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Abstract. Rather than attempting to cover a wide range of statistical problems, I shall concentrate on four topics: 1) The 
argument between Bayesians and Frequentists, 2) A paradox in comparing data with two hypotheses; 3) The CLs 
method used in the search for the Higgs at CERN. 4) The MLBZ method of using data to estimate some of the 
systematic effects in measuring the W boson's mass. 

BAYES VERSUS FREQUENTISM 

The Confidence Limits Workshopsl.2 earlier this 
year brought into sharp focus the differences between 
the Bayes and Frequentist approaches. 

Bayesians start from Bayes' Theorem 

peA and B) = P(AIB) III PCB) = P{BIA) III peA) (1) 

where P(AIB) means the probability of A happening, 
given that B has happened. This is completely 
uncontroversial when used in situations where A and 
B describe certain events (in the statistical sense) e.g. 

for a high energy pp interaction, A and B are the 

production of a W boson and a top quark respectively. 
However Bayesians use eqn (1) for A =hypothesis (or 
the value of a parameter) and B = data whence (1) can 
be rewritten 

P(parameter/data) (1 P(data/parameter) III P(parameter) (2) 

i.e. (posterior prob) a (likelihood fn) * (prior). Thus 
after performing an experiment, the posterior 
knowledge about a parameter is obtained by 
combining one's prior knowledge with the likelihood 
function. as deduced from the experimental data. 

To frequentists, this is anathema because they 
would object to making a probability statement about 
the value of a physical parameter. For them, the value 
of as either is between 0.115 and 0.120, or it is not 
(even if we do not know which), and it does not make 
any sense to ascribe a probability to this. 

Furthemlore, to deduce the Bayesians' posterior 
probability requires a functional form for the prior~ 
there is some arbitrariness in how this should be 
chosen. It is tempting to tty to assign an 
"uninformative prior", e.g. one which is flat in the 
parameter. However, flat in p is not the same as flat in 
p2 or "p or log(p), and it is not usually clear which is 
best. A frequentist would want the result of an 
experiment to be independent of such arbitrary 
choices. 

Bayesians, on the other hand, would interpret 
P(parameterldata) or P(parameter) not so much as a 
probability in the classical sense, but more as a degree 
of belief, and then quote a "credible interval" for the 
parameter. Concerning priors, they would either justify 
the use of subjective priors as expressing genuine 
differences of knowledge of different experimenta1ists~ 
or they would attempt to find priors with some 
theoretical justification. They would further argue that 
the Bayesian approach most closely resembles the way 
scientists make decisions; in deciding what research to 
pursue, personal judgments play an important role. 
Another effect of the prior is that unphysical values of 
a parameter are excluded; this is not necessarily so in 
frequentist approaches. 

Frequentists construct confidence intervals without 
invoking P(parameterldata) or P(parameter), and hence 
do not require a prior. Their method is simply to use 
P(datalparameter) to construct a probability interval for 
the data (ie. the result of the experiment) for each 
value of p. Thus the shaded band of Fig. 1 shows the 



likely result of the experiment for each p. Then for the 
given result of a particular experiment, the confidence 
belt for p is given by where a vertical line at the 
experimental result cuts the shaded band (see Fig. I). 
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FIGURE 1. Confidence bell p is a theoretical parameter and 
x is an observation. For example, p could be the temperature 
at the centre of the Sun, and x the production rate for events 
in a solar neutrino detector. For a given P. a band in x is 
calculated such that the probability of observing x in this 
range is 90%. As p takes on all possible values. the shaded 
region is obtained; this gives the likely values of x for any p. 
For a given experiment observing Xo. the range PI to Po 
contains those values of p for which Xo was a likely 
observation. 

The frequentist thus produces a statement such as 

PI< P < Pu at 90% confidence. (3) 

This is based just on the data, without any 
preconceived ideas about the relative probabilities of 
different values of p. In eqn (3), the true value of p is 
unknown but regarded as a constant, while the known 
PI and Pu are regarded as random variables; eqn (3) is 
thus a statement about the probability of the random PI 
and Pu containing the unknown p. In a similar 
statement by Bayesians, p is regarded as a random 
variable with a probability distribution, and PI and Pu 
are constants. 

For accurate measurements where the errors are 
approximately Gaussian (e.g. Mz, the mass of the Z as 
determined at LEP, which is 91188±2 MeV), the two 
approaches give the same results.3 This is the case 
where, for the Bayesian, "the data overshadows the 
prior" . The functional form of the prior is then 
unimportant, because any reasonable prior will be 
virtually constant over the small mass . range of 
interest. In contrast, in situations where we are dealing 
with limits, the relevant range extends down to zero, 
and so here the form of the prior can be very 
important. This is why the Frequentist-Bayes argument 

is more relevant in limit situations than for accurate 
measurements. 

