0 o~"O)) (2.19) 

Here ~+ and ~_ are arbitrary numbers that parametrize this boundary c,ondit.ionR 
compatible wit.h integrahility. (For the general solution of eqs.(2.12) and (2.1.5) in 
the six-vertex model see ro£'[l1}.) 

We are interested on boundary conditions yielding a quantum group c:ovariant 
framework. [SU(2)q for the si.x-vertex model}. For periodic boundary conditions 
the quantum group transformation properties of T~b(e, w) and t(0, w) are not simple 
[151. A SU(2)q invariant XXZ hamiltonian requires fixed boundary eonditions and 
special cnd-point terms[6J. 

The XXZ hamiltonian follows from dt(O,w == O)/dO evaluated at 0 = 0 . One 
finds from eqs.(2.14),(2.17), and (2.19) [81 

Hxxz :0 [t(O,w = 0) - trK+(O)] 

N-l 
1 '\:'""( :r. x . y 11 + . Z Z ) (2.20)- 2' 6 O'nO'n+l 1- O'nO'n+l cos'O'nO'n+l 

n==l 

+ ~ sinh(i,)(O'i coth e- + O'N coth e+). 

As one call check, the quantum group invariant ca.<;c corresponds to ~± ::1:00. 

We choose therefore e± ±oo in order to built a SU(2)a covariant framework for 
the six-vertex model and its scaling limit. This choice ~orresponds phy::-;ically to 
bounda.ry conditions of Dirichlet type. In that case 

e'fl) )
K±(O) exp(:r:lIO'z) = 0 () (2.21)
( 

Now, in order to find the SU(2)q content of the YB algebra (2.14) and its associate 
Bethe Ansatz construction, we start by computing the (J -;. 00 limit of the Uab ( (), w) 
operators. 
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The 0 -+ ±oo limit of the row-to-row monodromy matrix 

::: (A(e) B(e)) (2.22)
C(O) D(O) 

yields 8U(2)q generators We have 

A(O) exp(±iIJz ) [1 + 0(e'f2B)] , 


D(O) exp(=t=iIJz ) [1 + 

(2.23) 

B(O) 2e1=iN,,{/21=B sinh(i')') J_(=t=w, =t=')') [1 + 
C(fJ) ± 2e=FiN,/'2=FO sinh(iJ) .h(±w,±I) [1 + 0(e'f20)] 

where 

N Ie-I. N. 

J±(w, I) ::: L II exp[- t; (OJ)zJe±Wk(l7±h II exp[Z; (O"l)z] (2.24) 
k=l J=1 l=::k+1 

and 
N 

Jz ~ L(l1a)z (2.25) 
a=l 

Notice that J+ == ·h(w, I), .L == .L(w, l) and ./Z are 8U(2)q generators with 
chq = , for they obey the commutation rules 

J-J sin\21 J..) = -'------:--
SlIl l (2.26) 

[Jz, J±J ± J± 

For the boundary conditions ~± ±oo, one sets 

A(O) 13(0)) 
(2.27)U(8,w) ( C(8) V(6) 

From eqs.(2.10) and it follows that 

A(8) B(8) C(-e) - e-h /2+() A(e) D(-0) 

8(0) =e-h /2+O A(fJ) B(-0) - eh /2- O B(6) A( -0) 
(2.28)

C(O) D(8) C( -0) e-h /'2+(} C(O) D(-0) 


V(O) =e- i ,/2+B C(O) B(-0) ci -r/2-0 D(O) A( -0) 
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Let us compute the 6 IX) limit of these operators. We find from cql:l.(2.23) -(2.28) 

A(fJ) exp(2il .Jz ) [1 +0(e-20
)] , 

8(fJ) J_ [1 +0(e-20 )] , 

c(e) sinh(il ) J+ ei-rJ, [1 + (2.29) 

Vee) 2e- i,/'2-0 sin [(.1 + Jzh] sin [(J Jz + 
!ei,/2 e-2i/.l.-o + 0(e-3B ) , 
2 

The operator J is defined through the 8U(2)q Casimir invariant Cq 

C 1 . 2( J)
" = 2(J+J _ + J - J +) + cos 1 SIll . 1 z = (2.30)sin2(J) ----'---;~~-.~...:-=-

As one can see from eqs.(2.29) the asymptotic form of Uab(A,w) is related with the 
8U(2)q generators in a very clean way. 

Let us now consider the transfer matrix t(A,w) [eq.(2.14) J. Wf.' find when 
~± = ±oo 

t(O,w) = A(O) + (lr/2+9 Vee) (2.31) 

Now, when 0 00 , inserting eq.(2.29) in (2.31) yields 

t(O, w) (j-~oo 2 cos[J(2J + 1)] +O(e-20 ) (2.:~2) 

That is, the asymptotics of the transfer matrix expresses up t.o numerkal constants 
in terms of the q-Casimir Cq [eq.(2.30) 

The operators Uub(O, w) fulfil the Yang-Baxter algebra (2.13) with R-matrix 
(2.17) . Letting 0' -t 00 in eq.{2.13) we can compute the relevant COlIlll1utat.ion of 
Uu.b(e, w) with the SU(2)q generators. We find 

[A(6), J-J = -13(0) ei,,(J.+o I [V(O), J-l :::;; 13(0) ei ,(J.+1)+9 (2.33) 

It is well known that B(O) and act as lowering and raising operat.ors for '!z , 
while A(O) and D(fJ) commute with We fiud here t.he same properties for the 
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elements of U(O,W), 

[ 8(0), = 8(0) [C(O), Jz] = -C(O) , I 

(2.34)[ A(O), = [ 1)(0), Jz] = [t(O, w), }z] a 
In addition, we find 

hJ 
[ e-	 , 8(0), J_] = 0 , 8(0) J+ = e-i-y J+ 8(0) + [ eO-i-y 1)(0) - c··(j A(O)] ~i"{JL 

(2.35)
Using now eq.(2.31) yields 

(t(O, w), J-J = 0 	 (2.3(j) 

One can analogously prove that 

[t(O,w), .7+1 = a 	 (2.37) 

Therdore, the transfer matrix t(O, w) is SU(2)q invariant. As a corollary, we see that 
Ilxxz (see eq.(2.20» is SU(2)q-invariant, as shown in rcf.[6] by direct calculation. 

\Ve investigate in the next section the I3ethe Ansatz construction of eigenvectors 
of t(O,w). The first. consequence of the the SU(2)q invariance of {(e,w) is the 
degeneracy of its eigenvalues with respect t.o the quantum group. 

3. The Bethe Ansatz and the SU(2)q group 

In section II we dcvclopped the Yang-Baxter framework with b01.Uldary condi
tions adapted to the SU(2)q iuvariance. We call this a quantum group covariant 
framework. Let us now investigate in such scheme the eigenvectors of the transfer 
matrix t(O, w) in the algebraic Bet.he Ansatz[8]. These eigenvectors can be written 
~ 

iVUJ) B(1Jt}8(V2) ....B(vr )H 	 (3.1) 

where n is the ferromagnetic ground state and v (Vl , V2, ••. , 'II ).r 

II (~)~C)0 ...0C) (3.2) 

and 

B(B) _ __ sinh 20 
sinh(20  (/r/2 8(0) e6 B(O) A( -0) eO B( -0) A(e) (3.3) 

Notice that use has bt.'ell made of the Yang-Baxter algebra (2.8) t.o obtain the last 
form in eq.(3.3) from the expression (2.28) for B(O). The nnmhers VI, '02, .... , 'U , (0 ~ 

r 
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r ~ N /2) must be all distinct roots of the set of algebraic equations 

IT s~nh[Vm - Wk + ~, /2] s~nh[vm + Wk + ~, /2} =:: 

k=l smh[vm - Wk - 1/y/2] slIlh[vm + Wk 1,,/2] 

IT 	 sinh[vm vk + iT] sinh[vm + Vk + i,l 
sinh[vm - Vk iTl sinh[vm + Vk - i"'tl

k=l,k#m 

lS;mS;r 

These Bethe Ansat7. Equations (BAE) guarantee the vanishing of the so-called un
wanted terms. That is, vectors in t(O,w)\li(v) which are not proportional to won 
. They arise, together with the wanted terms, from the repeated commutation of 
l(O,w) with B(vdB(tJ2)' . 
B(1Jr ) by means of t.he Yang-Baxter algebra (2.13) . Let us point out that t.he order 
of the factors B(vj) in eq.(3.1) is irrelevant since the Yang-Baxter algebra (2.13) 
implies 

[ B(O), B(O')] a 	 (3.5) 

From eq.(:{.3) it is evident that B(O) is an odd function of 

B(-O) -B(O) 	 (3.6) 

Consequently, a direct check shows that the BAE (3.4) are invariant under negation 
of any single unknown Vj • This implies that it is enough to consider DAE roots 
with strictly positive real parts. In particular, purely imaginary pairs (±i11) are 
ruled out. Moreover, one verifies by explicit calculation that B(i1r /2}Q O. So 
that the selfconjugate root v = i/2 is also ruled out. 

The eigenvalue of t(O, 41) OIl w('v) is given by 

v) 	 A+(Bj v) + A-U}; v) (3.7) 

sinh(20 ± if) IT sinh[O wk + i-y /2] sinh[O + Wk + i,/2J 

8inh(2o +h) k=l sinh[o - Wk - i,/2J sinh[e + Wk iT/2j 
(3,8)IT sinh[e Vm =f iTJ sinh[O + Vm =f iTl 

m=l sinh[O - 11m} sinh[O + Vm } 
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Taking logarithms, eq.(3.8) become 

N

L l<Pl1!m Wk, + Wk, 

k=! 

(3.9)
2n:lm + L - 'Uk,,) + + tlk, 

k==l,k#m 

1:::; m:::; l' 

where the 1m are positive integers[16] and 

3; ) ilog s~nh(ix + -\). with <p(O, x) = O. 
slllh(-ix - -\) 

Defore solving these equations in the N ~ 00 limit, let us st.udy the 0 00 

behavior of A(O; ·iJ) in order to match with the asymptotics (2.29) . We find from 
eq!>.(3.7)-(3.8) 

A(O;'v) 2 cos + 1 - 2r)] [1 + O(e-2f1 
)] (3.11) 

Here all roots VI, 1)2, .... ) Vr arc assumed to be finite. Actually this must be the case 
unless, In: is rational (see sec.5). Comparison of cqs.(2.32) and (3.11) shows that 
there is only one positive (or y.ero) solution 

J = Ii2 r (3.12) 

except when,In: is rational where other possibilities may happen. In addition, we 
have from cqs.(2.31) and (3.2) that 

JzW(V) (~- r) w(17) (3.13) 

Eqs.(3.12) and (3.13) show that J Jz for Bcthe-Ansatz eigenvectors. That is, 
they are maximal weight vectors for the quantum group for non-rational 
values of,11r . Thus, 

.l+w(V) =0 

III addition, the kernel of .h is stable under variations of, . Therefore eq. (3.14) 
holds even when ,In: is rational (sec below). Each eigenvalue A(O;ii) has (aL lea..'it) 
a degeneracy (2.1+1) for t( f), w) , since the vectors 

.L W(V), (J_)2l}i(17), ... , (J_)'2J'I1('v), 

arc all eigenvectors of teO, w) with the same eigenvalue thanks to cqs.(2.36)-(2.37). 
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Of course, when,11r is rational J may not be equal to .!Z for some BA states
\pun 3.<; follows from eqs .. (2.32),(3.11) and (3.13). 

