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I .. INTRODUCTION AND RESULTS 

The study of string dynamics in curved space~times. reveals new 
insights with respect to string propagation in flat space-time[1-9]. 
Particularly interesting is the string behaviour in strong gravitational 
fields and in the vicinity of space-time singularities. Gravitational 
shock-waves and gravitational plane waves are physically relevant and 
mathematically tractable space-times for studying the string dynamics. 
Singular gravitational waves are specially attractive since the string 
equations in these space-times turn out to be exactly (and explicitly) 
solvable even at the space-time singularities. 

In this paper, we consider strings propagating in gravitational 
plane-wave space-times described by the metric 

d,S"= [tN, (V) (t.. - y") + :2. W,), W) X),J<tV>'-oLu cUI Tl~~)( ~t 

Here. U, V are null coordinates 

\):=. XO - X1>-1 , v= XO 
1"' XD-1 

and X =X1. Y E X2. X3. x4 f'''' XO-2 are spatial coordinates. W1 (U) and 

W 2 (U) are arbitrary functions describing the profile of the gravitational 
wave. These space-times are exact solutions of the vacuum Einstein 
equations. The case when W2(U). 0 describes waves of constant 
polarization and was studied in ref.[8]. The case with both W1 :1; 0 and 

W 2 ~ 0 describes waves with arbitrary polarization. 

If W1(U) andlor W2(U) are singular functions, space-time singularities 

will be present. The singularities will be located on the null plane U = 
constant. Here, we will consider profile functions with power-type 
singularities. 

Wi (U) :=. ot.. vJ (U) _ 0(2.. 

v..., 0 {u lt~1.f Ult>1 
~ 

V~O 
(1.2) 

In this class of space-times, one can choose the light-cone gauge U .. 
2« 'PU1: . After Fourier expansion in the world sheet coordinate 0, the 
Fourier components Xn (1:) and Y n (1:) satisfy a pair of coupled 

one-dimensional Schrodinger-type equations with 1: playing the role of the 
spatial coordinate, and 

w", 
W1. ) ,W(t,) =: (d,~T)t ( 
-vV...W2J 

U:;; ..to('fl./( <:,) 

as an effective potential. (Here Pu stands for the U-component of the 

string momentum). The transverse coordinates xj G= 3 ....• 0-2) propagate 
freely. We study the string propagation when it approaches the singularity ... 
at U - 0, from say, U < O. We find that the string behaviour depends 
crucially on whether both power parameters ~1 and ~2 are smaller or ... 

bigger than two. When P1 < 2 and P2 < 2, the solutions X(o,1:) and Y('C,a) 
are regular and the string passes smoothly through the gravitational 
singularity at the null plane U = O. When P1} 2 andlor P2 ) 2, the string 
does not cross the singularity plane U ...O, but it goes off to infinity in the 
(X,Y) plane. We find here that the string scapes to infinity in a given 
direction a with respect to the X-axis. which depends on the polarization 
of the gravitational wave. We obtain: (i) for ~1 > P2 (and P2 ~ 2), then the 

angle a=O and the string goes off to infinity in the X-direction. In this 
case. the singularity of W1dominates over that of W2 and we recover the 

situation of ref. [8]. (ii) for P2 > ~1 (and P2 ) 2). then « == (n;/4) sgn «2 ' and 

(iii) for P1 .. ~2) 2. then 

d"1, ~2.-i..e.1c{ ;tJ .z c<) 

. f 2. 2­ ot1Cl''l -t V c(1 i c{2. 

I 
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If ex1 > 0, ( (11 < 0), the string escape directions are within the cone I exl < 

fC/4 , ( 1(1- 1CI2 1< 1CI4) as depicted in figure 1. 
In addition to escaping to infinity, the string oscillates in the (X,V) plane, 
perpendicularly to the escape direction, and with vanishing amplitude for 
U -+0. 

We find that the time coordinate XO(O','t) near the U - 0 singularity 
behaves as: 

B1. 
(f) l-Z,)-V for t-> == 2. 

o 
Xco--;-c..) = 

Bl-(6") ex ] z, ff (_ :l.cl'P-(;) i_ J3/<t 1 (1.3)p
J?. - '1 J Jo r f3? 2­
~ 

where v =/1+4 ~;nd 
~-1 j.or (3.. "> ~z. 

0(;;; 
0(2. 50r f->:u >(3~ 

fe~ ~1 .: f3"1. 

