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The Sachs-Wolfe temperature fluctuations produced by primordial density 

perturb.tions are proportional to the potential field </1, which is a weighted 
integral over the density field 6. Because of the central limit theorem, </1 will 

tend to be Gaussian even when 6 is non-Gaussian. We generate two highly 

non-Ga1.Jssian density fields with a Zel'dovich power spectrum and show that 

. ther,~ulting potential fields have a nearly Gaussian distribution. These re

sults indicate that even if the temperature distribution observed by COBE is 

Gaussian, such an observation cannot definitively rule out non-Gaussian initial 

conditions for large-,scale structure. 

The recent COBE observations of Sachs-Wolfe fluctuations in the microwave back
2ground place severe constraints on possible models for large-scale structure. 1- One of 

the unresolved questions regarding the primordial density fluctuations which gave rise to 

large.,.scale structure is whether these density fluctuations were Gaussian, i.e., whether the 

N-point distribution of primordial density fluctuations is a multivariate Gaussian distri

bution. Gaussian models have the virtue of simplicity, and a great deal is known about 

their properties.3 On the other hand, a large number of non-Gaussian models have been 

proposed recently, such, as global texture4 and non-standard inflation models.5 

We argue here that the COBE results will not provide a decisive test of whether or 

not the initial density field was Gaussian. We mention first the trivial possibility that 

the density field could be non-Gaussian on small scales but Gaussian on the length scales 

probed by COBE. Such density fields are produced, for example, by a Poisson distribution 

of objects; the density field is non-Gaussian when smoothed on scales smaller than the 

mean separation of objects, but Gaussian when smoothed on scales larger than this mean 

separation.6 

We can, however, make a stronger assertion: the potential field will tend to have a 

Gaussian distribution when smoothed on a given length scale even when the density field 

is non-Gaussian on this same scale. The Sachs-Wolfe fluctuations probed by COBE are 

directly proportional to the potential field </1 ( r) on the surface of last scattering. This 

potential field is related to the field of density fluctuations 6(r) via 

(1) 

where a is the cosmological scale factor and p is the mean density. In integral form, we 

can write this relationship as: 

3
..1..( .) = -G 2 - J6(r')d r' (2)'fir ap t I'r - r' 
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Thus, the potential field is a weighted integral over the density fielg~ _JJ~~ e~e!lt!~l .limit 

theorem indicates that this integral will generally be driven to a Gaussian distribution 

even when the distribution of 8 is non-Gaussian. A similar phenomenon has been noted in 

the case of the velocity field, which can also be expressed as an integral over the density 

field; the distribution of velocities tends to be Gaussian even then the underlying density 

field is non-Gaussian.7 

To test this hypothesis, we have generated two highly non-Gaussian density fields with 

a Zel'dovich power spectrum. We begin by setting down an uncorrelated field Ll(r) on a 

1283 lattice with a non-Gaussian one-point distribution p(Ll}. There are no correlations 

between the values of Ll on different lattice sites, so the power spectrum for Ll is P(k) = a 

constant. We Fourier transform Ll(r) to obtain .&(k), and then we take S(k) = k 1 / 2 .&(k) 
and ~(k) = k-3 / 2 A(k). (Multiplicative constants are irrelevant for our purposes). We 

then inverse Fourier transfonn S(k) and ~(k) to obtain the density field 8(r) and the 

corresponding potential field 4>(r). To eliminate lattice effects, we smooth both of. these 

fields with a Gaussian window function W(7') = e-r2/2rg, with 7'0 = 3 cell lengths. This 

procedure is somewhat similar to that used by Weinberg and Coles to generate a family of 

non-Gaussian density fields with fixed power spect~a. Our pr~cedure produces a density 

field 8(r) with a slightly different one-point distribution than the original uncorrelated field 

Ll, but bychoosing p(Ll) to be highly non-Gaussian, we find that p(8) is also non-Gaussian, 

with a form which is fairly similar to the original p( Ll). In any case, this procedure 

produces a non-Gaussian density field 8 with 'a Zel'dovich power spectrum, along with the 

corresponding potential field 4>. 

As an example, we have chosen two extremely non-Gaussian forms for p(Ll). We first 

take the distribution for p(Ll) to be a galnlna function: p(Ll) 0( Lle-A . The distribution 

of the density field is shown in Fig. 1a. This distribution closely resembles the original 

gamma function; it deviates strongly from a Gaussian and has large positive skewness. 

