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Abstract 

Quark-hadron phase transition is considered for both second and first order cases. 
In the former case the Ginzburg-Landau theory is used to derive a scaling law for the 
normalized factorial moments of hadron multiplicities. A scaling exponent 11 = 1.304 
is obtained, and has subsequently been verified by an experiment on photo count near 
laser threshold. In the case of first-order transition the problem of cluster growth is 
considered. It is suggested that a scaling distribution in the cluster sizes would be a 
novel signature of quark-gluon plasma. 

1 Introduction 

The problem of identifying unambiguous signatures of quark-gluon plasma is usually 
centered around the primordial state when the quarks are deconfined and presumed 
thermalized. While such efforts should certainly be pursued despite ambiguities due 
to competing processes, we propose to study the problem in a total different realm. 
We regard the quark-hadron phase transition (PT) to be not only a more interest­
ing physics problem but also a phenomenon that can possible be inferred from the 
experimental data of heavy-ion collisions, provided that the right measurables are 
investigated and the appropriate signals are recognized. 

A way of viewing the various approaches to the problem is to contrast the volume 
effect from the surface effect. The former refers to the signals emanating from the 
plasma proper, while the latter refers to observables sensitive to the PT that occurs 
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near the surface, where temperature is low enough for the transition to hadrons to 
take place. Hadronic signature of PT may be subject to blurring by possible final 
state interaction, the existence and extent of which are unknown in nuclear collisions 
at very high energy, it being a question of the existence of the so-called hadron gas 
phase. To make any progress in understanding the effect of the latter complication, 
it is necessary first to know the nature of a clear signal from PT without a hadron 
gas. 

Current understanding of quark-hadron phase transition from latttice gauge cal­
culations does not give a definitive answer on whether it is of first or second order. 
We shall consider both cases, the latter first since it is more tractable analytically. We 
shall find a scaling behavior that is characterized by an exponent II, whose validity 
will be shown to be more general than the plasma problem originally intended. For 
the case of first-order PT, the problem is more complex; however, we have a computer 
simulated result to illustrate the main idea that we want to advance. 

Second-Order Phase Transition 

In condensed matter physics it is well known that a system at the critical point ex­
hibits large fluctuations. H there is a similar phenomenon in quark-hadron phase 
transition, the fluctuations that one looks for can only be found in the hadron multi­
plicities. Present theoretical studies of quark-hadron PT do not deal with multiplici­
ties: at the microscopic level lattice gauge calculations cannot treat global properties 
adequately, while at the macroscopic level hydro dynamical calculations treat average 
quantities with deliberate intention to ignore the fluctuations. What we must do is to 
consider the problem at an intermediate level where hadron multiplicity is a variable 
in the theoretical framework as well as a measureable quantity whose properties can 
be predicted. 

Among the formalisms that have been developed in the past for critical phenom­
ena, the one most suitable for our use is the phenomenological theory of Ginzburg 
and Landau (GL) [1], which correctly described the behavior of superconductivity 
before the emergence of the BCS theory. The application of the GL theory to par­
ticle production has been considered before [2]-[5], but each for a different purpose, 
and none for a quantitative prediction of multiplicity fluctuations related to PT. We 
report here our attempt to study intermittency in the GL theory and our discovery 
of the scaling exponent II, even though there is no intermittency in the strict sense 
[6]-[8]. 

The GL free energy density is 

(1) 



where ¢> is an order parameter, and z is a spatial variable representing a point in 
d-dimensional space. The parameters a, b, and c characterize the system in the neigh­
borhood of the critical point. Generally, b and c are positive and approximately 
constant near Tc , while a changes sign as 

a(T) = a' (T - Tc) (2) 

with a' > o. The first two terms of .1"[¢>] describe a stable minimum at ¢> = 0 when 
a > 0, but the minimum moves to 

I¢>ol = -a/2b (3) 

with in determinant phase when a < O. This is the behavior of a second-order PT 
where the order parameter is zero in one phase (T > Tc) and nonzero in the other 
(T < Tc). 

Our problem in applying this formalism to quark-hadron PT in heavy-ion collisions 
is firstly to identify the order parameter and secondly to calculate an observable 
quantity. For the former we draw an analogy between pion production and photon 
production in lasers, where 1¢>1 2 is the photocount rate [9]. Indeed, in the laser problem 
¢>(z) is the eigenvalue of the annihilation operator whose eigenstate is the coherent 
state I¢». This formalism was first adopted in [2] to treat particle production. We 
follow the same procedure and recognize a pure coherent state as having a Poissonian 
distribution of particle multiplicity n in a volume V 

/>.. [4>] = ~! (fv dzl4>12)" exp [- fv dzl4>12] (4) 

The observed multiplicity distribution Pn is, however, the thermodynamical average 
of Pn , when ¢> is allowed to vary in accordance to what the GL free energy prescribes: 

(5) 

where Z = JV¢>e- J dz",q,]. Thus the dynamical component of the fluctuation in n is 
totally controlled by.1"[¢>]. A measurement of that fluctuation should therefore reveal 
the central features of the PT. Eq. (5) may alternatively be regarded as the starting 
point of our approach without the derivation from coherent states; in that approach 
one simply assumes that Pn is a convolution of the statistical fluctuation described by 
Pn and the dynamical fluctuation specified by the Boltzmann factor involving .1"[¢>]. 