We find that, as a function of the time coordinate XO(O'.'t), the 
transverse string coordinate p = J X2 + V2, approaches asymptotically (for 
XO -7 00), the U = 0 singularity as 

4j>J A-4jv 
B((f) (rx-) ~ ~:: <.­

13S((J I XO) '"V (1.4)
V? I£",( )() )]-~(ta-2. )'tx0 ...... 00 

(~B(~) ;:r p>~ 

We find that when the string approaches the U "" 0 singularity, its proper 
length at a fixed 't -7 0-, stretchs infinitely as 

6 

h -i-V r='2., 

Fl- ~/'- exrI ff (-'LoI..'pv r:/(¥2.J) f>7Z, 
JL -1\ 

<., 

We find that the string behaviour near the singularity expresses 
naturally in terms of the variable 

{ 
Rm(-u) r:~A 

\)= l- U) ~-c;/~ 

~7~ 


~ - P>/'J... 


For instance, the oscillatory modes in the (X,V) plane are not harmonic 
in U but in O. 0 is like the cosmic time for strings in cosmological 
backgrounds (in terms of which the string oscillates), whereas U is like 
the conformal time. 

We would like to remark that the string evolution near the space-time 
singularity is a collective motion governed by the nature of the 
gravitational field. The state of the string fixes the overall O'-depe ndent 
coefficient 8(0') [see eqs.(1.3)-(1.4)], whereas the 't-dependence is fully 
determined by the space-time geometry. In other words, the t-dependence 
is the same for all modes n. In some directions, the string collective 
propagation turns to be an infinite motion (the escape direction), whereas 
in other directions, the motion is oscillatory, but with a fixed 
(n-independent) frequency. In fact, these features are not restricted to 
singular gravitational waves, but are generic to strings in strong 
gravitational fields. 

In section III, we study the quantum propagation of the string for the 
case 131 < 2 and 132 < 2. In this case, the string crosses the singularity and 
reaches the region U > O. Therefore, outgoing scattering states and 
outgoing operators can be defined in the region U > O. We explicitly find 
the transformation relating the ingoing and outgoing string mode 
operators. For the particles described by the quantum string states, this 
relation implies two types of effects: (i) rotation of spin polarization in 
the (X,V) plane, and (ii) transmutation between different particles. We 
compute the expectation values of the outgoing mass (M2» operator and 
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of the mode-number operator N>, in the ingoing ground state 1°< >. We find 
for M2> and N> different VEV's than for M2< and N<. This difference is 
due to the excitation of the string modes after crossing the space-time 
singularity. In other words, the string state is not an eigenstate of M2>, 
but an infinity superposition of one-particle states with different masses. 
This is a consequence of the particle transmutation which allows particle 
masses different from the initial one (m 2).o 

11- THE STRING DYNAMICS IN SINGULAR GRAVITATIONAL WAVES 
WITH ARBITRARY POLARIZATION. THE STRING ESCAPE ANGLE. 

Let us consider the exact D-dimensional gravitational plane wave 
space-time 

cl~l.= F(U,X, Y)etU2._ rLucLV ;- (otxt) 2­

(2.1 ) 

where U and V are null coordinates 

u = '1.0 _ X'O-1 V:::: Xo -t Xj)+1 
• 

x == X1. Y == X2. X3, X4, .... XD-2 are spatial coordinates. 
In order to satisfy the vacuum Einstein equatio ns. F(U,X,Y) in eq.(2.1) 

must obey 

-01.. "b~) F( - -+ - ( U J X, Y) ::: 0aX" 0'l"L 
(2.2) 

A gravitational wave with arbitrary polarization is described by 

F t UI X, 'j) -= W, (U ) (X 2.- Y2-) ;- ~ W~ (U) XY 
(2.3) 

where W1(U) and W2(U) are arbitrary functions describing the profile of 
the wave. 

The case where W2 - 0 corresponds to gravitational waves with 
constant polarization and was considered in re1.[8]. 

Let us consider strings propagating in the above space-time. In curved 
space-time, the string equations of motion are given by 

~ 'd"" ( G-~)i do. XV ) ~ ~ (~XJ4 ~ "XV)G-rv 

The equations of motion for the string coordinates XA(a,'t) take the form 

l o~ - d ~) U (0, t.) = 0 
(2.4) 

\ d: - (1 ~ ) V + 	 () F l (dcr U ) 1- - (d~ U ) ~ ] -t .2 d F • 
dV aX 

· ( J6 Xd( U - d?;, Xdt, U) + 2. ~ ld( Y~ u- d~ Ydl2~5? = 0 

OJ 
( d~ _ '()~ ) X~ = 0 

) 
;) ,,< ! .$ .0- 2.. 