Let us give an algebraic proof of the highest weight condition (3.14) for the 
BA states. We shall apply J+ to '11(17) given by eq.(3.1) permuting It through the 
B(Vj), (1 :::; j ::; T) with the help of eq.(2.35) . Finally we shall use that 

J+fl=O (3.15) 

Actually it is more convenient to use the operator D(B) 

D(O)= . h(2~ . \ [V(O) sinh 20 A(O)sinh(i;)] (3.16) 
sm  z, 

Eq.(2.35) can now be written as 

J+ 13(0) = eiF 8(0) J+ + [e-o A(O) - (~o D(B)] (3.17) 

We find from eq.(3.1) after using I' times eq.(3.17) : 

~ . N+3 
= L exp[.q(-- r + B(vl)B(v2) ..... B(Vj- J) 

f::::l 2 (3.1S) 

B(Vj+l) ....B(vT)n 

where we also Ilsed eqs.(3.13) and (3.15) . Now we can push the operators 

and V(Vj) in cq.(3.18) to the right using t.he Yang-Baxter algebra (2.13). That is, 

( ) '( ') = sinh(H 0' - if) sinh(O + (J' if) ~(O') A(O)
A 0 B 0 . hellu uflI)'8mh«() +ull') B +sm 

sinh(2B if) sinh(i;) 8(0) [A(O') D«()') 1 
sinh(20) sinh(O - 0') sinh(f1 + f)l) 

(3.19) 
D(O) B(O') = sinh(O. 0' + if) s~nh(O + ()' + i'y) B(O') V(O) + 


smh(O - 0') smh(O +0') 


sinh(20 + if) sinh(i;) B(O) [ A(O') " - ~~'l 
sinh(20) sinb(O + 0') sinh(B 8') 

We find from eqs.{3.18)-(3.19) an expression of the form 

'r 

J+'I1(17) = LCj(v) B(vl)8(v2) .....B(vj-l)B(vj+l) ....B('vr )Q 
j=l 

where the Cj(iJ) are c-number coefficients. The easier is to first compute Cl(V) and 
then deduce the rest by symmetry of the arguments (efr. cq.(3.5) ) . Cl (v) follows by 
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permuting in the first tenn of eq.(3.18) the bracket [c-Vj A(11j) eVi'z)(Vj)] through 

B(V2) ....8(vr ) llsing eqs.(3.19) and keeping just the first t.erms in eqs.(3.19) . That 
is, t.hose proport.ional to 8(1Jj) A(vt) and to B(vj) D(VIL (2 $ j $ r). Collecting 
all factors, it is easy to sec that Cl(V') and the cj{1""i) (1 $ j $ 1') are proportional 
to the DAE (3.4) and hence identically :;>;ero. We have therefore proved that all BA 
vectors are higheRt weights [3,17,18]. 

4. The quantum group covariant ligth-cone approach. 

The light-cone approach is a direct way to give a field theoretical interpretation 
to a lattice model and furthermore obtain its sealing limit as a massive QFT. We 
start from a diagonal lattice that we interpret as a rliscretized two-dimensional 
Minkowski spacetime. The sites in the light-cone lattice are considered as world 
events. Each ~itc ha.<; t.hen microscopic amplitudes associated to it which describe 
the different processes that. may take place and must verify general properties like 
unitariLy. 

The light-cone approach with periodic boundary conditions ha."l been investi
gated in refs. [19-20}. Here we con..'iidcr this approach in the case of fixed bound
ary conditions leading to a quantum group invariant framework. For the six
vertex model, this can be done as follows. Consider the SU(2)q invariant. t.rans
fer matrix t(0, w) constructed in sec.2, and identify the inhomogeneity parameters 
WI, W2, .... , W N with the cutoff rapidities of the diagonal lattice. Namely set 

Wj = (-l)j e (4.1) 

Then define 

. sinh(2E> +i,) 
(4.2)U(8) tee +i,/2,wj (-1)1 8) sinh(28+ 2i,) 

We shall now show that U(8) has the natural interpretation of the unit time evo
lution operator on the diagonal lattice. To this end we introdnc.e Home convenient 
compact notation. vVe denote by 0 the auxiliary horimntal space and label by 
j, (l $ j $ N), the vertical spaces. Then 

Lj(O) = ROj(O - Wj) POj (4.3) 

is a local vertex acting only on the jth. vertical space. Here Rj/;;(O) stand for the 
six-vertex R-matrix (2.17) acting on the spaces j and k ,(0 $ j, k ~ N) and Pjk is 
the lL'mal exchange operator. In practice, the ab matrix element of Lj(O) ill the ath. 
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space act on the jth. space as the operators tab(O - Wj) defined in sec.2. In terms 
of the Lj (0) we can write the t.ransfer matrix as 

+ 1:"(/2, w) :::;: Tro{Kri(O + i,)LN(0) ..... L1(0)KO'(0)LI ( -O)-I ..... LN ( _OJ-I} 
(4.4) 

Since the R-matrix is regular,R(O) = 1 , we have 

Lj(O) IO=wj= POi (4.5) 

Hence, as soon as Wj ( -1)j 8 , one obtains 

L2k(8) = PO,2k , [,2k+l(8) = SO,2k+l (4.6) 

where Sjk := R j k(28)Pjk . Inserting eq.(4.6) into eq.( 4.4) yields for odd N 

t(O + ir/2,Wj = (-I)j 8) 

=Tro{K!t(O +i-y) SO,NPO,N-lSO,N-2PO,N-3 ..... S0,3PO,2S0,lKo 

PO,lSO,2PO,3 ......S0,N-]I~,N } 

=T"o{K!t(O + if) SO,NSN-2,N-l ..... Sl,2PO,N-lPO,N-3 ...... Po,2Ko(e) 

PO,l PO,:J ...... Po,NS2,a ......SN-I,N} ( 1.7) 

=Tro{Kt(e + if) SO,NPO,N} S12 .....SN-.2,N- 1PO,NPO,N-1 .... ·PO,2 

PO,I PO,3 ....PO,N Ki (8 )S23 .....SN-I,N 

='l'ro{K(j(O + i,) RO,N(28)} R12(28) .....RN-2,N-l(28) 

Ki(B) R23(28) ..... RN_I,N(28) 

Actually, the computation up to now is completely general and would hold for any 
R-matrix and K-matrices. Let us exploit now the explicit form of R(O) and K±(O) 
for the six-vertex model [eqs.(2.17)-(2.19)J. Sp~ialising to the SU(2)q invariant 
case, we obtain 

Ki(E» = 91(8)-1 T1'o{Kri(0+i,)Ro,N(2E>n YN(8) (4.8) 

where 

-0 0)
g(O) cxp[-OazJ = eo e+O (4.9)

( 

Thus 

U(8) = R I2 R:>.4 .. · RN-l-t,N-c;YNY11R23R4fi ... RN-2+E,N-1+c (4.1O) 

where ~ = [1 - (-I)NJ/2, Yj is the matrix cxp[8qZ] acting nontrivially only on the 
two-dimensional vector space attached to the lh link, and RJk i., t.he 6V R-matrix 
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R(28) acting llontrivially only on the tensor product of the and ktlt vector 
spaces. 

is dearly the unit time evolution operator on a diagonal lattice with 
"reflecting" type boundary conditiolls, g(O) [g(O)-I] acting for collisions on the 
right [left] wall. Graphically Vee) can be depicted as in fig.G. By taking powers of 
U(f») one then obtains the evolution on the diagonal lattice for any discrete time 
(Fig.7). By constructioIl, this time evolution is SV(2)q invariant. 

The eigenvectors of U(8} can now be written as in sec.3, namely 

= B(vdB(V2} ....B(,vr)H 

where Wj (-1)i 8 and the Bethe Ansatz equations (3.4) take the form 

Sinh[vm e + il12J sinh[vm + e + iT/2]] N 
[sinh[vm B ii/2] sinh[vm + H iil2]

iI sinh[vm - Vic + ill sinh[vm + Vic + iTJ ( 4.12) 

sinh['lJm Vk - iT] sinh[vm + Vic - ilJ 
Ic=I,lcfm 

1 m ~ r 

The associated eigenvalue of is given by 

iI sinh[H - 'llm iil2]sinh[e + 11m - ii/2]
U(8, Vb v2, ... , ( 4.13) 

= Ie=l sinh[8 - 11m + iil2]sinh[8 + 11m + ii/2] 

Let ll..'! now discuss the problem of unitarity for the time evolution definen by U (G) . 
The R-matrix (2.17) is unitary for real O. Hence the evolution operator U is unitary 
too, for real e, up to the bounnary effects due to the term gN91 ' in eq.(4.1O). 
As is evident from figs. (6-7) [eqs. ( 4.10)] there exist unitarity violating boundary 
effects (factors 9(O)N and g(0)11). Then, the reflection of the bare particles on the 
boundaries is affected by "leaking". However, on average this leaking compcsates 
since we have opposite factors 9(£J)N and g(O)ll on right and left sides respectively. 
Thus one can expect U(e) to still have unimonnlar eigenvalues. Indeed, this is the 
case from eq.(4.13) provided, a.<; it is usually the case, the BA roots are either real, 
selfconjugate (Tm v:;::: 1r12) or organised in complex conjugated pairs. As seen below, 
the exact diagonalization of U(e), shows that all its eigenvalues arc unimodular, so 
that there exists a similarity transformation mapping U(8) to an explicitly unitary 
operator. On the other hand, it is natural to expect that in the thermodynamic 
limit (N (0) different boundary conditions become equivalent (the model has a 
finite mass gap). This suggest that the above mentioned similarity transformation 
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reduces to the identity as N ---I' 00. We conclude therefore that the light·· cone 6V 
model with fixed b.c. described by the evolution operator V of eq.( 4.10) is another 
good, integrability-preserving regularization of the SG model. Its advantage over 
the more conventional setup with periodic b.c. is that U(e) is explicitly SU(2)q 
invariant even for finite N . 

