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Abstract 

We construct an effective field theory for the quantum Hall system 

which embodies both localization and fractional statistics. The latter in­

volves a Chern-Simons interaction, while the former involves a general­

ization of conventional localization theory. The theory is invariant under 

"complexified" duality transformations of the conductivities which appear 

as effective parameters of the model. By exploiting these parameter space 

symmetries, as well as the conformal symmetry which-appears at renormal­

ization group fixed points, we are able to extract a precise prediction for the 

whole scaling dlagram. It exhibits both fractional and integer phases, the 

exact location of all fixed points, and universal scaling exponents. With a 

plausible identification of the universality class of the theory in the replica 

limit, the value of the critical exponent for the delocalization transition 

between plateaus in the Hall conductivity is found to be 7/3, in apparent 

agreement with available scaling experiments. 
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1 Introduction 

A discussion of the quantum Hall system is conventionally split into three parts: 

the integer effect, the fractional effect and the scaling properties of the transport 

coefficients in the transitions between the plateaus. Since this corresponds rather 

closely to the familiar progression of ideas from semi·classical to first-quantized 

and finally to second-quantized theory, this separation is valuable for developing 

physical intuition and also for obtaining some quantitative information about the 

plateaus, as shown most clearly in Laughlin's work. Nevertheless this trichotomy 

is artificial if one believes that it is possible to give a unified field theoretical 

description of all macroscopic observables in the quantum Hall system. From 

this point of view it should be possible, and as far as the scaling properties go it 

is essential, to encode all these aspects of charge-transport in an external magnetic 

field in a more or less conventional effective quantum field theory, whose validity 

must ultimately be verified by making contact with the microscopic processes, 

especially localization, believed to be responsible for the quantum Hall effect. 

Once this idea is entertained attention immediately shifts away from the strik­

ing quantization of the Hall conductivity, towards the critical phenomena sig­

nalled by the observed scaling in the transition regions between the plateaus. 

This is because the only way to accommodate scaling is in a second quantized 

treatment, or its equivalent in statistical mechanics. 

A remarkable development has been the experimental discovery that the tran­

sitions between both integer and fractional levels are described by the same crit­

ical exponent. This "universality of exponents", as opposed to ordinary univer­

sality which is concerned with the behaviour near a single fixed point, must be 

a novel and fundamental property of the effective field theory, and in a previ­

ous paper [1] we suggested that this phenomenon should be taken as evidence 

for a discrete symmetry acting on the parameter space of the theory. Such a 

symmetry can map all fixed points and associated scaling equations into each 

other, thus accounting for the observed "super-universality" of the delocalization 

exponent. In view of the rather complicated "nested" or "hierarchical" structure 

of the fractional and integer levels, and thus the fixed points, it is fairly clear 
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that such a symmetry group can be neither finite nor abelian. Surprisingly, a 

group of precisely the required type appears in a simple class of two-dimensional 

spin models consisting of two p-state Potts models (p = 2,3) coupled through an 

anti-symmetric term. It was shown in Ref. [1] how this symmetry relates all fixed 

points governing the critical behaviour of all levels, both integer and fractional, 

and thus predicts both the level structure of the plateaus and a "super-universal" 

scaling exponent for transitions between levels. The structure of the phase dia­

gram and the properties of the RG flow of the system may to a large extent be 

determined by demanding consistency with this modular symmetry. Preliminary 

studies suggest that this structure is in good agreement with experiment. 

While we initially [1] only offered this particular class of models as proof of 

the existence of dynamical systems with the desired symmetry properties, we 

shall in this paper argue that the effective field theory describing the macroscopic 

observables of the quantum Hall system can indeed be mapped onto a coupled 

Potts model, suitably generalized by analytic continuation in p to p = 1. These 

coupled Potts models encode the degrees of freedom which are relevant at the 

largest scales, i.e., the macroscopic degrees of freedom. The fact that we are using 

a lattice spin model to represent these may be confusing, since the microscopic 

degrees of freedom (the spins) of the spin model are not to be thought of as 

representing the true microscopic degrees of freedom, but should be regarded 

simply as a convenient way of encoding the correct universality properties. The 

macroscopic degrees 'of freedom are accompanied by effective parameters, in our 

case transport coefficients or response functions, which can be controlled by or 

related directly to experiment. 

We must now try to show 'how this class of models emerges at large scales 

from the microphysics believed to be at work in these semiconductors, the two 

central concepts being localization and fractional statistics, and in the process 

demonstrate that the relevant member of the class has p 1. Since the diagonal 

or dissipative conductivity (Trere vanishes on the plateaus found in the quantum 

Hall system, it is clear that, except at transition points, the leading term in 

the effective action should be associated with the transverse or Hall conductivity 

(Trey' This is rather surprising since the standard theory of dissipative resistance, 

2 



due to localization and impurity scattering, reveals that (J':va: parametrizes an 

ordinary kinetic term, which is usually considered to be the most important part 

of the effective action. However, in 2 + 1 dimensions this is not true: the leading 

term is the Ohern-Simons (OS) action. This is a topological invariant, i.e. it 

does not contribute to the equations of motion, and its physical meaning and 

significance has only recently been appreciated. Provided that the OS-gauge field 

(the statistical gauge field) is coupled to the charge-carriers, the OS-term changes 

the effective spin and statistics of these particles, leading to the possibility that 

the effective degrees of freedom (quasi-particles) in 2+1 dimensions can be anyonic 

with fractional spin and charge. This possibility arises because the representations 

of the rotation group are continuous in 2 dimensions. That means [2, 3] that the 

wave-function of a system of identical particles cannot simply be labeled by their 

quantum numbers, but depends on the braiding characteristics of their path­

histories. 

While it is possible to give a field theoretic description of this directly in 

terms of the physical, microscopic degrees of freedom, the action is necessarily 

non-local and therefore extremely unpleasant. However, the path-dependence 

of the quantum phase has the flavour of an Aharonov-Bohm effect, and it is a 

remarkable fact [4] that the action can be recast in a completely local form by 

introducing an auxiliary (fictitious) abelian gauge field, minimally coupled to the 

charged particles, with a OS self-interaction. Just as the potential of a vanishing 

3-dimensional electro-magnetic field carries information about the phase of the 

electron, the OS-potential miraculously manages to encode all the complicated 

phase-information of a two-dimensional system of charge-carriers. 

In summary, we have three reasons for considering a OS-term in our effective 

action: - the micro-physics admits fractional excitations, which are most conve­

niently encoded in a field theory by using the OS-trick; - it must appear at large 

scales if it can, because it has the lowest scaling dimension; - in a geometrical 

interpretation of quantum field theory it appears naturally as the dominant term, 

because it encodes topological information 1 • 

lThis may not be unrelated to it having the lowest scaling dimension, since one expects 
topological terms to contain the fewest derivatives ("only long wavelength modes are needed to 
explore the topology"), but it is not clear to us precisely what the connection is. 
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The field theoretic representation of the dissipative conductivity (J":r:r in a CS­

theory has recently been discussed by Kivelson, Lee and Zhang [5]. Starting from 

an effective Landau-Ginzburg type action describing the propagation properties 

of anyonic degrees of freedom, they integrated out the CS-bosons and statistical 

gauge field to obtain expressions for the conductivity tensor parametrized by 

functions encoding the linear response properties of the CS-bosons. Assuming 

that these response functions are universal for the hierarchy of anyonic states 

that can be built on the original spin-polarized electron state comprising the full 

Landau level, they obtained relations between the conductivity tensors associated 

with different phases of the quantum Hall system. We shall show below that 

these relations follow from a subgroup of the full modular symmetry introduced 

in Ref. [1]. Moreover, if the Chern-Simons response functions are independent 

of the anyonic spin, irrespective of whether they belong to the Halperin-Haldane 

hierarchy or not, the form of their conductivity tensor is such that the full modular 

symmetry is obtained. 

