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ABSTRACT 

Paradoxically, the asymptotic behaviour of dynamically generated 
fermion masses in asymptotically free vectorlike gauge theories de
termined using the Schwinger-Dyson equation differs by a logarithm 
from that found with the operator product expansion. We show that 
this inconsistency can be resolved only if the scaling of the fermion 
condensate is asymptotically nonperturbative. 
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Consider a nonabelian asymptotically free gauge theory, with gauge group G, 

and nJ fermions each in a vectorlike representation rJ of G, of dimension nco QCD 
is the best known example; G = SU(3), rJ = 3, nc =3. Then the Schwinger-Dyson 
equation for the fermion self energy ~(p) takes the form (in Euclidean space) 

!:(P) = rno + g' / (~~4 D:~(p- qh'w\'S(q)r!(p,q), (1) 

where D:!(p - q) is the full gauge field propagator, mo the bare fermion mass, 
S(q) == (if+~(q»-l the full fermion propagator, and rt(p,q) the gauge-fermion vertex 
function. 

Now since the theory is asymptotically free, the form of the fermion self 
energy may be precisely determined in the deep Euclidean limit. In fact the 
Schwinger-Dyson equation (1) admits solutions with two distinct types of asymp
totic behaviour1.2: 

(i) 'Irregular' 8olution8; 

(2) 


where the renormalisation group invariants mR and M are interpreted as the renor
malised 'current' fermion mass, and the typical mass scale of the gauge field inter
actions, respectively. The number d is twice the asymptotic ratio of the anoma
lous dimension i"Ym(g2) == -8lnmo(l£)j8ln 1£ and the beta function {3(g2) == 8g2(I£)j8Inl£ 

(where 1£ == J.L2 / M2, J.L2 being the renormalisation scale); perturbatively, as 1£ -t 00, 

1{3(g2) =_~g2 +.. 0, ~ = 48,..:1 (11C2(G) - 4nJT(rJ »), "YO 
(3)d==f300

i"Ym(g2) ="Y0g2 + "', "YO = 1;,..2 C2(rJ), 

Typically d is a small number; for QCD, with 2 ~ nJ ~ 6 flavors, ~~ ~ d ~~. We 
assume (with little loss of generality) that d < 1 in what follows. 

The irregular solution (2) is perturbative, in the sense that it sums the leading 
log corrections to the bare mass mo. Since it is hard (it only falls off slowly with p2), 
the loop integral in eq.(l) requires renormalisation (by a single subtraction), giving 
the running mass mo(I£). Clearly the irregular solution only arises when mo(l£) is 
nonzero; the U(nJ) x U(nJ) chiral symmetry is then broken explicitly, and the chiral 
limit is precisely the limit mR -t o. 

(ii) 'Regular' 8olution8; 

!:_(p') .,:~ 4;'b (Jnp' / M.)6, (4) 

where the renormalisation group invariant mD is interpreted as a dynamically gen
erated 'constituent' fermion mass; ~_(4mb) ~ mD. It is expected to be the same 
order of magnitude as M, and we shall show in §2 that it is closely related to the 
fermion condensate. {) will be discussed shortly. 

The regular solution (4) is nonperturbative, in the sense that it has nothing 
to do with summations of leading logs; it depends for its existence on appropriate 
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(but as yet not well understood) infrared properties of D:~ and r~. It is soft (falling 
off rapidly with p2), so that the loop integral in eq.(1) requires no renormalisation; 
if (4) exists as a solution of (1) in the chirallimit, then the chiral symmetry will 
be dynamically broken to its vector subgroup. The amputated Bethe-Saltpeter 
amplitude of the n' (modulo U(1) problems) pseudoscalar Goldstone bosons is then 
given by rp(p2) = E_(p2)//p. The pseudoscalar decay constant /p is determined by the 
Mandelstam normalisation condition; because rp is soft, /p is finite. A way from the 
chirallimit, the Goldstone bosons will acquire small masses m.p according to the Gell
Mann-Oakes-Renner relation m;/; = -2mRvR, where VR is a renormalisation group 
invariant (proportional to m¥,). The behaviour (4) will then hold (approximately) 
only in the region M2 <:: p2 <:: m¥,/mR, the irregular behaviour (2) taking over for 
p2 ~ m¥,/mR' When mR "-J m¥,/M2, the regular behaviour disappears entirely, and 
the chiral symmetry is no longer broken dynamically. 

