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ABSTRACT 

Pade approximants (P .A.) are considered as a method to accelerate convergence of 

an infinite sequence. First type I P .A. are introduced and studied and used in several 

examples. Then Type II P .A. are considered as a method of accelerating convergence. 

Later Type II P .A. are used to find the zeros of a function. Finally we discuss the question 

of how to choose the best coordinates for Pade II. 
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I. TYPE I P ADt APPROXIMANTS 

Definition: Let f(z) be an analytic function defined by its Taylor series 

CD 

n
f(z) = .L anz 

n=Q 

The Pade approximate to the function f(z) is defined as 

~n,ml(z) = P n (z) = f(z) + O(zn+m+1) (1)Qm(z) 

P n(z) and Qm(z) are' polynomials of degree n and m. e.g:Pn(z) = bl + b2z + ... + bNzn 

P n (z)
The meaning of is that we can wn'te

Qm(z) 

P n (z) n+m+l + d zn+m+z +( ) (2)f z = Qm(z) + dn+ m+ l z n+m+z 

~~----------------,~--------------~I
O(zn+m+l ) 

where the d's and also the coefficients of z in the Pade approximate are functions of the 

coefficients in the Taylor series expansion. 

For n = m, ~n,n](z) is called a diagonal P.A. 

Rationale for making this kind of approximation 

1) A rational fraction can approximate a function near singularities where the 

approximation by polynomials breaks down. 

2) Will find that we can often get good approximations to the function value from a 

Pade approximant constructed from the 1st several Taylor series coefficients. 



3 ­

3) Recursion formulas have been developed that make it relatively easy to construct 

the Pade approximant frQm the Taylor series coefficients. 

W,e can organize the different Pade approxiID:ates into a table 

F[n,m](x): 

M--+ 

[0,0] [0,1] [0,2] 

[1,0] [1,1] [1,2] 

N [2,0] [2,1] [2,2] 

1 [3,2] 

J 

Example: Generate the Pade Table for 

OJ n 2 3 
f(x) = io.(1+x) = L (_l)n+1 ! = 0 + x -++++ ... QO(x) ;: 1 (3) 

n=l 

~o,ol(x) = Po (x) (4)(x)QO 

~o,ll(x) = Po (x) (5)Q1 (x) 

(6) 




---------------------- --_. 
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We can't find a value for aOthat is independent of x so let's look at the lower half of 

the Pade table. 

p,Ol(x) = PI (x) (7)QO (xJ 

(8) 


~1,11(x) = PI (x)
Q1 (x) (9) 

(10) 

~1,1](X) =---xl-- (11) 
1+ -rx 

~1,1](1) = 2/3 (12) 

Note: tn 2 = .69314 (13) 

(14) 
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2 	 1 2 b1 1 3 4 
aO+ a1x + ~x = x + (b1 ---r)x + (-2+ ,-)x + O(x ) (15) 

aO = 0 

1a1 = 

b1 =,-2 

a2 = 1/6 

2x + 1 x
~2,1](x) =--~-""2~- (16) 

1 + ,-X 

~2,1](1) = .7 	 (17) 

1 2 
~2,21(x) = 	x + -r x 

1 + x+ +x2 (20) 

~2,2](1) = .6923 (21) 

1 1 1d. 1 - --r +,-- -r = .58 	 (22) 

Discussion of the convergence properties of the Pade Type 1 approximants and recursive 

schemes to calculate the coefficients are given by J. Zinn-Justin and Baker. 
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II. Pade Tyne II Approximants (Introduction) 

Definition: Let z1' z2' ... , zp be p numbers for which the analytic function f(z) is 

defined. 

The Pade Type II Approximent is defined to be: 

P
~n,m](z) =~ (23) 
~ 

with ~n,m](zi) =f(zi) for 

i =1,2,· · .,p and p =m + n + 1 

As before P n (z) and Q (z) are polynomials of degree nand m. m 
J _ 

Let us restrict our attention to the diagonal Pade approximants for which n =m =N. 

