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I - INTRODUCTION AND RESULTS

The study of string dynamics in curved space-times, reveals new
insights with respect to string propagation in flat space-time[1-9].
Particularly interesting is the string behaviour in strong gravitational
fields and in the vicinity of space-time singularities. Gravitational
shock-waves and gravitational plane waves are physically relevant and
mathematically tractable space-times for studying the string dynamics.
Singular gravitational waves are specially attractive since the string
equations in these space-times turn out to be exactly (and explicitly)
solvable even at the space-time singularities.

in this paper, we consider strings propagating in gravitational
plane-wave space-times described by the metric

dS"= [Wa(0) (x*-¥%) + 2 W, (0) X)’Jal,UL-obUa(,\/.a(zL)x&)

Here, U, V are null coordinates

Ve X% - XD—1 ’ Va X% 4 x2-1

and X=X!Y=X2 X3, X4,., X0-2 are spatial coordinates. W;(U) and
Wy (U) are arbitrary functions describing the profile of the gravitational

wave. These space-times are exact solutions of the vacuum Einstein
equations. The case when W,(U) = 0 describes waves of constant

polarization and was studied in ref.[8]. The case with both W, # 0 and
W, = 0 describes waves with arbitrary polarization.
If W{(U) and/or W,(U) are singular functions, space-time singularities

will be present. The singularities will be located on the null plane U =
constant. Here, we will consider profile functions with power-type
singularities,

Wiw) = %, W) . Z=_
Uso “}’(51 , Uso ‘(}){sz

(1.2)

In this class of space-times, one can choose the light-cone gauge U =
2a'pYUt . After Fourier expansion in the world sheet coordinate o, the
Fourier components Xp(t) and Y,(t) satisfy a pair of coupled
one-dimensional Schridinger-type equations with < playing the role of the
spatial coordinate, and

Wa W,
W(z) = (2a'pv)" ’
) ( f ) Wa —— Wa
U:.Lo('?"(z,)

as an effective potential. (Here p,, stands for the U-component of the
string momentum). The transverse coordinates Xi(j = 3,..., D-2) propagate
freely. We study the string propagation when it approaches the singularity
at U = 0, from say, U < 0. We find that the string behaviour depends
crucially on whether both power parameters B, and B, are smaller or
bigger than two. When By <2 and B, < 2, the solutions X(o,r) and Y(z,0)
are regular and the string passes smoothly through the gravitational
singularity at the null plane U = 0. When B> 2 and/or Bo 2 2, the string
does not cross the singularity plane U=0, but it goes off to infinity in the
(X,Y) plane. We find here that the string scapes to infinity in a given
direction o with respect to the X-axis, which depends on the polarization
of the gravitational wave. We obtain: (i) for B4 > B, (and Bo 2 2), then the

angle a=0 and the string goes off to infinity in the X-direction. In this
case, the singularity of W ydominates over that of W, and we recover the

situation of ref.[8]. (i) for B, > B4 (and B, > 2), then a = (n/4) sgn ay , and
(iii) for By =By > 2, then
s oA , e ;tg,ad =%

A+ Vd, 4 od {4




fay>0, (ay< 0), the string escape directions are within the cone |al<
n/4 , (la- w/2 | < w4 ) as depicted in figure 1.
In addition to escaping to infinity, the string oscillates in the (X,Y) plane,
perpendicularly to the escape direction, and with vanishing amplitude for
U-0.

We find that the time coordinate X%(c,t) near the U = O singularity
behaves as:

Bis) (-2)” Jor p=2
X(e) =

B%rs) exrj LES (-2 '?‘)L Wz] }(1.3)

B -1 or 3O 2
y P

wherev=\/1:4_5':nd
R
« = ofa, for  Pa >
Jotr v dr $or Bas P
We find that, as a function of the time coordinate X%(c,t), the

transverse string coordinate p =/ X2 + Y2, approaches asymptotically (for
X0 - o0), the U =0 singularity as
A-Afy

o) Y e g
§(e, x ~) T (1.4)
° 0 p )(a "2(6—1)
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We find that when the string approaches the U = 0 singularity, its proper

length at a fixed t — 07, stretchs infinitely as

-V
I

VZ [PV [
%’4(:,0(?3) J)(sz,

= Bl2 exp

We find that the string behaviour near the singularity expresses
naturally in terms of the variable