TIms Narsky4 showed how variable upper limits 
could be, depending on the exact way they are 
determined. He considered the example of the 
observation of a given number of events, assumed to 
be Poisson distributed, when the expected background 
was b. For six different methods applied to n=3 and 
b=l.O, upper limits ranged from 0.3 to 3.3. When 
quoting upper limits, it is thus crucial to e:\.'Plain 
clearly how they were deduced. 

One of the problems apparent from the Workshops 
was the confusion between P( hypothesisldata) and 
P(datalhypothesis). This should be clarified by the 
example of considering a certain unseen person, who 
is hypothesised to be either male or female. The data is 
whether or not they are pregnant. For random human 
beings, 

P(pregnantlfemale) - 3% 

whereas P(female!pregnant) is considembly larger. 

A specific example of a limit calculation discussed 
at the Workshops is given in 'CERN Higgs Search' 
below. 

CHOOSING BETWEEN HYPOTHESES 

There is a well-known paradox connected with 
parameter estimation and hypothesis testing. 5 

Imagine that a "l method is being used on a 
histogmm of 100 bins. to estimate the value of a single 
parameter p. Assume that Po. the best value of the 
parameter gives a minimum "l of 90. Then the error cr 
on p is ~ven in terms of PI = Po + cr the value of p for 
which t increases to 91. 

Now consider 1'2, another value of p, for which 
-l = 115. Is this value satisfactory? 

The probability of X2 = 115 for 99 degrees of 
freedom is not unreasonable. i.e. we would not want to 
exclu~e P2. However, giv~n that Gi~ such that {(Po+cr) 
= 91, m the usual parabohc apprmamation, a X of 115 
corresponds to a 50' effect i.e P2 is "completely" 
excluded. So which are we supposed to believe? 

The answer is that, although in general a value of 
2115 for Xmin, the minimum value of a t variable, 

based on 99 degrees of freedom is satisfactory, in the 
case where t nUn is 90, a value of X2 (P) of 115 is not. 



It is the difference ill -l of the two hypotheses (p=Po or 
p=pz) which is relevant in discriminating between 
them. 

This approach is thus important for reducing 
"errors of the second kind" i.e. accepting a hypothesis 
when it is in fact wrong. It can be used for 
discriminating between whether atmospheric neutrino 
data is more consistent with vil oscillating to v" or to 
Vsterile; or which set of parton distributions is consistent 

with jet production in high energy pp collisions. A 

more elaborate example is provided below. 

CERN HIGGS SEARCH 

The search for the Higgs at the LEP Collider at 
CERN is based on the CLs method.6 Basically the 
problem is to try to use the data to distinguish between 
two hypotheses: A) Background processes produced 
according to the Standard Model (S.M) without the 
Higgs (or with a Higgs that is too heavy to be 
accessible); or B) S.M. plus Higgs of a certain mass. 

For each Higgs mass, the aim of the procedure is to 
make one of the following choices: i) The data are 
inconsistent with B at some level (e.g. 5010), and hence 
a Higgs of that mass is excluded. ii) The data are 
inconsistent with A at some level (e.g. equivalent to a 
one-sided Sa effect) and are more consistent with B. 
iii) The data cannot either exclude or confirm a Higgs 
of that mass. 

From the data, a test statistic X is constructed. This 
is in fact the likelihood ratio for the two hypotheses. It 
involves not only the number of events, which of 
course is expected to be larger for B than for A, but 
other kinematic variables e.g. mass of Higgs 
candidates, whether there are b-hadrons in the possible 
Higgs decay, etc. 

For a given mass Higgs, Monte Carlo simulation is 
used to predict the expected distributions of X for 
hypotheses A and B. (Because the production cross­
section of a S.M. Higgs of a given mass is well­
defined, these predictions involve no free parameters.) 
Then X from the data is compared with each 
distnoution to decide whether it is possible to favour 
one hypothesis over the other. For distributions that 
are well-separated, this is relatively easy. For more 
realistic situations where there is some overlap (see 
Fig. 2(a», a numerical procedure is required. 
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FIGURE 2(8). Predictions from simulation for a particular 
data statistic X. for Standard Model background only (solid 
curve) and SM plus Higgs of a particular mass (dashed 
curve). The shaded area gives CLbs. the fractional area of the 
dashed curve that is more background-like than the data. CLb 
is the corresponding fractional area on the SM curve to the 
left of the data. Finally CLs is defined as CLbJCLb. 

FIGURE 2(b). For a very heavy Higgs that is barely 
produced. the solid and dashed curves become almost 
indistinguishable. If the data fluctuates downwards, CLbs is 
small, but CLs is still close to unity. The advantage of CLs is 
that it prevents the exclusion ofsuch a Higgs. 