While the analysis of Ref. [5] lends strong support to the idea [1] that modular 

symmetry, or a subgroup of it, is relevant to the description of the quantum Hall 

system, it does not provide a complete derivation of the symmetry, and sheds no 

light on the nature of the system at criticality, which presumably is governed by 

a conformal field theory. In addressing these questions below, because a theory of 

anyon localization does not yet exist we shall try to proceed cautiously, as close to 

the conventional theory of fermion localization as we can. However, in studying 

the propagation of charged anyonic states in the presence of impurities we find 

that a modification of the traditional treatment is necessary. The usual assump­

tion is that the effect of impurities may be modelled by a point-like scattering 

from a random potential with Gaussian distribution. This may be sufficient for 

sharply localized states, like electrons in ordinary conductors, but we do not be­

lieve that this is a good model when the charge-carriers are non-local excitations, 

possibly with fractional charge and spin, arising from the cooperative physics in 

effectively two-dimensional semi-conductors. Instead of having just the conven­

tional interaction in the effective field theory of localization, we shall argue that a 

more general form is needed, constrained only by the symmetries of the problem. 
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The occurrence of a non-vanishing value for corresponds to the appearanceO"a;a; 

of delocalized states, which are related to states left massless by the effects of the 

impurity potential. In this the symmetry observed by Wegner [6], relating the 

advanced and retarded propagators of the charge carriers, plays a vital role, for 

it identifies the relevant degrees of freedolll which contain the massless states at 

criticality. 

The outline of the paper is as follows. As an introduction to discrete parameter 

space symmetries ("complexified Kramers-Wannier duality"), and in order to fix 

notation and review results from conformal field theory which will be needed 

below (Sect. 6), in the next section we review the discrete modular symmetry 

of the coupled Potts models, and discuss its phase and renormalization group 

structure. 

Sect. 3 reviews the recent discussion of anyonic propagation [5], and its relation 

to the discrete modular symmetry. 

Sect. 4 reviews the field theoretic approach to delocalization of ordinary 

fermions and the Wegner symmetry [6] in a way which is appropriate to the 

discussion of localization in the quantum Hall system. This leads to an identi­

fication of the extended states with the coset space of fields associated with the 

Wegner symmetry [7]. 

In Sect. 5 we discuss how this analysis is modified in the presence of Chern­

Simons interactions, which must be included (generated) in an effective action 

in order to accommodate the anyonic states that can appear in two dimensions. 

These lead to the possibility of many more delocalization fixed points, with their 

associated extended states. We argue that the conventional choice of scattering 

potential is not good enough for discussing the localization of the collective non­

local excitations that appear in the quantum Hall system. We show that the 

effect of allowing for a more general form of the impurity potential is to explicitly 

break the Wegner symmetry to a discrete 7Lp subgroup. The associated Landau­

Ginzburg theory with this symmetry is shown to lie in the universality class of the 

self-dual coupled Potts models, discussed in the Sect. 2. From this identification 

follows the modular symmetry relating the conductivity tensor associated with 

transitions between different levels, in agreement with the expectation (described 
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In Sect. 3) following from the analysis of Ref. [5]. In this case, however, no 

assumptions are needed about the linear response properties of the CS-bosons, 

these being completely determined by the conformal field theory at the fixed 

point. 

In Sect. 6 we study the theory in the replica limit, and argue that this corre­

sponds to a Potts model with p ---+ 1. We can then compute the delocalization 

exponents using standard results from conformal field theory which show that this 

limit can be interpreted as a percolation problem. This is in good agreement with 

a microscopic picture of the Hall effect as due to "quantum percolation" of charge 

through the sample. The final step is to argue that the classical bond-percolation 

exponent 4/3, obtained from the conformal field theory at the delocalization fixed 

points, is shifted by one due to tunneling effects between the geometrical perco­

lation clusters. Thus, while the location of the RG fixed points are given by the 

p = 1 self-dual theory, we expect the critical exponent to be 7/3, in agreement 

with numerical work and recent experiments. 

Scaling Properties of Self-Dual Models 

The "complexified Kramers-Wannier" symmetries, with which we will be con­

cerned in the following, first appeared in an investigation of abelian lattice gauge 

theories which turned out to be intimately related to a particular type of coupled 

1:p -symmetric spin model [8, 9]. In terms of two "fields" cpa (a = 1,2) restricted 

to take values in the integers mod p (representing 1:p -valued spins Si on duallat­

tices), the coupled spin model action is of the simplest possible form containing 

no more than two derivatives: 

(1) 

Here a and {3 are two real parameters, which in the second, complexified, form of 

Lp have been traded for one complex parameter T = a + i{3. The latter equality 

in (1) is obtained by introducing the complex coordinate z x +iy (8 = 8/8z), 

the complex scalar field r.p = cpl + icp2, and their complex conjugates (denoted by 

overbars). 
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In order to give meaning to this somewhat heuristic, but suggestive, "field 

theoretic" representation of a coupled ~p-symmetric spin system, care must be 

exercised when interpreting the "lattice derivatives". If (8<fy)2 means the differ­

ence in ¢ evaluated at neighbouring points on the lattice (Si . Sj in conventional 

spin language), then (1) is the coupled clock (also called planar or vector Potts) 

model, which was investigated most lucidly by Cardy and Rabinovici [8, 9]2. Al­

ternatively, if (8¢)2 is non-vanishing only if neighbouring field values coincide 

(SSi,Sj in spin language), then (1) represents two p-state (standard) Potts mod­

els living on dual lattices, which communicate through the "spinwave-vortex" 

coupling encoded in the anti-symmetric term. If p == 2 or 3 the clock and Potts 

models coincide exactly, but for other values of p they do not. In particular, while 

the clock model exhibits non-trivial critical behaviour for all integer p 2:: 2, but is 

not defined for other values of p, the Potts model has no second order transition 

for p > 4, but can be analytically continued to any real value 0 :::; p :::; 4. It is 

the universality class of the coupled (p -7 1 )-state Potts model which appears 

to encode the large distance behaviour of the quantum Hall system at critical­

ity, i.e. at the delocalization transition where charge "percolates" through the 

macroscopic sample. 

The neat appearance of r in (1) suggests that the parameter space is the 

complex upper half plane lH[ == {r E CIImr > O}, and it is the symmetries of 

this space which will concern us in the following. As first shown by Cardy [9] the 

partition function Zp of (1) is invariant under modular transformations: 

Zp(1'(r),1'(f)) Zp(r,f) = Tr exp{-! d2zLp(r, f)}, l' E r(l) SL(2,tl). 

(2) 

The modular group r(l) is generated by translations T(r) = r+ 1 and inversions 

S(r) -l/r. The rich structure of this group is entirely due to the fact that 

Sand T do not commute. Hence, if we consider only one spin model, so that 

no anti-symmetric term is possible, then the only remnant of r(l) is the real 

transformation S(j3) = 1/j3, which is just the Kramers-Wannier transformation. 

2To compare (1) with their action, one must split the fields ¢ into the conventional "spin­
wave" and "vortex" components. We have not done so here because we wish to emphasize the 
complex extension of the more familiar spinwave-vortex duality. 

7 



It is well-known that this symmetry can be used to locate critical points of 

spin models [10]. Zp( i!3) reduces to a single lLp spin model in the thermodynamic 

limit (p == 2 is the Ising model). In the Potts case we know [11] that there is a 

unique second order phase-transition at the self-dual point (1" == i, i.e. !3 == 1) 

when p :::; 4, and that the transition is first order when p > 4. This result was 

generalized in Refs. [8, 9] to the coupled clock models. A simple comparison of 

energy and entropy showed that the phase-boundary extends in a unique way 

away from 1" i, provided that p < 2.J3. The rest of the phase boundary is 

then uniquely fixed by modular invariance, so that for p 2,3 (coupled Ising and 

3-state Potts models) the phase diagram is given by the tree of solid lines shown 

in Fig. 1. (The flow lines on the tree in Fig. 1 do not correspond to any of Cardy's 

models, but to a coupled (p < 2)-state Potts model.) For higher values of p a 

new "Coulomb" phase injects itself along this phase boundary, and for large p it 

grows to dominate the phase diagram. 

From the fact that the phases of the diagram in Fig. 1 only touch the real axis 

at fractional values, it is immediately clear why r(1) is a promising group: if 1" 

can be identified with the complexified conductivity (J' == (J':ey + i(J':e:e, then (J':ey will 

be forced by the phase-diagram alone to take fractional values when (J':e:e vanishes. 

