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1. Introduction 

The problem of identifying unambiguous signatures of quark-gluon plasma is usu­
ally centered around the primordial state, when the quarks are deconfined and pre­
sumed thermalized.1 The complementary problem concerning the final stage of the 
plasma, as it undergoes phase transition to hadrons, has been largely ignored, ex­
cept in theoretical studies by lattice gauge calculations on the nature of the phase 
transition.2 The usual explanation is that one should investigate the system while 
it is hot, dense, and distinctive, using leptons and photons as probes. By the time 
hadrons are formed, the plasma will have cooled so much that all of its characteristic 
properties will have disappeared. The theme of this review is to present the opposite 
view. 

Despite many years of study of the various leptonic and photon signals from the 
early stages of the plasma, there has not been any that are free of ambiguities. due 
to competing processes. In quark-hadron phase transition (PT), on the other hand, 
there are behaviors that are unique, whose signatures cannot be mimicked by any 
other process. Possible drawbacks are that those signatures may be too weak to be 
easily identified and that the observed behaviors, even if successfully identified, are 
not characteristic of the plasma in its robust state. Those reservations, though not 
unreasonable, deserve some comments. 

The signatures in question are associated with the large-scale fluctuations expected 
in a PT. They are carried by the hadrons produced at the end of the life time of the 
plasma. IT those hadrons form a gas surrounding the plasma, then the signals of PT 
are likely to be significantly reduced by the thermalization process in the hadronic 
gas. However, the existence of such a hadron gas has not been proven, theoretically or 
experimentally, for nuclear collisions at very high energies, such as at LHC, which is 
where the baryon-free central region is most likely to be found. IT the PT is followed 
by free streaming, then the hadrons are the couriers of the physics of the transition. 
Whatever the real situation may tum out to be, theoretical studies of the hadronic 
properties should in any case be pursued and suitable observables proposed so that 
one knows what to expect under the best of circumstanres. Without such knowledge 
one would not even know what signal is weakened by thermalization, if indeed there 
is a sheath of hadron gas around the plasma. 

AB for the second issue concerning the plasma in its waning rather than primor­
dial state, the former is not any less interesting than the latter. If condensed-matter 
physics is to serve as a guide, critical phenomenon has been one of the most vibrant 
areas of physics in modem times. The extension of that study to the quark-hadron 
interface is not only very natural, but imperative. Universal scaling behaviors are 
common when condensed matter undergo second-order phase transition. Do they 
exist in heavy-ion collisions? IT so, what are they? What observable hadronic proper­
ties does the system exhibit, if the quark-hadron PT is first order? Clearly, a quark 
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and gluon system in transition to hadrons involves many aspects of physics that are 
interesting, but largely unexplored; in that sense the death of a plasma offers as much 
insight as when it is young, if not more so. The detection of any of the characteristic 
features of PT is enough to imply that a quark-gluon plasma has existed. 

In this paper the attempts thus far to find answers to the above questions are 
reviewed. One of the primary problems in the phenomenology of quark-hadron PT 
is the search for appropriate observables. Quantities such as hadron correlations are 
obviously important. At the microscopic level lattice gauge calculations cannot treat 
global properties adequately, while at the macroscopic level hydrodynamical calcu­
lations treat average quantities with deliberate intention to ignore the fluctuations. 
What is needed is a treatment of the problem at an intermediate level that can relate 
some generally accepted description of PT to some hadronic observables that can 
convey the special characteristic of critical behavior. 

In Sec. 2 we review the studies done in the framework of the Ginzburg-Landau 
(GL) description of PT.3 Both second and first order PT will be considered, in that 
order. Experimental verification of the theoretical prediction will be presented, not in 
heavy-ion collisions (for which the appropriate experiments are still some years in the 
future), but in quantum optics. In Sec. 3 a very novel approach to quark-hadron first­
order PT will be discussed. Thermal equilibrium will not be assumed, and cellular 
automata will be used to simulate the transition process in detail. What emerges is 
a behavior that can be related to self-organized criticality. It is a connection that is 
very new in the physics of heavy-ion collisions. 

In both approaches to the problem scaling behaviors of different observables are 
found; furthermore, they are universal in that they are insensitive to the details of 
the experimental conditions under when the plasma is created. It is this universality 
that provides the hope that the scaling behaviors are generic in the physical problem 
and can be used as signatures of quark-gluon plasma. 

2. Scaling Behaviors in the Ginzburg-Landau Theory 

Among the formalisms that have been developed in the past for phase transi­
tion, the one most suitable for hadron production is the phenomenological theory of 
Ginzburg and Landau (GL),3 which correctly described the behavior of superconduc­
tivity before the emergence of the BeS theory. The application of the GL theory to 
particle production was first considered over twenty years ago,4 and then revived in 
more recent years by several groups 5,6,7, each for a different purpose, and none for a 
quantitative prediction of multiplicity fluctuations related to PT. In a series of papers 
initiated by Ref. 8 the focus was placed on the scaling properties of factorial moments 
Fq of the multiplicity distribution derived in the GL formalism. It was found not only 
that Fq possesses an unusual scaling behavior, but also that the behavior is similar 
for both first and second order PT, apart from some numerical difference in the scal­
ing exponent. The integration into a common description of observable behaviors for 
both orders of PT is unusual, but may not be limited to heavy-ion collisions. It is 
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this line of investigation that we review in this section. 

£.1. Factorial M aments 

The use of normalized factorial moments Fq to study multiplicity fluctuation in 
varying scale of resolution was originally suggested by Bialas and Peschanski. 9 H the 
phase spare in which the particles are detected is partitioned into M cells, each of 
size Cd where d is the dimension of the space, then Fq for particles detected in any 
one of the cells is defined by 

(1) 

where 
co n! 

Jq = L ( _ ) , P" . (2) 
n=q n q. 

Here n is the number of particles detected in the cell in an event and P" is the 
probability distribution for n, determined experimentally by averaging over many 
events. For improved statistics Fq can also be averaged over all bins 

(3) 

where j refers to the jth cell. In the theoretical consideration below the averaging in 
(3) will not be done explicitly on the assumption that P" is independent of j. 

An important property of Fq , noted in Ref. 9, is that if P" is a convolution of the 
dynamical distribution D with the Poissonian p", i.e., 

P" = f dt P,,(t) D(t). (4) 

where 
P,,(t) = t~ e-t , (5)

n. 
then Jq is just the simple moment of D(t): 

Jq = f dtt
q
D(t). (6) 

Thus Fq is an effective measure of the fluctuation of D(t). Power-law dependence 
of Fq on the cell size 6 has been referred to as intermittency,9 found theoretically 
in branching processes,10,11 and observed experimentally in e+ e-, lh, hh and AA 
collisions.12 

The question here is whether Fq exhibits special features, when quark-gluon 
plasma is created in heavy-ion collisions and the hadrons detected have gone through 
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quark-hadron PT. 

2.2. Second-Order Phase Transition 

In the GL theory of second-order PT the free energy of the system is F[4>l = 
JeFrF[4>], with the free-energy density being 

(7) 

where 4> is the order parameter; a, b and c are parameters, the latter two of which 
are positive and nearly constant in the neighborhood of the critical temperature Tc , 

but a changes sign as 
(8) 

with a' > o. In applying this formalism to quark-hadron PT, the geometrical 
spare of a cylindrical plasma, when expressed in terms of the spatial rapidity 'IJ = 
~ln [(t + z)/(t - z»), azimuthal angle tp, and radius r, is mapped to the momentum 
spare in the variables: y = ~ln [<Po + P3}/<Po - P3}] , tp, and PT, so that experimental 
cells in the momentum space can be related implicitly to the r-rells in (7}.13 If a 
subset of the three variables is considered, the dimension d is then reduced from 3 
accordingly. 