In order to see whether exclusion of Higgs is 
possible for the given value of X for the data, CLba is 
defined as the fractional area of the simulated "SM + 
Higgs" distribution to the left of X (i.e. more 
background-like). The usual frequentist approach is to 
exclude this hypothesis if CLbs is less than some preset 
level (say 50/0). However the CERN Higgs group want 
to avoid the situation in which, for a heavy Higgs 
which it is barely possible to produce (see Fig. 2(b», a 
downward data fluctuation could result in CLba being 
small enough to exclude the Higgs, even though the 
experiment has no sensitivity to it; this would happen 
at the 5% probability level. So a more conservative 
approach is adopted by defining 

CLs = CLbJCLb 

where CLb is the fractional area of the "background 
only" distribution to the left of the data X. Thus eLI is 
the ratio of two confidence levels, rather than itself 
being a confidence leveL 

The data is then said to exclude the Higgs of that 
mass if CLs is below a certain cut e.g. 50/0. Since CLI is 
forced to be larger than CLba, the cut on CLs is 



conservative in its coverage i.e. the Higgs hypothesis 
will be excluded when the Higgs is really there in not 
more than 5% of experiments. Then in the situation of 
Fig. 2(b), CLs is close to unity, and the CLs method 
will never be able to exclude a Higgs to which an 
experiment has no sensitivity. 

Although a relatively nlodest level (95%) is chosen 
for exclusion, in order to be sure of a discovery claim, 
a higher degree of confidence is required. The criterion 
is that CLb is required to be very close to unity: 1- CLb 

is below 5.6 x 10.7• Since the probability of this 
happening for a random fluctuation of the background 
is so small, it is not deemed necessary to adopt the 
analogy with the exclusion procedure, and to divide by 
l-CLbs. 

Fig. 3 shows CLs and CLb for recent data. 7 These 
exclude Higgs masses up to 113.6 GeV, and there is a 
signal-like effect in CLb around 115 GeV, but not at 
the required discovery level. 

MLBZ 

Systematic errors are much more problematic than 
statistical ones. Here we discuss a novel approach to 
trying to estimate realistically some of the systematic 
errors in the detennination of Mw, the mass of the W 
boson, produced in the reaction 

(4) 

at the CERN LEP Collider at centre of mass energies 
around 200 GeV. 

Some of the potential sources of error are 
associated with the estimated jet energies and 
directions. These include the detector resolution, and 
the way the fragmentation of quarks and their 
subsequent hadronisation are described. The 
traditional method is to use simulation tecluriques to 
estimate these, but as ever the question is how realistic 
these simulations are. The Mixed Lorentz Boosted ZOs 
(MLBZ) approach8 instead uses data to check these 
effects. 

It relies on the fact that the four jets in reaction (4) 
are rather similar to those of the two jets in 

(5) 

at centre of mass energies around Mz = 91 GeV. Thus 
if we take two ZO 2-jet events, and boost them in 
opposite directions with a Lorentz boost ~ 
corresponding to reaction (4) at a given LEP energy, 
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FIGURE 3. Search for the Higgs at LEP. CLs as a function 
of MH is used to see whether it is possible to exclude the 
Higgs at that mass. The combined data from the four LEP 
experiments has CLI (solid curve) below 5% for masses up 
to 113.6 GeV. and so masses below that are excluded. The 
median expected value (dashed curve) passes through 5% at 
114.8 GeV. In the lower diagram, l-CLb is used to see 
whether there is evidence of the Higgs; the data is shown as 
the solid curve. The expectation for background only is the 
horizontal dashed line at 0.5, while that for 'background + 
Higgs' is the dotted curve. The data shows an effect at 
slightly below 30' significance for MH around 115 GeV. The 
total luminosity is such that a 5sigma signal is not expected 
forMHabove 113 GeV. 

the event configuration will resemble that for reaction 
(4), albeit at a slightly higher energy. (Alternatively, 
the ZO jets can be scaled down in energy, so as to 
correspond to Mw). The same analysis procedure as 
used to extract Mw from the real 4-jet events is then 
used on MLBZ events, constructed either from real 
data or from simulated events of reaction (5). By 
comparing the mass shifts observed between real and 
simulated MLBZ events, the reliability of the 
simulation to predict detector, fragmentation and 
hadronisation effects can be checked. 

Sophistications include reweighting MLBZ events 
to allow for the different angular distributions of the 
jets in reactions (4) and (5); to incorporate the finite 
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width of the bosons in (4), compared with all ZO in (5) 
being produced at the same centre of mass energy~ to 
correct for the fact that ZO decays include b jets, while 
W decays do not~ etc. 

Ofcourse the MLBZ technique does not include all 
systematics (e.g. initial state radiation, colour 
reconnection, etc.) but for those that are, it provides a 
more direct and powerful way of estimating them. 
Thus the DELPHI systematic errors calculated by 
tv1LBZ have now been explored to a level of precision 
which is more tlIa1l a factor of 4 better than was 
previously possible using simulation. 

The method can be extended to deal with aspects of 
W physics other than just Mw (e.g. triple gauge 
couplings); and with other reactions e.g. 

e + e- -+ ww- -+ 2 jets + lepton + neutrino 
e+e- -+ 'C ZO 
e+e- -+ Zo+ Higgs 

CONCLUSION 

There continue to be interesting statistical analyses 
to perform in High Energy Physics. Ifyou are aware of 
any challenging problems (and especially if you also 
know how to solve them!), please let me know. 
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