In(-0) p=%

!_U?L(‘/z [67fb
e

For instance, the oscillatory modes in the (X,Y) plane are not harmonic
in U but in U. is like the cosmic time for strings in cosmological
backgrounds (in terms of which the string oscillates), whereas U is like
the conformal time.

We would like to remark that the string evolution near the space-time
singularity is a collective motion governed by the nature of the
gravitational field. The state of the string fixes the overall c-dependent
coefficient B(o) [see eqs.(1.3)-(1.4)], whereas the rt-dependence is fully
determined by the space-time geometry. in other words, the t-dependence
is the same for all modes n. In some directions, the string collective
propagation turns to be an infinite motion (the escape direction), whereas
in other directions, the motion is oscillatory, but with a fixed
(n-independent) frequency. In fact, these features are not restricted to
singular gravitational waves, but are generic to strings in strong
gravitational fields.

In section lll, we study the quantum propagation of the string for the
case By < 2 and B, < 2. In this case, the string crosses the singularity and
reaches the region U > 0. Therefore, outgoing scattering states and
outgoing operators can be defined in the region U > 0. We explicitly find
the transformation relating the ingoing and outgoing string mode
operators. For the particles described by the quantum string states, this
relation implies two types of effects: (i) rotation of spin polarization in
the (X,Y) plane, and (ii) transmutation between different particles. We
compute the expectation values of the outgoing mass (MZ2,) operator and

A
U=



of the mode-number operator N,, in the ingoing ground state ]O< >. We find
for M2, and N, different VEV's than for M2 and N, . This difference is

due to the excitation of the string modes after crossing the space-time
singularity. In other words, the string state is not an eigenstate of M2, ,
but an infinity superposition of one-particle states with different masses.
This is a consequence of the particle transmutation which allows particle
masses different from the initial one (my2).

11- THE STRING DYNAMICS IN SINGULAR GRAVITATIONAL WAVES
WITH ARBITRARY POLARIZATION. THE STRING ESCAPE ANGLE.

Let us consider the exact D-dimensional gravitational plane wave
space-time

L5t FLU K Y)dut= dUdV + (dx¥)™

(2.1)
where U and V are null ¢coordinates

U: )(auk(!)"1 V = X°+ XD+1

X=X',Y=X2 X3, x4,.. XO2 are spatial coordinates.
In order to satisfy the vacuum Einstein equations, F(U,X,Y) in eq.(2.1)
must obey

z
(’g'x‘ *%)F(UIX'VHO
7 (2.2)

A gravitational wave with arbitrary polarization is described by

FLU X V)= WoLU) (X*=Y%) + 2 W, () Xy

where W,(U) and W,(U) are arbitrary functions describing the profile of

the wave.
The case where W, = 0 corresponds to gravitational waves with

constant polarization and was considered in ref.[8].
Let us consider strings propagating in the above space-time. In curved
space-time, the string equations of motion are given by

2% (6yy 2°X)2 9 G, (AX72°XY)

The equations of motion for the string coordinates XA(c,7) take the form

(9.-2:) Ul(r2) =0 2.4

2t oF 2.U) = (9.U)° 2 oF,
( z ?6')\/ + 5.{_} {( ) ( ) _] + %
'<’36X90'U“ %X QLU) + 2 2F (ao'y%u'g"\/gc(zgsz = ©
2y _

< o-
(o2 2 )x7. o 364 S o2
(2.6)
3
(32 )x v 4 2 [(qu)-(20)] 2o
24 ax‘c k: '1, VA
(2.7)
In this space-time, the string constraints are
D-2