Then for each of the 2N + 1 coordinate zk we can write 

N 
iL a. Zk1 

~N,N](zk) = i=o 
Sk = f(zk) (24)N ­

L bj z~ 

j=o 

For many problems of practical interest, we may know the values of the function (S1 ... 


S2N+ 1) corresponding to a range of coordinates 


zl > z2 > ... > z2N+l > 0, for example. 


We may not know the value of the function at z = 0 however. We can obtain an 


approximation to the value f(O) by constructing the Pade Type II approximant using the 


known values of the functi9n f(~) 


(25) 
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Solve for coefficient aO: 

N N N 

Sk l>j4= Sk(l + Lbj zt) = Lai z~ 
j=O j=l i=O 

(26) 


We have 2N + 1 equations for the unknown ai and bi which we can write as a matrix 


equation 

2 NzN1 zl zl -Slzl -S 1 z 1 1 
N

1 z2 .} -S 2 z 2 

N N1 z2N+l z2N+l -S2N+l Z2N+l··· -S2N+l z2N+l 

a O 

a 
· l 
· 
· 
aN 

b 
· l 
· 

bN 

-


SI 

S2 

(27) 

S2N+l 
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Using Cramer's Rule solve for aO 

(28) 


N1 -S2N+l z 2N+l 
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m. Example for Pade Type II 

Suppose that we want to find the sum of the series 

(29) 

Regarding S as the limit of a sequence of functions (Partial Sums). 

00 
,-, 1 

Sk = ) --r is the kth partial sum. (30) 
~-J n .
n=l 

So that for example the first 3 partial sums are 

SI = 1 

S2 =1 ++= 5/4
2 

S3 =1 ++++= 49/36 (31)
2. 3 

Having 3 partial sums we just need 3 coordinates zl' z2' z3 to construct the ~1,1] Pade 

approximant. 

A valid choice for the coordinate associated with the kth partial sum of this particular 

series is 

(32) 

Then for the [1,1] approximate 

Jll] aO+a1z 

fl' (z) = 1 +h z (33) 


1 

We demand that the P.A. be equal to the partial sums at zl =l,z2 =+, za =+ 
(34) 

(35) 
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aO+i1,1](+) = 1 + 

1 1 

1 1 

1 1/3 

1 


5/4 


49/36 


aO = 

a1i3 _ 49 
61/ 3 -36 

1-1 aO 


-5/8 
 5/4-a1 

--49/108 49/36b1 

i -1 

1/2 -5/8 

1/3 --49/108 

(36) 

(37) 

1 1 -1 

1 1/2 -5/8 

1 1/3 --49/108 

1 1 

0 -3/4 

0 0 

1 1 -1 

0 -1/2 3/8 

0 0 5/108 

This is to be compared with the lIexact" answer. 

e(2) = 1f'21.Ji ~ 1.6449 

Also note that the 3rd partial sum S3 = 1.3 

-1 

5/8 

11 
216 

33- 20= 1.65 (38) 

http:1f'21.Ji
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IV. Using Pade II approximates to find the zero of a function 

Let f(z) be the function for which we want to find the value of z that satisfies the equation 

f(z) = 0 (40) 

We start with 3 points zl° z2' z3 for which we evaluate 

f1 = f(zl) 

f2 =f(z2) 

f3 = f(z3) (41) 

We then build the [1,1] Pade Type II approximate 

i = 1,2,3 (42) 

writing these 3 equations as a matrix equation: 

(43) 


1 

M= 1 (44)
N 

1 

Solving for the coefficients aOand a1 
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f1 zl 	 -f1z1 


-f
 (45)~ z2 2z2 


fa za -faza 


aO = 

I¥I 

1 zl -f1z1 

a1 = 1 Z2 -~z2 (46) 

1 za -faza 

I ¥ I 

The 1st approximation to the zero of fez) is given by the solution to the simpler equation 

~l,l](z) = 0 (47) 

or 

(48) 

(49) 

We can then set up an iterative scheme replacing the coordinates zl' z2' and za by the zNEW 
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V. Type IT Pade Approximants (continued) 

We now discuss methods of extrapolating certain types of convergent sequences {Sl' 

S2' .. ;., SK' ... } to the limit 

it 
S = k -+ 00 Sk 

using Pade type II approximants. An excellent review is given by J. Zinn-Justin1. 