Furthermore, as shown in Ref. [1], the location of the bifurcation points where 

new. fractional phases become possible as (J':e:e is reduced, agree remarkably well 

with available scaling data. 

The bifurcation points are obviously fixed points of the renormalization group 

since RG flows cannot cross phase boundaries. That they are also fixed points 

of r(l) follows from the fact that the modular group is the free product of 7L 2 , 

generated by S, and lLa, generated by T S. This implies that there are two types 

of fixed points on the tree, of order two (S2 == 1) and three ((TS)a == 1). The 

bifurcation point at 1" == j exp(1t'i/3) is an "elliptic" fixed point of order three 

(e in Fig. 1), because TS(j) == (TS)2(j) == j. Since modular transformations are 

conformal, angles are preserved under T S and the phase boundaries meeting at j 

must do so at an angle of 21t'/3. For the same reason every image ,(j) (, E r(l)) 

of j is also a "Mercedes star", i.e. a fixed point of order three. Similarly, 1" t 

is an "elliptic" fixed point of order two (0 in Fig. 1), because S(i) i, and so 
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are all its images ,(i). The latter are natural candidates for delocalization fixed 

points, and this also fits well with scaling data on the transition between many 

integer levels. 

In addition, there are two other types of fixed points not located on the self­

dual tree. Strictly speaking, they do not lie in the parameter space IHI at all, 

but on its compactification IHI = IHI U Q U {ioo}. The rationals Q have already 

been identified with the attractive RG fixed points (EB in Fig. 1) corresponding 

to Hall plateaus, while the fixed point at ioo, which is also an attractor in this 

case, seems to be some kind of superconductivity fixed point3 
• 

There are three distinct scaling diagrams consistent with this fixed point struc­

ture, depending on whether ,(i) is a saddle point, a repulsive point, or part of 

a marginal line of fixed points along the phase boundary. This ambiguity comes 

about because Kramers-Wannier-type symmetries only pin down the critical val­

ues of parameters, some additional data are required in order to identify the 

universality class and thus the scaling exponents encoding the rate at which crit­

ical points in parameter space are approached. 

If we can, as we shall argue, restrict attention to the class of self-dual (r(1)­

invariant) models which interpolate between the coupled Potts models, defined 

by analytic continuation in p to any positive real p [12], then the only remaining 

ambiguity is in the value of p. 

Since all fixed points of a given type are mapped into each other under duality, 

it is sufficient (for p < 2V3) to consider only the simplest "decoupling fixed point" 

at T = i in order to obtain the scaling exponent of all the fixed points which in 

the quantum Hall case control the delocalization transitions. Because Zp(i) in 

the thermodynamic limit reduces to the critical p-state Potts model, this allows 

us to read off the values of the critical exponents (va, v(3) from general results 

[13, 14]: 
2-y 

(3)
V{3 = 3(1 _ y)' 

where y parametrizes the distance p is away from the marginal (Ising) value p 2: 

p 2 = 2cos(7rY). (4) 

3We are grateful to J. Chalker for pointing out that recent work on the insulator­
superconductor transition is not in obvious conflict with this interpretation. 
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As shown by Dotsenko and Fateev [15], this result is but one of many which 

follow directly from the conformal symmetry that appears at critical points of 

statistical models. Many of these fall into a sequence of minimal models, labeled 

by an integer m = 1,2,3, ..., which are completely determined by a finite number 

of primary fields, whose exact scaling dimensions can be determined algebraically 

from the Kac formula: 

h _ [rm s(m + 1)]2 - 1 
(5)

r,s - 4m(m +1) 

Some of the minimal models, with m = 1,2,3,5,00, can be identified with the p = 

0, 1,2,3,4 Potts models. The analytical continuation to non-integer values of p 

should clearly proceed from the more general result (4), which can be derived from 

a Coulomb gas formulation. It is not immediately obvious that these conformal 

constructions can be extended to non-integer values of m, or indeed integer m < 3, 

because they contain operators with negative scaling dimension. However, this is 

not the case for the operator sub algebra containing {4>l,n}, which Dotsenko and 

Fateev conjectured correspond to the thermal operators; e.g. <Pl,2 is known to be 

the energy operator for both p 2 (Ising) and p 3 (3-state Potts), because in 

these cases there is only a finite number of primary fields - the theory is exactly 

soluble - so that the identification is unambiguous. The complete agreement with 

previous calculations and conjectures of scaling exponents also for the percolation 

(p = 1) and polymer (p 0) problem leaves little doubt that this identification 

is correct. 

The anomalous (conformal) dimension of the n'th thermal exponent of the 

m'th minimal model is: 
n 2 +ny

2h1,n+l (6)2 - y , 

where y 2/(m + 1), in agreement with (4). The total scaling dimension is 

2 - 2h1,n+l = v;;l(n), which for the leading thermal exponent (n = 1) reduces to 

V{3 = 2m/3(m 1), which is (3) for integer values of p. 

Using (3) we can determine the nature of the fixed points for various values 

of p. The possibilities are evident from Fig. 2 where the critical exponents are 
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plotted as functions of p, and we find: 

o::; p < 2: The phase and flow diagram is given by Fig. l. 

p = 2: The tree in Fig. 1 is marginal (Baxter model). 

2 < p < 2V3: The arrows on the tree in Fig. 1 are reversed. (7) 

2V3 < p ::; 4: The phases in Fig. 1 are separated by a Coulomb phase. 

p > 4: No second order transition. 


In short, provided that we are forced into this class of effective field theories by 


the micro-physics of the quantum Hall system, the critical properties of the model 


are completely encoded in the value of p, and we are able to determine the scaling 


exponents of the theory. 


It is the purpose of this paper to argue that a realistic treatment of the 


localization problem in the quantum Hall system leads to a self-dual effective 


field theory which can be mapped onto Zp=l (T, f). From (3) we see that in this 


model the delocalization fixed points 1'(i) are saddle points, as shown in Fig. 1, 


with critical exponents (va, V~) = (-2/3,4/3). 


Conductivities in Chern-Simons Theories 

In this section we will review the description of anyonic states in terms of Chern­

Simons (CS) theories and discuss the recent work of Kivelson, Lee and Zhang 

[5], who construct an effective field theory action describing the propagation of 

anyonic states and use it to motivate the structure of a global phase diagram for 

. the quantum Hall system. We will demonstrate that what they call "The Law 

of Corresponding States" corresponds to a subgroup of the full modular group 

discussed above. Anticipating the results of Sect. 5 and Sect. 6, we will argue 

that it is the full modular group which is relevant and show how it can emerge 

from the effective theory. 

If we are to describe conductances in terms of the propagation of charge 

carriers in a random potential, ignoring Coulomb effects, then it must be the 

non-local (anyonic) superpositions of electrons that are the appropriate degrees 

of freedom. As argued by Lal,lghlin [16], in this case the effect of the Coulomb 
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forces between electrons is largely taken care of by the construction of the anyonic 

state, and the choice of the appropriate state needed to cancel the background 

positive charge distribution. In this case the Green functions of interest describe 

the propagation of anyons, and the field theoretic representation of the Green 

function should involve a path integral over anyonic fields. 

The macroscopic properties of these states may be described by an effective LG 

field theory and we will use this description when determining the conductances. 

The anyonic state may be bosonized and represented by a complex scalar field ¢ 

with Chern-Simons term: 

Lany = q,'i(oo + iao - ieAo)q, + 2~q,'(0; + ia; (8) 

This Lagrangian describes anyons obeying 8-statistics, i.e. the wave-function 

changes by a phase 8 under the interchange of particles. Under certain plausible 

assumptions it was shown in Ref. [17) that when 8/7r is an odd integer this 

Lagrangian describes spin-polarized electrons confined to two dimensions in an 

external transverse magnetic field, neglecting the Coulomb interaction. The Hall 

conductances may be calculated by applying an external scalar potential Ao with 

OiAO = -Ei. Using the equation of motion this gives [17]: 

(9) 

Thus the longitudinal conductance vanishes and the transverse conductance is 

given by e2 /28. The Lagrangian Lany therefore describes the behaviour to be 

expected in the region of the plateaus. 