In identifying 4>(r), it is assumed that the system is in a pure coherent state 14», 
and that 4>(r) is the corresponding eigenvalue of the annihilation operator for the 
hadrons. In that way the average hadron multiplicity in a volume V becomes 13 

(9) 

so that 14>(r)12 is the hadron density at r, which in the absence of fluctuations is zero 
for T > Tc , but is nonzero for T < Tc, as an order parameter should behave. This 
behavior of 14>(r)12 is the property of (7) and (8), sinre the first two terms of F[4>] 
describe a stable minimum at 4> = 0 when a > 0, but the minimum moves to 

14>01 = -a/2b (10) 

when a < o. That is the behavior of a second-order PT. 
It is known that a pure coherent state has a Poissonian distribution of particle 

multiplicity 

(11) 

The observed multiplicity distribution Pn is, however, the thermodynamical average 
of 'Pn [4>], when IjJ is allowed to fluctuate in accordance to what the GL free energy 
prescribes: 

(12) 
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whereZ = JV4> e- Jcf'rFIl¢]. Eq. (12) is the basic equation for the phenomenology of 
produced hadrons in the GL description of quark-hadron PT.8 

H the last term of (7) is neglected for the moment so that 14>12 may be regarded 
as independent of r [see Sec. 2.4 for not neglecting that term], then the integration of 
.1"[4>] over all space in (12) may be restricted to the cell volume V = 64 and becomes 
trivial. Thus (12) becomes a Poisson transform of the general form of (4). It then 
follows from (6) that 

fq = Z-l /I'l1r f dl,WltPl2qe-6d(al4>l'+bI<l>I<) , (13) 

where the exponent in Z is also _64 (al4>12 + bl4>14). The integral in (13) is of the 
form laoo 

2at tJq(a) = dt fl e - ' (14) 

where 
(15)0: = JX/2 , 

Substituting (13) into (1) yields 

(16) 


from which follows the important result that Fq(x) is a function of x only, instead 
of depending on a, b, d, and 6, separately. In a heavy-ion oollision the temperature 
decreases as the system expands, so the values of a and b would vary with time ac­
oordingly, but not in ways known in detail theoretically. Fortunately, the dependence 
of Fq on x alone renders unnecessary the determination of a and b. It is straightfor­
ward to calculate Fq(x) for x > 0 oorresponding to T < Tc with hadron condensate. 
It turns out that Fq(x) does not have a power-law dependence on x. 8,13 The sub­
ject would have been dropped as uninteresting, if it were not for an observation that 
revealed a simple and elegant property of Fq• 

By partial integration of (14), Jq (0:) can be shown to satisfy the recursion relation 

q-l
Jq(o:) = o:Jq- 1(a) + -2- Jq-2(0:) , (17) 

while by explicit evaluation one has 

..ji2
Jo(O:) = Tea (1 +erfa) , (18) 

J1(0:) = 21 + o:Jo(a) . (19) 

Furthermore, (14) also implies 

dJq(a) _ 2J. ()
da - q+l a . (20) 
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Thus one can calculate from (16) the function (3q(a), defined by 

~ ( ) = dlnFq 
(21)

q a dInF2' 

by taking the ratio of din Fq/da to dIn F2/da. The result is shown in Fig. 2.1.13 
Evidently (3q(a) is insensitive to the value of a. In a plot of InFq vs InF2 the small 
variations of the local slopes would not be perceptible globally, and a straight-line fit 
for each q would be excellent. This is shown in Fig. 2.2. Thus there exists a power~law 
behavior 8 

(22) 

which we shall refer to as F -scaling. This behavior can be checked by varying 6, the 
only variable under experimental control. 

From Fig. 2.1 one can examine the dependence of {3q on q and a. It is an amazing 
fact that (3q(a) satisfies very accurately the formula 

(23) 

where the values of 11(0.) fall within the narrow range 

II = 1.305 ± 0.010 (24) 

for 0.3 < a < 2. Sinre the variation of II is less than 0.8%, it is justified to regard II 
as a constant and refer to it as the scaling exponent with the value II = 1.304.8 The 
fit of {3q by (q - 1)11 is shown in Fig. 2.3, in which the values of {3q determined from the 
slopes in Fig. 2.2 are shown as dots.8 The data from heavy-ion collisions 14,15 are also 
shown for comparison; the corresponding value of II is around 1.55. It is reasonable 
to conclude from that figure that current data do not suggest any PT, at least not of 
the type considered here. 

We see that from the general properties of GL follows a universal scaling behavior, 
where II is independent of a, b, d and 6. The universality makes the result particularly 
attr8.ctive, since experimentally there is no way to control the temperature around 
the critical point, and theoretically there is no knowledge of the values of the GL 
parameters. The most interesting aspect of the result is that the input is totally 
general, as the GL theory is applicable to a wide variety of physical proresses, the 
heavy-ion collisions being only a very late comer. The F-scaling property has escaped 
notice for forty years, and the numerical value of II could have been discovered long 
ago. 

2.9. Experimental Verification of II 

The use of II = 1.304 as a criterion for quark-hadron phase transition is a novel 
variation from the signature of the primordial plasma. So far we can only show that 
it is a necessary consequence of the GL type PT, but not a sufficient condition. On 
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the experimental side the verification of the theoretical prediction on v for heavy-ion 
collisions is not imminent, since the best chances are for a baryon-free region where 
the GL description may be adequate for the simple hadronization process. That 
would require much higher energy, such as at CERN-LHC currently under planning. 
However, since, as we have noted, the G L theory is very general, there should be other 
areas of physics that exhibit second-order PT, where F -scaling should be looked for 
and the value of v checked. 

Such an area was indeed found in quantum optics. It has been known for a long 
time that the threshold behavior in lasers and nonlinear optics involves the onset of 
instabilities of certain modes of oscillation in the optical system. These instabilities 
near threshold are intimately related to the general phenomena of phase transitions. 
Indeed the phenomenology of threshold behavior in the single-mode laser is described 
very well by the G L theory of second-order PT.16 It is therefore highly pertinent to 
investigate photon number fluctuations in lasers at the threshold of lasing and check 
whether F -scaling exists and what the scaling exponent may be. In contrast to heavy­
ion oollisions where experimental control of the temperature is lacking, the photon 
count problem in laser transition has a pump parameter that is under exrellent control 
in the experiment. 