- 2
TM (6,t)= - 9+U 9*.\/ x F(U} (a_tU)L-{-Z (%Xg‘) ~0
pil T X e




where Xy = (6+7) % -

= } -—

(9 =+ %2)

zv1>

Since U obeys the d'Alembert equation, we can choose the light-cone
gauge

U = o'zoa'p“z
(2.9)

Therefore, with F given by eq.(2.3), equations (2.5)-(2.7) become

VI r (aapo)® [(% W) (x%y?) + 23 Wa) XV ]+
(2o pY) [W«(XX—*YY)«r W, (XY +YX) j._-

(2.10a)

N X+ e [ W X - W Y]

Yooy e et (W X Syl o

(2.10c)

and

(' Py | Wi (U)(X=9%) + 2 W, (V)X Y]

F(P) AV + (04 %)bf (9:t>/)l+znj(93)(?)a =0
3?3 (2.44)
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Interesting profile functions W;(U) and W,(U) to be considered here
are those which are nonzero only on a finite interval —T < U < T, and which
have a singular behaviour for U -» 0 say, like

W(U) = s ) W(U) = *

Vs o {U|F1 Uso /(}}@z

(2.12)

Let us analyse now the solutions of the string equations (2.10) and (2.11)
for a closed string. The transverse coordinates obey the free equation
(2.6), with the solution

. nd . 4 , ‘Nt
XL=1+JOCFC+LJ7121€A(‘ 4mo§€2Ln)

n#o M
(,{, N S 9-7_) (2.13)

For the X and Y components it is convenient to Fourier expand as

X(c’,z‘) = Z; e ™7 X (z)

Nn=-o0
J(oe) = Z e? )/CZ) (214

Then, eqs.(2.10) for X and Y yield


http:eqs.(2.10
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)‘{h thme X, (zg(«fu)l(\,\/d)(n 1‘“}:,},1) _
Yo v sy (0, - )

Formally, these are two coupled one-dimensional Schrodinger-like
equations with t playing the role of a spatial coordinate. It is convenient
to write them in the matrix form

4, yme o
o e [y )= o

(2.16a)

W4 W2

Wl - W4
(2.16b)

playing the role of the effective potential. We study now the interaction of
the string with the gravitational wave. For a'pt<-T, W(t) = 0 and
therefore X, Y are given by the usual flat-space expansions

X ~2nit
X(62) - 1 +zocfzfm)i?'z (dp, €& -
nFo m
zwz
—-c(“ )
n< (2.17)

y | - .
>,(€;t) = j,< -+ &&:Fcy_z -f-_2‘.'_’ Qd’Z—J ez&ﬂr(q/"’): é-Z'YIf
Nfeo m "(»ny :M::)

These solutions define the initial conditions of the string propagation for
T 1g .t = T/2a'pY.
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In the language of the Schridinger-like equations we have a (matrix)
potential barrier (or a potential well) in -T <« U < T. The string solutions
eq.{2.17) correspond in the Schrddinger-like language to the incident and
reflected waves from the left side

_Ztm'C VX 2imT
X () = A —
) m'_V z Vg € )
. - Yy  —2imT Ay  UNT }w Z¢-To

2

and

X
Xo<(7—) = 1< + .Zp('f<xt
(2.18b)
Do = 37 +awp?

We consider the propagation of the string when it approaches the
singularity at U = 0 = t from © < 0. When W, is more singular at U = 0 than

W, , i.e. By > By in eq.(2.12), the string behaviour is determined by W;(U)
and this is the situation we have analized in ref.[8]. Let us consider here
the case when both singularities are of the same type; i.e. By =B, = B. This
case is actually generic since the case when W, (W,) is more singular
than W,(W,) can be obtained by setting oy = 0 (ay = 0) in the B,=p,
solution. Eq.(2.15) can be approximated near t= 0" as

»”

2.0
X%—Zo('d (0(,1>CVV+02XV)=~_O

!Zl(s (2.19)
y +,@_’i’,f.li(5 (0( - Xw)—o
|2 |?