When 8/7r is an odd integer the vacuum state corresponds to the partially 

filled Laughlin states, and the excitations about these vacua are anyonic with 

fractional charge and statistics. The presence of such states leads naturally to 

the generation of the Halperin-Haldane hierarchy of fractional plateaus. Thus, 

the Chern-Simons theory gives a plausible explanation for the existence of the 

plateaus in u~y with odd denominator values. 

Recent work [5, 18) has attempted to extend this description of the quantum 

Hall system into the region of transition between levels, by including the effects 

of fluctuations of the CS-fields about their classical values. The result of this 
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analysis is to generate an effective action for the statistical gauge field all- and the 

electromagnetic field All- of the form 

d2Seff = I zdt { ~q;y<"v.a" 8va. +~10111",JOl +~11211"./12 - i 11"3<"V• ( '1 A" a,,)I".} 
(10) 

where O":y (called S;;ty in Ref. [5]) is the plateau value of the Hall conductivity in 

natural units (e 2 /h), fll-v 81l-(".,Av - av) 8v (".,AIl- - all-)' and 71"1,71"2 and 71"3 are 

space-time functions describing the linear response properties of the CS-bosons. 

Since the notation used in Ref. [5] obscures the simple geometrical content 

of their results, we shall transcribe their formulae into the language introduced 

above in Sect. 2, which is also more appropriate for examining the RG structure 

of the theory. 

In a given phase, which is uniquely labeled by a stable fixed point or plateau 

value 0"* =0"$ = O":y +iO":;;t = O":y = p/q of the conductivity, the total conductivity 

0" = O";;ty + iO";;t;;t away from criticality is changed from the fixed point value 0"* by 

the excitation of anyonic quasi-particles, which contribute to the transport of 

charge through the system. This anyonic contribution O"a O"~y + iO"~;;t to the 

transport tensor (0" 0"* +O"a) can be calculated [5] from the effective action (10) 

by integrating out the statistical Chern-Simons gauge field all-' and then taking 

the static limit. In this limit the linear response functions reduce to the bosonic 

conductivities: 

b li ( .....O";;t;;t = m W7I"1 q O,W), O"~y = lim 71"3 ( if = 0, W), (11)
w-tO w-tO 

where wand if are the energy and three-momentum, respectively. The result of 

this calculation is therefore parametrized by O"b = O"~y + iO"~;;t: 

(12) 


where the total resistivity P p* + pa is determined by the strikingly simple 

relation: 

(13) 

This is equivalent to the results reported in Ref. [5] (up to a sign error in Ref. [5]), 

since the resistivity tensor Pi; by definition is the inverse of the conductivity tensor 

O"ij (p - 8(0") -1/0"), and 0"* = O":y =".,2 /f) [17]. 
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The so-called "Law of Corresponding States" is now easily extracted from the 

above results. Note first that under the transformation l/v -t l/v + 2, where 

1r/ Bis the filling factor, Bchanges by 21r. The statistics of the states described 

by the OS-theory will therefore be unchanged under this transformation, and it is 

reasonable to expect that the anyonic transport properties, and in particular the 

bosonic conductivities to which they are related, are unchanged. The propagating 

anyonic states appear as finite-energy vortex solutions about the vacuum labeled 

by B and carry charge 110. = ±1re/B. The connection between the statistics and 

charge of the anyonic states is given by ()o. = 110. ~ /2 where ~ = 21r/ e is the flux 

quantum of the vortex. In short, we see from (13) that po. should not to change 

under this transformation, so that pi - P = pl* - p*. Since p* = p:y = -() /112 we 

see that p -t p+2 under the transformation l/v -t 1/v+2, provided that O'bdoes 

not change. The rest of "The Law" is obtained in a similar manner: time-reversal 

symmetry 0'(1- v) = 1- o'(v) follows if O'b(l- v) = J(O'b(v)) -ub(v) (J is not 

a modular transformation, see below), and since we expect the physics of higher 

Landau levels to be the same, we should find O'(v + 1) = O'(v) + 1, which indeed 

is true if O'b(V + 1) O'b( v) + 1. 

The authors of Ref. [5] use this to constrain the global phase diagram. As 

we demonstrate below these transformations just generate a subgroup of the 

modular group discussed above in Sect. 2. Note that it has been derived making 

(reasonable) assumptions about the transformations of the bosonic conductivities 

describing the transport properties of the anyonic states. Ideally these properties 

should be derived from the properties of the system itself, and we will attempt 

to do so in the following sections. 

Given this appealing physical picture for the origin of the subgroup of the 

modular group, it is reasonable to ask what would be the physics corresponding 

to the full modular group. The difference in going to the full modular group is 

simply that the first transformation should be extended to include the transfor­

mation l/v -t l/v + 1. This generates phases with different statistics; for ex­

ample, starting with states obeying fermionic statistics this transformation will 

give states obeying bosonic statistics. The difference between the phase diagrams 

shown in Fig. 1 and Fig. 3 is just the addition of these phases. In the deriva­
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tion of the modular transformations in the following sections we will argue that 

the full phase diagram is relevant and, anticipating this result, we consider its 

implications in the context of the effective CS-theory discussed here. 

The important difference in the derivation presented in the following sections 

is that the parameter for effective Lagrangian, which becomes the order-parameter 

of the phase transformation when the advanced and retarded sectors are related 

to each other, is bilinear in the CS-fields. As a result, changing e by 1r in the 

underlying CS-theory leaves the statistics of the "order-parameter" invariant. 

Since the phase structure of the theory is determined by the effective Lagrangian 

describing this order-parameter, the invariance naturally appears in the phase 

structure of the theory, and therefore gives rise to the full modular group. It 

is, of course, entirely consistent with (13), given the appropriate invariance of 

the bosonic conductivities. In particular, the full modular group emerges if we 

have, in addition to the transformation properties given above, O"(z/) O"(v) for 

l/v' l/v + 1, which is true if O"b(v' ) O"b(v). 

The physical interpretation of these new phases is more problematic. Such 

phases, which are related to a state with bosonic statistics, may be expected 

to arise in a system of fermions confined to a plane provided the spin wave­

function is antisymmetric, i.e. in states which are not spin-polarized. However, 

this may not be the correct interpretation here. Rather, it is possible that pairing 

of the fundamental fermion states occurs, giving effective bilinear fields with 

bosonic properties, and these in turn give rise to the new phases in the effective 

Lagrangian for the "order-parameter". The question whether these phases can 

be excited depends on the pairing energy and the associated energy of the phase. 

This is not determined simply from the modular symmetry and requires detailed 

dynamical information about the anyonic excitation energies which lies beyond 

the scope of the present work. 

The topology, but not the detailed geometry, of the phase diagram (no flow or 

fixed point structure was suggested) in Ref. [5] is in fact completely "contained" 

in the modular-invariant phase and flow diagram proposed in Ref. [1], in the sense 

that it is determined by one of the simplest subgroups of the modular group r(l). 

The key to identifying this subgroup is to note that whatever else it does, it 
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must map fixed points of a given type into each other. The full modular group 

maps any rational number into any other, hence it cannot possibly distinguish 

odd-denominator fractions from even-denominator ones. 

If only attractive fixed points (Hall plateaus) O'e p/q with odd q's are 

desired, then the subgroup must preserve the parity of q. The group rT(2) 

generated by T and ST2S, which is obviously contained in r(1) because any 

string of these generators is a string of r(l) generators (S and T), does precisely 

this: it maps odd (even) denominators to odd (even) denominators, with no 

restriction on the numerators. 

Notice that (the real part of) rT(2) is the group implicitly assumed in the so­

called "hierarchy generating mechanism" [16, 19, 20], which was invented in order 

to account for the observed fractions (see also Ref. [21D. To see this recall that 

if a ground state with "filling factor" v appears, then the particle-hole conjugate 

state with filling factor 1 - v, as well as the quasi-particle condensate with filling 

factor v/(2v + 1) should also be ground states of the quantum Hall system. 

Since v is essentially the Hall conductivity on the plateaus, we see that these 

are fractional linear transformations on 0' restricted to act only on the real axis. 