Without entering into a.discussion of laser physics here, it is only neoossary to 
state that the steady-state distribution for the oomplex field amplitude E of the 
single-mode laser is given by 11 

P(E} = ~e-U(E) , (25)
Zp 

where Zp is the normalization constant, and 

(26) 

Here p is the pump parameter that characterizes the operating point of the laser, 
p < 0 below threshold, and p > 0 above. In a photoelectric counting experiment the 
photocount distribution Pn (T) is measurable, and gives the probability of detecting 
n photons in time T. H the counting interval T is short compared to the correlation 
time of the laser, Pn(T) is given by 18 

(27) 

where ", is the detector efficiency. 
In a laser experiment it is possible to work with a homogeneous system. Thus 

(26) fits in exactly the general form of (7) with the gradient term not contributing. In 
that sense lasing is a second-order PT from no photon production below threshold to 
photon production above threshold. Since the photocount distribution Pn ( T) in (27) 
is perfectly analogous to the hadron multiplicity distribution Pn in (12), the laser 
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experiment provides an easier way to check F-scaling and the scaling exponent v. 
There are some experimental complications involving detector dead-time corrections 
and background corrections, for the details of which the reader is referred to Ref. 19, 
where the first experiment on the subject was reported. Instead of varying the time 
interval 'T, which is the counter part of 6 in heavy-ion collisions, the pump parameter 
p is varied, since Fq depends on only one overall variable x [see (15)]. The result on 
Fq is shown in Fig. 2.4, which clearly verifies F -scaling. From the straight-line fits of 
the data points the slopes {3q are shown in Fig. 2.5; they agree remarkably well with 
the theoretical prediction {3q = (q - 1)", v = 1.304, represented by the solid line. 

The confinnation of the F-scaling and the scaling exponent v, which is indepen­
dent of the pump parameter p and the detector efficiency 11, is not only an advance in 
laser physics, suggesting the possibility of similar behavior in other more complicated 
laser systems, hitherto overlooked. It gives crucial support to the proposal that the 
scaling behavior of Fq can be used as a diagnostic test of whether a second-order 
quark-hadron PT exists in heavy-ion collisions. 

2..1- Inhomogeneity 

The considerations in the preceding two subsections treat only the case where 
the cJ84>f8rJ2 term in (7) can be neglected. While that can be arranged in the laser 
problem by considering a homogeneous laser, it is necessary to understand the effect 
of that term in the general case. In the following we give first a quick way of seeing 
its effect without detailed calculation, and then the results of an actual calculation 
based on mean-field type approximation. 

It is well known that when spatial dependence is introduced into the problem by 
the gradient term, the correlation length is 

e= (cfJal)l/2 (28) 

IT b = 0, the correlation function behaves as 

C(rl - r2) ex: e-lrl-r21/eflrl - r21 . (29) 

To estimate the effect of this correlation, let a drastic approximation be made to 
simplify the consideration. Let C(rl - r2) be represented by a function shaped as 
a step-function, such that all points separated by a distance less than eare fully 
correlated; otherwise, there is zero correlation. Thus in the discretized form of the 
functional integral in (12), where the r-space is partitioned into M cells of size 6d

, 

all 4>i are required to be equal for any cell i within a block of size ed centered at 
the cell under study. All cells not in the block give rise to contributions that cancel 
between the numerator and denominator of (12), and need not be considered any 
further. This approximation of strong correlation for Iri - rj\ < eleads to !q that 
is essentially in the same form as (13) for the c 0 case, except that the 6d factors 
are replaced by ed • That means that for 6 > ethe effects of the gradient tenn may 
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be ignored, but when 6 is decreased to below e, the effective cell size for the c =I- 0 
case is equivalent to ed in the c = 0 case. Thus the results obtained for the c = 0 
case are still applicable, so long as 6 is not allowed to become smaller than e. When 
the experimental 6 is decreased below e, the result of the c = 0 case (with 6 replaced 
by €), should be used. Of course, that is the physical meaning of having nontrivial 
correlations with a range of e. In terms of the x variable it means that x should not 
be decreased to below x( = a2ed /2b. It turns out that excluding the x < x( region 
does not invalidate the result of Sec. 2.2, since the region that exhibits F-scaling is 
for larger X.8,13 Hence, the general properties of F-scaling and the numerical value of 
v are retained, when the gradient term in the free-energy density is accounted for in 
the approximation considered here. 

A more quantitative analysis has been done by taking the gradient term into 
account explicitly in the calculation of Fq.20 Since the full problem is difficult to 
treat, an approximation is made in the spirit of mean-field theory. The focus is on 
the multiplicity fluctuation from event to event in one cell only, so the o¢/or term in 
(7) can be treated in terms of incremental changes of ¢ in that cell relative to ¢j of the 
neighboring cells, where j labels the cell number of the neighbors. The approximation 
is to assign to ¢j the same background field ¢o for all j, where 1¢ol2 = -a/2b, the 
value at which the GL potential has its minimum for a < O. Thus the emphasis 
is on the fluctuation of ¢ at the cell under examination from the mean ¢j of the 
neighboring cells, rather than on the fluctuations of ¢j from 4>0 themselves. Because 
of the statistical factor exp( -F[¢]) , fluctuations of ¢ in all cells are around the most 
probable value 14>01; the derivative term clo¢/orI2 gives a measure of the inhibition 
on the degree of those fluctuations. The approximation deoouples all cells without 
losing the effect of the derivative term. 

It can be shown 20 that in this approximation Fq depends on only two variables, 
x and I, where x is as defined in (15), and 

= (cd) 1/2 (a2) lId (30)
I 1r lal 2b 

Thus the dependence on c is transmitted to the dependence on I' Fig. 2.6 shows 
that F -scaling remains to be valid for any fixed 1; moreover, the scaling behavior is 
insensitive to,. If the slopes of the log-log plot are fitted by 

(31) 

the resultant scaling exponent v(,) depends on 'Y as shown in Fig. 2.7.20 Evidently, 
the variation is mild. For 0 <, < 10, the value of v is within the range 1.316±0.012. 
With this result one should feel assured that the gradient term in the GL free energy 
can be ignored without serious effect on the scaling behavior of Fq• 
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2.5. First-Order Phase Transition 

Lattice gauge calculations indicate that the QeD PT may be second order or 
a weak first order, depending upon the number of quarks in the problem.21,22 IT 
there are only two massless quarks, the transition is second order, but if there are 
three massless quarks, then it is first order. For a realistic strange quark mass the 
situation is somewhere in between, and may be near the tricritical point.23 Since the 
GL formalism is also applicable to the study of first-order PT, it is of some interest to 
investigate the effect on the scaling behavior discussed above, when the PT changes 
from second order to first order. 

For first-order PT the coefficient of the quartic term in ..r[4>] in (7) becomes neg­
ative, so the next order term in the expansion must be considered. Leaving out the 
gradient term, the free energy density becomes 

..r[4>1 = al4>12 + bl4>14 + kl4>16 
, (32) 

which may be rewritten in the form ..r[4>1 = (a3 /k)1/2tf(t), where 

f(t) = 1 - 2(1+g)t + f , (33) 

(34) 


When 9 is positive, i.e., b < -2J(ik, f(t) has a minimum lower than 0, so the 
minimum of ..r[4>1 jumps from 4> = 0 to a finite value of 14>1, as 9 increases through 
zero. That corresponds to first-order PT. 

The parameters a, b, and k are not known for quark-hadron PT, let alone their 
dependences on T. Whether hadrons are formed at Tc or below it depends on how 
rapidly the latent heat released can be removed; in the latter case 9 would be positive. 
In view of such complications it is sensible to regard 9 as a parameter and investigate 
the scaling behavior as a function of g. 

The procedure is essentially the same as before. It is straightforward to show that 

(35) 


where 
1000 

Jq = dt tq e-zt/(t) , (36) 

x= Od (a3 / k) 1/2 (37) 

Thus Fq is a function of x and 9 only. Interestingly, the result shows that F-scaling 
is still valid in this case, as shown in Fig. 2.8, for 0 < 9 < 0.6. For each value of g, 
the slope satisfies 

(38) 
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so that the scaling result can be summarized by the g-dependence of v, as shown in 
Fig. 2.9.24 The solid line is a fit of the dots determined from the fits of {3q(g) by (38). 
The dashed line is for v == 1.304. 