(2.6) 

(~i!. t k 
\ "'r,. - 'GI(!"" ) X + 2 '() F [( d(f U) 'to _ ( d~ U ) l. J : 0 J 

l. dX~ 	 k= 1,2. 

(2.7) 

In this space-time, the string constraints are 

1>-2. . 2 

T'T-'t (tr,"t.) = -. d±V dr.\! t FlU) \d± U ) to t L: (~ X'}) ~o 
a(~.~) 
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where X±:: (O±1:.) d± .::: 1 (~a- -+ ?~ ) 

Since U obeys the d'Alembert equation, we can choose the light-cone 
gauge 

u= ~ct'FVG 
(2.9) 

Therefore, with F given by eq.(2.3), equations (2.5)-(2.7) become 

VIi_ Ii t (:4<i'FV)' [(?u ~) (X~- Y') + :1.R W2) X Y ] + 

1" It (:L oL' f ~) [W1 ( xi< - Y)1) + W2. (X Y+ j X) ] "" 0 

(2.10a) 

\J II _ X" t (.:2- 0(, t f0) 2" [ vJ X - W YJ = 0 
" 1 R., (2.10b) 

YII _ Y + \ J., <i,' r') t. [W~ X AW Y] == 0 

(2.10C) 

and 

(ol'PU)2.[ W, (V)(X 
Z
_'j')-t- ;z,W","(U)X)'J -t 

+ (a(' F~) d± V t (d± l't -r (d± yt+6D-l. 

(?t Xir = 0 

j';:3 (:<..-1-1) 

Interesting profile functions W1(U) and W2(U) to be considered here 

are those which are nonzero only on a finite interval - T < U < T , and which 
have a singular behaviour forU -? 0 saY,like 

0(2..=w(u) = dA 
) W 

.,b 
(U) 

IVjr'," U~OV->o IUI ~1 
(2.12) 

Let us analyse now the solutions of the string equations (2.10) and (2.11) 
for a closed string. The transverse coordinates obey the free equation 
(2.6), with the solution 

,AYler. _2t'YI'C. ' zinl.}).., £1" , ,r:-:-L 
= t +.2 0(; I pt t, + ~ ~~c<.' ..!.. e (cXn-< e. _ ~"'vk e /X ~ n 10 '"'n -11 

(L .:: 3) ..... } 0-2) (2.13) 

For the X and Y components it is convenient to Fourier expand as 
+(:10 

2.un(J"" X (t.)x(01 z..) ~ L e. n 
n =-oC 

(2.14)YC(}l ""'-) = e .:1...m<> X. (z. )~ 
n::: -00 

Then, eqs.(2.10) for X and Y yield 

http:eqs.(2.10
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~ t 4'tI 1. A.,.. - (.2ciTV) 2. ( ~ Xn 1- Wl. X) .:; 0 

.' 

(2.15) 
~ +4')-j1. X - (:botlptl)~ ( ~ X~ - w,; >'~) = a 

Formally, these are two coupled one-dimensional Schrodinger-like 
equations with 1: playing the role of a spatial coordinate. It is convenient 
to write them in the matrix form 

[	tV Tit,.,..,'/. - W(t..)J(XVI) = 0 


.:lz. ~ Y..... (2.16a) 


with 

(4d. i pUr ( Wit. w" )w(~) = 
W'). -W"l 

(2.1Sb) 

playing the role of the effective potential. We study now the interaction of 
the string with the gravitational wave. For a'p 1: < - T , W('t) = 0 and 
therefore X, Yare given by the usual flat-space expansions 

X x· r:-:- 2itncr )( - 2n',.r.L
X ( 0. ~) = +< + 2. ~ ,f< ~ t..i. v2rJ. i ~ (~n(e _ 

.2, l"'I.:;t: 0 'Y\.. 

_<l X e 2.v" 1:)
-n< (2.17) 

'..J <4 Y >".r--:) 2.(.1, 0"'"( Y - 21)')'!!
/ (C),"C.) ==- 1'"< -t.z, 0(.' f< "Z:' ..,...~ V~rLlL-J L ~t') (e _ 

:<.. n l' 10 'Yl .Q'< e;a.;,., ~ 
These solutions define the initial conditions of the string propagation for 
1: ! 'to ,1:0 == T/2a'pU. 

