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Abstract 

Recent scaling experiments have thrown the universality hypothesis for 
the quantum Hall effect into some confusion. While they appear to con­
fum a novel form of "super-universality" of the delocalization exponent 
relating transitions between different Landau levels, contrary to expecta­
tion, the experiments have not found universal values for the dissipative 
conductivities at the delocalization fixed points. We discuss this behaviour 
in the context of two phase and renormalization group How diagrams that 
have been suggested to describe the quantum Hall system. We show that 
the experimental results are well described by the renormalization group 
structure predicted if the quantum Hall system is invariant under an infi­
nite discrete parameter space symmetry. 



It is the purpose of this letter to argue that recent scaling experiments on 

the quantum Hall system performed by Koch et al.[1] lend additional support to 

the conjectured parameter space geometry recently proposed in Ref.[2]. We first 

summarize the current status of scaling experiments on the quantum Hall system 

and discuss these results in the context of two renormalization group (RG) How 

diagrams that have been proposed to describe the system. 

Two physical length scales may be identified in the experimental configuration 

used in Ref. [1]. These are the inelastic scattering length L and the characteristic 

size W of the sample (for simplicity the Hall-bar geometry is frozen and we con­

sider only the variation of an overall scale W). The experimental observations in 

the metallic regime in large samples have a straight-forward interpretation [3] if 

the resistivities depend on a single variable IKI = (L/e)l/"', where e is the local­

ization length. The condition for metallic behaviour is that the mean free path 

between inelastic collisions should not exceed the localization length of the levels 

near the Fermi energy. In an infinite sample, one expects the scaling behaviour 

of the halfwidth fl.p =Pzy - P:y of the dissipative resistivity, which recovers be­

tween the plateaus, to be given by fl.p fl.B "-I ell'" K, "-I L -11",. When the"-I "-I 

sample is sufficiently cold L is believed to scale with T ("Thouless scaling" [4]), 

conventionally expressed as L T-p/2 (p > 0), so that we alternatively have: "-I 

fl.p "-I T"", with f.L = p/2v. For finite size samples at sufficiently low temperature 

the inelastic scattering length will be larger than the sample width W. In this 

case only electron states with localization length larger than W contribute to 

a finite resistivity and fl.p W-l/"'. The central theoretical and experimental "-I 

issue is which exponents, if any, are universal in the usual sense, i.e. sample inde­

pendent, and if there are separate exponents controlling the transition between 

different pairs of phases (plateaus) of the Hall system [3]. 

In AIGaAs-GaAs heterojunctions the crossover between the two scaling be­

haviours happens at about Tx ~ 102mK [1]. At temperatures above Tx the scaling 

at delocalization is driven by L, below Tx it is driven by W. Koch et al.[1] report 

that at T = 25mK and W varying between 10f.Lm and 64f.Lm their AIGaAs-GaAs 

samples appear to be solidly into the domain of W -scaling, with fl.B indepen­

dent of T. By exploiting this they were able to extract the values of the scaling 
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exponents defined above. Their results support the scaling hypotheses described 

above, but both p. and p vary considerably (by up to a factor of two) between 

high and low mobility samples. Remarkably, the ratio p/p. = 2v remains un­

changed, and the delocalization exponent v appears to be v = 2.3 ± 0.1 for any 

delocalization transition in any sample!. This is consistent with numerical sim­

ulation results [5] giving v = 2.34 ± 0.04 for the lowest Landau level, as well as 

a semi-classical argument [6] showing that the effect of tunnelling on the perco­

lation picture of the quantum Hall effect [7] is to shift the value of the classical 

exponent by 1, giving v = 7/3. 

Koch et al.[l] also report the maximum diagonal conductivity u=.:ax(Be) mea­

sured at critical magnetic field Be, which in the scaling limit should contain 

information about the location of the delocalization fixed points in the param­

eter space spanned by (uzy , uzz). With all other parameters fixed the observed 

value of u=.:ax(Bc) varied by less than 20% for the Hall-bar widths W considered 

and, given the universality observed in the delocalization exponent, it is reason­

able to assume that the value of U::X(Be) in the largest sample (W = 64p.m) 

approximates the scaling limit, i.e. the value at the delocalization fixed point. 