The result is remarkable in the sense that a unifying feature about first- and 
second-order PT has been found. Fluctuations of particle multiplicity as measured 
by Fq exhibit similar scaling behaviors, and the scaling exponent v changes from a 
value of 1.45 that is distinctly first-order at 9 == 0 to nearer 1.3 at higher g, a value 
that has been characteristic of second-order. 

The subject has also been considered recently in Refs. 25-27. In Ref.26 it is 
found that {3q shows no difference between first- and second-order PT, contrary to 
the conclusion exhibited in Fig. 2.9. That result has subsequently been retracted in 
Ref. 27, where agreement with Refs. 8,24 is found. For first-order PT, which requires 
a > 0 and b < -2...;ak in (32), a particular path in the a-b plane is considered in 
Ref. 27, namely: fixing b < 0 and allowing a to decrease in accordance to (8) with T 
kept above Te. In following that path one encounters a discontinuity in the minimum 
14>1, as a is decreased beyond the point a == b2 /4k. Since the PT occurs at 9 == 0, the 
jump in the minimum of tf(t) can be seen from (33) to go from t == 0 to t == 1. From 
(34) one sees that 14>I~n == Ja/k == -b/2k, when that happens. Thus if -b is not 
small, the PT may be regarded as being strong first order. However, if the path in the 
a-b plane is not along a fixed-b line at large negative b, but along a fixed-a line at small 
positive a, with b decreasing from positive to negative values, then hadronization at 
large 9 (where the solid and dashed lines in Fig. 2.9 merge) corresponds to weak first 
order, a scenario made possible by supercooling that leads to PT at 9 > O. 

2.6. Remarks 

What have been investigated in this section are the general consequences of the 
GL description of PT. Nothing specific about quarks and hadrons has actually been 
put in, except that the form of the free-energy density.1"[4>] can be inferred from 
the field theory of quarks undergoing PT. Of course, the identification of the order 
parameter with hadron density is crucial. Nevertheless, the formalism is sufficiently 
general to allow for the order parameter to be identified with the photo count rate 
of lasers, and immediately the subject beoomes relevant to nonlinear optics at the 
threshold of lasing. The discovery of F-scaling in quantum optics and the verification 
of v == 1.304 give hope ~o observing the same behavior in heavy-ion collisions, when 
such experiments are performed at high enough energies. 

The relevance of this subject can be extended to other fields. First of all, even 
in quantum optics it is possible to find laser systems where lasing threshold behaves 
like first-order PT. It is therefore of great interest to have experiments done in that 
field to verify the results in Sec. 2.5. IT we move to free..eleciron lasers, which is quite 
unlike lasers in quantum optics, there has been no study on whether they behave as 
having a PT at threshold. Experimental evidence for or against F -scaling would be 
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very interesting. One can also go into condensed-matter physics, where PTs of all 
sorts are abound. Metal-insulator transition would be relevant, since one can measure 
the electric current at the threshold and calculated Fq • If diverse areas of physics can 
show F -scaling with the same scaling exponent, then we shall have found a truly 
universal behavior that cuts across the boundaries separating the various fields of 
physics. 

Finally, coming back to heavy-ion collisions, our assumption has been that ther­
malization of quarks and gluon is achieved early in the formation of the plasma so 
that the temperature is a good local variable to describe the expanding and oooling 
system and that the GL theory is applicable at PT. However, the geometry of the 
problem has not been introdured into the problem in any essential way. It becomes an 
important aspect of the problem, if there is a mixed phase where quarks and hadrons 
can coexist, as in the first-order PT. The space-time complications introduced in the 
mixed phase cannot be handled by the GL formalism, especially if a thermalized 
system is a bad approximation. The problem must then be investigated by use of a 
totally different method, which is the subject of the next section. 

3. Cluster Production in the Mixed Phase 

9.1. The Problem 

In the foregoing section we have considered the problem of hadron production in 
a thermalized quark-gluon plasma for which the GL formalism is a good description. 
The order parameter is related to the hadron density. The dynamical aspect of the 
heavy-ion collision is not emphasized. The spatial variables are integrated over in 
the free energy, and there is no time evolution. We now focus on the space-time 
properties of the PT process. 

H the PT is of second order, there is no mixed phase. The part of the plasma that 
is oooled to Tc and below condenses to hadrons and leaves the system. It occurs at the 
surface of the expanding cylinder, and no complication is expected in the space-time 
development of the hadronization proress. On the other hand, if the PT is of first 
order, then there is a mixed phase in which quarks (and gluons) and hadrons can 
coexist in a finite spatial volume over a finite period of time. What happens to those 
hadrons in the mixed phase as they move toward the surface of the plasma is the 
problem to be examined now. Their characteristics as they emerge from the plasma 
can provide observable clues about the nature of the PT. 

It should be mentioned at the outset that the hadrons to be studied here are not 
the ones that reach the detector; the former are at the transition temperature, the 
latter at T = o. What happens between the surface of the plasma and the detector 
is still controversial. Whether there exists a hadron gas surrounding the plasma, or 
there is free streaming, is not an issue that has a general consensus. What effects 
chiral transition has on the hadron masses are also debatable. Our attitude on those 
issues is totally open. They are to be addressed in time, but for now our focus is only 
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on the properties of the hadrons at the outer boundary of the mixed phase, i.e., on 
the plasma surface. After those properties are derived, some remarks will be made at 
the end of this section to indicate what the likely observable consequences might be. 

In treating the problem, the method to be adopted shall be general enough to 
be applicable even to a system not in thermal equilibrium, so long as there is a 
region where quarks and hadrons can coexist. We shall continue to call it the mixed 
region, although it has a specific meaning in equilibrium statistical physics. In the 
treatment the notion of temperature is not a necessary ingredient. Indeed, if the 
quark-gluon system produced in heavy-ion collisions is not thennalized, almost all 
previous treatments of the subject would become invalid, but what is to be discussed 
below should on the whole remain valid. 

9.2. Cluster Growth in Heavy-Ion Collisions 

To describe the problem before posing a method of investigation, let us adopt 
the conventional picture for the collision (head on, say) of two high-A nuclei in that 
there is rapid longitudinal expansion with slower radial expansion. For the purpose 
of our consideration it is not important whether and how the system deviates from 
longitudinal boost invarianre. A global description of the whole expanding system is 
not required. Consider only the problem of cluster production at midrapidity in a 
very high energy oollision, preferrably at LHC, so that one may focus on a thin slire of 
the expanding cylinder at y = 0, and assume that it is a baryon-free region. Using the 
language of thermal equilibrium in order to set up the srenario, assume further that 
initially there is a plasma at high temperature, and that it cools due to longitudinal 
expansion. As time t evolves, the temperature profile T(r, t) will change in such a way 
that initially T will decrease faster at larger r than at r = 0 due to radial diffusion. 
Again, the exact form of T(r, t) is not crucial. However, for ease in discussing the 
problem assume that the usual hydrodynamical solution is approximately valid until 
the end of the mixed phase, i.e., for r < rb(t), where rb(t) is the outer boundary of 
the mixed phase, which decreases with increasing t due to refraction.28,29,30,31 There is 
also an inner boundary ro(t), which also decreases with t at a faster rate, separating 
the mixed phase from the quark phase at r < ro(t). Our consideration here is only 
for the region in the annular ring TO < T < Tb, which we shall refer to as the M region, 
for short.32 

The usual description of the first-order PT in the mixed phase is in terms of the 
free energy, which for spherical hadronic bubbles has the form 

ll.F = 411" R3 ll.p + 411"R2 (1 (39)
3 ' 

where ll.F is the change in free energy from the quark to hadron phase, ll.p is the 
pressure difference Pq - Ph between the two phases, (1 is the surface free energy at the 
bubble-plasma boundary~ and R is the bubble radius. Since Fh < Fq , ll.p is negative, 
but (1 is positive. Thus nucleation begins only if the initial radius is greater than 
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the critical radius 20'/I~pl. Csernai and Kapusta33 have calculated the nucleation 
rate and studied the time evolution of a homogeneous plasma as it undergoes PT by 
bubble formation and growth. 