According to the general light-cone construction the physical lattice hamiltonian 
can be defined in terms of U (e) a.c; 

i
II -logV(B) 

a 

where a is the lattice spacing. By a judicious choice of the logarithmic branches the 
energy eigenvalues can be written from eqs.(4.13)-(4.14) 

E a-1 L eo(vj) (4.15) 
j==.l 

where 

cosh 28 cos i cosh 2V)
-1r +'2arctan (4.16)( sinh 28 sin 'Y 

Notice that eo(1J) is smooth and negative definite for real v. The specific choke of 
the logarithmic branch in passing from eq.(4.13} to eqs.(4.15), (4.16) is dictated by 
the requirement that eo(v) should correspond to the negative energy branch of the 
spectrum of a single spin wave over the ferromagnetic state n. 

The physical ground state and the particle-like excitations am obtained by 
filling the interacting sea of negative energy states. This sea is described by a set 
of real v-roots of the BAE with no "holes" (in the Appendix we give a detailed 
exposition on the treatment of the DAE, also to clarify some rather subtle matters). 
Excitations correspond to solutions of the BAE which necessarily contain holes and 
possibly complex v-roots. The crucial point is that in the limit N --t 00 only the 
number of real roots of the sea grows like IV, while the number of holes and complex 
roots stays finite to guarantee a finite energy above the ground state energy. Hcnee 
these solutions of the BAE can be described by densities p(11) of real roots plus a 
finite number of parameter associated to the positions XI, X2, ... Xv of the v holes 
and to the location of the complex v-roots. 

The continuous theory is defined by the double limit a ---I' 0, e 00 taken in 
snch a way that a finite mass gap m emerges. The explicit resnlt in the periodic 
case which will be shown to hold also here is [1,19,20] 

I, [4 -!!.e]m = 1m -e G ( 4.17) 
u .... o e-oo (], 

[The double limit is taken such that the 1.h.s. is finite and non-zero]. The invariance 
of U(8) under the quantum group SU(2)q allows to perform a transformation of 
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the original vertex model where states are a.'>signed to the links and interactions 
as 'bare' scattering amplitudes) to the vertices, into a diagonal lattice face model, 
where states are defined on the plaquettes. The plaquettes arc the sites of the 
dual lattice and the interaction involves the four plaquett.p~'l around eaeh vertex, or 
equivalent ely, the four sites around each fac:e of the dual lattice. 

On the fa<:es of the diagonal lattice one introduces positive integer-valued local 
height variables fn(t), t E 'IL, according to (see fig. 2) 

fo(t) 1 j fl(t) = 2 

in+1(t) in(t) ± 1, n = 1,2, ...N-1 

The configurations {fl(t), .. .fN(t)} at any fixed discrete time t are in one to--one 
cOrIffipondence with the 8lJ(2)q multiplets of the GV model of dimension fn(t) 
2.1 + 1 (notice that fN(t) can be chosen to be time-independent thanks to SU(2)q 
invariance). Now the matrix elements of lJ bet.ween these highest weight states 
define the unit time evolution in the face language. 

This vertex-IRF correspondence is well known: in practice, it amounts to 
all application of the q-analog of the Wigner-Eckart theorem. Indeed, by SlJ(2)'l 
invariance, the matrix elements of U(8) in the subspace with definite total q-spin 
.1 = j , for 1/7r not a rational; can be written 

< jmj r/U(8)IJ'm'; r' >= hjjl hmm' < >j (4.19) 

where m - j, - j + 1, .... , +j labels the Jz eigenvalues and r the degcneraey of the 
J = j subspace which ha"l rlimen.<;ion 

r(N) 
J (4.20)(N/: j) (N/2~j 1) 

< rIIV(8)lIr' >j thus denotes the reduced matrix clements, and a specific choice 
of basis is required to give explicit expressions lor them. The most natural ba.<;is, 
which is the ba..'lis useful for the vertex-IRF correspondence, is that obtained by the 
successive composition of the q-spin 1/2 ba.'>ic constituents assigned to the links. 
Consider a ltime zero' line cutting the diagonal lattice as in fig.B. By intersecting 
N links, it identifies the Hilbert space of the vertex model as (®[1/2])N , where 
til denotes an irreducible representation of weight j . On the other hand, the line 
pa.<;scs also through a well defined set of plaqucttes, including the half-plaquette at 
the extreme left and right. Then, a sct of configurations of a local height variable 
I , assigned to each plaqnette, (~an be constructed as follows. Assign 1 I{) 1 
to the half plaquette on the left, the Oth. plaquette. Then pass to the next OIle 
011 the right , the first plaquette, following the time :l:ero line. This cuts a link 
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carrying a spin 1/2 representation. So that, at this stage the Hilbert spar:e is just 
the representation [1/2J itself, i.e. J 1/2. We then set II = 2J+ 1 2. Following 
the line, we now cut another spin 1/2 link and arrive at the second plaqllett.e. This 
Hilbert space is now the direct sum [.I = 0] ED [J 1J and the local height 1can take 
two values, 12 = 2j +1 1 or 3. By repeating this procedure Il times (with n ::; N), 
we land in the nth. plaquette after having cut n spin 1/2 links: the HilherL Hpace 

and contains irreps with .T running from 0 or 1/2 up to n/2 . Hence 
variables Ln take the values 

I, 3, 5, ... , n +1, n even 
[,.1 = 2J + 1 = { 2,4,6, ...... ,n+ 1, n odd 

By constructioll, Iln - Ln'-Ill, since the Ln follow the composition laws of SU(2)q 
representations 

® [1/2J [.1 + 1/2J e [.1- 1/2] 

which for q exp(h) not a root of unity, are just those of the usual SU(2). 

When n N we arrive at the half-plaquette on the right. Here the values of In 
are just the dimensions of the irreducible representations in which the full Hilbert. 
space (@[1/2])N can be decomposed. All together, a specific choke of l2' 1:\, •.. , iN ( 
In and Ii are fixed to 10 1, II 2 by construction) defines one and only one of the 
r j (N) irreps with J = j. ,if 'N 2j + 1 . In other words, we have constructed a 
map from the N + 1 plaquettcs at 'time ~ero' and the BrattcH diagrams giving the 
composition rules for the tensor product of N spin 1/2 reprersentations (see fig.9). 
We are now in position to identify the degeneracy label r with a specific path in 
the Bratelli diagram, i.c. r (10, 11, ... ,1N) , with 4J 1 and l N = 2j + 1 . 

It remains to evaluate the reduced matrix elements 

< >j = < I{), ll,"" lNIU(e)ll'o, 1'1, ... , IN > (4.21 ) 

where the height variables 1'0,1'1, ... , IN arc a.<:lsociated to t.he plaqllettes crossed 
by the 'time oue' line (see fig.B). Notice that. 4J i'0 = 1 by definition, while 
iN I' N 2j + 1 by SU(2)q invariam:e. However, in spite of the factorised form of 
U(e) [eft. eqs.(4.1O)J, these matrix clements cannot he written ill a facLorised form, 
with each factor depending locally on the variables 10, h, ... IN and 1'0,1'1, ... , IN . 
This is so because the fullllnit time evolution operator U(e) is SU(2)q invariant, 
but each single Rk,k+1 (28) which enters is not. Only the peculiar boundary tcnw; 
91 and 9N enforce SU(2)q iuvariance. Neverthelt·~'ls, it is easy to pass to a different 
vertex representation where the SU(2)q symmet.ry holds in a local sense. We define 
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a similarity transformation on U(e) 

O(e) = GU(8)G-1 (4.22) 

where 

- 1/2 -1/2 1/2 £-1/2G - fII g2 g3" ·9N 	 (4.23) 

E = and 9j is exp[-eazl acting on the j-th. spin 1/2 space. Now comparing 
eqs.(4.1O) and (4.22)-(4.23) it is easy to verify that [lee) can be written, c. g. for 
even N 

vee) R12R34 ... RN- 1,NR23f45 .. ' RN- 2"N-I (4.24) 

where 

- -1/2 1/2 () 1/2 -1/?
Rk,k+l gk 9k+1Rk,k+l 28 9k gHl ( 4.25) 

One can explicit.ly verify that Rk,k+l is SU(2)q invariant; that is 

[Rk,k+l, (az)m + (az}m+d =0 
(4.26)

[Rk,Hh (q-0'~/2)m (a±)m+l + (u±).,n (qlTz /2)J =0 

The reduced matrix elements of U(8) can now be expressed in a factoriscd for III , 

< 10, It, ... , INIU(e)II'u, ... ,IN > = W{W~W~ ... W~_HtW2W4".WN __ f 

where 

t4'm = W(4n-.l, I'm; 8) ,W~ W(l'm.-l, l'm+1llm, l'm; 8) (4.27) 

and 

v;8) 1i1W -	 liz!}. ( 4.28) 

with the st.andard notation [x]q (qX q-Z)/(q - q-l) = sin(Jx)/ Sillf. This 
completes t.he transformation from vertex to faces description. The global time 
evolution in the faces (or heights) language is obtained by taking Illatrix products 
of 

< lo,t1,,,.,IN!U(e)jt'u,l'l, ... ,IN > 

The boundary conditions are 10 constant = 1 on the left, while IN = constant 

2j + 1 on the right, if the reduction is performed onto the rJN)- dimensional fipacc 

of irreps of q·spiu .J = j . With the natural constraint that It i'll, when I and l' 
sit on neighboring faces, the weights given by eqs.(4.27)-(4.28) define the ABF-SOS 
model in the trigonometric regime[13J. 

25 

5. Analysis of the Bethe Ansatz equations 

'Ve investigate in this section the solution of the BAE (4.12) assodated to the 
quantum group covariant BA in the light-cone approaeh. It is convenient to relate 
them with the BAE for periodic boundary conditions (sec for example fIn. Define 
2r variables Aj as 

Aj Vj Aj+r -Vr-j+l, l:S.i'Sr (5.1 ) 

Then eqs.(4.12) can be rewritten as 

Sinh[Am, e + ii /2J sinh[Am +8 +ii /21] N sinh(2Am, + if) 
[sinh[Am - 8 - ii/2] sinh[Am + 8 - ii/2] sinh(2Am if) = 

2r (5.2)
sinh[Am - Ak + iFl 1::; m::; 2r.rr sinh[A - A· - i"'J ' k=1 m IC I 

These equations are like the BAE for periodic boundary condition.<; on a 2N sites 
line and with an additional source factor 

sinh(2Am +ii) sinh(Am + iF/2)sinh(Am - i9) 
sinh(2Am if) sinh(Am - iF/2)sinh(Am +iT) 

More important, we have the following constraints on the roots Am : 

a) 	the total number of roots is even (2r) and they are symmetrically ciistributed 
with regpeet to the origin according t.o eq.(5.1). 

b) 	 Am = 0 and purely imaginary Am are exduded as roots. 