http:Eq.(2.15
http:eq.(2.12
http:eq.(2.17
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13
s
Q’qz‘f"(z’- + O(A
The behaviour of the solutions X, (t) and Yn(r) for © — 0 depend crucially on Xn VC) 9‘ 3
the value range B. Namely, ~ - ( L)
)p>2 hx)) a0 da
iyp =2 3
i) p <2 (2.23)
For simplicity, we start our analysis with the case p = 2 where we find
. z A
the solution XM@) ,‘\4,2_ - ,/0(4 tde t o,
, A (_" 14 )
3 -
Kol =Clel® 0 ey =Dl dcr | E9 %
50 Ca30" 4% (2.24)
(2.20)
Here, A fulfi .
ere, A fulfils For 042 + 0,2 > 1/4, the solutions Xn,(1,2) and Yy (4 o) approach the
3‘7—( A= 4 ) = o{,\?‘ - qj;‘ = O singularity oscillating with decreasing amplitudes.

As it is clear, for generic initial conditions, the string behaviour near
t— 0" is dominated by the { X, (1) , Yp(t) )4 solutions. The fact that ( Xj(t) ,

" Yn(t) )4 diverges when 1— 0", means that the string goes to infinity as it

) 2 4+ \/4—- 4y, *d,t A 1+ \/4 + ‘11/0(42{»4; approaches the singularity plane. From eq.(2.24), we see that the string
4, = J 3 o e
2

which has four solutions

J goes to infinity in a direction forming an angle o with the X-axis in the X,

(2.21) =y Y plane. The string escape angle « is given by
. . o
Notice that for any real value A4 and &, , we have t} A == 0(2/ , *r& t} LA = o(?—
Ag<0,k3>0,Rekry>0,Red, <O. SV P 1
The solution associated with A, diverges at 1 = 0 A+ Vdy tole (2.25)
4 g
/ 2 2 (see fig.1). ,
XM (1) Ay ot °(2 ”fc(;t When o, =0, then a = 0 and we recover the result of ref.[8] in which the
~s C‘Z) _ string escapes to infinity in the X-direction. For oy =0, then tg o =
>l% (1) [N ) O/Z sign(ay) = 1 and the string goes to infinity with an angle (n/4) sign a,. If
Y (2.22) ay > 0, and arbitrary oy, the allowed directions are within the cone |a]<

n/4 , as depicted in fig.d If ay < O the string escape angle is within the
cone |o-n/2| < /4. In summary, for arbitrary values of oy, ap, the string
The solutions associated with Ay, and Az vanish for © — 0 : escape angle can take any value between 0 and 2x.


http:eq.(2.24
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Let us now consider the case B > 2. We find

\Ym (v) (2.26)

T>0"

where K can take the four following values:

kdz - (zx? ) q’-fd )7@
i % ") (2.27)

Kg = 7 4 (a4p) s (a4t )
P/J,'U (z.zz)

And A, B are constants such that

( A — Jd"L*"("-’L + o4
— - 2
)4)?-

B Ao (2.29)

for the solution egs.(2.25), (2.26), and

(ﬁ) - 0(4 —_ Vdnzﬁ'd: -
3

A > (2.30)
M Ay,

Xal(2) ¢ Bl A
M a0 ] (]

Xuatz)
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for the solution egs.(2.26), (2.28).
As for the B = 2 case, we have a divergent solution for ¢ — 0~ associated
to Kq :

(Z) C F (0(4 -?o(r.) (2‘0( ru) P/z 4—(3/2"

ym(fa) P -z 0(2,

(2.31)

The other three solutions vanish for t — 0" :

The solutions (1,2) oscillate for ¢ — 0 with decreasing amplitude.

it can be noticed that the asymptotic behaviours for 1 — 0~ are not
uniform in B. As one can sees from 8qs.(2.21)-(2.24) and (2.31)-(2.33), the
limits t— 0" and § — 2 do not commute.

As in the B = 2 case, and for generic initial conditions, the string
behaviour for 1 — 0~ is dominated by the (X,(z) , Y,(1))s solutions, The
string goes to infinity in the same way as for the B = 2 case and with the
same escape angle given by eq.(2.25).