We consider the problem with emphasis on different issues: (a) geometry of the 
plasma in heavy-ion collisions, (b) modification of (39), (c) fluctuations due to colli­
sional effects, and (d) possible observables related to fiuctuations.32 

For the longitudinally expanding cylinderical plasma produced in a head-on heavy­
ion collision, T in the quark phase at r < ro decreases with t, but is greater than 
the transition temperature Tt. The region therefore serves as the source of quarks 
and gluons for the region M where T ~ Tt. In the mixed phase hadronic bubbles are 
formed releasing latent heat, which drives the longitudinal expansion of the M region 
without lowering T. For the disk at a fixed y, every small cell in it has a local fluid 
velocity in the radial direction. In the mixed phase that velocity is roughly constant 
because the velocity of sound is nearly zero. Thus we shall regard all quarks and 
bubbles in the M region to drift toward rb at a constant velocity. 

Because of the difficulties in calcu1atmg fluctuations, especially in the absence of a 
reliable theoretical framework, the discussion below will perforce be qualitative, and 
will be based on the assumption that the above kinetic and geometrical picture is 
essentially correct in the disk at midrapidity over a period of time during which most 
of the hadrons are produced. 

Concerning bubble formation in the region M, the usual consideration is concerned 
with the balance of the volume and surface terms as shown in (39). These are the 
only terms necessary in cosmic PT 84,35 or for any bubble whose radius is orders of 
magnitude larger than the range of microscopic interaction. In heavy-ion collisions 
the bubbles cannot be too large, since the mixed phase in the M region can at most 
be several fro in radial thickness, not more than 20 fro, say. The time scale involved 
is also short, so a bubble cannot grow beyond a few fro in radius before it is thrusted 
out of the plasma system. When all scales in the problem are comparable, one cannot 
ignore the curvature term, linear in R, that can contribute to (39), as well as other 
terms that become relevant if the bubble is not spherical.36 For simplicity's sake, let 
us consider first the spherical case, and write more generally 

~F = -aJe'i + fJR2 - 'YR. (40) 

There is no firm determination of the coefficients a, fJ and 'Y from QeD that can 
reliably be used for our problem. If the curvature and volume terms are negative,36 
but all three terms have comparable magnitude, there are then two cases to consider: 
(a) p2 < 3a'Y, and (b) {32 > 3o'Y. 

In case (a) ~F decreases monotonically with R so a bubble once formed will grow 
without restraint except by the possible increase of temperature due to the release of 
latent heat L. As a general rule the rate of bubble formation and growth depends on 
how fast L can be gotten rid of. Presumably the coefficients a, {3 and 'Y depend on 
T in such a way that the system finds itself in a steady state of hadrollization in the 
time scale considered here. 
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In case (b) there is a metastable state at R_ and a barrier whose peak at R+ is 
not far off, where 

R± = ~f.8± (,82 - 3a-y)1/2]. (41) 

IT the barrier is crossed by coalescence to be discussed below, the bubble will then 
grow as in case (a). Thus the distribution of the bubble sizes at r = rb is a measure 
not only of {32 relative to 3a'Y, but also of the dynamical mechanisms that can give 
rise to bubble growth from the metastable state. 

It should be remarked that since the bubbles in either case cannot grow very big 
in the restricted region of the mixed phase, they cannot be regarded as volumes of 
hadron gas. Thus in our problem the term bubble is a misnomer for a small droplet 
or nugget of hadrons, even the largest of which may only rarely contain more than 
a dozen hadrons. The application of hydrodynamics to the study of the kinetics of 
the quark-hadron boundary of the bubbles, as one does in cosmic phase transition, 35 

therefore cannot be justified. Furthermore, the bubbles need not be spherical. The 
discussion given above is mainly for the purpose of indicating the possibilities that 
can arise in connection with (40), which is for the simplified case of a spherical 
bubble. In general, the volume can be like a dendrite with fingers.36 The growth 
properties are far more complicated than what can be inferred from (40). Since they 
have irregular shapes, we shall hereafter call them clusters. They need not have rigid 
structures as they grow, so they are not of the type usually studied in local growth 
models or diffusion-limited growth models.37 Having motivated the study of clusters, 
we shall relinquish (40) or any generalization of it so long as the coefficients Q, {3, etc., 
are unknown, and proreed with the assumption that there is some probability p for 
nucleation. 

'fuming to the dynamical mechanisms for growth, the most important one is the 
inelastic collision between clusters that leads to coalescence. For a metastable state in 
the spherical case mentioned above, the kinetic energy absorbed can put the enlarged 
cluster over the free-energy barrier. Even if the system is not in equilibrium, for which 
the use of free energy would be meaningless, coalescence of two encountering clusters 
can still occur. Moreover, the breakup of a large cluster into smaller ones due to 
collisions is also possible, such as in the severing of a finger from a dentrite. Thus the 
stochastic equation describing the evolution of the cluster-size distribution function 
should have both gain and loss terms. Since the color-neutral clusters are under 
constant bombardment by quarks and gluons in the mixed region, they are expected 
to undergo Brownian motion around the average drift motion. Such fluctuations lead 
to random relative velocities among the clusters when they collide, which in turn 
influence the coalescence and breakup rates. Herein lies an aspect of the growth 
proooss that renders the problem untractable analytically. 

The problem is analogous to that of many random walkers, generated randomly at 
all points in space and time in region M with some fixed initial size; they can increase 
or decrease in size, or die, as walkers meet. In addition to these successive random 
processes, each cluster independently undergoes a steady nonlinear growth process. 
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These dynamical features have been put into a cellular automaton that simulates the 
cluster growth process. 

The essence of a cellular automaton is to summarize the dynamics by a set of 
simple rules and by repeated application extract interesting pattern in the output 
whose characteristics transcend the details of the rules used. Although this approach 
to the problem is susceptible to the criticism that the rules adopted are also an 
oversimplification of the phase transition process, the focus is shifted from finding an 
analytical description of the problem on the basis of ignoring certain complications 
to focusing on those complications in the framework of some simple rules. 

3.3. Self-Organized Criticality 

Before proceeding to the formulation of the problem, let us take a short digression 
and have a brief look at a related subject in modem statistical physics. The traditional 
approach to critical phenomena is to take a thermal system to its critical point and 
study its scaling behavior in that neighborhood. The critical exponents, such as a 
for specific heat 

(42) 

have been the objects of intensive study in past years both theoretically and experi­
mentally.38 In more recent years it has been recognized that there are many systems 
which exhibit criticality without the tuning of any parameters, such as the lowering 
of T to Te. The dynamics of those systems are such that they approach by themselves 
a critical state, which has been given the name "self-organized criticality" (SOC).39 
The first case studied was the sandpile problem; it has remained to be a primary 
example of SOC even today. 