Let us start by considering the alltifcrroeiectric ground state. It is formed by 
roots with fixed imaginary part equal to 7r/2 . Therefore, we shift Am - Am + i7r/2 
and take Am real for the ground state. Now Am 0 is excluded whereas it may 
be present for periodic boundary conditions (PBe). Therefore, the ground Rtatc for 
eq.(4.12) is a one· hole solution of eq.{5.2) with the hole at Am = O.We also redefine 
i into 7r-i in order to agree with the conventions of refs.[1,19,20j. With this choice, 
i is related to the sine-Gordon coupling constant (:J by (32/U37r) = 1 

Let liS now consider the N -I- 00 limit where a continuous density of BAE real 
roots can he introduced 

1 
(5.4)P(Am) = Nli,!?oo N(Am+l - Am) 

This function must always be even in our fixed boundary conditions casco Taking 
logarithms in both sides of eq.(5.2) and using cqs.{5.3) and (5.4) the BAE yield 
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symmetrically with respect to the Re A 0 axis. lIence, re.stricting tu positive real 
parts, we have 

IT sinha[Xj 'h + i,/2j sinha[Xj + 'h + iT/2] = 
h==l sinh a[Xj fh - i,/2) sinh n[Xj + Bh iT /2J 

Mp /2 • h [ . J . h [ . J (5.14)IT 8m a Xj - Xk + z, sm a Xj + Xk + q 

. sinha[Xj Xk iTl sinha[Xj + Xk iTlk=l,kiJ 	 . 

1 < . < -J-

To conclude, let us come back tu the BAE (4.12). They can be rewritten in a 
manifestly algebraic form by introducing the variables Zj exp( -2vj) , (1 -:; j -:; r). 

Z.iW - q Zj -	 wq ) N II Zj zkq: --=-----,;:---_ (5.1.5)( Zj1l1Q - 1 Zjq - W k::.1 ZjQ2 Zk 

k~j 

where W exp( -28) and q = exp(i1) is the quantum group deformation parameter. , 	 According to the general disclIssion following eq.(3.6), we can restrict t.he search for 
solutions to eq.(5.15) strictly within the unit circle lZjj < 1 Therefore, to any 
unordered set of distinct numbers fulfilling eq.(5.15), Z1:." 1 Zr , with jZjl < 1 , 
there corresponds one DA eigenstate of the traI1."lfer matrix (4.4) aml hence of the 

~ evolution operator on the light cone-lattice. Special attention should he paid io the 
possibility that one or more root.s Zj lay exactly at the origin. This eOIJ'csponds to 
Re Vj -1' 00 , and therefore to the re.duction of the corresponding 8(Vj) to a mult.iple 
of t.he lowering operat.or .L of SU(2)q [eft. eq.(2.29)]. 

8(00) ::::: (1 	 q2)L (5.16) 

In effect, the point at infinity constit.utes the only exceptioIl to the requirement 
that the roots VI, ... J Vr be all distinct. However, this il:i a very special possibility. 
Indeed, suppose that a given root in eq.{5.15) , which we can always identify with 
Zl , lays at the origin Zt =0 . We imIIlediatly obtain from eq.(5.15) : 

q2N = Q4(r-l) ==? q,1(J.+1) 

that is, q must be a roo(, of unit and , a rational multiple of 'If • This correspond 
to the special cases when certain irreducible representations of Slf(2)q mix into 
type I reducible but indecomposable representations. This interesting phenomena 
is discussed in sec-s.7-9 within t.he Bethe Ansatz framework in cOIlnection with the 
RSOS models. 
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Eqs.{5.14) can also he written in algebraic form: 

v (; ~ (; ~ Nt t (; ~2II .:::i!!!!:~ <,j llJ/tq IT .... j<,k - q (5.18) 
h=l ~j1Uh,ij 1 ~/j - Who 	 k=l 


k¥-j 


where 
11'

~j C-2(~XI, Wh e -2QXh , (1 f:ii' = a (5.19) 
11' - 1 

These new DAE involve only a finite number uf parameters and arc formally iden
tical to the "bare" DAE (4.12)-(5.15), with the hules acting a<; sources in the place 
of the alternating rapidities ±e. Moreover, from (5.18) one reads out the. renOf
malization of the quantum group deformation parameter 

q-H} z.e. 
11', 	

(5.20),-+-1 11'-1 

As we shall sec latcr on, this renormalization has a nice physical interpretation for 
the 50S and RSOS models related to the 6V model by the vertex fac:e correspon
dence. 

6. Higher-level Bethe Ansatz and S-matrix 

The holes in the sea of real BAE roots are the particles of the light--cone BV 
Illodel. They are SU(2)q doublets and can be present in even (odd) number for N 
even (odd). Consider first the even N sector, setting N 2N'. The energy of a 
BA state with an even number II of holes located at Xl, X2,' • :1:v can be calculated 
to be, in the N' 00 limit., 

COSh1l'X/,)
E=Eo+ L +O(a- l N- 1) , e(x) = 2 arctan ( sinh1l'8/,y 

11=1 

where Eo is the energy of the ground state, that is the state wit.h no holes. Eu is 
of order N and is explicitly given ill the appendix along with some detail on the 
derivation of eq.(6.1). Now suppose N odd, with N 2N' 1. To compare this 
sit uation with the previous one, we need to slightly dilate the lattice spacing a to 
(].' = 2N'a/(2N' - 1), in order to keep constant the physical size L Na uf the 
system. Then eq.(6.1) remains perfectly valid, 8..<; N' -; 00, also for the ca<;c of N 
udd, with the same ground state energy Eo. The only difference is that now 1/ is odd. 
Hence, allt.ogcthcr, we obtain that the number of holes can be arbitrary (unlike in the 
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treatment with periodic b.c.) ann that the total energy, relative to the ground state 
and in the L ~ 00 limit, is the uncorrelated sum of the energy of each single hole, 
independently of the complex pair structure of the corresponding BAE solution. The 
BA state with oue hole ha." J = N/2 - M = (2N' 1)/2 - (N' - 1) = ] /2 and is 
therefore a SU(2)q doublet. The 211 polarizations of a state with 1/ holes are obtained 
by considering all solutions of the higher· level I3AE (5.18) with 0 :-:; !VI :::; v /2. We 
see in this way that the holes can be consistently interpreted as partides. 

As a lattice system the light-cone 6V model is not criticaL The (dimensionless) 
mass gap is the minimum V'cllue of the positive definite e(x), the energy of a single 
hole, that is 

2arctan ( sinh ~e/,) (6.2) 

This gap vanisheH in the limit a ~ 00. Hence the continuum limit a 0 can be 
reached provided at the same time e ~ 00 in Huch a way that the physical mass 

m = a-1e(O) .c:::' 4a-1e-1f8h (6.3) 

stays constant In the same limit we obtain the relativistic: expression 

a--1e(x) ~ rn cosh 1fx/'Y (6.4) 

so that 71 x/ '1 is naturally interpreted as the physical rapidity () of the hole. This is 
consistent also in our fixed b.c. framework, provided the limit L ~ 00 is taken before 
the continuum limit. Indeed the total momentum becomes a conserved quantity 
in the infinite volume limit and its eigenvalues can be expressed in terms of the 
BA v-roots exactly as in the periodic b.c. formulation. Then one finds that the 
momentum of a single particle take" the required form msinhO in the continuum 
limit. 

The above analysis shows that a relativistic particle spectrum appears in the 
a ~ 0 limit above the antiferromagnetic gronnd state. For '1 > 1f/2 one can 
show also that bound states appear, associated to appropriate strings of complex 
roots, just as in the periodic b.c setup. In the sequel we shall anyway restrict our 
analysis to the repul<;ive '1 < 1f/2 region, where the only particles are the holes, to 
be identified with the solitons of the SG model. Of course at. thi.:; moment, since 
the infinite volume limit is already implicit, the particles are in their asymptotic, 
free states: the rapidities 011. 1fXh/, may asslIme arbitrary continuus values and 
the total excitation energy is the sum of each particle energy and does not depend 
on the internal state of the particle!'!. The situation changes if we coru;idcr [, very 
large but finite, since in this c~e the hole parameters Xl, .•• ,X1/ are still quantized 
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through the "bare" BAE (1.12). Indeed, by definition the holes arc real distinct 
numb~rs satisfying 

21fh 
Z N (xh ; 1I}, 112, .•• , vM ) N h = 1, . .. ,v (6..5) 

where ZN (x; VI, .. ,'U M) is the "counting function" defined in the Appendix and 
the positive integers 11, •• " (I' are all distinct frOIn the integers h, ... , 1r labelling 
the r (r :-:; M) real v-roots of the BAE. For N very large, J N/2 AI finite and 
x < (,/ 1f) In N, the counting fUIlction can be approximated ~ 

ZN(XiVj, ... , = Zoo(x) + N-1F(x; Xl,"" XM; Xll"" + 0 (N-2
) (6.6) 

where Z=(x) is the gTollnd state cOlluting function at the t1lt~rUlodyna.IIlic limit 

sinh 1fX/'Y) (n.7)Zoo(x) 2 arctan ( cosh 1fa/ '1 

and 

1/ 

F(x; xl,.·., xM;Xll"" XM) -i log rr So(;(x - x,,))So(;(x +Xh») 

h=l 


(6.8)
'1 _rrM sinha(x - Xj + i,/2) sinha(x + Xj + iT/2) 

- 't og j=l sinha(x - Xj - i'Y/2) sinhu(x + Xi - i'Y/2) 

In the last expm<;sion, t.he numbers Xj are the roots of the higher leVf~1 BAE (5.lS), 
(5.19), while So(O) coincides with the soliton-soliton scattering amplitude of the SG 
model 

-Joo dk sinh(1f/2'1 1)k sin kO/1f
S (0) (6.9)o = cxp '1, )

k sinh(1fk/2i' coshk/2 
o 

under the standard identification "f / 1f = 1 - {32/81f. 