The first transformation is TJ = JT, where J : 0' -.,. -u is a so-called "outer 

automorphism" of r(l). J is in fact the only automorphism of r(l) not in r(l), 

and since J is rather trivial we will continue to suppress it here. The other 

transformation is the inverse of ST2S, which together with T generates r T(2). 

Since the hierarchy generating transformations discussed above played a cen­

tral role in the work of Ref. [5], it is perhaps not surprising that their diagram 

appears to have a similar topology to the exact r T(2)-invariant diagram derived 

in Ref. [22], but the comparison is not immediate because they chose to work 

with resistivities rather than conductivities. Since p == pzy + ip:r::r: S(0'), and 

S is in r(1), there is no distinction between the phase diagrams for P and 0' in 

the fully modular-invariant case. However, since S is not in rT(2), the phase 

diagram in resistivity space is in this case different from the phase diagram in 

conductivity space. The result of S-transforming the conductivity phase and flow 

diagram constructed in Ref. [22] is shown in Fig. 3. 

The most economical way of deriving this diagram is to find the group rw(2) 
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which acts on the image of (T under S in the same way that S acts on the image 

of (T under fT(2), i.e. to find the S-conjugate of fT(2), fw(2) = SfT (2)S-1. 

It is sufficient to conjugate the generators, and using the fundamental identities 

S2 = (ST)3 = 1 we find that fw(2) is generated by T2 and W = TST. This is 

sufficient to figure out the fixed point structure, from which the phase diagram 

follows. As was the case with fT(2) [22], all IE3 fixed points have disappeared, 

and only some of the IE2 fixed points remain, including the ones at (2n + 1) + i. 
Furthermore, fw(2) preserves the parity of the numerator of the parabolic fixed 

points, as it should because S(p/q) -q/p (i.e. an odd-denominator (Te fixed 

point is an odd-numerator Pe fixed point), so that we can consistently choose 

all odd-numerator fractions to be attractive fixed points and even-numerator 

fractions to be repulsive fixed points. This completely fixes the phase and flow 

diagram as shown in Fig. 3. 

Fig. 3 is to be compared with the resistivity phase diagram presented in 

Ref. [5]. Clearly, the few phases included in Ref. [5] agree. with the topology 

of the exact infinite hierarchy of phases exhibited in Fig. 3. The geometry is 

however somewhat different. This is presumably due to an arbitrary "normal­

ization" of the phases in Ref. [5]. No such freedom is left in our construction: 

once the group has been fixed the full non-perturbative structure of the phase 

diagram is rigidly fixed. In particular, the predictions for the location of delocal­

ization fixed points which follow from this are completely falsifiable: they cannot 

be changed without changing the entire global structure of the diagram, i.e. the 

discrete symmetry group. Thus these simple symmetry ansatze lead to a sur­

prisingly strong and apparently successful phenolllenology of the quantum Hall 

system. However, current scaling experiments do not appear to be good enough 

to distinguish between the groups discussed above. 

Localization of Fermions 

In this section we review the field theoretic approach to localization of ordinary 

fermions in a way which is appropriate to a discussion of localization in the 

quantum Hall system. 
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We are interested in the conductance properties of a two-dimensional system 

of electrons in a strong transverse magnetic field in the presence of impurities. The 

effect of the impurities is to provide a reservoir of localized states with energies 

different from the Landau level, which allow the plateaus to develop. Increasing 

the magnetic field leads to a reduction in the cyclotron radius causing the Fermi 

level to fall as localized states drop into the Landau level. While the Fermi level 

is above the Landau level this change does not alter the transverse conductivity, 

since the localized states do not conduct, and for the same reason the diagonal 

(dissipative) conductivity remains zero. As the Fermi energy crosses the Landau 

level the extended state gives a non-zero diagonal conductivity while the trans­

verse conductivity changes continuously to the value at the plateau corresponding 

to the next Landau level below the Fermi surface. 

In order to describe this system we start with the standard microscopic field 

theoretic treatment of electro-dynamics in the presence of impurities in two di­

mensions. We wish to describe the response functions (conductivities) in a field 

theoretic treatment of charge transport. In the case of electrons, the diagonal (dis­

sipative) conductivity is determined by the electron Green function computed in 

a random potential, with some prescribed statistical properties to describe the 

spreading of the energy level due to impurities in the system. In addition to show­

ing how (J'~~ emerges as an effective parameter in the macroscopic theory from the 

underlying micro-physics of the semiconductor, the purpose of the following for­

malism is also to discover how to express the effective action parametrized by (J'~~ 

in terms of composite operators Q chosen so that the dissipative conductivity is 

determined by the propagator of Q. These are given by a "Hubbard-Stratonovich" 

transformation, which in this case turns out to be a bilinear Q+_ =: tP+tP- : in the 

advanced and retarded electron fields tP±. Levine et al. [23] have given an heuris­

tic interpretation of this in terms of the phase-coherence of the charge-carrier 

as it propagates through a noisy environment and strong magnetic field. They 

argue that localization is related to the destruction of phase coherence between 

the advanced and retarded propagators, and that the extended states correspond 

to topologically non-trivial field configurations that restores this phase coherence 

at the centre of the Landau band. 
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The "advanced" (+) and "retarded" (-) propagators Gt = G(z, Zl; V; E ± i1]) 

(from z = (x, y) to Zl ( x' ,y')) at fixed energy E and impurity potential V are 

solutions of the time-independent Schrodinger equation: 

(V2 + E ± i1] - V)Gt(z, Zl) -8(z - Zl). (14) 

Gt describes the propagation of electrons in an impurity potential, ignoring the 

inter-electron Coulomb interaction. This should be a reasonable approximation 

for a filled Landau level in the quantum Hall system, since in this case the cy­

clotron energy is much greater than the Ooulonlb energy between electrons neu­

tralized by a uniform background electric charge distribution. In the case of par­

tially filled levels, appropriate to the fractional quantum Hall effect, it has been 

argued that the system may be described by (non-local) anyonic states which 

arise as "the least interacting" collective modes in the electron basis. In this 

case the conductivities will be determined by the propagation of anyonic states 

in a random potential, this time ignoring the Ooulomb interaction between the 

anyonic charge-carriers. In the next section we will discuss the fractional case; 

here we discuss only integer levels in which case Gt are propagators of fermionic 

fields. 

The conductivities U;c;c and U;cy being physical observables, they are related to 

the square of the Green functions. They are most simply expressed in terms of 

the "diffusion probability" GtGy =JVVP[V]GtGy (through a sample of unit 

area) as follows [24]: 

(15) 

Note that our discussion deals with time-independent solutions so that henceforth 

only the two-dimensional spatial variables are displayed. 

The field theoretical treatment of these conductivities starts with the func­

tional integral representation of the time-independent (fixed energy) Green func­

tions: 

(16) 
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where Zv is the generating functional and S is the Schrodinger action: 

(17) 

The functional average over the impurity potential V involves the distribution 

P[V], which we for convenience take to be Gaussian, 

(18) 

but the results should not depend on the precise form ofP[V] . 

Here we have chosen to write the functional integral in terms of fermion fields 

1/J since, as we will discuss, these are the most appropriate for describing the 

symmetries associated with the propagation of electrons. 

The standard techniques to compute the normalization in (16) involve the 

replica trick or the supersymmetry trick. In this paper we only use the former but, 

in view of the difficulties that may be encountered in the analytic continuation 

of the replica index, it would be worthwhile at some stage to check the results 

using the supersymmetry technique. Note that not all our results rely on the 

validity of the replica trick; to determine the symmetries we do not need the 

overall normalization of the Green functions. 

In the replica trick the normalization factor is eliminated at the price of repli­

cating each field (1/J±) n± times, and taking the limits n± -+ 0 at the end of the 

calculation. If the original action was Gaussian in V, then so is the replicated 

one, and we are able to perform the average over impurities. With the replicas 

labeled by a = 1,2, ... , n±, the normalized Green functions are given by: 

In the following sums and products over repeated replica indices (early latinos) 

win usually be suppressed. The diffusion propagator is now determined using 

(18) and (19): 

Gt( z, ZI)GV(Z, Zl) = lim f V{J~V1/J~V{J~ V1/J~e-S[~,1/1]{J~(z )1/J~( Z'){J~( z)1/J~( z')
n±-O 

(20) 
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with 

S[~, 1/>] - ~ Jd2 zN:(V2 +E)1/>: +~~(V2 + E)1/>~ 
(21)

2 

+2i1](~~"p~ _ ~~"p~).+ : (~~"p~ + ~~"p~ )2}. 