In the language of the SchrOdinger-like equations we have a (matrix) 
potential barrier (or a potential well) in -T < U < T. The string solutions 
eq.(2.17) correspond in the SchrOdinger-like language to the incident and 
reflected waves from the left side 

~J0( I i (c( X e -2tm t._ 2(.~ t:.)'V XX t 1: ) = Nl rn:t., YI( ri_"( e( 

~ rcz;-' (~y e - 2~"n"(. } J ~A~ t' JG"f' "C <- 'Co 

>'n< l <..) = ;;- ~2: h( - ~-n< e, )2.18a) 

and 

X 
X<I <Cr.) :: +<x + 	.z '" I f< t 

(2.18b)

% ( t 1:) == +~ -t :2,.(' r: L. 

We consider the propagation of the string when it approaches the 
singularity at U = 0 = 1: from 1: < O. When W1 is more singular at U = 0 than 

W2 Le. ~1 > ~2 in eq.(2.12), the string behaviour is determined by W1(U)I 

and this is the situation we have analized in ref.[8]. Let us consider here 
the case when both singularities are of the same type; i.e. ~1 ... ~2 ... ~. This 
case is actually generic since the case when W2 (W 1) is more singular 

than W1(W 2) can be obtained by setting a1 = 0 (a2 = 0) in the ~1=132 

solution. Eq.(2.15) can be approximated near 't = 0- as 

(~-~ 	 )x 
~ 

- zoe pv ) (c(lI X'IfU + ~ Z =0 

lr.tf.> 
(2.19) 

y~ t (Uifut-~ (rJ.~ X.. - r{ X'>v) =:0 

ll,jr; 

http:Eq.(2.15
http:eq.(2.12
http:eq.(2.17
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The behaviour of the solutions Xn{t) and Y net) for t ...... 0 depend crucially on 


the value range 13. Namely, 

i) 13 > 2 


ii) 13 - 2 

iii) 13 < 2 


For simplicity, we start our analysis with the case 13 2 where we find 

the solution 

X"V ("t,) =- C I~ J ~ Y~('t.) =.Dl t Jft 
2: -t 0­ I c-;.o­

(2.20) 

Here, A fulfils 


'2... '2..).1..( 'A_-1)1.. -. eXl\ - <i2..., = 0 

which has four solutions 

1 ~ ~.J;~ ~~~~~J ) 1.± j~ T 4/~. ~t-~; " _V1-~ ~ _)~/2.. :::' 3, ~ - J.." 
~ 

(2.21 ) 

Notice that for any real value 1..1 and 1..2 we have I 

1..4 < 0 , 1..3> 0 , Re 1..1 > 0 , Re 1..2 < O. 


The solution associated with 1..4 diverges at t == 0 


XtfI (t)) ~~)
r\..,/ c- '?:. /4 

c::. ...., 0­y~ (1.) 01'<., 

(2.22)~ 

The solutions associated with 1..1,2 and 1..3 vanish for t - 0- : 

(x~\~)) (-7.,) ~ 3 (~+~)'V 

y"" Ct.) C..., 0- d. 
~ ~ 

(2.23) 

XMl~)1/V _ (_~)~ ,l. (Jq- • t +.(~~ I T 0(1) 

'/",(.7..) t..,O 0(. 
~t ~ (2.24) 

For ;--;1-2 ;-~ > 1/4, the solutions Xn,(1,2) and Y n,(1 ,2} approach the 

singularity oscillating with decreasing amplitudes. 

As it is clear, for generic initial conditions, the string behaviour near 

t- o· is dominated by the ( Xn(t) , Y net} )4 solutions. The fact that ( Xn(t) , 


Y n (1:) )4 diverges when t ...... 0 -, means that the string goes to infinity as it 


approaches the singularity plane. From eq.(2.24), we see that the string 

goes to infinity in a direction forming an angle a with the X-axis in the X, 

Y plane. The string escape angle a is given by 


0('2,..<.e., t-} J.d.. ::1 ~ = rX", 
(2.25) 

(see fig.1). 