Comhining eqs. (6.5) and (6.6), and taking the cont.inuum limit one obtains the 
"higher level" expression 

M (,jWh q ~jf:- w~ (6.10)exp(~imLsinhOh) = IT SO(Oh SO(Oh + On) IT ~'Whq - 1 ~j - 111M 
n=l j=1 J 
n'l"h 

where, according to (5.19), (,j = e-2ll'Xj and WIL = e-2:yo".!1f. Together with the higher 
level BAE (5.18), this last equation provides the exact Bethe aru;atz diagonaliza
t.ion of the commuting family formed by the v renormalized one soliton evolution 
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operators (see fig. 3) 

(h =5","-1 ((h - fh-1)" .5h ,l(Oh - Od 9h( -fJ,.) 5h,1 (0" + Or) .. . 5h,l.'(Oh + 01.') x 

gh,((h) 5h,v(Oh - 01.')'" 5h,h+J (Oh - Oh+1) 
(6.11) 

where 9h(0) = exp Oak and S(O) is the complete 4 x 4 SG soliton 5-matrix in the 

repulsive regime 'Y < 7r/2 (for brevity we set 0= ,0/ (7r - ,)): 

sinh 0[1 0 0 0)o b c 0 b= b(e, 1) = sinh(ii _ 0) 
5(0) = 50 (0) 0 c b 0 (6.12)

sinh ii 
c=c(O,'::/) = sinh(ii-O)o J 0 1 

The operators U/t are the values at 0 = Oh of the fnlly inhomogeneous Sklyanin 
type t.ransfer matrix T(O; OI, . .. ,01.') constructed with 8(0 - Oh) as iocal vertices. 
Let us stress that the higher-level Bethe Ansatz structure just described follows 
directly, after specification of the BAE solution corresponding to the ground state 
and without any other assumptions, from the "bare" BA structure of the light-cone 
6V model. In particular, this provides a derivation "from first. principles" of the 
SG 5-matrix. We want to remark that 5(0) is also the exact 8-matrix for the 
elementary excitations of the 6V model on the infinite lattice: it is a bona fide lattice 
5 -matrix. Of course, in this case 0 = 01 - O2 is the difference of lattice rapidities~ 
which are related to the energy and momentnm of the scattering pa.rticles through 
the lattice uniformization 

1 sinh OJ )
Pj =a- Z=(-yOj/7r) = 2a-

1 
arctan ( cosh 7r8/,/ 

(6.13) 
1 1 cosh OJ )

Ej =a- f.(-yOj/7r) = 2u- arctan ( sinh 7re/, 

implying t he lattice dispersion relation 

cos aEj /2 = tanh(rre j-y) cos aPj /2 (6.14) 

Thus, we see that the continuum limit only changes these energy-momentuIIl re
lations to the standard relativistic form, (Ej, Pj) = m(coshOj, sinh OJ), without 
affecting t.he 5-matrix as a function of O. 
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7. SOS and RSOS reductions and kink interpretation 

Under t.he vertex-face correspondence previously described, the light-cone 6V 
model is mapped into the SOS model. At the level of the Hilbert space, t.his 
corresponds to t.he restriction to the highest weight states of 5U(2)q: each (2J + 
1) -dimensional multiplet of spin J (for generic, non rational values of ,/7r) is 
regarded as a single state of the SOS model. In particular, in such a. state t.he local 
height variables .en have well defined boundary values fo = 1 and iN = 2J + 1. The 
ground state of the 6V model, which is a SU(2)q singlet, is also the ground state 
of the SOS model: it has .eo = eN = 1 and is "dominated", in the thermodinamic 
limit N -t 00 by the see-saw configuration depicted in fig. 1. Our boundary 
conditions allow for only one such "ground state dominating" configuration, wit.h 
en = (3 - (- )'n)/2, while periodic b.c. on the SOS variables f11. would allow any 
possibility: in = (2£ + 1 ± (-)11.)/2, with eany positive integer. 

Consider now a BA state with one hole. Then N is necessarily odd while J = 1/2 
and iN = 21 + 1 = 2. From the SOS point of view this state is "dominated" by 
height configurations of the type depicted in fig.4. Upon "renormalization", we can 
replace the ground state and one hole configurations with the smoothed ones of fig. 
5. The hole corresponds, in configuration space, to a kink of the SOS model which 
interpolates between two neighboring vacuum states: the vacuum on the left. of the 
kink has .en = (3 - (- )11.)/2, corresponding to a constant "renormalized" height 

in = 1, while the vacuum on the right has en = (5 + (- )11.)/2, corresponding to 
in = 2. Of course, many kink configurations like that depicted in fig. 4 are to be 
combined into a standing wave (a plane wave in the infinite volume limit which 
turns the one hole BA state into an eigenstate of momentum). Let us observe 
that, by expressions like "dominating configuration", we do not mean that, e.g. 
the ground state, becomes an eigenstate of in as N -t 00. We expect local height 
fluctuations t.o be present even in the thermodynamic limit or, in other words, that 
the ground state remains a superposit.ions of different height configurations. The 
identification of a dominating configuration is made possible hy the integrability 
of the model, which guarantees the existence of the higher-level BA. In turns, the 
higher-level BA allows ns to consistently interpret the ground state or the one hole 
st.ate 3.<; in figs. 1,·1 and 5, since the presence of fillctnations only renormalizes in a 
trivial way the scat.:ering of physical excitations relative to the bare, or microscopic, 
R-matrix (2.17), as evident from eq.(6.12). Therefore, we can reinterpret at the 
renormalized level the vertex-face correspondence: the holes, that is the solitons of 
the SG model, arc 5U(2)q douhlets acting 3.'i SOS kinks that increase or decrease 

by 1 t.he renormalized heights In. The higher·level BA makes sure that the total 
number of internal states of II kinks int.erpolating between i = 1 and i = 2J is just 
the number of highest weight. states of spin J in the tensor product of II doublets 

= [v/2]- Jdl.'(J) = (~) - Cw~ 1) 111 (7.1) 
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This parallels exactly the original BA, which provides the 

dN(J) (;) (MN1) -J (7.2) 

highest wight states of N doublets with total spin J. 

Comparing eqs. (2.17), (4.28) and (6.12), we can directly write down the 
S-matrix of the 80S kinks: 

S(8);:::j = So(9) {6.. + b(O,f) !/'} (7.3) 

It defines the two-body scattering as follows. The firsi; ingoing kink interpolates 
between the local vacuum with i i and that with i r (r i ± I), while the 
second interpolates hetween; rand i j (j = r' ± 1). The outgoing kinks are 
interpolating between i i and i S (f:i = i ± 1, i.e, s r, r ± 2) and between i = s 
and i j (j = 8 ± 1). 

When, ::;; 1f" Ip for 11 3,4, ..., the 80S models can be restricted to the RSOS(p) 
models, by imposing en < p. In the vertex language of the 6V model this corresponds 
to the Hilbert space reduction to the subspace formed by the so--called type II 
representations of 8U (2)q with qP =-1 [5,6]. In the next section we shall describe in 
detail how the restriction takes place in our DA framework. Here we simply observe 
that the local height restriction, when combined with the finite renormalization 
, ---t 'Y of eq.(5.20), provides a strong support for the kink interpretation presented 
above. Indeed, if, = 1fIp, then l' = 1fI (p - 1) and the renormalized heights in 
can take the values 1,2, ... ,p 2. This appears now obvious, since each constant 
configuration of in corresponds to an en- configuration oscillating two neighboring 
values. Moreover under the standard identification of the critical RSOS(p) models 
with t.he minimal eFT series Mp , we see that each light cone RSOS(p) model has 
kink excitatioIL"I whose 8-matrix (7.3) is proportional to the (colllplex) microscopic 
BoltzmanIl wights of the nSOS(p 1) morlel, under the replacement of 2H 
e (-8)= rapidity difference of light-cone right and left movers, with (p-l) times 
o = 01 - 02 =rapidity difference of physical particles. This is exactly the pattern 
fonnd by hootstrap techniques [21J for the minimal model Mp perturbed by the 
primary operator 1/':>1.3 (with negative coupling). 
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8. BA roots when q is a root of unity and Quantum Group reduction. 

As previously explained to each M roots solution of the BAE there corresponds 
a highest weight state of the quantum group 8U(2)q with spin J NI2 - M. It 
is well known that when q is a root of unity, say qP = ±1, then (J+)P = (J_)P 
and the representations of 8U(2)'1 divide into two very different types. Type I 
representations arc reducible and generally indecomposable. They can be described 
as pairwise mixings of standard irreps (that is the irreducible representations for q 
not a root of unity) with spin J and JI such that 

IJ 1'j<p, J + l' = p - 1 (mod p) (8.1) 

Notice that the snm of q-dimensions for this pair of reps vanishes. 

Type II representations are all the others. They are still fully irreducible and 
structured just like the usual 8U(2) irreps. Since (J±)P 0, type II n~presentations 
have necessarily dimension smaller than p, that is 

-1 
J< 2 (8.2) 

'We shall now show how the BAE reflect these peculiar properties of the 8U(2)q 
representations for q a root of unity. First of all let us stress that when q is not a 
root of unity (i.e.,I1f" is irrational), then the BAE cannot possess v-roots at (real) 
infinity. Indeed, since 8(00) is proportional to J __ (eq.(5.16», a root at infinity 
IIleaIlS that the corresponding BA state is obtained by the action of the lowering 
operator J_ on some other state with higher spin projection Jz. But for q not a root 
of unity, the BA states have J = Jz and therefore cannot be obtained by applying 
J_ on any other state. On the other hand, if we assume that one z-root, say Zl, of 
the BAE (4.12) lay at the origin, i.e.Revl +00, then eqs. (4.12) for j 1 imply 

=1 (8.3) 

That is, q must be a root of unity. It is now crucial to observe that the remaining 
equations for the non--zero roots (those labelled by j = 2,3, ... ,1\1) arc precisely 
the BAE for M 1 unknowIL~. This invariance property holds only for the quantum 
group covariant, fixed boundary conditions BAE. It docs not hold for the p.b.c. 
RAE where v-roots at infinity twist the remaining equations for finite roots. This 
twisting reflect the fact that the corresponding periodic row---to--row tranfer matrix 
is not quantum group invariant but gets twisted under 8U(2)'1 transformations 
Thus, when q is a root of unity, BA states (4.11) with one v-root at infinity 
the form 

\fJ(Vl OO,V2, ••• , = (1 - q:.l) J_ \{I ( V2, V3, ... , v M ) (8.4) 

Let us recall that the BA state on the I.h.s. is annihilated by J j _ for any q (including 
q a root of unity) [3]. Hence eq.(8.4) represents the mixing of two reps with spin 
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J and J' J + 1 into a type I representation. Indeed, applying the mixing rule 
(8.1) into the necessary condition (8.3) for one root at infinity, yields an identity as 
required: 

1 q4~J-rI) q2(J+J'+1) (qP)2n 

where n is a suitable (J - dependent) positive integer. 