The corresponding distribution for the potential field is shown in Fig. lb. While it clearly 

retains a slight imprint of the original gamma distribution, it is nearly indistinguishable 

from a Gaussian. For Qur second example, we take the symmetric delta-function distribu

tion defined by Ll(r) = ±8o, where 80 is a constant, and the value is chosen randomly in 

each cell. The resulting distribution of 8(r) is shown in Fig. 2a. Again, while the original 

delta function distribution is smeared out, the resulting density distribution is strongly 

non-Gaussian and resembles the original distribution. The corresponding distribution for 

the potential (Fig. 2b) is essentially indistinguishable from a Gaussian. 

These examples indicate that the distribution of the poten.tial field tends to be Gaus

sian even when the distribution of the density field is strongly non-Gaussian. Our examples 
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are not physically motivated; we have deliberately chosen density fields which are much 

more non-Gaussian than in most physically-interesting models. Because of the central 

limit theorem, we expect our results to apply to nearly all non-Gaussian density fields: the 

potential field will tend to be more Gaussian than the underlying density field. 

We must add two caveats- to this conclusion. It is certainly possible to generate 

non-Gaussian potential fields by construction.5,9 Secondly, we have only shown that the 

one-point distribution function for the potential field is Gaitssian. This is not sufficient 

to prove that the full N -point distribution is Gaussian, and it is possible to construct 

non-Gaussian fields in which the one-point distributi,?n is Gaussian. 10 - 11 The procedure 

for going from 6 to if> does not alter the phases of the Fourier components, so any phase 

correlations in the initial density field are also present in the potential field. The differepce 

is that the potential field more strongly weights the long-wavelength Fourier modes, whose 

phases are less strongly correlated than the phases of the short-wavelength lllodes. 

Our results indicate that even if the temperature field seen by COBE turns out to have 

a one-point Gaussian distribution, this observation by itself cannot definitively prove that 

the underlying density field is Gaussian. On the other hand, a non-Gaussian distribution 

of temperatures would indicate either a strongly non-Gaussian density field, or a non

prinlordial origin for the temperature fluctuations. 

This work was supported by NASA at Ohio State -and at Bartol, and by the Depart

ment of Energy at Oh"io State. 
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FIG.URE CAPTIONS 


Fig. 1: 	 (a) The distribution of densities in a model generated by Fourier-transforming an 

uncorrelated gamma distribution and forcing the power spectrum to a Zel'dovich form. 

Solid curve is a Gaussian distribution with the same mean and standard deviation. 

(b) The distribution of potentials for the same model. Solid curve is a Gaussian 

distribution with the same mean and standard deviation. 

Fig. 2: 	 (a) The distribution of densities in a model generated by Fourier-transforming an 

uncorrelated bilnodal delta-function distribution (~ == ±bo) and forcing the power 

spectrum to a Zel'dovich form. Solid curve is a Gaussian distribution with the same 

mean and standard d('viation. (b) The distribution of potentials for the same model. 

Solid curve is a Gaussinn distribution with the same mean and standard deviation. 

6 



u: 
.. 

r~ 

I 
0 0 

~0 0 0 
0 0 b 

0 0 

1.0 0 '0 ..........,.

N N " 

Z 

~ 

I 

C\l 
I 

(Yj 

0 0 o·
0 0 0
0 0 0 
0 0 0 
1.0 0 1.0 
.,...-I .,...-I 



• • 'f{ • 

z ....... ....... ro
..........-..

C}1 o· "S- Ol 0 
0 0 0 0
0 0 0 0Q0 '" 0 0 "'-" 0 0
0 0' 0 0 

I 
c..v 



0 0 0 
,-..0 0 0 

0 0 b 0 
0 0 0"LD 0 '0 LD........,..

N N ~ 

Z 

0,,-b 

'0 

~ 

I 

C\2 
I 

C7J 
I 

0 0
0 00
0 0
0 0 
0 LD 
~ 



z..... ,........... ..... ro

01 0 01 0-e...0 o· 0 0
0 0 Q 0 0 

0 0 0 " 0 0"'-"0 0 0 0 