However, they did find that u=.:ax(Be) varied considerably for transitions between 

different Landau levels and from sample to sample. 

If this is interpreted as indicating that the location of the delocalization fixed 

points are not universal, then this would seem to contradict the universality 

hypothesis which the measurement of the exponent v seems to verify. It is the 

purpose of this letter to suggest another interpretation of these data, and argue 

that they provide valuable information about the scaling diagram going beyond 

the observed universality of critical exponents. 

To focus the comparison of the theoretical expectations with the experimen­

tal measurements we consider two RG scaling diagrams that have been suggested 

to describe the properties of the quantum Hall system. The diagram shown in 

Fig. 1a was proposed [8] on purely phenomenological grounds in order to explain 

1An apparent discrepancy with the earliest experiments in MOSFETs [3] can be attributed 
to an erroneous assumption about the value of p. The recent experiments by Koch et al.[1] 
show that p is non-universal and sensitive to the magnetic field, so that the result for metals 
cannot be taken over to the Hall system. 
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how integer and fractional phases may be accessed by varying the initial condi­

tions (corresponding to different initial choices of 0"22)' In proposing it there was 

no suggestion that the critical exponents associated with different fixed points 

involving integer and fractional levels or fractional levels and fractional levels 

should be the same, although the expectation was that transitions shifted by in­

tegers would be described by the same diagram. Thus the observation that the 

critical exponents are the same requires further explanation. 

In Ref. [2] we suggested that a unified description of the integer and fractional 

phases of the quantum Hall system is possible if the scaling diagram of transport 

coefficients (conductivities) is invariant under an infinite discrete group of trans­

formations. We proposed that this could be achieved by making the partition 

function invariant under a modular symmetry (8L(2, Z)) acting on the param­

eter space (0"2Y' 0"2Z) of the effective quantum field theory, in such a way that 

it maps all critical points into each other. A symmetry of this type will orga­

nize the parameter space into equivalence classes which are the different phases 

of the system. The modular group leads to an infinitely nested "tree" of frac­

tional phases, with the remarkable property that only fractional values of 0"2Y are 

available in the strong coupling limit (O"Z2 ~ 0), thus accounting both for the 

observed quantization of Hall plateaus, as well as the hierarchy of states believed 

to be present in this system. Furthermore, this symmetry also forces the scaling 

equations to have the same form close to all fixed points, thus explaining why the 

delocalization exponent is "super-universal". The RG flow diagram consistent 

with this symmetry is shown in Fig. lb. The most significant difference between 

this and Fig. 1a is the appearance of even-denominator phases. As discussed in 

Ref.[2], at high magnetic field strengths the low-lying Landau levels will not be 

able to populate these regions meaning that the system will not have flowed to the 

self-dual plane in which the phase diagram is that given in Fig. lb. However the 

critical points associated with the transitions between odd and even denominator 

phases will still influence the behaviour of the system in their vicinity. 

Prior to the publication of Ref. [1] all scaling data on the position of delocaliza­

tion fixed points in the integer case [9], and mobility fixed points in the fractional 

case [10], agreed with the RG flow shown in Fig. 1b within experimental accu­
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racy [2]. In both these experiments the location of the fixed points were extracted 

from temperature driven scaling experiments which produce a rather immediate 

picture of the RG flow. The recent experiments by Koch et al.[l] are not quite 

so straight-forward to translate into the RG language, since, as mentioned above, 

they appear to show that the location of the RG fixed points, and consequently 

the geometry of the RG flow, is not universal in this system. This may however 

be an illusion - an artefact of the way these experiments are done, as we now 

explain. 

Assuming that Koch et ala [1] have accessed some of the delocalization fixed 

points, in the absence of the full flow diagrams it is not clear precisely which fixed 

points have been accessed. It is quite possible that the different values of ~ax(Bc) 

observed in the different experiments correspond to different delocalization fixed 

points. This possibility arises in hierarchically organized scaling diagrams with 

tree-like phase diagrams, like the ones shown in Fig. 1 where the abundant supply 

of critical points may easily lead to mis-identifications. In Fig. la, for example, 

the behaviour of transitions between levels 0 and 1 may be governed by the upper 

delocalization fixed point or by the lower delocalization fixed point( s) (through 

unresolved fractional levels ). Since the topology and geometry of Fig. 1a can be 

chosen at will, because it is not constrained by any symmetry, this diagram has 

little predictive power. However, we can bound the positions of the delocalization 

fixed points since the position of the mobility fixed point controlling the appear­

ance of the 1/3 phase is fixed by experiment [10] to lie at u!!,FP = 0.15 ± 0.03. 