We can generalize this analysis to any number of vanishing BA z-roots. Let 
us identify the roots going to the origin with ZlJ Z2, .•• , zr, 1 ~ J' ~ M. The BAE 
for the remaining non-zero roots Zr+I"",ZM take the standard form (4.12) valid 
for a BA state formed by M r B-opcrators, which has therefore Spill J + r. The 
BAE for the vanishing roots take the form 

" 4.l+2(r+l) - F· IT J' < r (8.6)q - J 

where the definition of Fj is understood in the limit of vanishing Zl,"" Z7" We can 
obtain complete agreement with the quantum group mixing rules (8.1) by setting 
r < p and making the natural choice 

Fj 1, l~j~r (8.7) 

Indeed t.he presence of r vanishing z-roots imply the mixing of two representations 
with spin J and J' = J + r, so that 

q4J+2(r+l) = q2(.l+J'+1) (0)"" 

with 11. an integer depending on J and J 1 Eq. (8.7) ha a very simple solution for • 

t.he limiting behaviour of the vanishing roots. We find that if 

Zj = W 
j

-
1 

ZI, 1 ~ j ~ r (8.9) 

with w r = 1, then identically 

. IT sin[-l' + 1f'(k - j)/rJ 
j~r (8.10)

F] sin[, + 7r(k j)/r] 1 , 

for any value of 'Y. That eq.(8.10) should hold for generic values of q = ei-r is 
necessary siu<:e we are studying the approach of the roots to the origin when 
tends to a rational number. We would like to remark that the limit.ing behaviour of 
the ratios of the vanishing BA z-roots depend only on their number r and neither 
on the specific rational value of,17r Hor on the other non vanishing roots. 
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In the v-plane, the roots Vb '02, ... , Vr go to infinity a<) a r-string with spacing 
i7r /r. For example, when r 2 we have a pair of complex roots with imaginary 
parts tending to ±i7r/4 a<; their real parts sImultaneously diverge. For r = 3 there 
will be a limiting 3-string with a real member and a complex pair at 
these two examples, we have performed an explicit numerical test when,----t 
and, -+ (1r"/4)-, respectively, finding perfect agreement with the picture proposed 
here. We shall present more detail on the special ca<)cs in the next section. Let us 
anticipate here that thc numerical results suggest the following conjecture on the 
behaviour of the singular root,s: IZjl ~ O(El/r) and Im[vj - lIj(1': = 0)) ~ 0«(,1/1') 
where t = , - 7r/ (r + 

When qP = ±1 and the SU(2)q reps divide into type I and type II, it is possible 
to perform the consistent RSOS(lJ) reduction of the Hilbert space. This consists 
in keeping, among all states annihilated by J+ which form the SOS subspace, only 
the type II states. It is known that this corresponds to SOS configurations with 
local heights in restricted to the set 1,2, ... ,p - 1 [(8.3)6). In onr BA framework, 
therefore, the RSOS reduction is obtained by retaining only those states with spin 
J (p -1)/2, that is with M > (N - p +1)/2, such that all BA roots Zt, Z2, ... ,Zr 

are non- zero. This t;onstitues the general and simple prescription to select the 
RSOS(p) suhspace of eigenstates of the evolution operator when qP ±1. 

We have considered up to here the RSOS reduction at the microscopic level, 
that is for the SA states (4.11) described by the bare DAE (4.12). It. should be 
dear, however, that the analysis of the singular DAE solutions when q is a root 
of unity holds equally well for the higher-level DAE (5.18), due to their structural 
identity with the bare DAR The crucial problem lli whether a quantum group 
reduction carried out the higher level would be equivalent to that described above 
in the "bare" framework. This equivalence can actually be established <L.<J follows. 
Suppose that, /7r is irrational, but as close as we like to a specific rational V'dlne. 
Then all solutjon."> of the bare BAE are regular and can be correctly analyzed, in 
the limit N -+ 00, using the density description for the real roots. As described 
in paper I, this yields the higher-level BAE (5.18), t.hose roots arc in a precise 
correspondanee with the complex roots of the bare BAE. When , tends to 7r / p, 
then l' tends to 1f' / (p 1) and singUlar solutions of the bare BAE with two or 
more singular roots are in one-to-one correspondance with siIlbTJIlar solutions of the 
higher-level BAE. Thns in this case quant.um group reduction and renormalization 
of the BAE commute. The only potentially troublesome eases are those of singular 
solut.ions with only one real singular root. Indeed the density description of the 
v-roots cannot account, by construction, for real roots at infinity, and no sign of 
the type I nature of the corresponding BA state would show up at the higher level. 
Notice that spin .J BA states with a single singular root are mixing with spin .J + 1 
states, so that, by the quantum group mixing rule (8.1), necessarily J = p/2 - 1. 
On the other hand, a direct application of the constraint (8.2) at the higher 
that is wit.h the replacement p -+ fi :::: pI, would overdo the job, by incorrectly 
ruling out all BA states with J p/2 1 = (p 1)/2. To be definite, consider N 
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even. Then the type II BA states with J = p/2 1, which ar C !'luperpositions of 
SOS configuration.."l with in ::; P 1 = 2.1 +1 = iN, have an effective, higher-level 
spin.J (iN - 1)/2 = J 1/2. This higher-level spin docs satisfy (8.2). The type 
I states are those in which en somewhere exceeds p - 1. In particular, the simplest 
change on a type II configuration, turning it into type I, is to flip the oscillating 
in close to t.he right wall (as shown in fig. 6). eN and hence the spin J a.rc left 
unchanged, but clearly IN increases by one, causing j to violate the bound (8.2). 
In other words, RSOS(p)-acceptable BA states with J p/2 1 have one kink 
less than the corresponding SOS states. ;,From the detailed analysis of the p = 4 
case, to be discm;sed helow, it appears that the removal of one kink corresponds to 
giving infinite rapidity to the hole representing that kink in the higher-level BAE. 

Thank to the possibility of performing the restriction directly at the renorrual
ized level, tlLP kink S-matrix of the RSOS(p) modc1 follows 'by direct restriction 
011 the 80S S-matrix given byeq.(7.3}. Namely, one must set f = 7r/p, that is 
i' 7r / (p - 1), and cOI1.'lider all indices as running from 1 to p - 2. 

9. The models RSOS(3) and RSOS( 4) 

In order to clarify matters about the I3A RSOS reduction discussed in the 
previous section, we present here the more details about the two simplest examples, 
when f = and f 7r/4. For these two cases the RSOS reductions correspond, 
respectively, to a trivial one-state model and to t.he Ising model (at. :lero (!xternal 
field and non-critical temperature). Let Ub recall that the light-cone approach yields 
in the continuum limit massive field theories with. the same internal symmetry of the 
corresponding critical regimes. Therefore the RSOS( 4) redu<:tion of the light cone 
6V model coincitles with the 7l2 - preserving perturbation of the c 1/2 minimal 
model (which is obtained upon quantum group restriction of the critical6V model). 

9.1 THE CASE P = 3 

From the RSOS viewpoint, the case f = 'Tr/3 i"l particulary simple. Since p = 3 
the local hight variables in can assume only the values 1 and 2. Then the SOS 
adjacency rule If - fll = 1 implies that the global configuration is completely deter
mined once the height of any given site is chosen. In our light-cOIJe formulation the 
firHt height on the left is frozen to the value 1 eq.( 4.18) and 2), so that the 
restric:ted Hilbert space contains only one state: an SU(2)q singlet when N is even 
and the spin up component of a J 1/2 doublet when N is odd. 

For f tr/3 the BAE still have many solutions which reproduce the full SOS 
Hilbert space. Indeed, from the 80S point of view, nothing particular happens 
when f ----t 7r/3. However, at this precise value of the anisptropy, only one BAE 
solution corresponds to the unique type II representation: for N even (odd) it 
contains N/2 (N/2 - 1/2) non-zero roots in the z-plane. All other BAE solutions 
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with .~ = [N/2J contain at least one vanishing z-root. and correspond to type 
I SOS states. Moreover, there unique RS05 state is the ground state of the SOS 
model and is formed by real positive roots labelled by consecutive quantum integers 
(no holes). We reach therefore the following rather non-trivial conclusion: the 
complicated system of algebraic equations (4.12) admit, for q3 = ±l and w real, 
one and only one solution with M [N/2] non-zero roots within the unit circle. 
In addition, these roots are real and positive. For few specific choices of N we also 
verified this picture numerically. 

9.2 THE CASE P 4 

The local height variables can assume now the three values e 1,2,3. However, 
each configuration can be decomposed into two sub-configurations laying OIl the 
two sllblattices formed by even and odd faces, respectivciy. On one of the two, 
the 50S adjacency rule If - £II 1 freezes the local heights to take the eonstant 
value P 2. Then on the other sub-lattice we arc left with two possibilities, I! 1 
and 3. Moreover, the interaction round-a-site of the original model reduces in Ulis 
way to a nearest-neighbor interaction in the vertical and horizontal directions. The 
framework is that of the Ising model. 

To obta.in the standard Ising formulation, we can set 
• 

= f2n(t) 2 (9.1) 

where the numbering of the lattice faces can be read from fig. 2. The fixed b.c. on 

the en now correspond to 


= -1, O'u(t) = (_1)J~1 (N = 2R) 
(9.2) 

170(t) -1, 0' u{t) ±1 (N = 2R + 1) 

where J 0,1 for N even, due to the bound (8.2). For N odd we must consider only 

the possibility J = 1/2, which implies EN = 2, since the lille of half plaqueUes 011 


the extreme right belong to the frozen sublattice. Then eN~l is left free to fluctuate 

between 1 and 3, leading to free b.c. OIl 17. The matrix elements of the unit time 

evolut.ion operator i) can be calculated from the explicit form of the SOS weights 

(4.27)-( 4.28). 'rhey call be written in the "lagrangian" form 


I
0'1' ... D!0'0,0'1, .. .0' R) t = eiT,(t) (9.3)

t+l 

where 
R-J R-l 

= 131) L O'n(t)O'n(t + 1) - {3h 2: O'n(t)O'n+l (tl + const 
n=l n=O 
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and 

/3v iClr + 2i In tanh 28) i3h = arctan tanh 28 

Alternatively, standard simple manipulations allow to rewrite Uexplicitly in terms 
of Pauli matrices 

D _..... --1}JhIl2 ....... -'£J.JhI"J,1 


R-l R-l 

HI = I)Ci~ + 1) , H2 = "'"' z zL....J Cin Cin +1 
n=l n=O 

In either cases, one sees that the complex Boltzmann weights fmmally belong to the 
critical line 

sin 2{3v sin 2J1h (9.7) 

Of course, this follows from the original definition of the light--conc 6V model in 
terms of complex trigonometric Boltzmann weights, which, under the replacement 
e -t 'ie, would correspond to the critical standard 6V modeL Nevertheless, just as 
for the vertex Illodel, also in this "light-cone" Ising model, a massive field theory 
can be constructed in the Rc e -t +00 limit. 

In the BA diagonalization of U, we must restrict ourselves to the BAE solutions 
with A1 = R or M R 1 for even Nand M R for odd N. For sufficently 
large even N, the groWld state has R real roots with consecutive qnantuIIl integers. 
Actually, as already stated above, this is a general fact valid for all RSOS(p) models. 
Namely, the infinite volume ground state of th SG model, of the SOS model and 
of all its restrictions RSOS(p) is the same [b.e. BA state. It is the unique SU(2)q 

with all real po::;itive roots and no holes. It is described in the thermodynamic 
-t 00, a fixed) by the density of roots given in eq.(5.7) of paper I. 