In the sandpile problem grains of sand are dropped randomly over a table of 
definite size, and a sandpile is allowed to build up with zero height at the table's 
edge, since the sand grains are allowed to falloff the table. A sand grain falling on 
the pile in the interior can tumble down toward the edge when the local height differs 
from its neighbors in some specified way. It can either fall down the pile a certain 
distance and stops, or it can initiate an avalanche, resulting in many grains of sand 
falling off the table, or it can have any situation in between, all depending on the 
local heights and the rules for tumbling. The aim of the problem is not so much to 
model accurately a realistic sandpile as to use the sandpile model to illustrate a more 
interesting phenomenon of deeper significance. 

Instead of formulating the problem analytically, which is difficult, the problem was 
first posed by use of cellular automata.39 Subsequently, other rules were considered 
for the same problem, and essentially the same results were obtained.40 They are the 
following. The sandpile is first built up to a critical slope; thereafter each additional 
grain of sand dropped leads to an avalanche of size S (number of grains falling off the 
table), which can vary from 0 (no fall-off) to a large number. Repeated application 
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of random dropping of sand (one grain at a time) leads to a distribution of S 

P(S) ex: s-a (43) 

where a is some positive number. Except for the finite-size effect (due to the finite­
ness of the table-to-grain size ratio), this type of scaling behavior generally emerges, 
relatively independent of the details of the rules. Since the result involves large fluc­
tuations in S without any characteristic scale, it suggests that the system is in some 
critical state. The system evolves to that state without the tuning of any parame­
ters externally. Thus the sandpile problem illustrates a general SOC phenomenon of 
large-scale fluctuations in the outcome of an evolution process. Other examples are 
earthquakes, forest fires, etc.41 

It will become self-evident in the following in what sense SOC is relevant to the 
problem of cluster production. The hadron clusters are like the sandpile avalanches, 
emitted by the plasma in all sizes. The aim is to look for scaling laws like (43), and 
investigate their universality. As in SOC, the experimentalists have no control of the 
quark-gluon system once it is formed in a heavy-ion collision; it evolves on its own 
without external tuning of any parameters. The discovery of a universal scaling law 
would then be of fundamental importance. 

9.4. Cellular Automaton 

In the sandpile and forest-fire problems 39,40,41, the rules are extremely simple; con­
sequently, the models are not very close to reality. Nevertheless, they are interesting 
because each of them exemplifies a class of problems that exhibit interesting scaling 
behaviors. Our problem here is, however, different. We are interested in a specific 
problem: that is, the discovery of observable signatures of quark-hadron phase tran­
sition in heavy-ion collisions. Thus our rules cannot be 80 simple as to mutilate the 
physical problem that we wish to address. Since the relevant dynamics that controls 
the nature of fluctuations at the transition point is not known very well, there is some 
freedom in the choice of the rules within the space-time structure outlined in Sec. 3.2. 
Within the confines of that framework one should adopt rules as simple as possible 
to describe cluster growth, and search for generic results that are insensitive to the 
parameters used in the rules, or better still detail aspects of the rules themselves. 

In Ref. 32 the problem is considered in I-dimension. It is a drastic simplification of 
the realistic problem that provides a first glimpse of the type of results that emerged. 
Subsequently, the problem has been generalized to 2 dimensions 42 with new features 
that are absent in ID. The most prominent one is that the clusters can have various 
shapes. On the other hand, the breakup of clusters that is simple to implement in 
ID has in 2D so many possibilities that it is not included in Ref. 42 in order to limit 
the number of rules. We describe here the procedure considered in Ref. 42, deferring 
to a later subsection more recent attempts to modify it so as to include breakup. 

In 2D a thin slice of the expanding cylinder at midrapidity has an annular ring 
in which the quarks (and gluons, which we shall suppress mentioning for the sake of 
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brevity) and hadrons coexist. Consider a wedge of that annular ring and map it to 
a 2D square lattice of size L x L initially, as depicted in Fig. 3.1. That is the M 
region whose evolutionary behavior in space and time is to be tracked. We impose 
periodic boundary condition in the vertical Y direction, and regard the first column 
at x = 1 as the inner boundary of the ring, and x = X.,(t) as the outer boundary 
(depending on y) that changes with time t, starting with X.,(O) = L for all y. The 
time dependence of X.,(t) will be a result of the process of cluster emission from the 
plasma. 

The rules for the the cluster formation process are as follows. 

(a) Single-site nucleation. Initially, all sites are unoccupied, representing quark phase. 
Let each site have the probability p of being occupied in each time step, rep­
resenting a local hadron phase. The initial hadron is thus of size So, which is 
slightly less than the intersite distance, so that neighboring sites can separately 
become newly occupied without overlap. For simplicity let single-site nucleation 
(SSN) be denoted by So = 1. At the next time step only the unoccupied sites 
can become occupied with probability p at each site again. 

(b) 	Growth. H a newly occupied site is a nearest neighbor of an old occupied site, 
regard it as a growth process, and require the two to be bonded to form a cluster 
(or an extenSion of a cluster, if the old site is already part of an existing cluster). 
All sites in a cluster are bonded. 

(c) 	Average drift and Random walk All hadrons drift toward the outer boundary at 
the same velocity at any given time, simulating the radial expansion. This drift 
motion in the M region is represented by the requirement that all occupied 
sites Si(t) = (Xi, Yi) are to move to SiCt + 1) = (Xi + 1, Y') at the next time 
step, assuming no fluctuations. On top of that motion the clusters take random 
walks around their average drift as in Brownian motion. Thus with fluctuation, 
si(t+l) can be one of the following four possible sites, (Xi+2,Yi), (Xi+1,Yi+I), 
(Xi + 1, Yi - 1), and (Xi, Yi), with equal probability. All the other sites in the 
cluster move together as a rigid body. All vacated sites become unoccupied. 

(d) 	Coalescence. As the clusters move, they may collide. A collision occurs during 
the random walk when there is an overlap of occupied sites belonging to two 
different clusters. When that happens, the two clusters are treated as one 
thereafter, with one of the double at the overlap site be taken to occupy the 
nearest unoccupied site (at random if more than one), and be bonded to the 
rest of the enlarged cluster. 

(e) 	Boundaries. Since the quark phase on the inside of the annular ring supplies the 
quarks to the mixed region, the quark density in the M region remains constant 
throughout, including the boundary at X = 1. That means that all unoccupied 
sites remain unoccupied until an occupied site moves there, or a nucleation 
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takes place there. Unoccupied sites do not drift. At the outer boundary hadron 
clusters can leave the M region, but not the quarks due to confinement. When 
any site in a cluster of size 8 breaks through the outer boundary, then the whole 
cluster is removed from the M region, which is now redefined to have 8 sites 
less vertically and one layer less horizontally where the cluster is emitted. 

(f) Evolution. The above steps are repeated again and again until all clusters are 
emitted from the plasma. The evolution stops when there are no more unoccu­
pied sites left, and the phase transition is over. 