When 0.2 = 0 , then a = 0 and we recover the result of ref.[8J in which the 


string escapes to infinity in the X·direction. For 0.1 == 0 , then tg a = 

sign(0.2) == ±1 and the string goes to infinity with an angle (x/4) sign 0.2' If 


(11 > 0, and arbitrary (12' the allowed directions are within the cone 10.1 < 


x/4 as depicted in fig.1 If (11 < 0 the string escape angle is within the
I 

cone lo.-x/21 < x/4. In summary, for arbitrary values of (11, (12' the string 

escape angle can take any value between 0 and 2x. 

http:eq.(2.24
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for the solution eqs.(2.26), (2.28). 
Let us now consider the case Ii > 2. We find As for the ~ = 2 case, we have a divergent solution for 1: -to O· associated 

to K4: 

XMl't.») ~/Lf [ A-f!>/a.] (A)
= (- ~ ) e;;c.r k (- 't) 5 X"",l't.)( Yrn L"L) (2.26)

'C~o-

"..l<.) f-'2.. (-'to) 
~ d~where K can take the four following values: 

(2.31 ) 

k _ - ~ (2r/.. IPU)A_f/2J 
( c( 0( 'l..) A/If

~) il.. - -;- I iI 
'L t 

2 ! · The other three solutions vanish for or; -to o· :(% - 1. ) (2.27) 

X~l1.) 0 
k3d == 1" 1 l U"fu/-f/2- (0(1"" +~..t.) yq 

(r/~ - 1 ) ( 2. Zg) J ~-~ ) \ cXz. 

(2.32) 

And A, B are constants such that 

XOW\('{.]l ~I \ _r- ~ (-"q 'f~ :t. J, (IX'., 't~')r.r J-~/,- (-o/<jt~-~j
Vdil 

~ 
tol2. 

7.1 

+ rill '1", CLl I -"- ~ (.z~'f") C- ~) ~ 
) 

\ AJ Z f<> - '2. c:i.2.(2.29)( ~ )~) Z ­ o<?.. 
(2.33) 

for the solution eqs.(2.25), (2.26), and The solutions (1,2) oscillate for 1: -to O· with decreasing amplitude. 

It can be noticed that the asymptotic behaviours for or; -to 0 - are not 

uniform in ~. As one can sees from eqs.(2.21 )-(2.24) and (2.31 )-(2.33), the 
limits or; -to O· and ~ -to 2 do not commute. 

') As in the Ii = 2 case, and for generic initial conditions, the string 
eX - .)cX,2.+ ~'1.?.1 

(2.30)( ~ )3/4 = behaviour for or; -+ O· is dominated by the (Xn(1:) , Yn(1:})4 solutions. The0(2., 
string goes to infinity in the same way as for the J} ... 2 case and with the 
same escape angle given by eq.(2.25). 

http:eq.(2.25
http:eqs.(2.21
http:eqs.(2.25
http:eqs.(2.26
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amplitude vanishing for 1: --. 0 -. The non-oscillatory modes (2.23) and
Finally. let us discuss now the situation JJ < 2. In this case, the 

(2.32) are negligible since they are in the same direction as the divergent solution for 1: --. 0- behaves as 
solutions (2.22) and (2.31). 

+ 0 ( ,z.1 'l-~ ) The spatial string coordinates Xi(o- ,t) [3 ~ i ~ D-2] behave freelyX~ Ct.) == A~ + A); l. 
[eq.(2.13)].o ( Z-f» (2.34) J~f 1­ The longitudinal coordinate V(G,t) follows from the constraints'ftt>. \ '-) = B" +- B;.. t. 1- It,! 
eqs.(2.11) and the solutions for X(o-,t), Y(u,t) and xj(o-,'t) [3 ~j ~D·2}. We 

In the special case 13 = 1 one should add a term 0 ( 1: In /1: I). see that for 1:--' 0·, V(o-,t) diverges as the square of the singular solutions 
(2.35)-(2.36).For 13 < 2, the string coordinates X, Yare always regular indicating that 

It can be noticed that the oscillatory modes in the (X,Y) plane,the string propagates smoothly through the gravitational-wave singularity 

eqs.(2.24) and (2.33), are not harmonic in t but in
U = O. (Nevertheless, the velocities X and Y diverge at 1: = 0 when 1 ~ JJ < 2). 


ff 4(--z.) fer f.>;~

Let us discuss now more extensively the string behaviour near the 


singularity 1: --.0- for 13 ~ 2. 