When 1] --t 0 (20) is invariant under a U(n+ + n_) symmetry which rotates the 

full multiplet of fields ("p~,,,p~). The (small) regulator 1] explicitly breaks this 

group to U(n+) x U(n_), meaning that (21) is only invariant under independent 

rotations on the advanced and retarded replicas separately. The importance of 

these symmetries for the theory of electronic transport was first pointed out by 

Wegner [6]. In more than two dimensions the quartic term in (21) causes a 

spontaneous breakdown of the U( n+ + n_) symmetry to U( n+) x U( n_). The 

Goldstone modes of the associated coset space U(n+ + n_)jU(n+) x U(n_) are 

the massless states responsible for delocalization and a non-vanishing O'a:a:' In 

two dimensions we know from the Coleman-Mermin-Wagner (CMW) theorem 

that there are no Goldstone phases, so that generically there are no delocalized 

states in low dimensions. In other words, O'a:a: will typically vanish. However, the 

effect of the last term of (20) is still to give a mass to the fields which are not 

in U(n+ + n_)jU(n+) x U(n_). The remaining modes may occasionally become 

massless, thus giving rise to extended states, but in order not to violate the CMW 

theorem this can happen only at isolated points in parameter space. 

In order to quantify this effect it is useful to change variables to the composite 

fields : ~±"p~ :. This is done by introducing a bosonic Hermitian matrix of 

Lagrange multiplier fields Q±b± and multiplying (20) by the Gaussian factor 

(22) 

where the dot denotes matrix multiplication in the two-dimensional "Wegner­

space" labeled by the advanced (+) and retarded (-) index. The advantage of 

changing variables to the Q's is that the Green function of Q determines the 

diffusion propagator, and hence the conductances (15). Thus, if in the long 

distance limit there are massless states in the field theory describing the Q's, 

there will be extended states in the system of interest corresponding to a non­

zero value for the linear conductance. The Green functions of the Q's may be 
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found from the expression for the partition function given entirely in terms of 

the Q's, which can be obtained by integrating over the fermion fields "p± in (20) 

extended by the factor (22), giving [24]: 

Z[J] = lim jVQexp ~{Tr logA(Q) + jd2z(Qab. Qab Jab. Qab)}. (23)
n±-O 2 

Here the J's are sources for the Q-fields, and the matrix 

V 2 +E+i",+,Q++ -,Q+- ) 
(24)

-,Q_+ V 2 + E - i", + ,Q__ 

determines the effective action in the Q-basis. 

The Q-Lagrangian contains terms linear in Q and these induce a vacuum 

expectation value (vev) for Q, which can be determined from the condition: 

(25) 

giving: 

(Q+_) (Q_+) = 0 
(26) 

(Q±±) = i(V2 + E ± i", + ,(Q±±));zl = iGt(z, z). 

Next we expand (23) in fluctuations Q Q (Q) about this minimum. This 

gives the quadratic terms in Q+_ 

where 

C+_(z, Zl) = 28(z - z') _,2Gt(z, ZI)GO(Z', z), (28) 

and 

G~(z, Zl) = _(V2 + E ± i1J + ,(Q±±));; (29) 

are the advanced and retarded Green functions at tree level. The density of states 

at tree level is given by (see (26)): 

21f'iPo(E) = lim [Gt(O, 0) - Go(O,O)] = ~[(Q++) - (Q--)]. (30)
~-O , 

After shifting to the fields Q, those fields not in the coset space U(n+ +n_) jU(n+) X 

U(n_) acquire a mass. In order to project onto the remaining massless fields 
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it is convenient to change variables by writing Q(z) T- 1 (z)P(z)T(z), where 

T( z) E U(n+ +n_) and P( z) is block diagonal in the advanced and retarded sub­

spaces. The advantage of this is that the fluctuations of the P-fields about their 

vevs are massive and hence do not contribute to the critical behaviour. They can 

therefore not appear in the effective action governing the properties of the system 

at ·large length scales. 

The fields in the coset space U(n+ + n_) / U(n+) x U(n_) all belong to the 

T -fields which can be written as: 

(31) 


where Ja are generators of U(n+ +n_) not in U(n+) x U(n_) and not commuting 

with (Q). From (30) we see that 

(32) 


where T3r is the diagonal generator of the Wegner symmetry (T3 in the unrepli­

cated case of 8U(2)) which is unbroken by (Q). To make contact with Pruisken's 

analysis [7] it is convenient to define a new matrix field 

(33) 


which contains only the light coset fields T( z ). 

In terms of the Q-fields defined in (33) the leading part of the effective action 

(Le. second order in derivatives) is: 

10 - - io - - ­sUzzTr81l.Q81l.Q + SUZyTrcll.vQ8ll.Q8vQ. (34) 

The first term just follows from (27), while the second term is the one identified 

by Pruisken et al. [7, 23, 25] as necessary to give a nonvanishing U zy • The form 

of (34) follows from (15), with the superscript "0" denoting that the vevs have 

been determined using the zeroth order theory. 

The second term in (34) is a non-trivial topological invariant because it is the 

Jacobian of a the mapping Qfrom the (compactified) world sheet 8 2 to the coset 

space U(n+ + n_)/U(n+) x U(n_), whose second homotopy group is 71.. This 

implies that the coefficient U~y must be periodic with period 211", since otherwise 
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the partition function would not be single-valued. The implications of (34) for 

the transition between levels has been discussed by Affleck [26]. He argues that 

it governs transitions between integer levels with critical points at Ua;y = m + 
1/2, m E The critical theory is identified with the n -7 00 limit of the 

SU(n) x SU(n) WZW-model, leading to a scaling exponent of 1/2, which however 

is in disagreement with the recently measured values. As we will argue in the 

following sections, the inclusion of a more general form for the impurity potential 

changes this expectation. 

Localization of Anyons 

We consider now how the discussion of Sect. 4 changes when discussing the frac­

tionallevels. The obvious difference in describing the fractional levels is that they 

correspond to partially filled Landau levels, and as discussed in Sect. 3 these may 

be described in a field theoretic sense by the Chern-Simons theory Lany given by 

(8). Although the form of Lany is adequate for describing the transport proper­

ties of anyonic states for vanishing Ua;a:, it is necessary to include the effects of 

impurity scattering if we are to understand transitions between levels. Thus we 

modify (8) by adding a LG potential W( 4>, V) with form yet to be determined, 

but depending on both the LG field 4> and the impurity potential V. 

As we discussed in the previous section, the analysis of the transport properties 

of the system proceeds via the identification of the relevant degrees of freedom 

which are massless at the critical points. In this the Wegner symmetry played a 

crucial role and so we first discuss the symmetries of (8), allowing for a replica 

index a and an advanced or retarded index (±) on the LG field, i.e. 4> 4>±. The 

action needed to determine the diffusion propagator is now (cf. (8): 

L::y =4>~(V2 - iao)4>~ + 4>~(V2 - iao)4>~ + 2il1(4)~4>~ (fi~4>~) 

2 (35) 
+ :(}€~LI>.(a~aaLla!a + a~aaLla~a) + W(4)~, V) + W(4)~, V), 

where ao = a/at, and t is a "time" variable introduced in order to cast the OS 

Lagrangian into a local form. 

It is clear from this equation that the Wegner U(n+ +n_) symmetry does not 

act linearly on the fields 4>±, because of the auxiliary fields a~t. Indeed, once these 
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fields are integrated out to give a (non-local) Lagrangian [4] expressed entirely in 

terms of the LG-fields 4>±, one finds that it contains quartic terms in 4>± which 

are not invariant under the U(n+ + n_) symmetry acting linearly on the 4>±­
basis. To exhibit the linear U(n+ +n_) symmetry it is necessary to reformulate 

(35) directly in terms of the anyonic fields 4>:ny satisfying "anyonic boundary 

conditions". For the general case of anyons in the absence of the potential W the 

equivalent formulation has been given by Semenoff [27]. Of course, the simplest 

example of this is the case () = 1l" corresponding to fermionic fields. In this case 

the action written in terms of the fermionic fields 'l/J± is just the one in (21) which 

manifests the U(n+ + n_) symmetry acting linearly on the 'l/J± -basis. For the 

general anyonic case the anyonic fields 4>±any are non-linearly related to the LG­

fields 4>± appearing in (35). Since the Wegner symmetry acts linearly on the 'l/J± 

it is clear that it acts non-linearly on the LG-fields. 