To establish a closer connection between fluctuations and .1"[¢>] , let us consider the 
factorial moments 

(6) 



If V is taken to be a d-dimensional cell of 6 on each side, i.e. 6d
, then fq depends on 

abc, , , d, 6 and q. Some of the integration factors can be eliminated if we consider 
the normalized factorial moments 

(7) 

In the simple case c = 0, which we examine first, it turns out that Fq depends on 
only one variable x [6, 7] 

(8) 

besides q, when a < 0, the hadron phase. The question then is whether Fq exhibits 
intermittency [10], i.e. power-law behavior in x 

(9) 

when x is small. Since Fq(x) can be exactly calculated, the answer can be determined 
unambiguously. It is found that there is no extensive region of x in which Fq behaves 
as in (9), except in the limit x -+ 0 for which C{)q has the uninteresting value 0 [6]. 

The absence of intermittency in the usual sense does not mean the lack of scaling 
behavior in general. With the Ochs-Wosiek plot [11] in mind, we examined the 
dependence of Fq on F2 as shown in Fig. 1. Evidently, there is linear behavior in the 
log-log plot for every q, implying the scaling law 

(10) 

To a very good degree of accuracy [8], {3q is independent of x. This is important 
because we do not know the parameters a, band c at all for quark-hadron PT. What 
is even more amazing is the fact that {3q can be described by a very simple formula 
[6] 

{3q = (q - 1)" (11 ) 

with a fixed exponent V; it satisfies the trivial constaints at q = 1 and 2. As Fig. 2 
indicates, all the values of {3q shown can be very well fitted by (11) with 

V = 1.304 . (12) 

Thus we have discovered a numerical constant that is a consequence of the Ginzburg­
Landau theory of second-order PT. It is not derived from any numerical input, since it 
is independent of a, b, d and 6 (for the case of uniform 4>, i.e., c = 0). The universality 
of V is what makes this result particularly attractive. Since there is no way to control 
temperature around the critical point in heavy-ion colliisons, there is no way to tune 
the parameters in the GL free energy. Nevertheless, the universality of V renders that 
deficiency unimportant. It implies that despite our ignorance about those parameters 
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we can use the explicit value of v to serve as a criterion to determine whether the 
hadrons produced are a result of the type of PT that we have considered here. 

In general, c in (1) is not zero. The kinetic term makes the problem much more 
complicated. In [7, 8] we considered some approximations and found that the result 
is not affected too much by the cI8¢>/8zI 2 term. The scaling law (10) is still valid, 
and (11) is still good with 

v = 1.316 ± 0.012 (13) 

for all values of c. 
Current data on multiparticle production in pp and AA collisions can all be de­

scribed by (10) and (11). In Fig. 2 are shown some data points from nucleus-emulsion 
experiments [12, 13] with v = 1.55 ± 0.12. The NA22 hh data [14] can be well fitted 
by (10) and (11); the result on the y distribution gives the value v = 1.45 ± 0.04 [15] 
(note the small error). Higher dimensional analyses as well as in the Q2 variable give 
higher values of v [15]. We may conclude that current experiments on hadronic and 
nuclear collisions show no indication of PT according to our criterion, which is not a 
surprIse. 

It would be more satisfying if the predicted value of v can be verified by ex­
periment. Unfortunately, any heavy-ion experiment that can possibly lead to phase 
transition will have to wait for the completion of RHIC or LHC, which will be many 
years from now. Yet, fortunately there is another realm of physics in which an ex­
periment can readily be carried out to test our theory. That is the production of 
photons at the threshold of lasing in quantum optics. It is known that the behavior 
of the laser system near threshold is analogous to a second-order PT describable by 
the GL theory [16]. Thus the fluctuation of the photon number should be as discussed 
above; in particular, the moments Fq of the number of photons emitted near threshold 
should satisfy (10) and (11). An experiment on this has been carried out recently [17]. 
The result for a homogeneous laser (c = 0) yields a value of v in perfect agreement 
with (12), as shown in Fig. 3. With the verification of our scaling prediction and 
its universality property, we now feel more emboldened to propose that the scaling 
exponent should be used as a criterion to test in heavy-ion collisions the proximity of 
the quark-gluon system to the G L type of PT. 

First-Order Phase Transition 

If the PT is first order, then there is a mixed region of quarks and hadrons. Those 
hadrons are not the same as the ones that end up in the detector since they are at finite 
temperature Te. Furthermore, the hadrons in the mixed region can stick together and 
grow. The growth process can depend on many factors. In cosmic PT the hadronic 
bubble can grow to a very large size, the dynamics being determined to a large extent 



by the surface tension and the pressure difference at the quark-hadron interface. In 
heavy-ion collisions all scales concerning QeD, hadron mass, cluster size, and even 
nuclear radius are of the same order of magnitude. In that case one certainly cannot 
justify hydrodynamical treatment of the bubble boundary. Indeed, the bubbles need 
not be spherical, since dendretic structure of hadronic clusters cannot be ruled out 
on the basis of energy and pressure considerations at the quark-hadron interface. 
The problem seems untractable and very different from that of the second- order PT 
discussed above. 