For generic initial conditions from eqs.(2.22) and (2.31), we see that 
 and {l' (- <-) ~- N2. ~ ~:> 2. (2.37)
the string b9haV9S as i _ {1t ~J: ' 

~ - 0/:;..,~ (.-, "C.) _ A(1") U-r.) (~::Jz:...,O· 
) 

\ Y(0-, 't) In fact the space-time metric 

~::; 2­ (2.35) 
d,s?= (<ill) >- [q/1 (X l.. >' ') t.2, ~ X>' J - ciel 01.1/ + (dX ~)'

\U! ~ (2.38) 

1 
! ­X(Cf, 'L) ) f>/'i ~'J.. ,{-~/~ ~~)= B(If) (- t) e~r <, ~ 2. 0-°l'r~ c.-!;) - 2­

L. -')0­( 'jerr,'q ~n ~ (2.36) 

suggests to introduce the null variable 

A 

ct U ::: d.u / uN.. 
where ';; "" ( a~~ a2-;" the functions A(o-), 8(0-) depend on the initial A..e. A ~=='2. 
conditions. The above solutions imply that the string does not cross the (2.39)U 1~uU = 0 singularity plane. The string goes off to infinity in the (X,Y) plane, = U1- f../?. 

grazing the singularity plane U = 0 (therefore never crossing it). Here, the ~ >2 Q-nd ~< 2. 


~- ~/~string escapes to infinity with an angle (X that depends upon the strenghts 
of the profile singularities, at and a2' but not on JJ. At the same time, the That is, the string behaviour expresses naturally in terms of the above 
presence of the oscillatory modes (2.24) and (2.33) imply that the string variable. a is like the cosmic time in cosmological space-times. 
oscillates in the X, Y plane perpendicularly to the escape direction, with an 

http:eqs.(2.22
http:eqs.(2.24
http:2.35)-(2.36
http:eqs.(2.11
http:eq.(2.13
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Moreover, it is interesting to compare the string behavior for 1:..... 0 
in the inflationary backgrounds for which we have[7] 

cls1.::: clXo'- R1 (X O)lclXi.)'L 

with R(t) = -(Ht) -~/2 , 

cavv.J: . p< 2 (superinflationary) 

XO CO-, 1: ):: - H-~LH t: L(6'} J P= 2 (de Sitter, inflationary) 

-c. ....o 
) i- ~/?;

( t:. L(<f) P> 2 (power type, inflationary) 

1 - ~/2.; 

A). ~ 1. lt~ FA: 
(IS") .... D «»~ + "G ((») r!~i( If, "t. ) = ~ 

t~o l A4.((5") T .D~(cr) ~t + L,2.kt. F~~) ~;:2-
~ ~ 

The Ai(o) are arbitrary functions of o. Di(o), Oi(O) , P(o) , and Fl(o) 
XOare fixed by the constraints. Here is the cosmic time, while 11 "" t is 

the conformal time. For the singular plane waves we have 

~. P< 2 

A J 
"t l-lJ) Ii - 2U(6','L) "(

t.-)o 

~-(l.>I'2..,
(-u) Ii> 2 

1\- ~/2... 

We see that the behavior of the string time coordinate is in both cases 

similar and completely determined by the spacetime geometry. (That is, it 
is independent of the string initial state). 

In the inflationary cases, all transverse spatial coordinates are 
non-oscillating and regular for t ..... 0 ("frozen"). while for singular 
plane waves, in addition, one of the transverse coordinates is 
non-oscillatory and singular for t ..... O. 

The above behaviors for XO and U are characteristic of strings in 
strong gravitational fields. Notice that the inflationary backgrounds are 
non-singular, whereas the plane waves [eqs.(1.1 )-(1.2)J are singular 
spacetimes. This is connected to the fact that the string coordinates X, Y 
exhibit divergences in these plane waves spacetimes. 

Let us consider the spatial length element of the string, Le. the lenght 
at fixed U = 2a'pu t ,between (o,t) and (o+do,t). 

~-2.. • 1. 

dSl.=: JXk+ vlyL+ L: (d.X t ) 
~~ '& (2.40) 

For t- 0- eqs.(2.35) and (2.36) yield ~ 

i_V{+4~ A-2 
, ) (-t,) ,-­

olS't _=[~i{ +cr) 1.+ \t J &'US)2J..~'L ~/'J., f:L rr ( v )~-~/2.
?- ~ C ( _ ~ ) e:x:.p -,2,.(. I r z:. 

~/~ -1 ~ )'2. 

(2.41 ) 

That is, the proper length between (oo,t) and (o1,t) is given by 

.r: ~ - J1 +'tJ:." 
V-t.. f5= 2. 