Thus the upper (lower) delocalization fixed point must lie above (below) 0.15. 

The values of u::X(Bc) observed in Ref.[l], where only transitions between 

integer phases (plateaus) were considered, were approximately 0.1, 0.2 and 0.4 

in units of e2 / h (we consider only the fully spin-polarized states here). No error 

is quoted in Ref.[l], but since U::X(Bc) is said to vary by less than 20% between 

Hall-bars, we may presumably take the error to be less than this. Previous flow 

experiments [9, 10], located the integer delocalization fixed point at ~ax = 0.5. 

This is consistent with the latter of the values found by Koch et ala [1], and is 

in precise agreement with the prediction (u;e;e = 1/2) of the self-dual scaling 

diagram [2], as well as the u-model of localization in magnetic fields [11]. In 
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the context of Fig. 1a this value should obviously be identified with the upper 

delocalization fixed point. However, given the bounds derived on the positions 

of the delocalization fixed points in the previous paragraph, there is now no 

possibility of identifying the lower fixed point with the second observed value 

~ax = 0.2, so the RG flow diagram of Fig. 1a and experiment are in conflict. 

This conflict may disappear if the RG flow is instead given by Fig. lb. In this 

case the prediction of the position of the mobility fixed points is v'3/14 = 0.124 in 

excellent agreement with the experimental value quoted above. However due to 

the additional even-denominator phases there are new delocalization fixed points 

which lie above this mobility fixed point. These fixed points, called 0"1,2, 0'2,1 etc. 

in Ref.[2], all have O":e:e = 1/5. The system in the odd-denominator phases may 

approach these fixed points arbitrarily closely and the RG flow will be strongly in­

fluenced by them. This would explain why Koch et al.[l] observe ~ax(Bc) values 

around 0.2 in some of their experiments. Finally there is a class of delocalization 

fixed points in the self-dual diagram, with O":ez = 1/10, which controls transitions 

between integer and 71../3 fractional phases. These may have been mistaken for 

integer transitions if the fractional plateaus were not well developed. In short 

it is possible that all scaling data to date are consistent with Fig. 1 b and with 

the symmetry conjectured in Ref.[2] to be responsible for the phase and RG flow 

diagram of the quantum Hall system. 

To summarize, we have considered the implications the recent measurements 

of the quantum Hall system have for the RG flow properties of the system. At 

first sight they seem to be in conflict with the expectation, motivated by the 

observation of a universal delocalization exponent, that the system is close to 

a universal critical point. We have argued that the experimental measurements 

may be probing several distinct fixed points. Remarkably, this possibility is in 

quantitative agreement with the RG flow diagram obtained from a modular in­

variant partition function previously suggested as an explanation of the observed 

universality of critical exponents. In this approach the modular invariance relates 

the various fixed points and explains why the critical exponents at each should 

be the same. 

It is clear that the experiments probing the mobility and delocalization fixed 
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point structure are very important in elucidating the physics of the quantum Hall 

system. At present the results of these experiments, while suggestive, cannot 

unambiguously determine the RG flow structure, but it may be hoped that more 

detailed scaling experiments will be able to fix this structure. Although most 

of the theoretical work on the quantum Hall system has concentrated on the 

region of the plateaus, we believe that a full understanding requires a complete 

description, both of the plateau region and of the transitions between plateaus, 

and that the recently observed universality of critical exponents strongly points 

to a global symmetry relating the critical points. 
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FIG. 1. Schematic comparison of (a) the scaling diagram of conductivites 

(uzy, u:r:r) proposed in Ref.[8] and (b) the modular invariant scaling diagram dis­

cussed in Ref. [2]. Delocalization fixed points, controlling the transition between 

Hall plateaus, are denoted by ®, and so-called "mobility fixed points", where new 

phases appear, are denoted bye. 
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