Excited stat€'$ with J 0 have an even number of holes and a certain number 
of complex rools sut:h that no z-root lays at the origin. For instance a two -particle 
state contains two holes (holes are naturally identified with the particles) and a two-
string with imaginary parts ±[1r/8+ corrections exponentially small in NJ laying 
between the two holes. This state (that is this precise choice of quantum 
just the two-particle state of the SG or SOS model, with l' fixed to the precise 

We have explicitly checked, by numerically solving the BAE for various values 
that indeed all z - roots stay away from the origin as l' crosses 7f / 4 while HlP

quantum integers are kept fixed to the two-hole configuration. Now consider a state 
with four holes. Apart from the multiplicity of the rapidity pha.."e space, there are 
t.wo distinct type of such states: in v-space one contains two two-strings, while the 
other contains one sigle wide pair, that is a compIcx pair with imaginary part larger 
than 1'. This situation holds for generic values of 1'/1r and simply reflects the fact 
that the holes are SU(2)q doublets. The crucial point is that, as l' rflaches 1r /4 (from 
below), the wide pair move!) towards infinity, while its real part gets closer and closer 
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to the (diverging) value of the largest rea] root and the imaginary part approaches 
This picture is confirmed by a careful numerical study of the BAE and is in 

perfect agreement with the general picture presented in sec. 5. In addition, there 
exists numerical evidem:e that the real parts like log( '71"/4 - f) -1/6 while the 
imaginary part of the wide pair goes to 1r/3 like (Tr/4 - 1')1/3. When l' > 7f/4, the 
v-root corresponding to the largest quantum integer has the largest real part, but 
is no longer real. having an imaginary part equal to 1r /2. As l' ---l> (7f/4.)+, this real 
part again diverges together with real part of the wide pair. Hence the four-hole 
state with a wide pair is type I when l' 1r/ 4. On the other hand, the four hole 
state with two two-string is type II, since all its v-roots stay finite. 

"From the study of the two- and four-hole states, we are led to the following 
general conjecture: in the BA framework, the RSOS( 4) J 0 states are all and 
only the states with 11 2k holes and k two -strings. Then, in the higher--lcvel BAE 
(5.18), we recognize this state 8...<; that corresponding to the unique solution with 
k real x-roots. In other words, this BA state is completely determined once the 
location of the holes (that is the rapidities of the physical particles) is givcn. 

Consider now the states with .J 1. In this sector, the lowest energy type II 
state contains exactly one hole. This is an unusual situation for BA systems on 
lattices with even N, where holes are always t.reated in pairs. As long as l' i 
the same is true in our f. b.c. BA: t.he lowest energy state with J = 1 contains two 
holes, in agreement with the illterpretation of holes as SG solitons with quantum 
spin 1/2. For l' < 1r / 4. all roots are reaL For, > 7f/4 the root vN/2-1 corresponding 
to the largest quantum integer IN/2-1 = N/2 + 1 aquires an imaginary part 1r /2 

the appendix for details). But when l' = 1r/4 then RevN/2-1 +00, and the 
J 1 two-hole state is mixed with some J = 2 state into a type I representation. 
It do(~s not belong to the RSOS( 4) Hilbert space. Thi.."l picture can be casily verified 
numerically. 

To prevent the root vN/2-1 from diverging, it is sufficent to consider a 
.J = 1 state with only one hole and IN/2-1 N/2. From the point of view of the SG 
or SOS models this one--hole state has a cutoff-dependent energy which diverges 
a.."i a.-I in the continuum limit. If Xl is the position of the single hole, the encrgy 
relative to the ground ::;tate reads 

E-Eo +1ra-1 
(9.8) 

where the rcnormalized energy fmIction e{x) is given in cq.(6.1). Notice that this 
result coim:ides with the limit X2 ~ 00 of a two-hole ~tate (eft. eq.(6.1)). 
speaking, however, the density method leading to (6.1) has no justification when 
"one hole is at infinity". We trust eq.(9.8) nonetheless because it passes all our 
numerical checks. In the continuum limit a ~ 0, e ~ 00, 'Ia-1e-7r9h = m 
this one·-hole state is removed from the physical spectrum, as required from 
point of view: holes are spin 1/2 solitons while here J = 1. 
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The preceding dis(~ussion easily extends to generic states in the J = 1 sector 
containing an odd number of holes and a given set of complex pairs. The infinite-
volume energy of these multiparticic states is given by 

E = Eo +a-I .2: e(xh) + 7ra-1 (9.9) 
h=l 

with the same divcrgcnt constant r.a-1 appearing irrespective of the physical content 
of the state. Our conjecture for the J = 0 states naturally extends to these.J 1 
state..": if there are v 2k+ 1 holes, then the v-roots are all finite, implying that the 
state is type II, provided there are also k two-strings. Then the higher-level llAE 
imply that thp$e statp$ are completely defined by the hole rapidities. To retain these 
type II .J 1 BA states in the RSOS(4) model, an extra J-dependent subtraction 
is necessary to get rid of the divergent constant. Namely, for N even and J = 0 or 
1, we set 

H RSOS(1) = Hsos{"{ - 7ra-1J (9.10) 

where HS08 is given eqs. (4.14), (4.22)-( 4.28). 

Alltogethcr, we see that the BA picture for the excitations of the RSOS(4} 
model is fully consistent with the kink interpretation for the holes. Indeed J = 0 
corresponds to even Dirichlet h.c. for the Ising field, while J = 1 corresponds to 
odd Dirichlet b.c. (eft. eqs. (9.2)). In the Ising model t.he kink description is valid 
below the critical temperature, with the disorder field as natural interpolator for 
the kinks. In this case the S-matrix must be -1 (it is +1 when the asymptotic 
particles are t.he free massive Majorana fermions) and this is exactly what follows 
from eq.(7.3) upon setting l' = 7r /3 and restricting all indices to run from 1 to 
p 2 = 2. 

The analisys of the BA spectrum for odd N does not contain real new features. 
Now J is fixed to 1/2 and the b.c. on the Tsing field are of mixed fixed-free type, 
as shown in the second of eqs. (9.2). The lowest energy state corresponds to the 
BAE solution formed by real roots and one single hole as close a<; po&<;ible to the 
the v-origin. In other words, the quantum integers are given by Ij j + 1, for 
j = 1,2, ... , (N 1)/2. By ietting this hole to move away along the positive real 
axis, we reconstruct the energy spectrum of Ii one particle state. Of course, to 
compare this state to the global ground state, which contains no holes, a judicious 
<:hoicc of the odd value of N is required. If in the ground state N = 2R, then 
the new state is indeed an excited state if we choose N 2R - 1, rather than 
N 2R + I, because of the antiferromagnetic nature of the interaction, 
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APPENDIX 

In this appendix, we present for completeness a (rather non .. standard) treatment 
of the BAE (4.12). As explained in paper I, it is convenient to first rewrite them in 
the p.b.c. form 

Sinh(Aj 8 + iT/2) sinh(Aj + 8 + iI/2)] N sinh(2Aj + iT) 
[sinh(Aj 8 - i,,{/2) sinh(Aj + 8 - iI/2) sinh(2Aj i-y)

II sinh(Aj - Ak + iT) 
(AI) 

- M sinh(Aj Ak - i,,{)
Ir;-- +1 

where the numbers A-M+1> A-M+2,"" AM are related t.o t.he 'Il-roots by 

Aj = Vj -A1-j, j = 1,2, ... ,lH (A2) 

and Re'oj > 0, thanks to the symmet.ries ofthe BAE (4.12). Let us concentrate our 
attention on those BAE solutions which arc mostly real, that is those which contain 
an arbitrary but fixed number of <:omplex pairs interspersed in a sea of order N 
of real roots. The reason for this restriction will become clear in the sequel. The 
counting jUTu:ti(m associated to a given solution VI, ... ,11 M is defined to be 

ZN(X;V}j.··,1JM) =r/J,/2(x+8) + 8)+ 
_N--1 L (A3) 

j=-M+l 

whcr(~ 

'I sinh(ia+x)
1. og. .

smh(Ut - ;r:) 

The logarithmic branch in I~q. (A 4) is chosen snch that <PeAx), and at) direct conse
quence ZN(X; vb ... ,'0 M), are odd. 

The BAE (A1) can now be written in compact form 

ZN(Aj;VI, ... ,VM) 2r.N-1 Ij , j -M + l,-M 2, ... ,M (A5) • 

where the quantum inte.qers I j entirely fix the spedfic BAE solution, and therefore 
the BA eigenstate, and by construction satisfy Il-j = for j 1,2, ... , M. 
Notice also that by definition ZN(O; vI, ... , V M )=0, but A = 0 is not a root, due to 
(A2). Rather, A = 0 is always a hole, from the p.b.c. point of view. 
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To begin, consider the case when N is even, J\;1 = N/2 (i.e. J 0) and all roots 
are real. This state (the l:,'Toud state for even N) is unambiguously identified by the 
qllantuIU integers 

1j .i j = 1,2, ... ,N/2 (A6) 

and the corresponding counting function is indeed monotonically on the 
real axis, justifying its name. To our knowledge, the existence itself of BAE 
solution 11a..<; not been proven in a analytical way. But it is very ea.<;y to 
obtain it numerically for values of N in the thousands and precisioIlS of order 10-15 

on any common workstation. 

Next consider removing J roots from the ground state. J is the quantum spin 
of the correspondin~ new BA state. For I sllfficently small, one now finds that; 

+J< ; VI, ..• , v M) < N /2 + .1 + 1 (A7) 

so that, together with the actual roots satisfying eq.(A5), there must exist positive 
numbers Xl, X2, .• " .T lI , with 11 ~ 2J, satisfying 

ZN(Xh;Vl, ... ,VM) 21rN-1Ih , h=I,2, ... ,ZI (A8) 

where the ih are positive integers. If ZN(X) is monotonically increasing, then nec
essarily ZI = 2.1 and the integers {Ill.'" 1N / 2- J , II,''',Iv} are all distinct. The 
numbers Xl, X2, ••• ,Xli are naturally called holes. For .1 held fixed a.s N becomes 

and larger, it is natmal to expect that the counting function is indeoo mono
U)l!lIt'HIIV increasing, and nwnerical calculations confirm this expedation. For 
values of I the situation becomes more involved. Numerical studies show 
of all, Zn(x) develops a local maximum beyond the largest root, while still satisfying 
the bounds (A 7), ~ I exceeds a certain (.J-dependent) value. For even val
nes of II the a<>ymptotic value of ZN(X) beeomcs smaller than Z* ::.:: .J/N), 
but it:.; maximum stays larger than Z* 1 provided there is indeed a root correspond
ing to N/2 + .J (i.e. 1M = N/2 + J). Up to now, VM is obviously located where 
ZN(X) reaches N/2 + .J from below, and onc could say that there exists an extra 
hole X2J+I further beyond, where ZN(X) rcaches Z* from above. When r reaches 
a certain crit.ical value, the local maximum Jowers till Z*. At this point the root 
and the extra hole exchange their places, and for sligtly larger values of I the hole 
is located where ZN(3;) reaehes Z* from below, while the root lays further away, 
where ZN (x) reaches Z* from above. As the numerical calculations show I however, 
this extra hole with the same quantum integer 1M = N /2 + .J of the largest root 
hole is spurious, since no energy increase is associated to its presence. When 
none of N/2 - J root has N/2 +J as quantum integer, then ZN(X) does neVf!r reach 
Z* for sufficcntly large I, and, there are only 2J - 1 holes. This 
time, however, we find that the energy increa."!es with respect. to the ground state in 
the same way a."! if there was "a hole at infinity", that is a hole beyond the largest 
root. Thus ZI can always be regarded to be even, when N is even. 
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As an important consider the definite choice.J 1. TheIl for I < 
we find ZN( +00) > Z·, and there are two holes, with 1 S II < 12 ::; N/2 + 1. 
Assume 12 S N/2 + 1 and consider the interval 1r/6 < I < 1r/ 4. The counting 
function has a maximum Zmax (larger than Z*) situated to the right of the largest 
root 1J N /1-11 ~ long as I is smaller than the critical value 1* at which the maximum 
lowers to Z*. 1<or I > 1*' the maximum is still larger than Z* but is located to the 
left. of VN/I-l' In any case, for 7r/6 < I < 1r/4 the ~ymptotic value ZN(+oo) is 
smaller than Z*. When I (1r/ 4) -, then the largest root as well as the maximum 