The regular asymptotic behaviour (4) summarises all we really know analyt
ically (and thus with any certainty) about dynamical fermion mass generation in 
asymptotically free gauge theories. There exist in the literature two essentially dif
ferent arguments for it, which we shall refer to in what follows as "Lane's argument"l 
and (with less justification) "Politzer's argument"'. The former uses a rainbow ap
proximation to the Schwinger-Dyson equation (1), while the latter relies on the 
operator product expansion. Curiously these two independent arguments result in 
mutually inconsistent forms for the regular behaviour (4); Lane finds II = d, while 
Politzer claims that II =d - 1. It is this paradox which we address in this talk. 

1. Asymptotics from Schwinger-Dyson equations 

1.1. Lane's argument l 

Since in an asymptotically free theory g'(,,) is small at large renormalisation 
scales " == p,' / M2, it would seem sufficient for the determination of the asymptotic 
behaviour of E(p, g(,,)) to use tree level expressions for the propagator D:~ and proper 
vertex r~ in the Schwinger-Dyson equation (1). Employing Landau gauge (since 
it then turns out that then the fermion field is unrenormalised), the exact eqn.(1) 
becomes 

_ 2 q 1 E(q, g(,,))Jd4

E(p, g(,,)) - rna +3C,(rJ)g (,,) (211")4 (p _ q)' q' +E(q, g(,,))2' (5) 

This approximation is known colloquially as the 'rainbow' approximation - it cor
responds to the 'ladder' approximation to the Bethe-Saltpeter equation. Eqn.( 5) is 
soon turned into a differential equation, 

4 ( d )' 2 d ) 3C,(rJ )g2(,,) E(p, g(,,)) 
(6)( p dpl + 2p dpl E(p, g(,,)) + 1611"2 (1 + E(p, g(,,))' /pl) = 0, 

which, when p2 ~ E', has two solutions E± with irregular and regular asymptotic 
form respectively; 

(7) 

(8) 
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with d given by (3). The renormalisation group gives E(ltp, gR) = (In It) -dEep, g(It)), so 
the results (8) reduce to the asymptotic forms (2) and (4) with 6 =d (and a+ =mR 

independent of It, while a_(It) = 4mb (In 1t2)2d/ 1t2). The former confirms the leading log 
scaling behaviour of the bare mass mo(lt) f'.J mR (In It) -d, while the latter suggests that 
mb is the renormalised value of a divergent nonperturbative quantity which scales 
(perturbatively) as the operator~"p (i.e. as (Inlt)d; m~"p is clearly a renormalisation 
group invariant, so 1.f$1/J = -,m), 

1.2. Criticism 

Lane's argument appears vulnerable to two types of criticism; its use of the 
rainbow/ladder approximation (do higher order terms change the leading asymp
totic behaviour?) and its reliance on the Landau gauge (is the asymptotic behaviour 
gauge dependent?). 

The first of these criticisms was addressed in part by Lane himself l ; if we in
clude terms of O(g2(n+l»), n > 0 in either the gauge field propagator D;~ or the vertex 
function r~ (or both), the asymptotic forms (2) and (4) are both modified by correc
tions which are down by (lnp2) -n (modulo InInp2) with respect to the leading term. 
So asymptotic freedom guarantees the validity of the rainbow approximation in the 
deep Euclidean region. Furthermore, one may model nonperturbative behaviour of 
the gluon propagator D;~(q2) by modifying its form arbitrarily in the infrared. If 
restricted to a region q2 ;S M2 such modifications can only affect the asymptotic form 
of E(p) significantly if they are singular as q2 --+ o. Appropriate such singularities are 
a 1/q4 behaviour or a 64(q2) term (considered by some to model confinement); these 
give corrections to (2) and (4) which are down by 1/p2. Vertex modifications will be 
considered shortly. The contribution of instantons to E_ (p) falls as l/ps (Le. down 
by 1/p4) as p2 --+ 00. 