Xulr) / 4/ o/ ‘(s/ O(HW
= () (CARED ) (24p) (-xy {
P (2) , %f | %
(2.32)
Xm(.'(«) y d‘_m
Yo () - e J"T’ T d [ >%{(-2°<’f’) T o,
he (2.33)


http:eq.(2.25
http:eqs.(2.21
http:eqs.(2.25
http:eqs.(2.26
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Finally, let us discuss now the situation B < 2. In this case, the
solution for 1 — 0~ behaves as

Xn(z) = A, + At +Q(\t!2'P)
Intzy= By v Bor + O [¢[*")

In the special case B = 1 one should add a term 0 ( ¢ In]tI).

For B < 2, the string coordinates X, Y are always regular indicating that
the string propagates smoothly through the gravitational-wave singularity
U = 0. (Nevertheless, the velocities X and Y diverge at t = 0 when 1 ¢ B <2).

(2.34) ,3 + 4

Let us discuss now more extensively the string behaviour near the
singularity t =0 forp » 2

For generic initial conditions from egs.(2.22) and (2.31), we see that
the string behaves as

4~ s 4 At d
e ) A () :
L0 oy
y(""ll}
P=2 (2.35)
A-(*z
e
X(OTC) Z.___ B( exf (20(?0)(" {/2‘
-0~
5T
7( ) Br2, (2.36)

where a =V a2 + a,2 , the functions A(c), B(s) depend on the initial
conditions. The above solutlons imply that the string does not cross the
U= 0 singularity plane. The string goes off to infinity in the (X,Y) plane,
grazing the singularity plane U = 0 (therefore never crossing it). Here, the
string escapes to infinity with an angle o that depends upon the strenghts
of the profile singularities, oy and a,, but not on B. At the same time, the
presence of the oscillatory modes (2.24) and (2.33) imply that the string
oscillates in the X,Y plane perpendicularly to the escape direction, with an

0{4 ‘f’o-(’

L,

Le.
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amplitude vanishing for © — 0-. The non-oscillatory modes (2.23) and
{2.32) are negligible since they are in the same direction as the divergent
solutions (2.22) and (2.31).

The spatial string coordinates Xi(o,t) [3
[eqg.(2.13)].

The longitudinal coordinate V(c,t) follows from the constraints
egs.(2.11) and the solutions for X(o,t), Y(o,t) and Xi (6,7) [ 3 <j <D-2 ]. We
see that for 1— 07, V(o,t) diverges as the square of the singular solutions
(2.35)-(2.36).

It can be noticed that the oscillatory modes in the (X,Y) plane,
egs.(2.24) and (2.33), are not harmonic in T but in

T Log (-2 for P=?

}w P72‘ (2.37)

¢ i ¢ D-2] behave freely

and \/;z—.—\ (-t 1-B/
- [S/L

In fact, the space-time metric

o (dU)* [w, (X% 9%) + 2o XY ] = dUdV + (dXD)°
Ul(s (2.38)

suggests to introduce the null variable

oLtA) = OLU/U(‘»/z.

A O U (5:?.
I
D "
4—-(5/2. F‘ ’ P

That is, the string behaviour expresses naturally in terms of the above
variable. U is like the cosmic time in cosmological space-times.


http:eqs.(2.22
http:eqs.(2.24
http:2.35)-(2.36
http:eqs.(2.11
http:eq.(2.13
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Moreover, it is interesting to compare the string behavior for 17— 0
in the inflationary backgrounds for which we havel”]

der = dxet - RM(Xe) (dx4)"
with R(r) = -(Hr) B2 |

comk . B< 2 (superinflationary)

Koyl o Unfie o)

B = 2 (de Sitter, inflationary)

Tso L )L. ("/2‘
- (’C {(s) B> 2 (power typs, inflationary)

1- (5/2.,
. * ﬁ- kA ‘frb k'
Afte) + D'y et 4 ¢ Frey £z
r(6’1)= . .2 ~A
tro | Ao) + Doy ¥ 4 Tdme Fee) B=2
» 2‘ L
The Al(c) are arbitrary functions of o, Di(s), Di(s), Fi(o) , and Fi(c)

are fixed by the constraints. Here X% is the cosmic time, while n=1t is
the conformal time. For the singular plane waves we have

Cowel, - B2
Uten) = S (-0) B2
T-0
o) e
A~ G/:z_,

We see that the behavior of the string time coordinate is in both cases

T-0"

20

similar and completely determined by the spacetime geometry. (That is, it
is independent of the string initial state).