(g) 	Cluster-size distribu.tion. With nj(8) denoting the number of clusters of size 8 
emitted in the jth event, and Nj = Es nj(S), calculate the average distribution 
after Nevt events defined by 

P(8) = _1_ t nj(S) . (44)
Nevt j=1 Nj 

The above rules define cellular automaton CA2.1 42. Note that thennal equilib­
rium has not been assumed. The only essential assumption is that there exists a 
region in which quarks and hadrons can coexist for a sufficiently long time. Unlike 
usual lattice calculations, the size L has a physical meaning and cannot be taken to 
be arbitrarily large. Taking the lattice spacing to very small can be considered, only 
if the relative ratios of L, 80 , drift step size and random-walk step size remain the 
same in that limit. But to take the continuum limit is contrary to the ideas of cellular 
automata (CA). Variations of the ratios of those physical quantities will, however, be 
considered in the following. 

9.5. Scaling Behavior 

Using CA2.1 the cluster production process has been simulated in 103 events.42 

A typical event would have a time sequence that can be exemplified by four frames 
illustrated in Fig. 3.2, oorresponding to (a) t = 4, (b) t = 5, (c) t = 6, (d) t = 7 for 
L = 16 and p = 0.2. Solid circles represent occupied sites that have previously been 
in existence elsewhere; open circles are newly nucleated sites. Linked sites are clusters 
formed either by growth or by ooalescence. The dotted lines are the outer boundaries 
at each stage of the development. To the right of the dotted lines are indicated the 
numbers of clusters of particular sizes that have just been emitted. 

After averaging over all events the result on the cluster-size distribution P(8) is 
as shown in Fig. 3.3 for SSN (80 = 1), L = 16 and 0.01 < P < 0.5. Evidently, except 
for small values of p, P(8) exhibits scaling behavior 

P(8) ex: 8-'l , 	 (45) 

where the scaling exponent 'Y depends only mildly on p with its value in the range 

'Y = 1.86 ± 0.18 , 	 (46) 
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while p varies in a range that stretches over an order of magnitude from p = 0.05 to 
0.5. H the lattice size is enlarged to L = 32, the linear portions of the scaling curves are 
extended further without any changes in the slopes (see Fig. 3.4). Furthermore, the 
scaling behavior remains unchanged, if rule (a) is replaced by double-site nucleation 
(DSN), i.e., two neighboring unoccupied sites must simultaneously become occupied 
in one time step to initiate a So = 2 cluster. This is shown in Fig. 3.5 for L = 32 
(the same being true for L = 16). The value of'Y is still as given in (46). Thus one 
can conclude that the cluster production process exhibits universal scaling behavior, 
independent of L, So and essentially also of p. 

One can also consider a variation of the drift speed. In CA2.1 the drift step is set 
equal to one lattice spacing per time step. Doubling the drift step results in Fig. 3.6, 
43 which shows that scaling remains valid only for p > 0.1. Thus for low nucleation 
rate there is insufficient growth and coalescence to generate large clusters before they 
move rapidly out of the M region. But more interesting is the observation that for 
p > 0.1 the scaling behavior is unchanged. H L is doubled also to 32, then scaling 
is restored for p > 0.05 with the same value of 'Y. This is not a consequence of 
simply scaling up the lattice spacing, since the random-walk step size is not doubled 
also. Equivalently, the latter is halved, if L and drift step stay unchanged. Thus 
the invariance of the scaling behavior implies insensitivity to the temperature of the 
system, if thermal description is appropriate. 

It is also possible to use CA2.1 to check the importance of growth versus coales­
cence by turning off either one or the other mechanism. It is found that coalescence 
alone is able to sustain the scaling behavior, but not the other way around.43 With 
growth only, no large clusters can be formed even at high p. 

The resemblance of (45) and (43) strongly suggests that the quark-hadron PT 
is another example of SOC. Indeed, we have not tuned any parameter to bring the 
systems to the critical point. This point is significant for heavy-ion collisions, since 
there are no experimental means to control the quark-gluon plasma once it is created. 
The universality of 'Y is also important, since it implies independence on the exper­
imental conditions under which the plasma is ,formed, such as nuclear size, collision 
energy, impact parameter, etc. The only requirement is that the M region of the 
mixed phrase is sufficiently large, a scenario that is consistent with the recent trend 
in the theoretical estimate of the time spent in the mixed phase. 

9.6. Modified CA 

On the basis of CA2.1 it has been shown that the scaling behavior of P(S) is 
independent of many parameters representing physical features of the system. A 
legitimate question is on the sensitivity of the results to the particular rules in CA2.1 
themselves. It is only when there is independence on the details of the CA can one 
believe the result to be a general consequence of the dynamical systems. 

There are other reasons to want to modify CA2.1. So far no breakup of clusters is 
allowed, mainly because no simple rule can be added to account for all possible ways 
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that breakup can take place. Furthennore, the clusters in CA2.1 are rigid, while 
having defonnability is more reasonable, especially if the surface tension is large, 
positive or negative. In CA2.2 both defonnation and breakup are allowed.43 

The first step in modifying CA2.1 is to relax the rigidity of the clusters, whose 
shapes depend on where along the peripheries the growth and coalescence processes 
happen to occur. That can be achieved by assigning a circular area to every cluster 
with an effective radius 

R(8) = aJ8/1r , (47) 

where a is a parameter that specifies how dendritic the shape is. IT a = 1, it is 
circular; if a > 1, it is irregular, or may even have holes. One may think of a cluster 
as a vertical stack at the center with a range of inHuenre extending to a distanre of R 
away. The stack is always placed at a lattice site, whether or not the effective circle 
corresponding to (47) covers 8 discrete sites. In drift and random walk the stack 
moves in discrete steps as before. 

For growth any unoccupied site immediately outside the effective circle, when 
nucleated, becomes an addition to the stack. For coalescence between two stacks 
with radii Rl and~, we require the distance between the two stacks to be less than 
Rl + ~ in order for the two stacks to be combined into one and be placed at a site 
closest to the c.m. position. 

With this scheme it is not difficult to consider breakup. We use 

(48) 


to describe the probability that a cluster 8 breaks up into 81 and 82 spontaneously. 
IT it follows immediately after a coalescence, the combined two-step process may be 
regarded as an inelastic collision. The probability .8(8,8}, 82) favors minimization 
of circumference-to-area ratio with positive surface tension being assumed implicitly; 
f3 is a positive coefficient. The daughter clusters are placed at Yl and -Y2 vertically 
away from the mother site, where Yl,2 are the largest integers less than a J82,1/1r+ 1. 
IT either one of the effective circles of 81 and 82 overlaps with that of an existing 
cluster, the breakup is forbidden from occurring in order to avoid a chain reaction of 
coalescence and breakup. 

In Fig. 3.7 the result of CA2.2 is shown for three values of a but with f3 = O. This 
is a check of CA2.2 compared to CA2.1 without breakup. Note that there is very 
little dependence on a, and the slope is consistent with (46). Thus the new CA yields 
essentially the same result as the old, verifying the insensitivity to the details of the 
rules. When breakup is introduced, there is noticeable dependence on f3 for small 
p;43 however, when p is in the nonnal range, the dependence on f3 is minor, as shown 
in Fig. 3.8 for p = 0.2. That is because when there is sufficient nucleation, there are 
enough clusters in the M region to cause the products of breakup to coalesce readily 
with others so that the net cluster distribution is essentially unaffected. 
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The universality feature of the scaling behavior is now extended to include breakup. 
Furthennore, the independence on the specific rules in a CA to describe the same dy­
namics gives confidence to the generality of the result. 