We next address the second potential criticism. For an abelian theory, the 
vertex r " (P, q) should satisfy the Ward identity 

(p- q)"r,,(p,q) =S-l(p) - S-l(q) =(p- f) + E(p) - E(q). (9) 

This constraint fixes r" up to an essentially arbitrary transverse piece r; (such 
that q"r; = 0) which however cannot be responsible for gauge dependence in E 

(in covariant gauges D£"r; is independent of the gauge parameter e). We have 
checked numerically that the use of vertices satisfying (9) (for example the Ball-Chiu 
vertex 3 ) in the Schwinger-Dyson equation (1) does not change the asymptotic form 
(7) of E±(p), and that this behaviour is then independent of the gauge parameter e. 
Of course for the nonabelian theory r~ should satisfy not (9) but the full Slavnov
Taylor identity; 

(p - q)"r~(pI q)(l + b(p - q)) = (A4 + B4(p, q))S-l (p) - S-l(q)(A4 + B4(pI q)) I 

where b is the ghost self energy and BC is the proper ghost-fermion vertex. However 
not only are band B4 of higher order in g2, but they are soft in the deep Euclidean 
region p2, q2, (p - q)2 > M2, and thus of no consequence for the asymptotic behaviour 
of E. An easy way to see this is to observe that in Lane's argument the nonabelian 
nature of the gauge interaction manifests only through the scale dependence of 
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the coupling g(l() in (7), which behaviour is itself independent of ewhen the Ward 

identity (9) is satisfied. 
We may thus conclude that Lane's asymptotic forms ((2) and (4) with 6 =d) 

are not only unmodified by higher order or nonperturbative corrections, but are 
also independent of the choice of gauge 4. 

1.3. Running Couplings 

Another 'improvement' to the rainbow approximated Schwinger-Dyson equa
tion (5) is to promote the coupling constant g2(1() to a running coupling g2(q2) inside 
the momentum integral, which is thereby rendered finite even for the irregular so
lution (2). Justification of this prescription (which amounts to a regularisation of 
the loop integral) is highly nontrivial 5 , and only works when q2 ::> p2 or (by revers
ing the order in which the integrations are performed) M2 « q2 « p2. The use of 
the running coupling makes little sense when q2 ;S M2, or (q - p)2 ;S M2; fortunately 
these regions are not important for determining the asymptotic behaviour of E(p) 

(§ 1.2 above). Now, with such a prescription, the result is always Lane asymptotics 3. 

Other prescriptions, which employ g2(p2) for q2 «p2, may be found in the literature 6; 
they have not been derived from first principles, and always yield Politzer asymp
totics. (Miransky assumes that the fermion-fermion scattering kernel behaves as 
g2«p_q)2)/(p_q)2, whereas g2(1()/(p_q)2 is obtained from the renormalisation group 1.) 

2. Asymptotics from OPEs 

2.1. Politzer's argument 2 

Consider the operator product expansion for the fermion propagator in the 
chiral limit; 

where v(l() == {OI,p""IO)~. Now S(p) "'-' l/p + "E,(p)/p2 + "', while since the fermion field 
is not renormalised at leading order, 01 "'-' l/p. Using the renormalisation group on 
0;PY' and noting that 0;py(p,g2(p2» "'-'302(rJ)g2(p2)/p2, we thus find that 

(11) 

Taking for the anomalous dimension i(;Py) the perturbative anomalous dimension 
i;Py = -im of the local operator iP"" (as given to leading order by (3)) yields the 
regular asymptotic form (4) with 6 =d-1; Politzer asymptotics. A similar argument 
away from the chirallimit (ma > 0) gives irregular asymptotics (2). 

2.2. Criticism 

Compared to Lane's argument, Politzer's is rather insecure. The anomalous 
dimension i(;py) is defined as 

(12) 
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where IPhys) is any phY8icai sta,te of appropriate (vacuum) quantum numbers within 
the Hilbert space on which the S-matrix is constructed. For an asymptotically free 
gauge theory (like QCD) these states are not directly related to the elementary de
grees of freedom ('quarks' and 'gluons') fluctuating about the perturbative vacuum, 
but are the bound states ('mesons' and 'baryons') built upon the true nonpertur
bative vacuum state, in which various condensates (for example (OIFl'vFl'vIO)1' and 
(01,p..p10)1') are nonzero. Since these condensates are nonperturbative in origin, they 
have essential singularities in the coupling constant, and cannot be expanded in 
powers of g2(K) even as K -t o. Consequently whenever operators which can couple 
to such condensates appear in an operator product expansion they may "have a 
large anomalous dimension'that is due to the bound state itself, rather than from 
the ultraviolet divergences of perturbation theory" 7. 