In the inflationary cases, all transverse spatial coordinates are
non-oscilliating and regular for 1 - 0 ("frozen"), while for singular
plane waves, in addition, one of the transverse coordinates is
non-oscillatory and singular for © — 0.

The above behaviors for X0 and U are characteristic of strings in
strong gravitational fields. Notice that the inflationary backgrounds are
non-singular, whereas the plane waves [eqs.(1.1)-(1.2)] are singular
spacetimes. This is connected to the fact that the string coordinates X, Y
exhibit divergences in these plane waves spacetimes.

Let us consider the spatial iength element of the string, i.e. the lenght
at fixed U = 2a'p¥t , between (o,1) and (o+do,t),

P-2 . L
dst= dx*+ dy*+ 20 (dX7)

For t— 0" egs.(2.35) and (2.36) yield —
(-2)” =1
= [@« L)% ot ] YOS b
2 (*“L) e P[ = ( 24'pY Z,>

(2.41)

That is, the proper length between (og,t) and (oy,1) is given by

\/:-_-C- A-Virsd F'—‘?"

B2

1- Pz

AS__: { (63) - 6(6)]\/@(4+&)+°( (1) :’CP \/- (-20(? Z.)

J

(2 42) {37 G


http:t-0-eqs.(2.35
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We see that As — oo for 1 — 07, that is, the string stretches infinitely
when it approaches the singularity plane.

Again, this stretching of the string proper size also occurs for = — 0
in the inflationary cosmological backgroundsl?].

Another consequence of eqs.(2.35) and (2.36) is that the string reaches
infinity in a finite time . In particular, for o-independent coefficients,
egs.(2.35) and (2.368) describe geodesic trajectories. The fact that for
B > 2, a point particle (as well as a string) goes off to infinity in a finite ©
indicates that the space-time is singular.

What we have described is the 1t — 0° behaviour for generic initial
data. In particular, there is a class of solutions where A{c)=0 and B(o) =
0, whereas the coefficients of the regular modes are arbitrary. In this
class of solutions, X and Y vanish for t©— 0°. However, when continued
to © > 0, these solutions are complex. The real valued physical solution is
X=Y=20forall 7> 0, it means that the string gets trapped in the
singularity plane U = 0 at the point X = Y = 0, where the gravitational
forces are zero.
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II-QUANTUM BEHAVIOUR. PARTICLE TRANSMUTATIONS, MASS AND
NUMBER OPERATORS.

When B < 2, the string crosses the gravitational wave and reaches the
U > T flat space-time region. In this section we study the physical
properties of the string after crossing the gravitational wave, namely the
string mass and mode number operators and the relation between ingoing
and outgoing mode-operators.

We recall that when B > 2, the string does not reach the U > 0 region.
There is no mass operator M>2 or string number operator N, in the
outgoing region U > T since there is no string there. The outgoing operators
M,2 and N, make sense only for < 2.