So far we have not discussed the description of impurities which follows from 

the form of W. In the case of fermions the analysis leading to (34) relied on 

the assumption that W('l/J+, V) + W('l/J~, V) was U(n+ + n_)-invariant. Indeed 

the choice W('l/J±(z), V) = V1/J±(z)'l/J±(z) clearly leads to such a symmetric form. 

This choice corresponds to the (reasonable) assumption that electrons scatter in a 

point-like manner from the impurities. However, the assumption seems less viable 

for extended anyonic states of fractional spin, since they describe non-local su­

perpositions of electrons. Only if the impurities scatter via long-range potentials 

with range larger than the size of the anyons is it a reasonable approximation to 

take the equivalent point-like coupling W(4)±any(z), V) = V~±any(z)4>±any(z) of 

the anyon to the impurity potential V. In the experimental configurations it is 

often the case that the impurities are long range so we will continue to take such 

a U(n+ +n_ )-invariant form for the coupling as the dominant effect of noise, but 

we will allow for the presence of additional terms to take account of the possibility 

of non-coherent scattering of the anyonic states from the impurities. With the as­

sumption that the U(n+ +n_ )-invariant noise term is dominant, the identification 

of the light degrees of freedom appropriate near criticality is the same as discussed 

in the fermionic case, namely the coset fields in U(n+ +n_)/U(n+) x U(n_). We 

first construct the effective· Lagrangian in this approximation before considering 
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the important effects of the symmetry breaking terms. 

Following from the identification of symmetries the analysis proceeds in an 

entirely equivalent way to that presented in Sect. 4. The first step is to change 

variables to the composite fields Q±b± :::::: ~±any¢~any :. The effect of the U(n+ + 
n_ )-invariant component of W( ¢~any, V) + W( ¢r:any ,V) is to generate a vev for 

Q±b±, and only the fields in the coset space U(n+ + n_)/U(n+) x U(n_) remain 

massless at tree level. To lowest (second) order in derivatives the effective action 

governing the Q-fields is again given by (34). However, as we have just discussed, 

we expect that at some level terms non-invariant under U(n+ + n_) will appear 

in W. These we will allow for by including the most general perturbation of Lu 

consistent with the unbroken symmetries of the problem. 

As we discussed in Sect. 4, the massless fluctuations are contained in Q 
T-1T3T. Near the critical point only the most relevant operators are significant 

and these correspond to keeping the leading terms (linear in ¢) in the expansion 

of (31). From (32) we see that Qmay, up to an additive constant, be identified 

with the fields Q+-7/1rip(E). Hence, near a critical point we may replace (34) 

by: 

Llcin + Ltop ::::: -{1~reTr8J.LQ+_8J.LQ+- + i{1~yTr€J.LLl8J.LQ+_8L1Q+_. (36) 

In writing (36) we have absorbed a constant in the definition of the normalization 

of the field Q+_. The relative normalization of the terms proportional to {1rere and 

{1rey is unaffected by this choice. The absolute normalization of the Q-fields will 

be determined by the condition that the correct value for (1rey is obtained on the 

plateaus from the underlying CS-theory. 

The result (36) is of the same form as (34) which described the fermionic case. 

As such it presents a major problem in understanding the fractional effect, for, 

following Affleck's analysis [26], we would expect critical points at half integer 

values only. The reason the effective Lagrangians are the same follows from 

the fact the symmetries of the initial Lagrangians are the same, leading to the 

identification of the same massless modes. However, as we emphasized above, 

the anyonic case may be expected to differ from the fermionic case because the 

Wegner symmetry is likely to be explicitly broken by noise terms. 

The effect of the explicit U(n+ +n_) breaking terms may now be included as 
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the most general perturbation Lint of (36): 

Lint = m2IQ~_12 + m/2(Q~_)2 + '\IQ~_14 + ,\/IQ~_12IQ~_12 
(37) 

+ 'T/(Q~_)4 + 'T/'(Q~_)2(Q~_)2 + h.c. + ... 

where cx, f3 1,2, ... ,n+n_ are (composite) replica indices, and the dots denote 

higher dimension terms which are irrelevant operators in the scaling limit. Since 

m 2, m'2 ---+ 0 at criticality, the terms determining the universality class of this 

action are quartic in the massless fields. In short, the effect on the LG action 

in the Q-basis of including anyonic excitations is to allow a more general LG 

potential which may lead to a different universality class from that expected for 

fermions. 

The effective Lagrangian Leff Llcin + Ltop + Lint, given by (36) and (37), 

has been derived largely from symmetry arguments, and applies when there is 

an approximate U(n+ + n_) symmetry broken to U(n+) x U(n_) by the Q++ 

and Q__ vevs induced by the U(n+ + n_)-invariant noise term. Note that the 

approximation of keeping only the Q+_ fields in the effective Lagrangian appro­

priate for discussing the physics at critical points is reasonable only if the noise 

terms in (37) which explicitly break the U(n+ +n_) symmetry are small relative 

to the U(n+ + n_ )-invariant noise terms. 

We must now determine the properties of the LG-Lagrangian L~y, whose 

low-energy degrees of freedom have been encoded in L eff • Even though the terms 

of Lint are initially small, as we approach the critical point they play an impor­

tant role in determining the universality class to which the effective Lagrangian 

belongs. In this we are guided by the symmetries of the effective Lagrangian. 

We consider first the case in which we do not take the replica limit. As 

mentioned above the replica limit is not necessary if we merely wish to discuss the 

symmetries of the effective Lagrangian. In this case the symmetry of LefF is just 

a ~4 factor of the third (U(l)) component of the U(2) Wegner symmetry acting 

on the (unreplicated) advanced and retarded subspaces. This is left unbroken 

by (37) simply because the most relevant operator at criticality is quartic in the 

Q-fields. Because of this term the LG-theory is in the same universality class as 

two coupled Ising (p = 2 Potts) models with a permutation symmetry between 
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the two factors. This is just one of the models discussed in Sect. 2, and it has 

the self-dual symmetry leading to the SL(2,£:) discrete symmetry acting on the 

conductivities which was used in Ref. [1] to relate the integer and fractional 

effects. 

We conclude that, due to the additional explicit symmetry breaking terms 

of (37), at criticality the effective theory Leff will be driven in the long distance 

limit to one of the coupled spin models Lp , and not to the u-model Lq in (34). 

Unlike the latter model, Leff does allow for the fractional levels associated with 

the CS-theory of (8). 

We are thus able to make a connection between two types of effective "Landau­

Ginzburg" descriptions of the quantum Hall system. One of these is a "meso­

scopic" LG description of the plateaus in terms of anyonic states and the as­

sociated CS-form of the effective Lagrangian. Here we have related the static 

properties of such a Chern-Simons theory to a "macroscopic" two-dimensional 

effective "u-model with potential" type of LG field theory, which is directly pa­

rameterized in terms of the conductances and which can be interpreted as being 

in the universality class of a self-dual spin model. The discrete symmetry of this 

spin model allows us to determine the phase structure and positions of (some 

or all) the RG fixed points. This was discussed in Sect. 2 and in more detail in 

Ref. [1], where it was shown that these aspects of the model are in good agreement 

with experiment. 

The macroscopic theory derived here complements and extends the analysis of 

Ref. [5], for we have seen that the RG flow drives the theory at macroscopic scales 

to a theory in which the transport properties of the anyonic states are determined 

and the symmetries relating levels is manifest. As we discussed in Sect. 3 these 

symmetries may be understood as a combination of time-reversal or particle­

hole transformations, Landau level translations, and transformations which do 

not change the statistics of the anyonic state which is playing the role of order­

parameter. Since the order-parameter is bilinear in the original anyonic field, the 

latter symmetry is larger than would have been encountered in the original Chern­

Simons theory and leads to the appearance of new even-denominator phases. The 

phase structure is determined entirely from the modular symmetry, but symmetry 
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arguments alone do not determine the energetics of the various phases. If the 

new "bosonic hierarchy" of phases lie higher in energy, e.g. due to a large pairing 

energy, then they will not be populated and only the odd denominator phases 

will appear. However, their existence still plays an important role in determining 

the position of the fixed points and hence the behaviour of the system in the odd 

phases near these fixed points [1]. 