To show that this is indeed what happens here, we evaluate V(K) directly; in 
the chirallimit, modulo meson and baryon loops, 

4 _ fA d p
(OI..p..pIO)A = -nc (211")4 tr S(p) 

nc fA22 2 E(p2) ncnJ 3 (( A2 )6+1 ) 
= - 1611"2 tr 10 p dp p2 + E(p2)2 A2:oo - 411"2 mD In M2 + .. , , (13) 

using the regular asymptotic form (4). Renormalising at a scale 1'2, we must take 
Z(f$y)(A/p"g)""" (g2InA/p,)1+6, and, noting that K==.p,2/M2, 

In(-V(K)) ==. In( -(OI,p..pIO)A) -In Z(,py) (A/1', g(K)) (1 + S) In In K,f"'oJ 

"-00 

so that according to the definition (12), 

~1'(f$y)(K) -(S+I)/InK, (14)f"'oJ 

"-00 

Inserting this in (11) gives back the behaviour (4) , with m~ = - 3~~:,) ~ (Inti!»)+" 
So the operator product expansion analysis is self consistent, for all value8 of S; to 
determine Srequires further information. Politzer asymptotics (S = d -1)' result only 
when we make the additional (unjustifiable) assumption that 1'(f$y) = 1'f$y .. 

One may also obtain (14) by taking IPhys) = IS(k = O)} (since the amputated 
Bethe-Saltpeter amplitude for the scalar bound state S is also <p(p2) = E(p2)/ fp at 
k = 0, by chiral symmetry), and thus any S-wave state with an even number of 
pseudoscalar Goldstone bosons, since their couplings to S, and the propagator for 
the (virtual) S, are all ultraviolet finite, and thus scale independent. This is as it 
should be; according to current algebra, (01,p..p10) = f;2(PI,p..pIP) , for example. 

2. j. Nonperturbative evolution 

Using Lane's argument, S = d and «14) and (3)) 

i1'(f$v) """ -(d + 1)/InK """ -(,& + 1'0)g2(K). (15) 
...... 00 

Thus 1'(,py) has a nonperturbative contribution, and (OI,p..pIPhys)1' evolves nonper
turbatively even as K -t 00; nonperturbative physics normally associated with low 
momentum scales can indeed contaminate high momentum behaviour in channels 
in which condensates may form. 
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It is interesting to compare this rather subtle nonperturbative evolution with 
that found in strongly interacting non asymptotically free gauge theories (such as 
strong QED) in which the asymptotic behaviour of I:(p, g(lt» is given by (7) with 
g2(1t) -+ g; such that ".(It) -+ 0 as It -+ 00. Using the same argument as in §!.2 we now 
find 

so that "Y(,ffv} ="Y~v = -"Ym =-1. Since "Y~v is now hard, new operators (in particular 
four-fermion operators) become relevant, and the fundamental nature of the theory 
is radically altered 8. By contrast, in the asymptotically free case, "Y~v and "Y(~v) both 
vanish as It -+ 00, and no new operators become relevant. 

In principle the logarithmic scaling (15) of {OI,j),p,O}" could be checked by a 
lattice computation, although with present techniques this does not seem to be very 
practical. 

3. Conclusions 

Our main conclusion is that while Lane's argument stands up to closer 
scrutiny, Politzer's does not; 6 =d. As a corollary, when a running coupling constant 
is used in a Schwinger-Dyson or Bethe-Saltpeter equation, its argument should be 
the loop momentum q2, rather than (p - q)2, ma.x(p2, q2), or any other such combina
tion, the only evidence for which has always been Politzer's asymptotics 6. 

The fermion condensate v(lt) and its evolution is rather difficult to access 
experimentally. The Gell-Mann-Oakes-Renner relation mJ>fJ, = -2mRVR would, if 
mR were known, determine the renormalisation group invariant VR == -kt/m1, where 
k1/ is a finite positive constant, calculable modulo the same infrared uncertainties 
present in the Pagels-Stokar evaluation of fp 9. Although VR may be naturally 
interpreted as ,..; v(It) / (In It)1+6 we see no reason to expect these two quantities to be 
equal. The experimental implications of the nonperturbative modification (15) of 
the evolution of v(lt) are even less clear; it may be that an explanation for the AI = i 
rule will be one consequence, if the appropriate matrix elements of the effective four
fermion operators have a similarly enhanced nonperturbative evolution. 

More dramatic effects may result for operators which couple to conden
sates but whose leading perturbative evolution is at two loops, and thus rather 
weak. An example of such is the axial singlet current which couples to the conden
sate fd4 z {OITFF(z)FF(O)/O} via the axial anomaly. Nonperturbative evolution then 
screens out the axial singlet charge at large Q2 modifying the Ellis-Jaffe sum rule 
for the first moment of the proton spin structure function gf(z), in just such a way 
as 'to provide a natural resolution of the EMC proton 'spin crisis' 10. 
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