Definition: Let z1' ... , zp be p complex numbers f( z) a given analytic function. 

The [n,m] Pade tyope II approximant is the rational fraction: 

~n,ml(z) = P n (z) (50)
Qm(z) 

with ~n,m,l (zi) = f(~i) for i = 1, 2, ..• , p and n + m + i = p. Pn and Q arem 
polynomials of degree n and m respectively. 

J. Zinn Justin1 gives the following convergence theorem analogous to a convergence 

theorem for the usual Pade approximants proved by Nutall2. 

Theorem: If fez) is a function of the Stie1tjes3 type, and if the points zi are chosen 

on a compact set of the real axis on the right of all singularities of the function, then the 

sequence of Pade approximations converges toward the function, because the zero of the 

denominators are on the cut of f(z). 

In particular we consider the application of Pade type II approximants to the 

00 k 
problem of summing an infinite series S = E U. whose kth partial sum is Sk = E U.. 

. 1 1 • 1 11= 1= 

The diagonal approximant is defined to be 

aO + a1Z + ... + an Z
n 

[]S n,n (z) = ------_____ (51)
1 + b1Z + ... + b Zn n 

with S[n,n] (Zk) = Ski k = 1, 2n + 1. We define the Pade approximant to the sum S to be 
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S[n,n] (0) = a 
O 

Consideration of a simple example shows that the rate of convergence of the 

approximants to the sum. S is sensitive to the choice of the {ZK}o For example, consider e 
00 1 r2 . 1 1 3 3 

0 0(2) = E --r = 6 Take as co--ordinates Zk = --:-p-' Pe{,-, -r 1,,-, 2}. The 
n=l n k 

results shown in Table I for S[2,21(0) I 1 show that the simple choice4,5 ~ = 
. Zk=y-­

+gives the best agreement with the exact result. 

e(2) = 1.64493406684822643637 ••. (52)0 

In fact, if we evaluate ~5,51(0) I 1 we obtain ll-place agreement with the exact 
Zk= -,c' 

result! 

TABLE I 


PADE TYPE II APPROXIMANTS TO e(2) 

FOR DIFFERENT CHOICES 


OF CO-ORDINATES 


P 


1/2 
3/4 
1 

3/2 
2 

1.64668 
1.65594 

1.64489 

1.61145 

1.58065 

In order to arrive at a rule for systematically choosing the {Zk}' let us consider the 

expression for aO 
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n 
SI zl ... zl -SIzl ... -SIZ~ 
S2 z2 

. 
n nS2n+l z2n+l .. ·z2n+l -S2n+l Z2n+l (53)aO = 

1 zl -Slz~ 

1 


1 Z2n+l ... 

We notice that aO = S if the co-ordinates zk are chosen as 

(54) 


We then have S[n,n](o) = S and the P.A. is exact! We see that the set {zk} is on a 

compact set of the real axis with the origin as an accumulation point. For example, if the 

given series is convergent and monotonically increasing such that 0 < Uk+ l < Uk' then 

we have 0 < zk+l and we can choose the zk's on [0,1]. 