9. 7. Phenomenology 

The scaling distribution P(S) discussed in the foregoing subsections refers to 
hadronic clusters produced at the outer edge of the mixed phase as they emerge from 
the M region. They are not necessarily what the experimentalists can see at the 
detector, depending on what transpires in between. Since there is little consensus on 
the physics issues involved, we give below some speculation on what may happen. 

The most important question is whether the clusters will oollide with one another 
after they leave the M region. IT they do extensively, then the clusters would be 
broken up, and the evidences of clustering may be hard to detect. The existence of a 
hadronic gas phase seems to be mainly an assumption, based perhaps on the physics 
of heavy-ion oollisions at low energies. At LHC energies where a baryon-free central 
region is most likely to be found, the hadrons that leave the mixed phase have such 
high PT that the transverse geometrical space available (increasing quadratically with 
time) may be large enough to significantly cut down the probability of final-state 
interaction. IT that is true, then free streaming of the hadronic clusters is a likely 
possibility worthy of further oonsideration. 

It is reasonable to assume that the hadrons within a cluster are in thermal equi­
librium, since they are confined to a small volume in the mixed region. After the 
cluster is ejected from its quark environment, a naive view would suggest that the 
thermal energy of the hadrons inside the cluster at #'V Tc would cause the hadrons to 
gain kinetic energies in the vacuum. For Tc #'V 150 MeV, the hadrons belonging to the 
cluster would be spread out in phase space, leading to a diffuse oollection of pions at 
the detector with no characteristic of an identifiable cluster. 

However, there is at least one additional piece of physics that would intervene. At 
Tc, oonfinement PT turns quarks into hadrons, but the chiral symmetry is still in the 
process of undergoing a transition. That is, the constituent quark mass does not reach 
its full value of 330 MeV until T is lowered to zero. Thus it is only some time after the 
cluster is thrust into the cold vacuum that the breaking of chiral symmetry is brought 
to completion by the T = 0 environment. Since the cluster is now in the vacuum and 
not in contact with any other, the only way that the quarks can gain their masses 
is at the expense of the thermal energy of the hadrons in the cluster. The question 
of the temperature dependence of the hadronic masses is still very oontroversial, and 
there is no definitive guidance from lattice gauge theory. An increase of the p meson 
mass, 44 as T is decreased, would he in favor of our argument that the thermal energy 
in the cluster would be oonverted to the hadronic mass. Indeed, if mp is very low at 
Tc , then there may not be enough energy for p to attain its physical mass before it 
decays into two pions. The loss of the relative kinetic energies of the hadrons in the 
cluster should therefore result in bunching, i.e., the detected particles (mostly pions 
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and kaons) are close together in phase spare. In short, if the hadron masses in the 
cluster at Tc are not high, energy conservation alone should be enough to imply that 
the detected hadrons would be bunched. 

IT at Tc the hadrons in the clusters in the M region have low masses (both s~range 
and non-strange), then it should be far more efficient to generate strange particles 
inside the clusters than normally is possible in pp collision in the T = 0 vacuum. For 
example, reactions such as p+ p --+ K + k would have higher rates at Tc. After those 
clusters leave the plasma and plunge into the T = 0 environment, the strange quarks 
would be frozen in the system as they gain their constituent quark mass. Thus among 
the final particles that are detected there should be more K and ¢> mesons, compared 
to the production rate without plasma formation. Since larger clusters spend more 
time in the M region to acquire their sizes, there is more time for strangeness cre­
ation in them, so the detected hadrons should have a strange/nonstrange ratio that 
increases with the cluster size. This is a new signature that should be very distinctive. 

Finally, we come to the question of how the clusters are to be identified experi­
mentally. First of all, one should look at the produced particles one event at a time, 
since inclusive distribution adds up all events, a procedure that surely will smear 
out any evidences of clustering. Even in one event one should minimize integration 
over any variable. Specifically, PT should not be integrated over. Thus the PT space 
should be divided into many bins, and one should examine the f]-<P spare in each 
PT bin. IT one uses hydrodynamics as a guide, one should expect that the clusters 
emitted earlier have larger velocities on the average than those emitted later on in 
the phase transition. Since we want to avoid the clusters emitted at different times to 
overlap, separation by PT partitioning is a method that should enhance the chances 
of seeing clustering. 

Now we come to the f]-<P space, in which clustering is to be found for each PT bin 
in an event. That space must be partitioned into many two-dimensional cells of a 
given size. Clearly, if the cell size is very large, all hadrons belong to one cluster. IT 
the cell size is very small, each hadron is an island by itself. Thus the resolution of 
the cells must be varied to optimize the identification of the clusters. 

When a cluster is found it can be distinguished from that due to a jet by comparing 
the various PT sections of the same event. IT there is a jet, there are many particles 
in the jet that are concentrated in a small cone in the 1]-<1' space, but have varying 
PT - the towers in the lego plot. Thus in different PT sections, they will contribute 
to clustering at the same place in the T]-<P space. But no such correlation is expected 
for clusters produced in quark-hadron PT. Hence, if clustering is found at random 
locations in the T]-<P space from one PT section to another, that. would be the true 
signature of the clusters discussed here. 

Furthermore, there are particles in a jet that have high PT, say greater than 
5 GeV Ie. No such high-PT hadrons are expected in clusters produced in PT. Thus 
if randomly distributed low-PT clusters are found, they can hardly be confused by 
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ambiguities due to other competing production mechanisms. 

4. General Comments 

Two types of scaling behaviors have been discussed as consequences of quark­
hadron phase transition. One is on the factorial moments Fq , which exhibit F-scaling, 
i.e., Fq ex: Ft', and /3q = (q - 1)11 with v = 1.304 for seoond-order PT and up to 1.45 
tor first-order. The results are derived from the G L theory, and should be valid for 
various fields of physics. They have been verified in quantum optics. The other 
scaling behavior has been found in the cluster-size distribution P(S) ex: S-"Y, where 
'Y ~ 1.9, nearly independent of many parameters in the problem. That result has been 
obtained by use of cellular automata, and suggests that the phenomenon exhibits self­
organized criticality. 

No attempt has thus far been made to relate the two types of scaling behaviors. As 
they stand, they describe two oomplementary aspects of the PT process. In the former 
there is no time dependence, since the system is assumed to be in a steady state. In 
the. latter finite size and finite time-duration are important parts of the problem. 
They are orthogonal views of the system, emphasizing different observables. 

Clustering refers to the geometrical problem of adherence after the hadrons are 
formed, not considered in G L. Consequently, the sum over S of all clusters produced 
in each event should give the total number of hadrons formed in the event, which in 
turn should be related to the multiplicity n, whose fluctuation from the average is 
characterized by Fq • On the other hand, the nucleation rate p should be related to the 
order parameter 14>1 so that the GL description of first-order PT can be introduced 
into the cellular automata. With appropriate interconnections the two aspects of the 
PT problem can be married without the anticipation of obvious damages that would 
be done to the two scaling results already obtained. That is, of oourse, the next 
important step to be taken theoretically in this subject. 

Experimentally, the detectors should be designed with good resolutions for the 
hadronic momenta and multiplicities. To measure Fq to high values of q for varying 
cell sizes requires high statistics data. To identify clusters event by event requires 
laborious work to examine the particle distribution in the l1-CP space for various 'PT 
sections small enough to minimize the overlap of clusters. But perhaps the great­
est difficulty is to overcome the prevailing bias against hadronic signatures. It is 
hoped that the work reviewed here will provide some motivation to venture into this 
unorthodox method of identifying unusual signs of quark-hadron phase transition. 
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