We are also able to use the macroscopic LG description to investigate the 

critical behaviour corresponding to transitions between plateaus and to determine 

the critical indices. In order to do this it is necessary to determine which is the 

self-dual theory which is relevant in this case, and to do this we must take the 

replica limit, which we now discuss. 

Replica Limit, Critical Exponents and Experiments 

As we discussed in Sect. 2, if the delocalization exponent is greater than one the 

crossover exponent at the "decoupling" fixed point at (T® = i is negative, and the 

RG flow diagram is the one shown in Fig. 1. For this particular fixed point the 

analysis simplifies considerably, because Ltop is absent from Leff' or equivalently, 

j3 (Ta:y is absent from Lp. 

We must take the replica limit n± ~ 0 to find the theory appropriate for 

determining the scaling behaviour of the conductances. In order to determine 

the universality class of the LG theory Leff we rely on identifying the symmetry. 

Adding the replica index the symmetry of Llcin is U(n+ + n_). This is respected 

by the first term of Lint but broken to 2(n+n_)! x 2~+n+n- by the additional terms, 

where the first factor is the permutation symmetry acting on the replicas Q+_. 
The second factor consists of a 22 permutation between the real and imaginary 

components of Q+_, and a 2;+n_ -invariance under sign changes of Q+_. The 

potential corresponding to (37) has (for a suitable range of the parameters) p == 

2n +n_ ( n+n_ )! minima for the real components of Q+_, and similarly for the 

imaginary components. 

Since the field variables will only take values at these minima in the long dis­

tance limit, it is reasonable to conjecture that the model lies in the universality 
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class of the p-state Potts model. While we are not able at present to justify this 

conjecture directly, we will show that it does offer an explanation of the measured 

value of the delocalization exponent. The first point to note is that this theory 

has a well defined replica limit, p -4 1 when n± -4 0, which corresponds to the 

"classical" or "geometrical" percolation theory with critical exponent v(3 4/3. 

It is encouraging that this analysis has identified the universality class to which 

percolation belongs as the one relevant for the quantum Hall system, since this 

conclusion can also been reached from the semi-classical "percolation picture" 

[28], in which the extended state corresponds to delocalization of previously lo­

calized states as the Fermi surface crosses the percolation threshold where the 

localized trajectories coalesce. Although 4/3 is not the measured value of the 

delocalization exponent V(3, it has been argued [29] that "quantum percolation" 

will dominate away from criticality, leading to a critical exponent of 7/3 which is 

in good agreement with the experimental results quoted below. 

The obvious question is whether such an explanation applies also to the field 

theoretic analysis presented here. The idea behind the quantum percolation cal­

culation is that, away from the percolation threshold, propagation of charge 

proceeds via percolation through the domains where the localized trajectories 

coalesce, whose characteristic size is given by the percolation length together 

with tunnelling between the different domains. Close to a critical magnetic field 

strength B* = B® the percolation length scales as (B - B*)"', while the tunnelling 

probability scales as (B - B*), so that the two together scale as (B B*)"'+l. 

Note that the tunnelling amplitude is proportional to exp{ - f~a drJV{r) - E}, 

where 2a is the distance between domains. 

To see whether tunnelling processes' are included in the LG theory discussed in 

the previous section, we consider the approximations used in deriving the effective 

Lagrangian Left> In the derivation of (36) and (37) the contributions from the 

fields Q++ and Q__ were dropped, for Left was constructed under the assumption 

that their masses, proportional to ,2, are large. The propagation of these fields 

leads to correlation functions proportional to exp( -mlz - z/l), where the mass m 

of the field is of order,> Since,2 is the width of the Gaussian determining the 

range of the potential we see that m is of order -IV, which is just the order of the 
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terms determining the tunnelling amplitude. Thus the approximation used in the 

derivation of the effective Lagrangian amounts to ignoring tunnelling effects. This 

is consistent with the derivation of the percolation exponent just discussed. At 

criticality this is the correct theory to describe the conductances, and in particular 

the value of (J'mm' However, away from criticality the effects of tunnelling must be 

added, changing the scaling exponent from 4/3 to 7/3, as discussed above. 

This result can now be compared with experiments. Until very recently the 

only exponent which could be measured was the temperature exponent K which 

describes how fast the peaks in (J'mm (or, equivalently, the slope at the inflection 

point between plateaus in (J'my) change as the temperature vanishes. In these 

experiments [30] it was found that K takes on a universal value K 0.42 

0.04, irrespective of which transition was considered. This exponent is related 

to the delocalization exponent V{3 through a st.andard scaling argument [31] that 

gIves V(3 p/2K, where p is the temperature exponent of the inelastic scattering 

rate. The value of the exponent p was not known in strong magnetic fields, but 

assuming that the value p c:::' 1.1 for metals in zero field is still valid in the Hall 

experiment, it was suggested that V{3 1.3 4/3, in apparent agreement withf'V f'V 

the classical percolation exponent. More recent experiments [32], however, have 

found that the value of K may vary by up to a factor of two between some semi­

conductor heterostructures, thus effectively killing off the universality hypothesis 

for K. 

Fortunately, in a remarkable new experiment [33] all three exponents appear 

to have been obtained independently by studying a sequence of different Hall-bars 

which do not differ in shape or composition, but only by an overall scaling factor. 

The basic idea is that the temperature and sample widths are so small that the 

inelastic scattering length is frozen out of the problem (since it exceeds the sample 

size), so that thf~ sample width can be interpreted as the RG-scale of the problem. 

They find that while both K and p are non-universal, the delocalization exponent 

takes the universal value 1/'(3 2.3 0.1, in agreement with the result of numerical 

simulations [34] for the lowest Landau level: V{3 2.34 0.04. Both results are 

clearly consistent with the (quantum percolation) exponent V{3 = 7/3 obtained 

above from the self-dual effective field theory of anyon localization. 
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Finally we remark that the authors of Ref. [33] also found that the value of 

O":,ax appears to depend on the random potential present in the sample, apparently 

in contradiction with the alleged "super-universality" of the critical behaviour. 

However, this may be just a reflection of the variety of critical points, related by 

the modular symmetry, which are predicted in the system. Indeed, in Ref. [35] we 

showed that the observed values of O":,ax are consistent with the predictions for the 

positions of the critical points which follow from the modular symmetry. While 

this identification is still tentative and requires further experimental investigation, 

the agreement lends further support to the suggestion that the quantum Hall 

system displays the full modular symmetry discussed above. 

Summary and Conclusions 

In summary, we have constructed an effective field theory for the quantum Hall 

system which embodies both conventional localization and the possibility of frac­

tional statistics. The latter involves a Chern-Simons interaction, while the former 

is a generalization of localization theory which still exhibits scaling. Because our 

treatment of noise is somewhat different, and we claim more realistic, than the 

standard one, we do not recover Wegner's or Pruisken's sigma-models, but rather 

an effective theory which is invariant under "complexified" duality transforma­

tions of the conductivities which appear as effective parameters in the model. 

Without resorting to an explicit computation of instanton-driven RG flows, but 

instead exploiting the symmetries of the parameter space as well as the conformal 

symmetry which appears at RG fixed points, we are able to extract a precise pre­

diction for the whole scaling diagram, which contains both fractional and integer 

phases. Other predictions are the exact location of all fixed points, and "super­

universality" of the scaling exponents. A plausible identification of the theory in 

the replica limit leads to the value 7/3 for the critical exponent of the delocaliza­

tion transition between plateaus in the Hall conductivity. The agreement with 

available scaling experiments is excellent. 
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Figure 1: Modular-invariant phase-diagram with simplest assignment of RG flow 

lines. 
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Figure 2: The critical exponents Va and V{3 as functions of p or m. 
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