-- --,; ~/ [ A-P/~JIlS", [S(6",) - B(6".)J..J€<~ -t.r)\ o(~ I (-1.) e.~p If (-2o(tt.) 
~JJ.-1 

t· (2.42) ~) '2. 


http:t-0-eqs.(2.35


2221 

We see that ~s -+ 00 for 1: -+ 0-, that is, the string stretches infinitely 
when it approaches the singularity plane. 

Again, this stretching of the string proper size also occurs for 't -+ 0 
in the inflationary cosmological backgrounds[71. 

Another consequence of eqs.(2.S5) and (2.S6) is that the string reaches 
infinity in a finite time 'to In particular, for a-independent coefficients, 
eqs.(2.S5) and (2.S6) describe geodesic trajectories. The fact that for 
rJ ) 2, a point particle (as well as a string) goes off to infinity in a finite 1: 
indicates that the space-time is singular. 

What we have described is the 1: -+ O· behaviour for generic initial 

data. In particular, there is a class of solutions where A(O'):: 0 and B(O'):: 

0, whereas the coefficients of the regular modes are arbitrary. In this 
class of solutions, X and Y vanish for 1: -+ 0-. However, when continued 

to 1: > 0, these solutions are complex. The real valued physical solution is 
X = Y .. 0 for all t ~ 0, it means that the string gets trapped in the 
singularity plane U "" 0 at the point X = Y "" 0, where the gravitational 
forces are zero. 

III..QUANTUM BEHAVIOUR. PARTICLE TRANSMUTATIONS, MASS AND 
NUMBER OPERATORS. 

When ~ < 2, the string crosses the gravitational wave and reaches the 
U > T flat space-time region. In this section we study the physical 
properties of the string after crossing the gravitational wave, namely the 
string mass and mode number operators and the relation between ingoing 
and outgoing mode-operators. 

We recall that when ~ ~ 2, the string does not reach the U > 0 region. 
There is no mass operator M> 2 or string number operator N> in the 

outgoing region U > T since there is no string there. The outgoing operators 
M>2 and N> make sense only for ~ < 2. 

In order to relate ingoing and outgoing solutions, we start from 
eqs.(2.16), and (2.18), which are equivalent to the integral equation 

X" ('(.1) JX-n l't») (X'r\( Ct.) 
-t j:'"t,G(-C-T..') W(z ') [~d~

y"" (l.l)( y", l L ) - '/,..< l '(.) (S.1 )
--Co 

here X «1:) and Y0«1:) are given by eq.(2.18), and G(1:) obeys the equationn

[~+1tfl'l>'JG-Cl:) = 1 ~("C.))
0.:(.1. (S.2) 

"":'e. G \. '?:) = 1 $-Cl.) 4AM ~I"f) t, 

J.rn 


where 9(1:) is the step function. 

It is useful to introduce the Jost solutions fo 1 (1:) and f02(t). 


of eq.(2.16), which satisfy the initial condition 


~r <:.<-"to(~~t::) = ~_~~L ( : ) 
(S.S) 

http:eq.(2.16
http:eq.(2.18
http:eqs.(2.16
http:eqs.(2.S5
http:eqs.(2.S5
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Then, the physical solutions Xn , Vn are expressed in terms of the Jost 

solutions as 


. r:-:-:' x rA ,-1 *' )IV X 
x~ ('z.) :::: ; 'n V:J.,L' (O<"':Tn ("C.) - ~." jI, ( -c: ) 

v . 'I p.(, "-y(3 4) f.2 * )
1m l'l.) = i-;: hot, ' (0(", 1"'>1 (-r.) - o(h' j", ('C:) 

where we used the conjugation property 

p*i 1: .(.=1,'1..
j-~ == 

(3.5) 

For 't > 'to ' the outgoing solution (Xn«t), Vn«'t) ) takes the form 

110 


X (-r;.)

'Y'I) t r4i.t. (2'n (-r.--r.')] WCr..') dL' 

X IT..) J -2",V Lt.)
I"",) ~< -zo 

(3.6) 

Inserting eq.(2.18) and the similar expression for Xn> Vn>' eq.(3.6) yields I 

the relation between the ingoing and outgoing operators 

24 

)( AA~) X 41 tv X 2'2. Y 2. 2 IV Y 
c(1\) ( 1\ + n'\ cKn( t B'O ~Yl( + A'fI lXn< t B'n .rX-Yl 