Despite the lack of a formalism that can be used to treat the problem quantita­
tively, we can approach the subject at the qualitative level first and ask some leading 
questions. H hadronic clusters are formed in the quark system, do they change in 
size, and if so, what mechanisms influence the change? What aspect of the PT can 
best characterize the transition? Is it observable? 

The usual reason for bubble growth is that the negative volume term overcomes 
the positive surface term in the free energy difference from the quark to hadron phase. 
This is a consideration of the statics of the problem concerning pressure difference, 
and can provide a basis for the study of the dynamical change of the average size of 
the bubbles. Since the conventional approach does not give a realistic treatment when 
the bubbles are not large and are irregular in shape, we have to abandon asking the 
conventional questions, but ask instead whether the fluctuations of the cluster size 
from the average can reveal other interesting aspects about PT relatively independent 
of what controls the shape and average size of the clusters. Since the hadronic clus­
ters are subject to collisions by quarks and gluons in the mixed region, they behave 
like Brownian particles performing random walks around a drift motion toward the 
boundary. They can therefore collide in their random motion, whereupon the clus­
ters can coalesce, breakup, or scatter elastically. Successive coalescence would lead 
to large clusters - rare but possible. Thus the shape of the cluster-size distribution 
P(S) can reveal the dynamical process that the clusters go through before emerging 
from the plasma. 

We have put these ideas in a cellular automaton and simulated the cluster growth 
process [18]. We found that for various values of the coalescence and breakup proba­
bilities we can get scaling behavior in P(S), i.e. 

P(S) ex: S-CT , (14) 

except when S gets too large and the finite-size effect causes P(S) to deviate from 
(14). This is shown in Fig. 4. On the basis of this result we suggest that the detection 
of cluster sizes should be emphasized in future experiments on heavy-ion collisions. 
The experimental discovery of a scaling distribution such as (14) would undoubtedly 
stimulate a great deal of excitement in the field. 

There is, however, a possible hurdle having to do with the spreading in momentum 
space of the hadrons originating from a cluster. Although there are experimentalists 
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who regard it as their job to identify clusters, it is nevertheless interesting to ask how 
much the spreading can be. We have considered a quenching-bunching mechanism 
that may limit the spreading [19]. Assuming that there is no hadron gas surrounding 
the plasma, the sudden immersion of a cluster of hadrons at Tc into the cold vacuum 
at T = 0 may be referred to as quenching. After the cluster is thrust into the cold 
vacuum, the breaking of chiral symmetry is brought to completion by the T = 0 new 
environment, so the quark mass reaches its full constituent quark mass at 330 MeV 
from a value many times lower at Tc. Since the cluster is now in the vacuum, the only 
way the particles in it can become the usual hadrons with physical masses is that 
the quarks gain their masses at the expense of the thermal energy of the particles in 
the cluster, there being no other agent available to supply the needed energy. The 
p meson and other vector particles may never attain their physical masses. The loss 
of the relative kinetic energy of the final hadrons in the cluster is what we mean by 
bunching. At midrapidity the hadrons are mainly pions and kaons, which according 
to the bunching mechanism should therefore form clusters of particles close together 
in phase space [19]. 

Apart from the phenomenological question of how to identify the clusters, there 
is also the interesting theoretical observation that cluster formation in our problem 
is analogous to the avalanche in the sand-pile problem [20]. The latter is an example 
of self-organized criticality. For more discussion on the similarity between the two 
problems, an interested reader is referred to Ref. [18]. 

Conclusion 

We have discussed possible observable consequences of quark-hadron PT. In the case 
that the PT is second order we have studied the Fq moments in the framework of the 
Ginzburg-Landau theory and found a scaling behavior characterized by an exponent 
1/, whose value can be calculated. Its value for a homogeneous medium is 1.304, and 
has been verified experimentally to be correct for photocount at lasing threshold. We 
propose that the same 1/ should be used as a criterion to determine whether hadron 
production in heavy-ion collisions has gone through a GL type PT. 

If the PT is first order, then we suggest that the relevant observable is the cluster 
size. A simulation of the cluster formation and growth process indicates that one 
can expect a scaling distribution of the Cluster sizes. Experimental investigation of 
that possibility is therefore strongly urged. Any nontrivial distribution would suggest 
something unusual and therefore interesting. 
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Figure Captions 

Fig.1 Scaling behavior of Fq in terms of F2 • 

Fig.2 Dependence of {3q on q. Points are from calculation in [6]; data are from 
[12, 13]. 

Fig.3 Data on (3q are from laser experiment [17]; the curve is from theory, (II) 
and (12). 

Fig.4 Simulated result on P{S) for various values of b, c and p parameterizing 
coalescence, breakup and nucleation probabilities. 
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