We can now understand why zk = +is an appropriate choice of co-ordinates for 

summing e(2). Consider the kth partial sum Sk. The remainder is 

00 1 
- E --r 

m=k+l m 

We can easily show that k!r < Rk+ l < +. The point is that for large k, Rk+ 1 N +. 
Hence for large k the co-ordinates are approximately 
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k» 1 (55) 

Now S[n,n](O) is invariant under the transformation {zk} -+ {C zk}' where C is an 

arbitrary normalizing constant; consequently, we may simply choose 

k»l (56) 

An example for which we may determine the co-ordinates exactly is the geometric series. 

k 
We have Sk = i=~, S = l~r' and zk = rk. In general we can not find the Itcorrectll co­

ordinates {zk} since we would need to know the sum of the series; however, as a method of 
J ,_ 

approximating the sum of a series of positive terms, we can try to determine the 

asymptotic form of the remainder, and then use the asymptotic approximation for the {zk} 

for all k. 

We now consider an example that is particularly relevant to the evaluation of an 

integral whose integrand has a singularity in its zeroth or first derivative at one of the 

endpoints of the integration interval. 

Suppose that a positive series S is asymptotically geometric. By this we mean 

it Uk+m m
k-iOO 0 = r where 0 < r < 1 and me{l, 2, ••• }. Then the asymptotic form of the 

k 
S-Sk 

co-ordinates zk :: S for the Pade type n approximant is 

(57) 

For consider 

(58) 
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but since U k +m --+ rm as k --+ 00 we have
Uk 

(59) 


Noting the invariance of S[n,n] (0) under {zk} --+ {C zk} we have the result. 

As an example of the application of this result to the evaluation of an integral, we 

consider the integral representation of e(2) 
1 

S = e(2) = - r dt In(l-t) (60)tJO 
We consider e(2) as a limit of a sequence of partial sums 

(61) 


where 0 < ck < 1. 

. Uk+m
Definmg Uk = Sk - Sk-l' we form 0k Upon letting ek+m = rmek with 0 < r < I, 

we find that 

m 
_!l-r ek In(l-t) dtm-l t 

Uk + m _ l-r ck mkLLoo it =r (62)
Ok ck ---t 0 m 

_!l-r ek In(l-t) dtm-l t
l-r ck 

Consequently, the asymptotic form of the Pade type II co-ordinates is 

k--+oo UZk I k 

On the other hand, we can study the analytic structure of the sequence of functions 

Sk(k = 1,2, ... ) numerically. Let the interval [0,1] be divided into m = {1,2,4,8,16,32} 

subintervals. This choice corresponds to setting r = 1/2. An eight point Gauss quadrature 
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is then applied to each subinterval, and the results of all the subintervals are summed. 

Thus a sequence of approximant partial sums Sk shown in column 1 of Table II is obtained. 

The results shown in columns 2 or 3 of Table II clearly show the geometric character of the 

convergence. Using the co-ordinates Zk =Uk/U' l' we obtain for the P ade extrapolation 

5[2,2](0)1 U = 1.644934066848720 
k 

Zk =u:­
1 

This remarkable result agrees with e(2) to 13 decimal places (a 9 place improvement over 

the last quadrature approximation S6)! It should be remembered; however, that 504 

function evaluations were required to obtain this number. Also the convergence is not 

nearly so rapid for sorite other functions e.g., e(3). 

TABLEll 

SEQUENCE OF QUADRATURE APPROXIMATIONS S' K IS SHOWN ALONG 

WITH DIFFERENCES U'k AND NORMALIZED CO-ORDINATES Zk 
~ 

s,k k Uk = S'k+l - Sk Zk = Uk/Ui 

1 1.636221116771679 4.344583280914582 I 10-3 1. 

2 1.640565700052593 2.181170094296302 I 10-3 .5020435685693985 

3 1.642796870146890 1.092839813718882 I 10-3 .2515407696772230 

4 1.643839709960609 5.469881472146554 J 10--4 .1259011766715422 

5 1.644386698110782 2.736367125502070 J 10--4 .0629834197798145 

6 1.644660334820374 

The geometric interval method is most useful when the integrand or its first 

derivative is singular at one of the endpoints of the integration interval. 
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