XX I A4.A ) 'V X 61\'\ X A1"L VY (3.7a)5,2 of>' 
n) = l'" + /)'\ ~"t\<t- 'tl rl_ r\ <+- y\ d1'1 <+. h - n< 

and 

~1. ,..., \J2.~ x 8 '2.1 'VX'1"1) Y:: (~- A.,. ri..,..< 5"n d.-n"( t An d\'l( + 1') o{-n<~: 
I'V'I i\ 2) "" Y 1\ 2 'I A'2. ~ "",x -+ B21{ X 

Ii. '1'1 =- (1- A... q", - Bn «-n < -I y\ ~«3.7b) n .("\ 
where 

" ~ 
A:1r == _ (0< I rV) 1- Je 2~'Y\t. I 

(c: ') I"-} ("t;') ol 'C. J 

.A,I"/\ 
- 'C.o 

(3.8) 

B;~ = (0( t) 1. f'Oe. '2.i.'nr..' ~ (I: ') }n~ : '1:') d, 'C. J 

'-l 'Y) - '(0 

Eqs.(3.7) are Bogoliubov transformations on the oscillator mode operators. 
There are two types of effects here : (i) a mixing of creation and 
annhilation mode operators of oposite chirality and Oi) a polarization 
rotation in the (X,V) plane. The effect (i) implies transmutations between 
different particle states[2, 61. The effect (ii) means that the spin 
polarization of the final particle states are different from the initial 
ones. 

Let us consider the string mass and number operators in the outgoing 
region 

DO .0-2. 

M1- = 2. 7.J L ( oI.h~'ro(,,:~ + <Z~+<1.:':> ) + ~o? 
) d I ty'\::::: 1 A~ '\ (3.9) 

http:eq.(2.18
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ao t~ 	 .-i ( d. ~+ol -t' +- ~I'V.;. t- _lA.' )- ~>~) ~> ~~>N) :::: 
""=" .... .::::'.( (Y\ 	 (3.10) 

( 
t (.D-2. ) / I)

where mo2 	 is the tachyon mass. 1"'110 = - / ('j, Q( • 

The expectation values in the ingoing ground state I0<>, takes the form 

<O~ l M \ 	 lOt: >= .i- t.. ,." ( lB:~ \2. + \t»~'I1- T IS:T- +16:'1)+ 
~o<\O~/ cl.. 1 h.: 1 'l.. 

-t ~Q
(3. .t·O 

• 

cc 

<0< \ N) 10< '>= .(, L ( \ e:'\ ~ \6~2.I1.T IB~TJT \ r.,~l.\,.) 
<0<: \ 0(;> 'V\=I\ 

(3.12) 

where we used eqs.{3.7), (3.9) and (3.10). 
Before the collision with the gravitational wave, we have as 

expectation values 

1­
(. 0< \ M: l 0<. '> =- + "rno 

<O( \0< ') 	 (3.13) 

<0, \ ~ \ 0< '"> = 0 
<0< \0<:. '") 

The infinite sums over modes in eqs.(3.11} and (3.12) are due to the 
excitation of the string modes after collisions with the gravitational 
wave. 

In order to investigate the convergence of these series, we compute 
now the large n behaviour of the Bn Ij coefficients. This can be done by 

using the Born approximation, that is 

t:l~ 1) = ;2iM~ C) 1-("I	 (3.14)} l-r.) 
....... 
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From eqs.(3.8) and (3.14) we obtain 

)
2.-~ 

«~~ ~I u 
E>-n :: B~ .::: -2,.;.. ~ 0(1 1-~) 4ti)

( 
"" ...., (;Q :J.. 'V\ 	 2.. 

.z.-~ (3.15) 
Q 'l..'t 2.A 

U"" :::: C>"V\ '" -;1.<' ( ~) 'S. r ( A- e» ~ti)
'Yi-tot:) 

Therefore 
• 2.­. L rn 16"..c~ \2. ~ 'Vl~f'-3 Jet rrI ~ 00 

"'/1:: ~ 
Hence 

}or f< 1 /
\ fLO\'te 


.( M \ );: d.i ver~t" t ~r ~\(r <2 (3.16) 


and 	 tor ~( 3/~
\ r""'< h~\ N):;:: . ~~c(~.~ l/€.ld.tVl. t. fur ~ 

For ~ ~ 2, there are no >-operators. As discussed in ref.[S], when the values 
of <M>2> or <N» are divergent, such infinities are not related at all to the 

space-time singularity at U = O. Such divergences are connected to the 
infinite transverse size (Le. perpendicular to the propagation direction) of 
the gravitational wave front. 

http:eqs.(3.11
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