to infinity, and Z N (x) is once again monotonic with ZN( +00 ) Z* . 
As I exceeds 1r/ 4, the last root V N/l-l passes, through the POiIlt at infinity, from 
the real line to the line with Im 1) = 7f/2. Thb pictures to arbitrary 
J with the two special values I 1r/6 and I = 1r/4 replaced, respectively, by 
I 7r /(4J + 2) and I = 1r/(2.1 +2). In fig. 7 the salient portion of the numerically 
calculated counting function is plotted for J = 1, N = 64 and a dlOice of 
iI, ].1.. In this case we approximatively find ')'. ~ O.211r. 

Finally, consider a BAE solut.ion containing, in addition to a number of order 
N of real roots, also a certain configuration of complex roots. In the v-space, t.hese 
complex roots appear either in complex conjugate pairs or with fixed imaginary 
part equal to in /2, so that the counting function is real analytic: 
Moreover, it is fairly easy to show, by looking at the value of the function 
a real infinity, that the presence of complex root.s implies the existence of holes in 
the sea of real root.s. For our next porposes, we shaH now consider 
so that all v-roots are finite. with u q • q = 1,2, ... , Me the 
complex roots and with Mr the number of real roots, we now write the 
derivative of the countin~ function as 

21rPN(X) == ZN(X) = Jie(x) + +F:(x)- + (K * P8)(:1;) (At!) 

where 

Fe(x) =9'Y/'1.(:L' + 8) + <P"Y/2(X 8) 


Fo(x) =¢'Y(2x) 

}vIr 


=L + 
q=l 

+L 
II 

+ + 
n=l 

A·I, /I 

Np6(X) = Lb(x+ + L{6(x-X1J+6(x+ 
j=l ,,=1 
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and K * is the convolution defined by 

+00 

(K *!)(x) = / dy¢~(x - y)J(y) (All) 
-00 

The so-called "den."Iity approach" consists in replacing, as N -+ 00, hoth PN and 
Po with the same smooth function p, representing the density of roots and holes on 
the real line. This function is therefore the unique solution of the linear integral 
equation (eft. cq.(A9)) 

21rp:,:::: F'e + N-1(Fo + Fe Fh) + K * p (A12) 

which can be easily solved by Fourier transformation. Combining this equation with 
eq.(A9), we now obtain, after some simple manipulations 

PN = p+G* (A13) 

where G* = (21l' + K)-l * K * stands for the convolution with kernel 

G x / dk eih sinh(1r/2 ~()k._ (A14)
( ) 21r sinh(1r - "()k/2 cosh ,,;kj2 

Finally, a simple application of the residue theorem to the analytic function PN (1
e-iNZN)-l plus an integration by parts lead to the following formal nonlinear' inte
gral equation for the counting function 

ZN = Z+G*£N (A15) 

where 

LN(X) = -iN-11 1 - eiNZN(x+iO) 
, ' 1--:---- (A16)og-:

and Z L"I the odd primitive of 211'p, namely 

Z = Zoo +N- 1(21r + + F(,; - F'h) (A17)* 
with 

sinh 1rx/'Y )
Zoo{x) «(21r + K) *Fe)(x) 2 arctan ( cosh 1r8h (Al8) 

Eq.(AlS) is a formal integral equation since the knowledge of the exact position of 
holes and complex roots is required in Z. It becomes a true integral equation for the 
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ground state counting fUIlction. In any case it is an exact expression satisfied by ZN 

where the number of site N enters only in an explicit, parametric way, except for the 
positions of the holes and of the complex roots. After having fixed the corresponding 
quantum integers) these parameters retain an implicit, mild dependence on N, for 
large N. 

We shall now show that eq.(A15) is very effective for estabillihing the re.c;;ult (6.6), 
which is of crucial importance for the calculation of the S -matrix. It is sufficent 
to eheck that the second nonlinear term in the r.h.s. of eq.(A15) is indeed of higher 
order in N-l relative to the first. To this purpose observe that the integration 
contour of the convolution in eq.(A15)can be deformed away from the upper and 
lower edges of the real axis, since for snfficclltly large N no complex roots can appear 
in the whole strip IIrnxj < ,,;/2 and G(x) is analytic there. Indeed ZN tends to Zoo 
as N -+ 00, and one can eplicitly check that the imaginary part of Zoo is positive 
definite for 0 < 1m x < ,,;/2 and negative definite for 0 > 1m x > -,,;/2. This also 
implies that the contribution to the convolution integral is exponentially small in 
N for all values of the integration variable (let's call it y) where 1m Zoo of order 1. 
For IRcyj of order 10gN, we find ImZoo(Y) of order N-l, so that, the nonlinearity 
L N, rather than exponentially small, is also of order N-I. But now the exponential 
damping in y of the kernel G(x  y) guarantees that the convolution integral is 
globally of order N- 2 or smaller, provided Ix\ is kept smaller than b/1r) logN. 
Hence we can write • 

ZN Z +O(N-2
) (A19) 

, 
Finally, the coefficent of the N-1 term of Z, in eq.(A17), can be calculated in 
the N -+ 00 limit, with the techniques described at length in paper I. After some 
straightforward albeit cumbersome algebra, this yields 

«21f + K) * (Fo + Fr,  F'h.)) ;XI, ... ,XM;XI, ... ,qXM) (A20) 

where the higher-level quantity F' is defined in eq.(6.8). Together with eqs. (A19) 
and (A17), this proves eq.(6.6) of section 3, as claimed. 

Let llS now consider the problem of calculating the energy of a given BA state, 
through eq.( 4.15). We rewrite first the "bare" energy function eo(x) as 

• 

.. 
eo(x) = -21r + <P-y/2(X + (~) - rP-y/2(X H) (A21) 
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Then we calculate 

+00 M 1I 

L =~N JP6(x)¢,/,Ax) +t -L: - !¢,/2(O) 
j=l -'00 q=l h::::l 

+00 MeJp(x)<p,/z(x B)+L: L ¢,/2(Xh)
-00 	 q=1 h=l 

[P6(X) - PN(X)] G) * <P"{/2) (x) 
-00 

(A22) 
Through the residue theorem and all integration by parts, the la:st term can be 
transformed, as done before for the counting function, into an integral of the non
linear term LN, namely the integral 

LN(X) 
')' cosh 'lfX / ')' 

-00 

By the same argument used above, this last expression is globally of order N-I. 
Finally, inserting the explicit form of the continuum density p(x) into eq.(A22) and 
recalling cqs. (4.15) and (A21), for the energy we obtain eq.(6.1) of the main text 

E Eo+a-1I: +O(a-IN-I) 
h=1 

where 

Eo = 1f(1,-1 N + 

-1 J dksinh(1l' ')')k/2 sinkE? [1\T kE sinh(1l' - :3')')k/4] (A24)
a 	 21'1 cos ~ + 1 + --~-~-!-

k 	 sinh1l'k/2 cosh')'k/2 sinh(n ,),)k/4 

is the energy of the ground state. 

We would like to close this appendix with a COIIlIllent on the limitations of the 
density approach, where one deals only with the solution p of the linear equation 
(A12). Regarding p(x) as the actual density of real roots and holes in the N 00 

limit, it is natural to use it to replace summations with integrals. What one learns 

49 

from the exact treatment presented above as well as from computer calculations, 
is that the error made ill such a replacement depends crucially on the large x 
hehaviour of the quantity which is to be summed. This error is down by N-I only 
when there is exponential damping in x. This means, for instance, that the integral 
of o(x) docs not reprodnce in general the exact number of real roots and but 

Rome ')'-dependent quantity close to it. Misundertanding this for the actual 
number of real roots and holes would lead to the absurd result that the holes have 
a ')'-dependcnt value of the SU(2)q spin, which is instead necessarily integer or 
half-integer and, in the particular case of the holes, just 1/2 for any valne of ')'. 
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X
d 

a b 

Fig.I. 	Graphical representation of the R-matrix. 

b 	 a~I 	 ~I ~I .... ~I 
2 3 	 N 

Fig.2. 	The standard row-to-row monodromy matrix. The numbers from 1 to N label 
the vertical spaces and each vertical line represents a couple of free indices in 
the corresponding vertical space. Indicf'-B on the internal horizontal lines are 
summed over. 

K ~~IJ~IJ~IJ . . .. ~IJ 
a 

b 

2 3 	 N 

Fig .3. 	The doubled monodromy matrix used to describe systems with fixed boundary 
conditions. The correct contraction over the internal indices is dictated by the 
position of the arcs. 

e 

K-(9) K-(9') 
e 

K-(9') K-(9) 

Fig.4. 	Graphical representation of the compatibility relations (2.12) between the 
two-body scattering and reflp-ctions on the left wall. 

K+(9) K+(9') 

9 K+ (9') K+(8) 

9 
a' 	 a' 

Fig.5. 	Graphical representation of the compa.tibility relations (2.15) between the 
two-body sca.ttering and reflections on the right wall. 
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10= 0 

Fig.13. 	One of the local. height configura.tions that dominate the one-hole BA state. 
of spin J 1. 

IN=l 	 C-3 
10= 0 ---____....J 	 ...ct 

§ 
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Fig.14. The "renormal.ized" version of Fig.13. 

" " 1" 'IN =p-

Fig .15. 	Flipping the last portion of the configura.tion from the solid to the dotted line 

does not change the quantum spin J = 1)/2 1, but tranform the type II state 

into type 1. 
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Fig.I6. 	Plot ofthe N/21r times the counting function ZN(X) versus tanh x for N = 64, 
J = 1, e = .15 and various values of from ?r/B to O.999?r/4. The quantum 
integers associates to the two holes are 8 and 11 = 21. The critical value 
of (N/2?r)ZN is N/2 + J 33, while thl\t of"( is, roughly, "(* = O.21?r. 
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