In order to relate ingoing and outgoing solutions, we start from
€gs.(2.16), and (2.18), which are equivalent to the integral equation

o
X, LT X 0]
s | GEe W)

Yal2) X((t) (3.1)
%

i

here X,.(t) and Y,.(t) are given by eq.(2.18), and G(r) obeys the equation

[9_&_?_ +lm‘~] G(r) = 1 $ce),

de* (3.2)
e G(r) = 1 6(z) AmanT
2Lm

where 6(1) is the step function.
It is useful to introduce the Jost solutions f,1(t) and f,2(t).
of eq.{2.16), which satisfy the initial condition

?( (t) ~Amt A
" e, fgr ~(v<~,—co

I 1 (3.3)
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Then, the physical solutions X, ,Y, are expressed in terms of the Jost
solutions as

Xn(2) = f;\ Vau! (d: £A(t)~qz\;x j(:*(t))
e = (5 (4 £ - )
m

where we used the conjugation property
oy £ .
" = -n /

For > 14, the outgoing solution ( X, (1), Yp(7) ) takes the form

(3.5)

"To
X“ (.,_) xh((t) ‘ Xn((l')
[ 4 |2 (el Wie) dt’
L, (O L E " 2¢)

(3.6)

Inserting eq.(2.18) and the similar expression for X, , Y., €q.(3.6) yields
the relation between the ingoing and outgoing operators

24

¥ A4 22y 22
0{'!\?: (4’!‘ Am) n<_*.6 .nﬁ/n<“l’6,n
2Ly 3.7a)p22 Y
= (14 ) B A“ Yoc* B oL

and

1’\/
di = (1= A )"(‘%"BQ"(‘N*A” g+ By, Ly

-8
3
]

~Yy Az Ny 24~ X 24 ,X
= (4—- Av ) O(n BQ -ne * An o{'<(3'7b;r B, ’{M

JROT————

A

a ,\}1%2.&"\'{.
Aﬁ:i"‘? Je W(z)ﬁ (z)dt’

—To
(3.8)
. ‘ T . ;o
Bt = P (e Wtey £ ey e
L —%o

Egs.(3.7) are Bogoliubov transformations on the oscillator mode operators.
There are two types of effects here : (i) a mixing of creation and
annhilation mode operators of oposite chirality and (ii) a polarization
rotation in the (X,Y) plane. The effect (i) implies transmutations between
different particle statesl2.6]. The effect (i) means that the spin
polarization of the final particle states are different from the initial
ones.

Let us consider the string mass and number operators in the outgoing

region
L Z) 0( O(’Y\> O(Nm‘{:> >+ "Y‘ﬂoz

=4 pn (3.9)
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feol .-

Z_Z i(d”? H(wm

=4 (3.10)

2 - — (“D"‘zD ]
where my2 is the tachyon mass. (o = Yox' )
The expectation values in the ingoing ground state ]O<>, takes the form

40 10> d' e

(aary T

B IR

(3.12)

<O< 0<> Q"Z:J( ’L ’:z(
(> m=A

where we used eqs.(3.7), (3.9) and (3.10).
Before the collision with the gravitational wave, we have as
expectation values

<O<§ M’: lo<> = +’\'“0L
<0 \0¢ > (3.13)

<O I NIOe>S = O
L0\ Oc >
The infinite sums over modes in egs.(3.11) and (3.12) are due to the
excitation of the string modes after collisions with the gravitational
wave.
In order to investigate the convergence of these series, we compute
now the large n behaviour of the Bl coefficients. This can be done by

using the Born approximation, that is

A
&\ (=) _2imz [ A

Y

2
§ (3.14)

i
®

L (1B BT 1 )

.
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From eqs.(3.8) and (3.14) we obtain

A4 AL rpy 2'(3 .
Re - B - -a (ﬂ;) Ay [(1-p) won(Tcp)

A X- ) 2m
T
R~ . - _qb( 2 )"é. [(4-6) AomB)

My ey m 2z

T 18 = T e e

yémi‘te f,qr Fé" Y,
Aivar%m"‘. }w 4\<P<2 (3.186)

Hence

<M2> 7=

and %:MC te )}M_ [5 £ 3,

< N> 2 objueroazw‘t %w 5’:5 p<z

For B > 2, there are no >-operators. As discussed in ref.[8], when the values
of <M,2> or <N, > are divergent, such infinities are not related at all to the
space-time singularity at U = 0. Such divergences are connected to the
infinite transverse size (i.e. perpendicular to the propagation direction) of
the gravitational wave front.
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Figure 1
Escape string directions
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